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The Scenario

Following von Neumann Quantum Theory is part of Functional Anal-

ysis (Hilbert space theory). There is a satisfying computability theory

for this, namely Weihrauch’s TTE (Type Two Effectivity) where all

objects are coded by sequences of numbers (Baire space).

This is an implementation of a much more abstract view based on

the Hilbert lattice which suggests that the involved types of objects

are kind of domains as known from denotational semantics.

But we have to ensure that we stay within TTE when using them.

For this purpose we have to ensure that we stay within Schröder

and Simpson’s Topological Domain Theory providing an abstract

account of TTE.
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Outline of Quantum Theory (1)

following e.g. Pták and Pulmannová’s book (1991)

Orthomodular Structures as Quantum Logics

The Hilbert lattice L of closed linear subspaces of H serves as type

of “quantum propositions”. For P,Q ∈ L we write P ≤ Q for P ⊆ Q,

P ∧Q for P ∩Q, P ∨Q for the least closed subspace of H containing

P and Q as subsets.

The set P⊥ = {x ∈ H | ∀y ∈ P. 〈x | y〉 = 0} is in L.

Though (−)⊥ is involutory (P⊥⊥ = P ) and antitonic (Q⊥ ≤ P⊥

whenever P ≤ Q) the lattice L is not boolean. It is not even a

Heyting algebra since it is not even distributive.
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Outline of Quantum Theory (2)

A state is a function s : L → I such that

(s1) s(1L) = 1

(s2) s(P⊥) = 1− s(P )

(s3) s(
∨

Pn) =
∑

s(Pn) provided Pn ⊥ Pm for n 6= m

i.e. a probability measure on quantum propositions.

An observable is a function o : B(R) → L such that

(o1) o(R) = 1

(o2) o(∁A) = 1− o(A)

(o3) o(
⋃

An) =
∨

o(An) provided An ∩Am = ∅ for n 6= m

i.e. an L-valued probability measure on R (where B(R) is the set

of Borel subsets of R).

NB The composite s ◦ o : B(R) → I is a probability measure on R.
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Outline of Quantum Theory (3)

By the Spectral Theorem observables correspond to self adjoint op-

erators on H (useful for computations in physics!).

If A is a self adjoint operator on H then for a unit vector x we have

〈x | Ax〉 =

∞
∫

−∞

λ dµx(λ)

where µx = sx◦o with o corresponding to A and sx is the state induced

by x, i.e. sx(P ) = 〈x | Px〉 where P is identified with its projector.
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Domain-Theoretic View of QT (1)

All structures involved are cpo’s or opposites of cpo’s. Notice that

states and observables preserve suprema of ω-chains.

This suggests a domain-theoretic view of quantum theory.

But as observed by K. Keimel there is the following

Problem L is not a continuous lattice.

Proof. Suppose L were continuous. Then for atoms a we have a � a.

But there is an atom a and an ω-chain (bn) with
⊔

bn = 1 and a 6⊑ bn

for all n ∈ N.

One could be happy to work with cpo’s. But then there is no notion

of computability because this requires a basis!
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Domain-Theoretic View of QT (2)

However, one may work in the

Topological Domain Theory

of M. Schröder and A. Simpson which lives within the function realiz-

ability topos RT(K2) and thus gives rise to a notion of computability

à la Weihrauch’s TTE (Type Two Effectivity).

The aim of this talk is to show that Hilbert lattice, states and ob-

servables all live in this world and one can reason about them in the

logic of RT(K2) which constitutes a canonical model for Brouwerian

Intuitionism (c.f. Kleene & Vesley (1965)).
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Recap of Topological Domain Theory (1)

The pca K2 is Baire space B = Nω endowed with a binary partial

operation • such that maps of the form α•(−) are precisely the partial

continuous endo maps on Baire space (whose domain of definition is

a Gδ-set, i.e. a countable intersection of opens).

