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Abstract

Constructive mathematics is mathematics without the use of the principle of the
excluded middle. There exists a wide array of models of constructive logic. One
particular interpretation of constructive mathematics is the realizability interpreta-
tion. It is utilized as a metamathematical tool in order to derive admissible rules of
deduction for systems of constructive logic or to demonstrate the equiconsistency of
extensions of constructive logic. In this thesis, we employ various realizability mod-
els in order to logically separate several statements about continuity in constructive
mathematics.

A trademark of some constructive formalisms is predicativity. Predicative logic
does not allow the definition of a set by quantifying over a collection of sets that the
set to be defined is a member of. Starting from realizability models over a typed
version of partial combinatory algebras we are able to show that the ensuing models
provide the features necessary in order to interpret impredicative logics and type
theories if and only if the underlying typed partial combinatory algebra is equivalent
to an untyped pca.

It is an ongoing theme in this thesis to switch between the worlds of classical
and constructive mathematics and to try and use constructive logic as a method in
order to obtain results of interest also for the classically minded mathematician. A
classical mathematician can see the value of a solution algorithm as opposed to an
abstract proof of the existence of a solution, but he or she would not insist on a
constructive correctness proof for that algorithm. We introduce a class of formulae
which is supposed to capture this pragmatic point of view. The class is defined in
such a way that existence statements have a strong status, yet the correctness of
an operation need only be proved classically. Moreover, this theory contains only
classically true formulae. We pose the axiomatization of this class of formulae as an
open problem and provide partial results.

Like ordinary recursion theory, computable analysis is a branch of classical math-
ematics. It applies the concept of computability to entities of analysis by equipping
them with a generalization of Gödelizations called representations. Representations
can be organized into a realizability category with rich logical properties. In this
way, natural representations of spaces can be found by categorically interpreting the
description of the underlying set of a space. Computability and non-computability
results can be and are shown on an abstract, logical level.

Finally, we turn to another application of realizability models, the field of strong
normalization proofs for type theoretic frameworks. We will argue why we think
that the modified realizability topos is not suited for this purpose and propose an
alternative.



Zusammenfassung

Konstruktive Mathematik ist Mathematik ohne die Verwendung des Prinzips ter-
tium non datur. Es gibt eine Vielzahl unterschiedlicher Modelle für die konstruk-
tive Logik. Eine bestimmte Interpretation der konstruktiven Mathematik ist die
Realisierbarkeits-Interpretation. Sie findet Anwendung als ein metamathematisches
Werkzeug welches es gestattet, zulässige Regeln oder Äquikonsistenzaussagen für lo-
gische Kalküle nachzuweisen. In dieser Dissertation verwenden wir die Realisierbar-
keits-Interpretation zum Zwecke der Separierung verschiedener Aussagen über Stetig-
keit im Rahmen der konstruktiven Mathematik.

Eine Eigenart einiger konstruktiver Formalismen ist die Prädikativität. Prädikative
Logik verbietet die Definition einer Menge durch Quantifikation über eine Familie von
Mengen, welche die zu definierende Menge enthält. Ausgehend von Realisierbarkeits-
Modellen über einer getypten Version partieller kombinatorischer Algebren zeigen
wir, dass die zugehörigen Modelle die nötigen Eigenschaften zur Interpretation im-
prädikativer Logik und Typ Theorie genau dann besitzen, wenn die zugrundeliegende
partielle kombinatorische Algebra äquivalent ist zu einer ungetypten pca.

Der Wechsel zwischen den Welten der konstruktiven und der klassischen Mathe-
matik und der Versuch, die konstruktive Logik als eine Methode zu benutzen, um
Resultate zu erzielen, welche von Interesse für klassische Mathematiker sind, ist ein
wiederkehrendes Thema dieser Dissertation. Ein klassischer Mathematiker erkennt
sehr Wohl den Wert eines Lösungsalgorithmus im Vergleich zu einem bloßen Beweis
der Existenz einer Lösung, aber er wird gewöhnlich nicht darauf bestehen, dass der
Korrektheitsbeweis für den Algorithmus konstruktiv ist. Wir führen eine Klasse von
Formeln ein, welche diesen pragmatischen Blickwinkel erfassen soll. Die Klasse ist
derart definiert, dass Existenzaussagen einen starken Status haben, Korrektheitsbe-
weise für Operationen jedoch nur klassisch geführt werden brauchen. Die besagte
Klasse von Formeln enthält nur klassisch wahre Formeln. Wir stellen die Axioma-
tisierung dieser Klasse als ein Problem und bieten Teilergebnisse.

Wie die Rekursionstheorie, so ist auch die berechenbare Analysis ein Zweig der klas-
sischen Mathematik. Die berechenbare Analysis wendet das Konzept der Berechen-
barkeit an auf Größen der Analysis, indem sie sie mit einer Verallgemeinerung von
Gödelisierungen, genannt Darstellungen, ausstattet. Darstellungen können in einer
Realisierbarkeits-Kategorie mit reichhaltigen logischen Eigenschaften zusammenge-
fasst werden. Auf diesem Wege können natürliche Darstellungen von Räumen gefun-
den werden, indem man die Beschreibung der unterliegenden Menge der Räume kat-
egoriell interpretiert. Berechenbarkeits- und Nicht-Berechenbarkeitsresultate können
so auf einer abstrakten, logischen Ebene hergeleitet werden.

Zuletzt wenden wir uns einer weiteren Anwedung der Realisierbarkeitsmodelle zu,
nämlich dem Gebiet der starken Normalisierungbeweise für typtheoretische Kalküle.
Wir legen dar warum wir denken, dass der modified realizability topos nicht das
geeignete Modell für diesen Zweck ist und schlagen eine Alternative vor.
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Introduction

Constructive mathematics is mathematics without the use of the principle of the ex-
cluded middle or, equivalently, without the proof principle of reductio ad absurdum.
While it is often harder and sometimes impossible to prove a classical theorem con-
structively, a constructive proof, once obtained, is much more informative. From a
constructive existence proof, for instance, one can extract a witness for the existence
statement, which is in general impossible for a classical proof. One might say that in
constructive logic, the status of existence statements is much stronger than in clas-
sical logic. Moreover, there exists a wide array of models of constructive logic. One
particular interpretation of constructive mathematics (actually, a theme with many
variations) is the realizability interpretation. The realizability interpretation can be
seen as a concrete incarnation of the Brouwer Heyting Kolmogorof interpretation of
the logical connectives. It is utilized as a metamathematical tool in order to derive
admissible rules of deduction for systems of constructive logic or to demonstrate the
equiconsistency of extensions of constructive logic. It is an ongoing theme in this
thesis to switch between the worlds of classical and constructive mathematics and
to try and use constructive logic as a method in order to obtain results of interest
also for the classically minded mathematician. A classical mathematician can see
the value of a solution algorithm as opposed to an abstract proof of the existence
of a solution, but he or she would not insist on a constructive correctness proof for
that algorithm. In section 2.1.3 we introduce a class of formulae which is supposed
to capture this pragmatic point of view. The class is defined in such a way that exis-
tence statements have a strong status, yet the correctness of an operation need only
be proved classically. Moreover, this theory contains only classically true formulae.
We pose the axiomatization of this class of formulae as an open problem and provide
partial results.

A trademark of some constructive formalisms is predicativity. Predicativism means
that, for any set, the collection of subsets of that set is not an entity in its own right
but each subset has to be defined by refering only to previously defined subsets. This
in particular prevents the definition of a set by quantifying over a collection of sets
that the set to be defined is a member of. This is perceived by predicavists as a vicious
circle. Starting from realizability models over a typed version of partial combinatory
algebras we are able to show that the ensuing models provide the features necessary in
order to interpret impredicative logics and type theories if and only if the underlying
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Introduction

typed partial combinatory algebra is equivalent to an untyped pca.
One aspect of constructive mathematics as opposed to classical mathematics is that

it can be extended in various ways incompatible with classical reasoning. A continuity
principle is an axiom which states that every function defined on a metric space
pertaining to some specified class of spaces to another metric space is continuous.
This is generally incompatible with classical logic, but perfectly (equi-)consistent
with constructive logic. As possible classes we can for example choose the class of
complete separable metric spaces or the class of complete totally bounded spaces. We
exhibit realizability models that satisfy the weaker and fail to satisfy the stronger
principle, thereby demonstrating that the implication between these principles is
strict. Moreover we give an easy model validating the statement “all functions from
R to R are sequentially continuous” and falsifying the statement “all functions from
R to R are continuous”.

Like ordinary recursion theory, computable analysis is a branch of classical math-
ematics. It applies the concept of computability to entities of analysis. In addition
to whether or not there exists a solution to a mathematical problem, in computable
mathematics one is interested in the question whether, given that the input data
is computable, there is a computable solution. Furthermore one asks whether one
can uniformly compute a solution from the input data. In order to give mean-
ing to sentences such as “the real number x is computable” or “some function f
is computable” one has to introduce some computability structure. Amongst the
several, non-equivalent approaches, we shall concentrate on the approach taken by
Weihrauch and Kreitz. It utilizes a generalization of the notion of Gödel numberings,
called representations. Representations can be organized into a category with rich
logical properties, which is essentially a realizability category. In this way, natural
representations of spaces can be found by categorically interpreting the description
of the underlying set of a space. Computability and non-computability results can
be shown on an abstract, logical level.

Finally, we turn to another application of realizability models, the field of strong
normalization proofs for type theoretic frameworks. We will argue why we think
that the modified realizability topos is not suited for this purpose and propose an
alternative.

12



1 Constructive Mathematics

This chapter attempts to give a brief overview over several schools of constructive
mathematics. The most important branches of constructivism for the purposes of
this thesis are E. Bishop’s constructivism and L.E.J. Brouwer’s intuitionism.

The introduction to the underlying philosophy of constructivist schools is followed
by a section on formalized mathematics and an analysis of the principles employed
by the various schools.

In the last section of this chapter we give a short introduction to categorical se-
mantics of constructive logic.

1.1 General philosophy of constructivism

Constructive Mathematics is mathematics without the law of the excluded middle
or, equivalently, without the rule of reductio ad absurdum. That is, in order to
prove an existence statement ∃x.A in constructive mathematics, it is not sufficient
to demonstrate that the non-existence ∀x.¬A is absurd. Likewise, in order to prove
a disjunction A ∨ B it is not sufficient to show that ¬A ∧ ¬B is absurd. This self
imposed restriction results in a finer distinction of concepts that would be equivalent
under the reign of classical logic.

Another aspect of constructivism, often, but not necessarily, combined with con-
structive logic is predicativism. In predicative logic it is not admissible to, in order to
construct one set, quantify over a collection of sets of which the set in statu nascendi
is a member of. If one does not adopt the philosophy that sets are entities that have
an ideal existence, then such a construction of a set would constitute a vicious circle.

Both restrictions of ordinary mathematics, while being not far from each other
in spirit, can be and are applied independently and in each of the possible combi-
nations. While it is more difficult (and sometimes impossible) to prove a theorem
constructively, the existence of a constructive proof has stronger implications than
that of a classical proof.

Consistency or enhanced safety from contradiction, by the way, is not amongst the
reasons to drop the law of the excluded middle. Due to the negative translation of
Gödel and Gentzen, it is just as hard to prove 0 = 1 in Heyting arithmetic as it is in
Peano arithmetic.

13



1 Constructive Mathematics

1.2 Branches of constructivism

We shall, in the following three sections, give a very brief account of the main branches
of constructive mathematics. A more extensive comparative overview can be found
in [BR87] or, amongst many other things, in [TvD88a, TvD88b] or [Bee85]. The
following sections touch on each of the constructive schools from the point of view of
this thesis, they do not serve as a real introduction. Also they lack all due historical
information.

1.2.1 Bishop’s constructive mathematics

The definitive introductory presentation of the ideas of Bishop’s mathematics is the
constructivist manifesto, the first chapter of the seminal book “Foundations of con-
structive analysis” [Bis67]. Although not formalized, it is rather clear in practice
what are the valid constructions and derivations in Bishop’s mathematics (BISH for
short).

Bishop style mathematics is based on constructive logic. As Bishop puts it: “when
a man proves a positive integer to exist, he should show how to find it”. This rules
out the unrestricted use of indirect proofs.

Bishop’s mathematics is also predicative. As he writes: “A set is not an entity
which has an ideal existence: a set exists only when it has been defined. To define a
set we prescribe, at least implicitly, what we (the constructing intelligence) must do
in order to construct an element of the set, and what we must do in order to show
that two elements are equal.” [Bis67, p.2]. This implies that, in defining a set, one
must not quantify over some collection of ideal sets, but may only refer to previously
defined sets. Bishop refers to sets and existence as used in classical mathematics
as ideal sets and ideal existence as opposed to constructive sets and constructive
existence. Sets may have a hypothetical status in order to allow a proof generic for
all possible sets, but quantification over all sets or even only all subsets of a given
set in order to define a new set is not allowed.

The set that Bishop’s mathematics starts out with is the set of natural numbers.
Given two sets, it is permissible to construct the set of ordered pairs of elements
of these, or the set of functions between these. Furthermore, given a set, one can
form the subset of all elements satisfying some given property. Quotient sets are not
part of Bishop’s mathematics, instead, every set is equipped with a defined notion
of equality. Equality is in most cases derived from a notion of apartness. This is
typical for constructive mathematics: in order to be able to prove some result, the
hypotheses have to be expressed in a positive way. The property that two elements of,
say, a metric space are apart is stronger constructively than the property of merely
being not equal. Instead, equality can be defined as non-apartness. If equality
on some set is defined as the negation of apartness, which is frequently the case,
the apartness relation is called tight. Indeed, apartness is the key notion in the

14



1.2 Branches of constructivism

constructive redevelopment of topology (see [BSV02]). Classical topology is not
applicable, here, as the dualism between open and closed sets is intrinsically based
on non-constructive reasoning.

It is to be emphasized that constructive mathematics is not about imposing re-
strictions and hindering mathematical development but about maintaining a higher
standard for valid proofs. If theorems fail to be provable constructively, they do so
for a good reason.

Equally important, one should keep in mind that Bishop style mathematics is not
a logical discipline, but a flavor of ordinary mathematics in its own right. Therefore,
the main activity in the field consists in proving theorems rather then demonstrat-
ing the unprovability of theorems or making other metamathematical observations.
Nevertheless, it is essential to have some clear indicators of when some theorem A
is unprovable, constructively. In classical mathematics, in this situation one usually
tries, and often succeeds, to prove ¬A. This method will, however, succeed less often
in constructive mathematics. The reason is that in contrast to classical mathemat-
ics, in constructive mathematics a lot more statements, even mathematically natural
ones, are undecided by the theory.

Omniscience principles

The principle of the excluded middle is undecided in Bishop style mathematics. It is
neither adopted, as in classical mathematics, nor does Bishop’s mathematics contain
any principle that refutes instances of the principle of the excluded middle, as does,
for instance, Bouwer’s intuitionism. However, as intuitionism is an equiconsistent
extension of Bishop style mathematics, instances of the principle of the excluded
middle that are refuted by intuitionism cannot be proved in Bishop’s mathematics.

One such instance has been taunted by Bishop the principle of omniscience:

PO For a set A either all elements of A have the property P or there is an element
of A with the property not P .

A particular choice of a set A and a property P , for which this principle is not part
of constructive mathematics, is the so called limited principle of omniscience:

LPO Let (an) be a binary sequence. Then either there is a k such that ak = 1 or
ak = 0 for all k.

A number of theorems of classical mathematics are intrinsically non-constructive,
which can be demonstrated by deriving LPO from them. Another principle, weaker
than LPO but yet non-constructive and often used for the refutation of theorems, is
the lesser limited principle of omniscience:

LLPO Let (an) be a binary sequence with at most one 1. Then either a2k = 0 for all
k or a2k+1 = 0 for all k.

15



1 Constructive Mathematics

Constructive versions of classical theorems

There is quite a number of classical theorems that are provable constructively. Amongst
these are for instance the fundamental theorem of algebra or the Picard-Lindelof
theorem. Other classical theorems are non-constructive, but are provable subject to
modifications. The law of trichotomy for the reals

∀r ∈ R. r < 0 ∨ r = 0 ∨ r > 0

is equivalent to LPO relative to BISH and therefore non-constructive. Another exam-
ple of a classical theorem that entails LPO is the bounded completeness of the reals,
i.e. the statement that every inhabited subset of the reals that is bounded above has
a supremum. In the other direction, LPO itself proves that every sequence of reals
that is bounded above has a supremum.

As to the first example, the theorem

∀x, y ∈ R. x < y → ∀r ∈ R. r < y ∨ x < r

serves as a constructive substitute for trichotomy. As to the second example, every
inhabited subset P ⊆ R that is bounded above and has the additional property
that for all y, z ∈ R such that y < z either P < z or there is an x ∈ P with
y < x does have a supremum, constructively. Such a form of constructive theorem is
called an equal conclusion substitute, as only the hypothesis of the theorem is altered.
The additional assumption is void from a classical point of view but essential for a
constructive proof. It can be shown that the image of a uniformly continuous function
defined on a totally bounded metric space meets the additional requirement. This
fact is important for the constructive definition of Banach spaces like C[0, 1]. On the
other hand, the operator norm of the dual of a Banach space can not be defined,
constructively, unless the original space is finite dimensional.

The failure of bounded completeness of the reals is also the culprit for the fact that
the distance of some inhabited subset of a metric space to a point is not guaranteed
to exist. Subsets, whose distances to any point exist are called located. Locatedness
is quite a central notion in constructive mathmatics and often has to be required as
an extra assumption for a theorem to work, see for instance [Spi02]. These kinds of
subtleties are levelled off by the use of classical logic.