For α, β one defines

α(β) = n iff ∃m.
(

α(β(m)) = n+1 ∧ ∀k < m.α(β(k)) = 0
)

and

α • β ≃ γ iff ∀n. α(〈n〉∗β) = γ(n)

as suggested by Brouwer in the 1920s.
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Recap of Topological Domain Theory (2)

As usual we have

Mod(K2) ⊆ Asm(K2) ⊆ RT(K2)

where Mod(K2) corresponds to TTE since its objects are represen-

tations and its morphisms are realizable maps

RX
ϕ

-RY

|X|

̺X
?

?

f
- |Y |

̺Y
?

?

where ϕ is a continuous map between subspaces of B.
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Recap of Topological Domain Theory (3)

There is an obvious functor Q : Mod(K2) → Sp sending X = (|X|, ̺X)

to the topological space Q(X) with underlying set |X| endowed with

the quotient topology induced by ̺X : RX → |X|.

As shown by M. Schröder the maximal full subcategory of Mod(K2)

on which the functor Q is full and faithful are the extensional Σ-

spaces, i.e. modest sets X such that ηX : X → ΣΣX
: x 7→ λp:ΣX .p(x)

is a ¬¬-mono.

We write ExtΣ(K2) for the ensuing full subcategory of Mod(K2).

Alternatively, extensional Σ-spaces can be characterized as admissi-

ble representations, i.e. for any subspace S of B and any continuous

f : S → Q(X) there is a continuous ϕ : S → RX with f = ̺X ◦ ϕ.
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Recap of Topological Domain Theory (4)

For every modest set X consider

X
eX

- X̄

ΣΣX

mX
?

∩

η
X

-

where eX is epic and mX a ¬¬-mono. One can show that ΣeX is an

isomorphism. The map eX provides a reflection of X to ExtΣ(K2).

Thus X̄ provides an admissible representation of Q(X).

The image of Q can be characterized as the full subcategory QCB0 of

Sp consisting of T0-quotients of countable based spaces. It contains

all complete separable metric spaces and all ω-continuous domains.

10



Recap of Topological Domain Theory (5)

All spaces in QCB0 are sequential and we have

QCB0
⊂ -Seq⊂ -Lim

where Lim is the category of limit spaces. As opposed to the em-

bedding into Sp the embedding into Lim preserves and reflects most

of the relevant structure.

In particular, for Y X we have

lim fn = f iff lim fn(xn) = f(x) whenever limxn = x

Moreover ¬¬-monos in QCB0 are those 1-1 maps which preserve and

reflect convergence of sequences.
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Recap of Topological Domain Theory (6)
On every object X of RT(K2) one has the observational Σ-order

x ⊑X y iff ∀p : ΣX . p(x) = ⊤ ⇒ p(y) = ⊤

Up to iso extensional Σ-spaces are ¬¬-subobjects of powers ΣI of Σ.

If X ⊆¬¬ ΣI then

x ⊑X y iff ∀i : I. x(i) = ⊤ ⇒ y(i) = ⊤

Such an X is called a topological predomain iff it is closed under

unions of ω-chains.

It is a topological domain iff it has also a least element.

Let ω = {p ∈ ΣN | ∀m ≤ n. p(n) = ⊤ ⇒ p(m) = ⊤} and ι the inclusion

of ω = {p ∈ ω | ¬¬∃n:N.p(n) = ⊥} into ω. Then

X topological predomain ⇐⇒ Xι iso

12



Quantum Theory in RT(K2) (1)
Since H is a csm it lives in ExtΣ(K2) as does Σ itself. Thus ΣH is

a topological domain whose topology is the Scott topology. Notice

that A ⊆ H is closed iff A = p−1(⊥) for some p ∈ ΣH. Under this

identification we have A ⊑ B iff B ⊇ A.

Then L is the ¬¬-closed subobject of ΣH consisting of the p ∈ ΣH s.t.

∀x, y ∈ H. p(x) = ⊥ = p(y) ⇒ p(x+ y) = ⊥

∀x ∈ H, λ ∈ C. p(x) = ⊥ ⇒ p(λx) = ⊥

and thus L ∈ ExtΣ(K2).