The principles

∀r ∈ R. r ≤ 0 ∨ r ≥ 0 and ∀x, y ∈ R. xy = 0→ (x = 0 ∨ y = 0)

are each equivalent to LLPO relative to BISH We shall see that the former principle
is a consequence of the intermediate value theorem. Define

fr : [0, 1] //R fr(x) =


−1 + 3(1 + r)x for x < 1

3

r for 1
3
≤ x < 2

3

−2 + 3r + 3(1− r)x for 2
3
≤ x

16



1.2 Branches of constructivism

In the light of the constructive failure of x < a ∨ x ≥ a one would of course have to
argue why the piecewise definition of fr is admissible. A constructive argument is
that given functions

f : R≤a
//R and g : R≥a

//R such that f(a) = g(a)

we can constructively define a pasted function h as

h : R //R x 7→ f(min(x, a)) + g(max(x, a))− f(a)

A more general justification for the pasting of continuous functions can also be
given but does involve the constructive Tietze extension theorem (see [BB85, Theo-
rem (6.6)]).

Now regarding the intermediate value theorem, a given zero z of the function
fr would allow us, using the constructive substitute for the law of trichotomy, to
decide whether z < 2

3
or 1

3
< z and hence to decide whether r ≥ 0 or r ≤ 0. This

demonstrates the non-constructivity of the intermediate value theorem.
There are two constructive substitutes for the intermediate value theorem, one with

equal hypothesis and one with equal conclusion, The latter has the extra assumption
that the function f is locally non-zero, i.e. between any two numbers in the domain
of definition, there is an argument for which the function yields a result apart from
zero. This hypothesis is met e.g. by non-constant polynomials. The equal hypothesis
substitute has the weaker conclusion that, for every ε > 0, there is an x ∈ [0, 1] such
that |f(x)| < ε.

Given two real numbers a, b, their maximum and their minimum exist. However, it
is not possible to pick a maximal number amongst a and b, as this again would allow
us to decide whether a−b ≤ 0 or a−b ≥ 0. As a consequence, a uniformly continuous
function on a closed interval, albeit having a supremum (i.e., a least upper bound),
need not have a maximum (i.e., need not attain a maximal value).

A subset P of some set X is called decidable if ∀x ∈ X. x ∈ P ∨¬x ∈ P . The only
subsets of R that can be proven to be decidable are ∅ and R. On the other hand, the
equality relation and the relations ≤ and < are decidable subsets of both N×N and
Q×Q. As the principle of the excluded middle is not at our disposition, this has to
be proven by natural induction.

Continuity

Several classically equivalent notions of continuity fall apart in Bishop style mathe-
matics. Let f : R −→ R be a function. If f is uniformly continuous on every compact
interval, then f is continuous (i.e. ε-δ-continuous) in every point. If f is continuous
then it is sequentially continuous (i.e. the image of a convergent sequence is conver-
gent). Unfortunately, neither of these implications can be reversed (see [Ish92] for a
detailed analysis of continuity in BISH).
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1 Constructive Mathematics

When classically equivalent notions diversify under a constructive examination, it
is crucial to choose the most meaningful amongst them. It cannot be shown con-
structively that every continuous function defined on a compact interval is uniformly
continuous. Also, it turns out that continuity alone is too weak a property in the
purely constructive setting: One cannot show that a continuous function defined on
a compact interval is Riemann-integrable or even just bounded. Therefore, the more
meaningful notion of continuity for functions defined on subsets of Euclidean space
is that of locally uniform continuity, and hence we define C(Rn) to be the set of all
real-valued functions on Rn that are uniformly continuous on every bounded subset.

Choice

The use of choice principles in Bishop style mathematics goes as far as including the
axiom of dependent choice and the axiom of unique choice. Although Bishop writes
that “a choice function exists because a choice function is implied by the very meaning
of existence”[BB85, A Constructivist Manifesto], it still has to be verified that the
choice function respects the defined equality relation. This reveals an intensional
view that Bishop has on mathematics (see also Bridges comment at the end of loc.
cit.).

1.2.2 Brouwer’s intuitionism

Like Bishop’s constructivism, Brouwer’s intuitionism (INT) is not a formalized theory,
in its original conception it is not even based on mathematical logic. This, however,
did not prevent Brouwer’s disciple Heyting from giving a formalized account of in-
tuitionistic logic [Hey30]. A lively introduction to intuitionism is [Hey56], another
extensive treatment is [Dum77].

Brouwer’s intuitionism is an extension of Bishop’s constructivism, that is, every
argument valid in BISH is also valid in INT. Brouwer takes a more fundamental
stance than Bishop in that he breaks with classical mathematics. Unlike Bishop
style mathematics, Brouwer’s intuitionism is not a subset of classical mathematics.
It contains axioms that negate instances of the principle of the excluded middle and
is hence incompatible with classical mathematics.

Infinitely prodeeding sequences

A fundamental notion in Intuitionism is the notion of an infinitely prodeeding sequence
of natural numbers. Such a sequence may, but need not, be determined by a law.
In order to talk about sequences, both finite and infinite ones, we have got to fix
some notation. We choose to use the symbols introduced in [TvD88a, p.186]. Finite
sequences are denoted as 〈a1, a2, . . . an〉, in particular the empty sequence is denoted
as 〈〉. The concatenation of the sequences a and x is denoted by a ∗ x, where a
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1.2 Branches of constructivism

is a finite sequence and x is either finite or infinite. The initial segment of length
n of the sequence α is denoted by αn. We write a ≺ a′ if a is a prefix of a′. If
a ≺ a′, we say that a is an ascendent of a′ and a′ is a descendent of a. The prefix
of length lth(a) − 1 of a is called the immediate ascendent of a, a sequence that a
is the immediate ascendent of is called an immediate descendent of a. If the finite
sequence a is an element of some set S of finite sequences then any descendent of a
that is a member of S is called an S-descendent.

Definition 1.2.1. A decidable set of finite sequences that contains the empty se-
quence and that with any sequence contains all its prefixes is called a tree. A spread
is a tree such that every finite sequence in S has an immediate S-descendent. That
is, a tree S is a spread if ∀a ∈ S∃n ∈ N. a ∗ 〈n〉 ∈ S. Finally, a fan is a finitely
branching spread, i.e. a spread in which each node has a finite number of immediate
descendents.

Every spread determines a set of infinite sequences. We say that the infinite
sequence α belongs to the spread S if all initial segments of α are elements of S.
By abuse of language we call the thus defined set of sequences S as well. The sense
of the statement x ∈ S, depends on whether x is a finite or an infinite sequence. We
usually denote finite sequences by small roman and infinite sequences by small greek
letters.

Example 1.2.2. Let (rn)n∈N be some standard bijective enumeration of the set
Q. We define the spread S as the set of all finite sequences 〈a1, . . . an〉 such that
|rα(k)−rα(k+1)| ≤ 2−(n+1) for all 1 ≤ k < n. Then for each α ∈ S the rational sequence
(qα(n))n∈N is a Cauchy sequence. The condition of α, α′ ∈ S representing the same
real number does as well depend on the initial segments, alone: The sequences α and
α′ represent the same real number if and only if |rα(n) − rα′(n)| ≤ 2−n for all n ∈ N.

Example 1.2.3. Let F be the set of {−1, 0, 1}-valued finite sequences. Obviously,
F is defined by a a fan. With each infinite sequence α ∈ F we associate the real
number

∑∞
k=0 αk2

−αk−1. The set of real numbers that is represented by a sequence
in F is exactly the closed interval [−1, 1]. Two sequences α, α′ represent the same
number if and only if |

∑n
k=0 αk2

−αk−1 −
∑n

k=0 α
′
k2
−αk−1| ≤ 2−n for all n ∈ N, that

is, two sequences represent the same number if and only if all their pairs of initial
segments satisfy some decidable property.

The continuity principle

Two principles govern the nature of infinitely proceeding sequences in intuitionism,
the continuity principle and the principle of bar induction. The continuity principle
as taken from [Hey56] (with a slight modification) reads as follows.
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Principle 1.2.4 (Continuity). Let S be a spread and let Φ be a mapping of the
set of infinite sequences defined by S into the natural numbers. Then there is a
function which computes Φα for any infinite sequence α in S from some sufficiently
long finite initial segment of α. Moreover, it is decidable for a given finite sequence
a ∈ S whether it is sufficiently long in order to compute Φα for any α beginning with
a.

The set of all infinite sequences of natural numbers is known as the Baire space.
The Baire space topology is defined by the following base. For every finite sequence
a, the set of all inifinite sequences that have a as an initial segment is declared a
basic open set. The continuity principle implies in particular that every function
from a spread to the natural numbers is continuous with respect to the topology
inherited from the Baire space topology. A function that, applied to some finite
sequence, yields either the information that the sequence is too short for computing
a result or else gives Φα for all sequences α that a is an initial segment of. Such
a function is called a neighborhood function. The continuity principle reflects one
part of Brouwer’s intuition on infinitely proceeding sequences, namely that as the
procession of the sequences cannot be predicted, any integer-valued operation acting
on sequences can only use a finite amount of information in order to produce a result.

Bar induction

The other main principle of intuitionism is the principle of bar induction. Let S be
a spread and P ⊆ S, then P is a bar for a if for every infinite sequence α in S that
has a as a prefix, some prefix a ∗ b of α is in P . In that situation, we say a is barred
with respect to P . The set P is called a bar if it is a bar for the empty sequence 〈〉.

Principle 1.2.5 (Bar Induction). Let S be a spread and let P be a subset of S
meeting the following properties.

1. For all finite sequences a, b, whenever a ∈ P and a ∗ b ∈ S then a ∗ b ∈ P .

2. For each α ∈ S there is a k ∈ N such that αk ∈ P .

3. For all a ∈ S, if all immediate S-descendents of a are in P , then so is a.

Then 〈〉 ∈ P (and hence a ∈ P for all a ∈ S).

The first property states that P is a monotone subset, the second property states
that P is a bar and the third property states that P propagates towards the top in
the described manner.

The most important direct application of the principle of bar induction is the fan
theorem. The fan theorem is a positive formulation of König’s Lemma. König’s
Lemma is a classical theorem that states that every infinite, finitely branching tree
has an infinite path. While König’s Lemma is intrinsically classical, its contrapositive
variant, the fan theorem, makes more sense, constructively.
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Theorem 1.2.6 (Fan). Let S be a fan and let P be a subset of S. If P is a bar,
then there is a natural number n such that for every infinite sequence in S, an initital
segment with length less than n can be found that is an element of P .

The continuity principle and the fan theorem can be used to show that all real-
valued functions on the reals are continuous and all real-valued functions defined on a
closed interval are uniformly continuous. Hence, in contrast to Bishop’s mathematics,
in intuitionism one does not have to distinguish between various forms of continuity
but in fact all functions on the reals (or any complete separable metric space for that
matter) are continuous in the strongest possible sense.

It is to be noted that the bar theorem is classically provable. The continuity
principle, on the other hand, is expressedly inconsistent with classical logic in that
it refutes instances of LPO and even LLPO.

Another consequence of the fan theorem is that every continuous, real-valued func-
tion defined on the unit interval that has only positive values, has a positive infimum.
Bishop’s mathematics alone is too weak to prove this, in fact, the existence of a uni-
formly continuous positive-valued function that has infimum zero is undecided in
Bishop’s mathematics.

This is an appetizer rather than a complete introduction to Intuitionism. Creative
subject arguments for instance, will be completely neglected in this thesis. For our
purposes we will unduly simplify matters and identify Intuitionism with Bishop’s
mathematics augmented with the continuity principle and the principle of bar induc-
tion.

1.2.3 Markov’s constructive recursive mathematics

The third major school of constructivism is Markov’s constructive recursive mathe-
matics (CRM). We shall touch upon CRM only very briefly for the sake of complete-
ness, as it is of less importance for the purposes of this thesis.

For e, n ∈ N, we denote by e.n the result of applying the eth partial recursive
function (with respect to some fixed admissible numbering) to the argument n. The
formula e.n↓ expresses that the eth partial recursive function terminates when applied
to n.

The two main principles governing CRM are Church’s Thesis and Markov’s Prin-
ciple.

Principle 1.2.7 (Church’s Thesis). Assume ∀x ∈ N∃y ∈ N. A(x, y). Then there
exists some e ∈ N such that ∀x ∈ N. e.x↓ ∧A(x, e.x).

Principle 1.2.8 (Markov’s Principle). Assume ∀x ∈ N. A(x) ∨ ¬A(x) and
¬¬∃x ∈ N. A(x). Then ∃x ∈ N. A(x).
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Church’s Thesis expresses that every operation on the natural numbers is effective.
Markov’s Principle has the consequence that an algorithm, whose non-termination is
absurd, actually terminates.

Although Intuitionism contains theorems that are incompatible with classical logic,
it is otherwise relatively close to classical mathematics in certain respects. This can
hardly be said of CRM.

Not only does CRM refute LPO and LLPO, but whereas in INT it can only be shown
that not every bounded, monotone real sequence converges, CRM actually allows to
derive the existence of a so called Specker sequence, i.e. a bounded, increasing real
sequence whose elements are eventually bounded away from every real (and which is
hence divergent).

Another pathology that can be derived using Church’s Thesis is the existence of a
continuous, unbounded (and hence not uniformly continuous) real function defined
on the unit interval.

On the positive side, in CRM it can be shown that any real-valued function defined
on the reals (or any complete separable metric space) is continuous. A consequence
of Markov’s Principle is that apartness on the reals is just inequality (which cannot
be proved in INT or BISH).

1.3 Formalized constructive logic

As we intend to describe models of constructive mathematics, we are forced to use
formal systems of constructive mathematics. In order to facilitate the description of
the models, we shall use explicit contexts for variable declarations and hypotheses in
our formalization.

1.3.1 Constructive many-sorted predicate logic with equality

Signatures

A signature Σ = (S,F ,R, ar) for many-sorted predicate logic consists of a set S of
sorts, a set F of function symbols, a set R of relation symbols and arity functions
arF : F −→ S∗ × S and arR : R −→ S∗. We will mostly refer to the sorts as types.

Terms

We assume that V is a countable set of variables. A context Γ is a finite list Γ ≡ x1 :
s1, . . . , xn : sn where xi ∈ V and si ∈ S and the xi are pairwise distinct. The notation
Γ ` t : s means that t is a term of type s with respect to the variable declarations of
the context Γ. This style of typing is called Church style.
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1.3 Formalized constructive logic

The term formation rules are

(x : s ∈ Γ)
Γ ` x : s

Γ ` t1 : s1 · · · Γ ` tn : sn
(arF(f) = (s1, . . . , sn, s))

Γ ` f(t1, . . . , tn) : s

Formulae

The set of atomic formulae is defined by the following rules.

Γ ` t : s Γ ` t′ : s

Γ ` t =s t
′ : Prop

Γ ` t1 : s1 · · · Γ ` tn : sn
(arF(f) = (s1, . . . , sn))

Γ ` R(t1, . . . , tn) : Prop

The set of all formulae is defined by the above and the following rules.

Γ ` ϕ : Prop Γ ` ψ : Prop

Γ ` ϕ ∧ ψ : Prop Γ ` ⊥ : Prop

Γ ` ϕ : Prop Γ ` ψ : Prop

Γ ` ϕ→ ψ : Prop

Γ ` ϕ : Prop Γ ` ψ : Prop

Γ ` ϕ ∨ ψ : Prop

Γ, x : s ` ϕ : Prop

Γ ` ∀x : s. ϕ : Prop

Γ, x : s ` ϕ : Prop

Γ ` ∃x : s. ϕ : Prop

We use ¬ϕ as a shorthand for ϕ → ⊥ and ϕ ↔ ψ as a shorthand for (ϕ → ψ)∧
(ψ → ϕ).

Sequents

A sequent is an expression of the form Γ | Θ ` ϕ where Γ is a context, Θ is a list
of propositions and ϕ is a proposition, both with respect to the context Γ. The
sequent is to be interpreted as: under the variable declarations of Γ, the proposition
ϕ follows from the propositions enlisted in Θ. If Γ ` ϕ1 , . . . , Γ ` ϕn , Γ ` ϕ are well
formed propositions, then Γ | ϕ1 · · ·ϕn ` ϕ is a well formed sequent. Although one
is primarily interested in single sentences, sequents provide a convenient notation
for the fact that a proposition holds, subject to a set of variable declarations and
hypotheses.

Proof rules

The set of provable sequents is defined inductively by the following rules.