The QCB0 topology on ΣH is the Scott topology. Thus, the QCB0

topology on L is the sequentialization of the subspace topology

induced by L ⊆¬¬ ΣH.

NB This is much coarser than the Scott topology on L.
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An alternative view of the Hilbert lattice

From the viewpoint of functional analysis one would identify the

Hilbert lattice with the ¬¬-closed subset L′ of Lin(H,H) consisting

of projectors P = P ◦ P . As opposed to L the space L′ is Hausdorff.

Thus L and L′ are not isomorphic.

Thus RT(K2) does not validate the Spectral Theorem which, in par-

ticular, entails a 1-1-correspondence between projectors and closed

linear subspaces of H.

However, it holds if we consider located closed linear subspaces of

H. But then we loose the domain theoretic aspect!

What is the right topology on L?
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Quantum Theory in RT(K2) (2)

Externally for every A ⊆ H the set

A⊥ = {x ∈ H | ∀y ∈ A. 〈x | y〉 = 0}

is in L. Since the map

(−)⊥ : L → L : A 7→ A⊥

reverses ⊆ it is not a morphism in RT(K2).

But we still have

∀A ∈ L.¬¬∃!B ∈ L.∀x ∈ H. x ∈ B ⇔ ∀y ∈ A. 〈x | y〉 = 0

which suffices for most purposes.
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Quantum Theory in RT(K2) (3)

As opposed to (−)⊥ the map (−)⊥⊥ : L → L : A 7→ A⊥⊥ lives in

RT(K2) since it commutes with arbitrary intersections.

For this reason the map

∨ : L× L → L : (A,B) 7→ (A ∪B)⊥⊥

lives in RT(K2).

Moreover, the relation

A ⊥ B ⇐⇒ ∀x ∈ A.∀x ∈ B. 〈x | y〉 = 0

on L is ¬¬-closed.
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States in RT(K2)

First observe that externally a state is a function s : L → I such that

(S1) s(0L) = 0 and s(1L) = 1

(S2) s(P ∨Q) = s(P ) + s(Q) whenever P ⊥ Q

(S3) s preserves infima of decreasing ω-chains.

Recall that L is a topological domain with P ⊑ Q iff Q ≤ P . Moreover,

the interval I ordered by ≥ is a continuous lattice and thus also a

topological domain with x ⊑ y iff x ≥ y.

Notice that s ∈ IL automatically validate (S3). Let St be the ¬¬-

closed subobject of IL of all s validating (S1) and (S2). It is easily

seen to be a topological predomain and closed under countable con-

vex combinations. Thus, since all pure states are in St it follows by

Gleason’s Theorem that St contains all states.
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Observables in RT(K2)
First observe that an observable is a function o : B(R) → L such that

(O1) o(∅) = 0L and o(R) = 1L
(O2) o(A) ⊥ o(B) and o(A ∪B) = o(A) ∨ o(B) whenever A ∩B = ∅

(O3) o preserves infima of descending ω-chains.

It suffices to consider the restriction of o to closed sets. Thus, we

consider maps o : ΣR → L thought of as sending a closed set p−1(⊥)

to o(p)−1(⊥).

Recall that ΣH and ΣR are QCB0 spaces carrying the Scott topology.

Since sequentialisation is a coreflection and L is the sequentialisation

of a subspace of ΣH the QCB0 maps from ΣR to L are precisely the

Scott continuous ones.

Thus, an observable is an o ∈ LΣR

satisfying (O1) and (O2).

The collection Obs of observables forms a topological predomain.
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Conclusion and Further Work

• essentially all ingredients of quantum theory live within topological

predomains

• ω-continuity properties are automatic, one only needs equations

to specify states and observables

• explicitate constructions in QCB0 (i.e. externally)

(e.g. the QCB0 topology on St)

• can one axiomatize properties of L or even develop a

“Synthetic Quantum Theory” ?
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