The axiom rule:

(ax) (if ϕ ∈ Θ)
Γ | Θ ` ϕ
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Introduction and elimination rules for logical connectives:

Γ | Θ ` ⊥
(⊥E)

Γ | Θ ` ϕ

Γ | Θ ` ϕ Γ | Θ ` ψ
(∧I)

Γ | Θ ` ϕ ∧ ψ

Γ | Θ ` ϕ ∧ ψ
(∧E1)

Γ | Θ ` ϕ

Γ | Θ ` ϕ ∧ ψ
(∧E2)

Γ | Θ ` ψ

Γ | Θ ` ϕ ∨ ψ Γ | Θ, ϕ ` θ Γ | Θ, ψ ` θ
(∨E)

Γ | Θ ` θ

Γ | Θ ` ϕ
(∨I1)

Γ | Θ ` ϕ ∨ ψ

Γ | Θ ` ψ
(∨I2)

Γ | Θ ` ϕ ∨ ψ

Γ | Θ, ϕ ` ψ
(→ I)

Γ | Θ ` ϕ→ ψ

Γ | Θ ` ϕ Γ | Θ ` ϕ→ ψ
(→ E)

Γ | Θ ` ψ

Introduction and elimination rules for quantifiers:

Γ, x : s | Θ ` ϕ
(∀I) (x not free in ϕ)

Γ | Θ ` ∀x : s. ϕ

Γ | Θ ` ∀x : s. ϕ Γ ` t : s
(∀E)

Γ | Θ ` ϕ[t/x]

Γ | Θ ` ϕ[t/x] Γ ` t : s
(∃I)

Γ | Θ ` ∃x : s. ϕ

Γ | Θ ` ∃x : s. ϕ Γ, x : s | Θ, ϕ ` ψ
(∃E) (x not free in Θ, ψ)

Γ | Θ ` ψ

Rules for equality:

(refl) (x : s ∈ Γ)
Γ ` x =s x

Γ | Θ ` t =s t
′ Γ | Θ ` ϕ[t/x]

(repl)
Γ | Θ ` ϕ[t′/x]

Structural rules

The following structural rules are admissible

Γ | Θ ` ψ
(w)

Γ | Θ, ϕ ` ψ

Γ | ϕ1, . . . , ϕi, ϕi+1, . . . , ϕn ` ψ
(ex)

Γ | ϕ1, . . . , ϕi+1, ϕi, . . . , ϕn ` ψ

Γ | Θ, ϕ, ϕ ` ψ
(c)

Γ | Θ, ϕ ` ψ

The above rules are called weakening, exchange and contraction. Analogues of
the weakening and exchange rules with respect to the type theoretic context are
admissible, too. In practice, we will often dispense with the explicit context in order
to not distract too much attention from the actual contents of a formula or a sequent.
Nevertheless, the chosen presentation of many-sorted predicate logic will motivate its
categorical semantics.
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1.3.2 Heyting arithmetic

A very basic system of arithmetic based on intuitionistic predicate logic with equality
is Heyting arithmetic (HA). Its signature consists of a single type whose inhabitants
are thought of as natural numbers. Furthermore, no relation symbols other than
equality occur. Finally, the set of function symbols holds an element for each defi-
nition of a primitive recursive function. The set of axioms contains all definitional
equations for these functions.1 We shall denote by Fn the set of n-ary function
symbols. The family (Fn)n∈N is defined inductively by the following rules.

1. 0 ∈ F0

2. S ∈ F1

3. p
(m)
k ∈ Fm for m, k ∈ N, k < m

4. If t ∈ Fn and s1, . . . , sn ∈ Fm then Comp[t, s1, . . . , sn] ∈ Fm for m,n ∈ N

5. If t ∈ Fn and s ∈ Fn+2 then R[t, s] ∈ Fn+1

As for the axioms of Heyting arithmetic, the following equations describe the be-
haviour of the primitive recursive constructors.

p
(m)
k (x1, . . . , xm) = xk

Comp[t, s1, . . . , sn](x1, . . . , xm) = t(s1(x1, . . . , xm), . . . , sn(x1, . . . , xm))

R[t, s](x1, . . . , xn, 0) = t(x1, . . . , xn)

R[t, s](x1, . . . , xn, Sk) = s(x1, . . . , xn,R[t, s](x1, . . . , xn, k), k)

The following axiom expresses that zero is not a successor.

0 6= Sx

Finally, for every formula A(x) there is an instance of the induction principle.

A(0) ∧ (∀x. A(x)→ A(Sx))→ ∀x. A(x)

The classical version of Heyting arithmetic, i.e. Heyting arithmetic augmented
with tertium non datur is called Peano arithmetic.

1Heyting arithmetic can be alternatively presented using only 0, S, + and ×, and the definitional
equations for + and ×. The presentation using symbols for all definitions of primitive recursive
functions is a definitional extension of the former.
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1.3.3 Elementary analysis

Heyting arithmetic provides no linguistic means for expressing properties of real
numbers or infinite sequences of natural numbers. Elementary analysis(EL) is an
extension of Heyting arithmetic that has two sorts: N and N → N. In addition to
the constants of Heyting arithmetic, elementary analysis has a constant r of arity
N× (N→ N)×N −→ N. In addition to the term formation rules of predicate logic,
we have the rules of abstraction and application

Γ, x : N ` t : N
(abs)

Γ ` λx. t : N→ N

Γ ` t : N→ N Γ ` t′ : N
(app)

Γ ` tt′ : N

As to equations, in addition to those of Heyting arithmetic, we have the type theoretic
rules

Γ, x : N ` t : N Γ ` t′ : N
(β)

Γ ` (λx. t)t′ =N t[t
′/x]

Γ ` t : N→ N
(η) (for x /∈ Γ)

Γ ` λx. tx =N→N t

and the recursor equations

Γ ` t : N Γ ` u : N→ N

Γ ` r(t, u, 0) =N t

Γ ` t, t′ : N Γ ` u : N→ N

Γ ` r(t, u, St′) =N u(p(r(t, u, t′), t′))

where p ∈ F2 is a primitive recursive, surjective pairing function.

We extend the induction scheme to all formulae of EL and finally we assume a
restricted axiom of choice

∀x : N ∃y : N. A(x, y)→ ∃α : N→ N ∀x. A(x, α(x))

where A(x, y) is a quantifier-free formula containing only equations of ground type.

We will denote the classical version of elementary analysis by EL(c).

1.3.4 Heyting arithmetic with higher types

The finite type hierarchy over N is the set of types freely generated from N by means
of × and →. As a convention, × binds stronger than → and → associates to the
right.

The set S of sorts of extensional Heyting arithmetic with higher types (E-HAω)
consists of the finite type hierarchy over N. For s, s′ ∈ S, we have constants

p
(s,s′)
0 , p

(s,s′)
1 , p(s,s′)

of type
s× s′ → s, s× s′ → s′, s→ s′ → s× s′,
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respectively. When the types are clear from the context or irrelevant, we feel free to
omit the superscripts. Pairing and unpairing is governed by the equations

p0(p(x, y)) = x, p1(p(x, y)) = y, p(p0(z), p1(z)) = z.

As in the case of elementary analysis, we extend the term formation rules of pred-
icate logic with rules for abstraction and application,

Γ, x : s ` t : s′

(abs)
Γ ` λx : s. t : s→ s′

Γ ` t : s→ s′ Γ ` t′ : s
(app)

Γ ` tt′ : s′

accompanied by the respective equations.

Γ, x : s ` t : s′ Γ ` t′ : s
(β)

Γ ` (λx : s. t)t′ =s′ t[t
′/x]

Γ ` t : s→ s′

(η) (for x /∈ Γ)
Γ ` λx. tx =s→s′ t

In Heyting arithmetic and elementary analysis, all definitions of primitive recursive
functions were introduced at the level of function symbols. In contrast, in E-HAω,
we provide the constant 0 ∈ N, the the function symbol S ∈ N → N and for each
s ∈ S the function symbol rs : s × (s × N → s) → (N → s) . The constant rs is a
recursor over type s, governed by the equations

Γ ` t : s Γ ` u : s× N→ s

Γ ` r(t, u)(0) =s t

Γ ` t : s Γ ` u : s× N→ s Γ ` t′ : N

Γ ` r(t, u)(St′) =s u(r(t, u)(t
′), t′)

Finally we state the axiom that 0 is not a successor

0 6= Sx

and the induction scheme

A(0) ∧ (∀x. A(x)→ A(Sx))→ ∀x. A(x)

This finishes the definition of E-HAω. For the definition of HAω, we simply drop
the extensionality rule (η).

As previously mentioned, in our formulation of (E-)HAω (and EL) we have ex-
tended the term language of multi-sorted predicate logic in that we allow λ-abstraction.
If we wanted to stay strictly within the realm of traditional predicate calculus, at
least in the case of (E-)HAω, we could have used combinators instead. We have
decided not to do so, as λ-terms allow a more intuitive and natural notation. Note
also that extensionality is commonly formulated as an axiom stating that equality
on functions is equivalent to argumentwise equality. Our formulation featuring the
η-rule of λ-calculus is easily seen to be equivalent.
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The level of a type is inductively defined by

level(N) = 0 level(s× s′) = max(level(s), level(s′))

level(s→ s′) = max(level(s) + 1, level(s′))

Given some type s, we can introduce the type s∗ of finite sequences of elements of
s as a notational convenience. We set

level(s∗) = level(s).

Obviously, for each s, a bijection between s and s∗ can be defined.
We could have defined elementary analysis to be the fragment of E-HAω that uses

only types of level 0 and 1. This would allow for a slightly more natural notation
and presentation. However, in order not to complicate the description of the various
interpretations of EL to be defined in the next chapter, it is more convenient to keep
the language as small as possible. As the extension of elementary analysis with all
types of type level 0 and 1 is a definitional extension, we will freely use this extra
notation.

The classical versions of E-HAω and HAω are called E-PAω and PAω

1.3.5 Higher order arithmetic

All previously mentioned extensions of Heyting arithmetic are conservative exten-
sions, i.e., they prove the same theorems of Heyting arithmetic as Heyting arith-
metic itself. This is not the case for higher order arithmetic. Higher order arithmetic
(HAH) results from E-HAω by adding the kind Ω of propositions as a type and ex-
tending the set of types to all types freely generated from N and Ω by means of ×
and →. Functions and functional relations are linked by the axiom of unique choice.

(∀x : s ∃!y : s′. A(x, y)) −→ (∃f : s→ s′ ∀x : s. A(x, f(x)))

The extensionality of entailment axiom, which equates logical equivalence and equal-
ity on the type of propositions, is not standardly assumed. Introducing propositions
as a type allows for quantification over truth values and predicates. In particular, it
allows one to define a predicate by quantifying over all predicates. Hence, in contrast
to HA, EL and (E-)HAω, the system HAH is impredicative.

1.4 Constructive Principles

In this section we are going to review some common priciples that are used in various
systems of constructive mathematics. In section 1.4.4 we will examine the dependen-
cies and inconsistencies between combinations of these principles.
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1.4.1 Definitions

In the following, we will use the small greek letters to denote infinite sequences
of numbers, small roman letters from the beginning of the alphabet to denote finite
sequences of numbers and small roman letters from the end of the alphabet to denote
natural numbers.

Notation

Let α, β : N→ N, a, b : N∗, n : N. Then

〈〉 : N∗ = the empty sequence.
〈n〉 : N∗ = the sequence of length 1 with entry n.

a ∗ α : N→ N = the concatenation of a and α.
a ∗ b : N∗ = the concatenation of a and b.
a_n : N∗ = a ∗ 〈n〉.

lth(a) : N = the length of a.
αn : N∗ = the initial segment of length n of α.

The statement α ∈ a means ∀k < lth(a). αk = ak. In other words, a finite sequence
is identified with its set of infinite extensions.

For a set A of finite sequences we write α ∈ A to express that all initial segments
of α are elements of A, in other words, α ∈ A if and only if ∀k. αk ∈ A.

A function γ : N∗ → N describes a partial continuous operation from N→ N to N
in the following manner. We write

γ(α) = n for ∃k. γ(αk) = n+ 1 ∧ ∀i < k. γ(αi) = 0.

The meaning of γ( ) thus depends on whether the argument is a finite or infinite
sequence. The value of γ(α), if it exists, depends only on some finite initial segment
of α. If γ(αk) = 0, then αk is not sufficiently long in order for γ to compute the
result. The formula γ(α) ↓ expresses that γ( ) terminates when applied to α, in other
words, it expresses that there exists a k ∈ N such that γ(αk) > 0. The function γ is
called a neighborhood function for the operation γ( ).

The definition of γ( ) can be used in order to let γ define a partial continuous
operation from N→ N to N→ N. We write

γ|α = β for ∀n. γ(〈n〉 ∗ α) = βn.

For e, n ∈ N, we denote by e.n the result of applying the eth partial recursive
function (with respect to some fixed admissible numbering) to the argument n. The
formula e.n↓ expresses that the eth partial recursive function terminates when applied
to n. An alternative notation for e.n is the Kleene-bracket notation {e}(n).
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Choice Principles

The axiom of choice

AC(X, Y ) (∀x : X ∃y : Y. A(x, y)) −→ ∃f : X → Y ∀x : X. R(x, f(x))

expresses that every total relation on X × Y admits a choice function. By AC(X)
we denote that for all Y , AC(X, Y ) holds. The principle AC(N) is called countable
choice or number choice, the principle AC(N→ N) is called function choice.

The axiom of unique choice

AC!(X,Y ) (∀x : X ∃!y : Y. A(x, y)) −→ ∃f : X → Y ∀x : X. R(x, f(x))

expresses that every functional relation on X × Y is the graph of a function.
The axiom of dependent choice

DC(X) (∀x : X ∃y : X. A(x, y))
−→ ∀x : X ∃f : N→ X. f(0) = x ∧ ∀n : N. R(f(n), f(n+ 1))

allows to construct an infinite sequence of pairwise related elements of X starting
with an arbitrary x ∈ X. By DC we denote that for all X, DC(X) holds. Dependent
choice is more powerful than countable choice.

Continuity Principles

Continuity principles conflict with classical reasoning but are certainly compatible
with constructive mathematics. Continuity principles state that every function or
operation between some specified (classes of) spaces is continuous.

Let (X, d) and (X ′, d′) be metric spaces. Then the continuity principles

CP(X,X ′) Every function from X to X ′ is ε-δ-continuous.

and

CPseq(X,X
′) Every function from X to X ′ is sequentially continuous.

state the continuity (resp. sequential continuity) of all functions from X to X ′.
For the particular case that X = N→ N and X ′ = N, the following combinations

of continuity with choice are widely used. The weak principle of continuity states
that every operation from N→ N to N is continuous.

WC-N (∀α : N→ N ∃n : N. A(α, n))
−→ (∀α : N→ N ∃m,n : N ∀β : N→ N. β ∈ αm −→ A(β, n))

The strong principle of continuity states that every operation from N → N to N is
given by a neighborhood function.

30



1.4 Constructive Principles

CONT (∀α : N→ N ∃n : N. A(α, n))
−→ (∃γ : N∗ → N ∀α : N→ N. γ(α) ↓ ∧A(α, γ(α)))

By [TvD88a, 4.1.4], the continuity principle for α ranging over an arbitrary spread is
derivable from the respective continuity principle stated for the full spread. Clearly,
the strong principle of continuity entails the weak principle of continuity. The strong
principle of continuity enables one to actually decide whether a given finite sequence
contains enough information to compute the result for all its infinite extensions. We
will meet a generalization of CONT in Theorem 2.1.18.

We shall now formulate two weakenings of WC-N. Let 2 be the two element set
{0, 1}. The following principle of continuity states that every operation from the full
binary fan N→ 2 to N is continuous.

WCcp-N (∀α : N→ 2 ∃n : N. A(α, n))
−→ (∀α : N→ 2 ∃m,n : N ∀β : N→ 2. β ∈ αm −→ A(β, n))

By [TvD88a, 4.7.5], the continuity principle for α ranging over an arbitrary fan is
derivable from the respective continuity principle stated for the full binary fan.

Now, let N+ = {α : N→ 2 | ∀m,n. α(m) = 1∧m < n→ α(n) = 0}, N+ is the one
point compactification of N (in the sense of [BB85, (6.6)]). The following principle
of continuity states that every operation from the fan N+ to N is continuous.2

WCseq-N (∀α : N+ ∃n : N. A(α, n))
−→ (∀α : N+ ∃m,n : N ∀β : N+. β ∈ αm −→ A(β, n))

It is actually sufficient to require continuity at the constant zero sequence.

WCseq-N′ (∀α : N+ ∃n : N. A(α, n))
−→ (∃m,n : N ∀β : N+. β ∈ 0m −→ A(β, n))

WC-N entails WCcp-N, as the full binary fan is a retract of the full spread. Likewise,
WCcp-N entails WCseq-N, as N+ is a retract of the full binary fan. The relationship
between the variants of WC-N and CP will be further discussed in the sections 1.4.3
and 2.3.

Church’s Thesis

In theoretical computer science, Church’s thesis referes to the observation that a great
many different models of computation give rise to the same class of computable
functions. In constructive mathematics, however, Church’s thesis is referred to as
the principle that all operations on the natural numbers are computable. Although
regarded a misnomer by many, we will adhere to this terminology.

CT (∀n∃m. A(n,m))→ (∃e∀n. e.n ↓ ∧A(n, e.n))

We will meet a generalization of CT in Theorem 2.1.6.

2To our knowledge, the first reference in literature, where a continuity principle w.r.t. N+ is used,
is [BS03].
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1 Constructive Mathematics

Bar Induction

The principle of bar induction equates two notions of well foundedness for trees.
Amongst the various possible formulations, we choose to present the principle of
monotone bar induction. For a complete discussion see e.g. [Dum77, chapter 3].

BI Let P ⊆ N∗ such that
(1) ∀a, b : N∗. P (a)→ P (a ∗ b)
(2) ∀a : N∗. (∀x : N. P (a_x))→ P (a)
(3) ∀α : N→ N ∃n : N. P (αn).
Then P (〈〉).

As is the case for continuity principles, the principle of bar induction relativized to
a spread follows from the principle of bar induction for the full spread.

The Fan Theorem

The fan theorem is a consequence of the principle of bar induction. It expresses the
Heine-Borel compactness of Cantor space.

FAN (∀α : N→ 2 ∃n : N. A(αn))
−→ ∃m : N ∀α : N→ 2 ∃n : N. n ≤ m ∧ A(αn)

Again, the fan theorem for α ranging over an arbitrary fan follows from the above
case.

Markov’s Principle

One consequence of Markov’s principle

M ((∀n : N. A(n) ∨ ¬A(n)) ∧ ¬¬∃n : N. A(n)) −→ ∃n : N. A(n)

is that an algorithm that cannot diverge, actually terminates.

Double Negation Shift

The double negation shift schema is

DNS (∀x. ¬¬A(x)) −→ ¬¬∀x. A(x),

where x is a variable of arbitrary type. Its main use is that in (E-)HAω, one can
derive the negative translation of some choice principle from that choice principle
itself and DNS. This is due to the fact that the negative translation of a formula is
equivalent to its double negation relative to DNS, see [Spe62].
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Independence of Premise

The independence of premise schema is given by

IP (¬B → ∃x. A(x)) −→ ∃x. ¬B → A(x),

where x is a variable of arbitrary type not free in B.

Boundedness Principle

A set S ⊆ N is called pseudobounded whenever for each sequence γ : N → S there
exists an n ∈ N such that for all k ≥ n the inequality γ(k) < k holds. Hajime
Ishihara introduced the principles

BD Every inhabited pseudobounded subset of N is bounded

and

BD-N Every countable pseudobounded subset of N is bounded,

where a set is called countable if it is the image of a sequence. The notion was
introduced in [Ish92].

1.4.2 Status with respect to classcial mathematics

The principles introduced in the previous section fall into three categories. The first
category is constituted by the continuity principles and Church’s thesis. All these
principles are incompatible with classical mathematics in that they refute instances
of the principle of the excluded middle.

The second category is constituted by the choice principles, the principle of bar
induction and the fan theorem. The choice principles are not derivable in classical
mathematics, but compatible with classical mathematics. The principle of bar induc-
tion (and hence the fan theorem) can be proved in classical mathematics augmented
with dependent choice (see [HK66]).

The last category consists of Markov’s principle, double negation shift, indepen-
dence of premise and the boundedness principle. These can be proven in (or rather,
become trivial in the realm of) classical logic without choice.

1.4.3 Consequences of constructive principles in analysis

We shall now point out some of the consequences that the constructive principles
introduced in section 1.4.1 have on constructive analysis.
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1 Constructive Mathematics

Representations

In order to make these principles applicable to common mathematical objects, we
have to define representations of these objects in terms of spreads and fans. A metric
space (X, d) is a complete separable metric space (csm) if it is Cauchy-complete and
there exists a dense sequence of elements of X.

Proposition 1.4.1 (Representation of csm-spaces). Let (X, d) be a csm-space.
Then there exist decidable predicates T ⊆ N∗ and R ⊆ N∗ × N∗ and a map ρ from
(the set of infinite sequences defined by) T to X such that

1. T is a spread

2. For α, β ∈ T , ρ(α) = ρ(β) if and only if aRb for all finite initial segments a
and b of α and β, respectively.

3. The map ρ : T → X is a quotient map with respect to the Baire-topology on T .

Proof. [TvD88b, 7.2.3] and [TvD88b, 7.2.4].

See example 1.2.2 for a representation of the space of real numbers equipped with
the euclidean topology meeting the properties stated in Proposition 1.4.1.

A metric space (X, d) is a complete totally bounded metric space (ctb) if it is
Cauchy-complete and for each ε > 0 there exists a finitely indexed ε-net, i.e. a
finitely indexed cover by ε-balls. Classically, a metric space is complete and totally
bounded if and only if it is compact. Amongst all classically equivalent characteri-
zations, completeness and total boundedness proves to be the most useful notion for
constructive analysis. When (X, d) is a ctb-space, it can be represented by a fan.

Proposition 1.4.2 (Representation of ctb-spaces). Let (X, d) be a ctb-space.
Then there exist decidable predicates T ⊆ N∗ and R ⊆ N∗ × N∗ and a map ρ from
(the set of infinite sequences defined by) T to X such that

1. T is a fan

2. For α, β ∈ T , ρ(α) = ρ(β) if and only if aRb for all finite initial segments a
and b of α and β, respectively.

3. The map ρ : T → X is a quotient map with respect to the Baire-topology on T .

Proof. [TvD88b, 7.4.2] and [TvD88b, 7.4.3].

See example 1.2.3 for a representation of the real unit interval equipped with the
euklidean topology meeting the properties stated in Proposition 1.4.2.
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1.4 Constructive Principles

Continuity principles

Theorem 1.4.3.

(i) WC-N entails CP(X,X ′) for all complete separable metric spaces X.

(ii) WCcp-N entails CP(X,X ′) for all complete totally bounded metric spaces X

(iii) WCseq-N entails CPseq(X,X
′) for all complete separable metric spaces X

Proof. (i) See [TvD88b, 7.2.7]. Actually, in the reference given, the separability of
X ′ is required. This requirement can be lifted by the following argument. As R is
separable, the validity of the principle CP(X,R) holds. Now, CP(X,X ′) for arbitrary
X ′ follows, as for each f : X → X ′ and x0 ∈ X, the function x 7→ d′(f(x), f(x0)) is
continuous by CP(X,R).). (ii) This follows from the proof of [TvD88b, 7.2.7] and the
fact, that the representation can be defined on a fan, as shown in Proposition 1.4.2.
(iii) One can use the proof for the implication 1⇒ 3 in [BS03, Proposition 4.4]. The
only application of AC(N→ N,N) in that proof can be replaced by WCseq.

Conversely, AC(N → N,N) and CP(N → N,N) imply WC-N, AC(N → 2,N) and
CP(N→ 2,N) imply WCcp-N, and AC(N+,N) and CP(N+,N) imply WCseq-N.

Church’s thesis and Markov’s principle

The famous Kreisel-Lacombe-Schoenfield-Tsejtin theorem states that

Theorem 1.4.4. CT and M entail CP(X,X ′) for all complete separable metric
spaces.

Proof. See [TvD88b, 7.2.11].

Interestingly, the use of Markov’s principle is essential, here, as CT alone is not
sufficient in order to derive this result, see [Bee75].

On the other hand, CT has some consequences that one might find pathological or
at least counterintuitive.

Theorem 1.4.5. Under the assumption of CT it can be shown that there exist

(i) a uniformly continuous function f : [0, 1] → R such that ∀x : R. f(x) > 0 and
inf(f) = 0.

(ii) a continuous function f : [0, 1] → R which is unbounded (and hence not uni-
formly continuous).

Proof. See [TvD88a, 6.4.4]

A consequence of Markov’s principle is that in every metric space (X, d), if x, y ∈ X
are not equal (i.e. ¬x = y) then x and y are apart (i.e. d(x, y) > 0).
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Bar induction and the fan theorem

The most notable consequences of the fan theorem (and hence of bar induction) in
constructive analysis are

Theorem 1.4.6. Under the assumption of the fan theorem

(i) Every complete totally bounded space is Heine-Borel compact (i.e. for every
open cover of X there exists a finitely indexed subcover).

(ii) Every continuous function defined on a ctb space is uniformly continuous.

(iii) For every continuous real valued function f defined on a ctb space X, if ∀x :
X. f(x) > 0 then inf(f) > 0.

Proof. (i) follows from the fact that by the fan theorem, the set of infinite sequences
defined by any fan is Heine-Borel compact and from the fact that by Proposition
1.4.2, X is a continuous image of a fan. (ii) and (iii) follow directly from (i).

The boundedness principle

The boundedness principle BD-N has a great number of interesting equivalents (see
e.g. [Ish01]) in analysis such as

• Every sequentially continuous mapping of a separable metric space into a metric
space is continuous.

• Every sequentially continuous mapping of a complete separable metric space
into a metric space is continuous.

• Banach’s inverse mapping theorem

• The open mapping theorem

• The closed graph theorem

• The Banach-Steinhaus theorem

• The Hellinger-Toeplitz theorem

• The sequential completeness of the space of test-functions

Remark 1.4.7. Note that in the presence of BD-N, the principles CP(X, Y ) and
CPseq(X, Y ) are equivalent for every separable metric space X.
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1.5 Categorical Logic

1.4.4 Inconsistencies between constructive principles

Pure constructive mathematics can be extended with a variety of constructive prin-
ciples. Some of these are, however, mutually incompatible. We will mention only
those inconsistencies that are relevant for the rest of this thesis.

Theorem 1.4.8. In E-HAω, the following holds.

(i) CT + AC(N→ N,N) ` ⊥

(ii) CP(N→ N,N) + AC((N→ N)→ N,N) ` ⊥

(iii) FAN + CT ` ⊥

(iv) IP + CT + M ` ⊥

Proof. (i) see [TvD88b, 9.6.8], (ii) see [TvD88b, 9.6.11], (iii) see [TvD88a, 4.7.6] or
1.4.5 (ii) and 1.4.6 (ii), (iv) see [Tro98, 1.13(iii)]

Remark 1.4.9. For (i) and (ii) in the previous theorem, the extensionality axiom is
essential.

1.5 Categorical Logic

Although category theory [Mac71] has originated from algebra and topology, there is
also a strong link between category theory and constructive logic. On the one hand,
categories with suitable properties are models for various flavors of logic, on the other
hand, syntactic entities can often be organized into a categorical structure.

Many-sorted predicate logic is interpreted by assigning to each sort s an object
JsK. A proposition

x1 : s1, . . . , xn : sn ` ϕ

is interpreted as a subobject JϕK of Js1K× · · · × JsnK. A sequence

x1 : s1, . . . , xn : sn | ϕ1, . . . , ϕm ` ϕ

is validated if and only if the infimum Jϕ1K ∧ · · · ∧ JϕmK of the interpretations of
subobjects ϕ1, . . . , ϕm is contained in the subobject JϕK of Js1K × · · · × JsnK. The
interpretations of the logical connectives and quantifiers and type theoretic construc-
tions can be conveniently and stringently described in categorical terms by means
of limits, colimits and other adjoints. Therefore, if some category is suitable for
the interpretation of some logic or type theory, the interpretation is determined up
to isomorphism. This allows for a very concise description of categorical models.
See [Pit00] for a gentle introduction to categorical logic and [Jac99] for an extensive
source.
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2 Realizability Interpretations

Realizability interpretations can be seen as concrete instantiation of the Brouwer-
Heyting-Kolmogorov explanation of the intuitionistic meaning of the logical connec-
tives. Although the BHK explanation leaves the basic notions of proof and con-
struction open, one may instantiate these with concrete mathematical notions. See
[Tro98] for an article on the state of the art in realizability and [Oos02] for a historical
essay.

2.1 Formalized realizability interpretation

Concrete instantiations of the BHK interpretation can be formalized in various sys-
tems of constructive mathematics, thus giving rise to interesting metamathematical
information like the admissibility of certain rules and equiconsistency results.

2.1.1 Numerical realizability

In this section we recall the definition of Kleene’s numerical realizability as introduced
in [Kle45] and some of its basic properties. In numerical realizability, the notions
of proof object and construction are instantiated as numbers and partial recursive
function application, respectively.

Convention 2.1.1. In Heyting arithmetic, any disjunction A∨B can be equivalently
expressed as ∃x. (x = 0→ A)∧(x > 0→ B). As dropping ∨ as a primitive allows us
to make some definitions more concise, we shall treat disjunction as a derived notion
for the rest of this section.

The underlying idea of the realizability interpretation is to declare a proof object
for a disjunction to be a pair consisting of an indicator of which of the disjuncts is
to be proved and a proof object for that disjunct. Likewise, the proof object for
an existentially quantified statement is a pair consisting of an actual witness for the
existence statement and a proof object for the statement, instantiated with this very
witness.

Definition 2.1.2 (Numerical realizability).
The numerical realizability interpretation is an inductively defined translation of for-
mulas A of Heyting arithmetic into formulas e rn A of Heyting arithmetic, where e
is a fresh variable not occuring in A,
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2 Realizability Interpretations

e rn ⊥ ≡ ⊥
e rn t = s ≡ t = s
e rn A ∧B ≡ p0 e rn A ∧ p1 e rn B
e rn A→ B ≡ ∀a. a rn A → e.a ↓ ∧ e.a rn B
e rn ∀x. A ≡ ∀x. e.x ↓ ∧ e.x rn A
e rn ∃x. A ≡ p1 e rn A[p0 e/x]

with p0, p1 being the primitive recursive projection functions w.r.t. some fixed prim-
itive recursive paring function p.

Definition 2.1.3 (Numerical realizability combined with truth).
The numerical realizability combined with truth interpretation translates a formula
A into a formula e rnt A. Its definition differs from that of rn only in the clause for
implication.

e rnt A→ B ≡ (∀a. a rnt A → e.a ↓ ∧ e.a rnt B) ∧ (A→ B)

We shall now single out some classes of formulas that have special properties with
respect to the numerical realizability interpretation.

Definition 2.1.4 (Special classes of formulae of HA).

1. A formula is negative if it does not contain ∃.

2. A formula is almost negative if it contains ∃ only directly in front of prime
formulae.

3. A formula A is stable if HA ` ¬¬A→ A.

4. The rn-conservative class (CC(rn)) consists of all formulae A such that when-
ever B → C is a subformula of A, then B is almost negative.

Negative formulas are equivalent to their negative translations. Therefore, Peano
arithmetic is conservative over Heyting arithmetic with respect to negative formulas.
Almost negative formulas are equivalent to their realizability interpretations, i.e.
they are self-realizing. Another important aspect of almost negative formulas is the
fact that the realizability interpretation translates formulas into the almost negative
fragment of arithmetic. A formula is stable if and only if it is equivalent to a negated
formula.

Proposition 2.1.5 (Self-realizing formulas).

(i) The formulae e rn A and ∃e. e rn A are equivalent to almost negative formulae.

(ii) If A is almost negative, then HA ` A↔ (∃e. e rn A).
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2.1 Formalized realizability interpretation

Proof. See [Tro73, 3.2.10, 3.2.11]. The realizer for (ii) is essentially an unbounded
search algorithm. It is crucial, that every prime formula of Heyting arithmetic is
decidable.

The class of realizable formulas exceeds the class of theorems of HA. In particular,
even formulas that are inconsistent with classical logic can be realized. The following
axiomatization of realizable formulas was found by Troelstra.

Theorem 2.1.6 (Soundness and characterization of rn).

(i) HA + ECT0 ` A ⇐⇒ HA ` ∃e. e rn A

(ii) If A is closed, then

HA + ECT0 ` A ⇐⇒ there exists n ∈ N such that HA ` n̄ rn A,

where ECT0 is the extended Church’s thesis

ECT0 (∀x. D(x)→ ∃y. A(x, y))→ (∃e∀x. D(x)→ e.x ↓ ∧ A(x, e.x))

for almost negative D(x)

and n̄ is the numeral associated with a natural number n. Moreover, the number n
can be computed from a derivation of A.

Proof. See [Tro98, 1.11]

We will now take a look at the properties of the realizability combined with truth
interpretation.

Proposition 2.1.7.

(i) HA ` (e rnt A)→ A

(ii) If A ∈ CC(rn) then HA ` e rn A ↔ e rnt A.

(iii) If A ∈ CC(rn) and HA + ECT0 ` A then HA ` A.

Proof. (i) is proved by induction on the structure of A. (ii) is proved by induction on
the structure of A. The crucial case is implication. We assume that HA ` e rn B ↔
e rnt B and HA ` e rn C ↔ e rnt C. We must show that B → C follows
from e rn (B → C). As A is in CC(rn), B is almost negative. From B we can
conclude ∃x. x rn B. If x rn B then e.x ↓ ∧ e.x rn C. By the induction hypothesis,
e.x ↓ ∧ e.x rnt C and by (i), C follows. (iii) By the axiomatization of realizability,
HA ` ∃x. x rn A. By (ii), HA ` ∃x. x rnt A and by (i), HA ` A.

In the light of the previous proposition, the characterization part of the following
theorem is of course trivial.
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Theorem 2.1.8 (Soundness and characterization of rnt).

(i) HA ` A ⇐⇒ HA ` ∃e. e rnt A

(ii) If A is closed, then

HA ` A ⇐⇒ there exists n ∈ N such that HA ` n̄ rnt A.

The number n can be computed from a derivation of A.

The soundness and characterization theorems hold also with respect to certain
extensions of HA. In particular they hold for HA + M.

Proposition 2.1.9. The soundness and characterization theorems hold mutatis mu-
tandis for HA + M instead of HA.

Proof. See [Tro98, 1.12].

Corollary 2.1.10. HA + M + ECT0 is conservative over HA + M with respect to
CC(rn) formulas.

Proof. Assume HA + M + ECT0 ` A for A ∈ CC(rn). It follows from the soundness
and characterization theorem for HA+M that HA+M ` ∃e. e rn A. As A ∈ CC(rn),
HA + M ` ∃e. e rnt A and thus HA + M ` A.

Corollary 2.1.11. HA + M + ECT0 is equiconsistent with HA.

Proof. Assume HA + M + ECT0 ` 0 = 1. As 0 = 1 is in CC(rn), by Corollary 2.1.10,
HA + M ` 0 = 1. As 0 = 1 is negative, HA ` 0 = 1 follows from the negative
translation (which validates M).

As we have seen, the rn-interpretation is a useful tool in order to obtain equiconsis-
tency results. We shall now turn our attention to applications of the rnt-interpretation.
The rnt-interpretation of a ∀∃ quantifier combination reads as follows.

e rnt ∀x∃y. A(x, y) ≡ ∀x. e.x ↓ ∧ p1(e.x) rnt A(x, p0(e.x))

As a consequence of the soundness theorem, if HA proves a sentence ∀x∃y. A(x, y),
then there is an n ∈ N such that HA ` ∀x. n̄.x ↓ ∧ p1(n̄.x) rnt A(x, p0(n̄.x)) and as
e rnt A entails A, HA proves ∀x. m̄.x ↓ ∧ A(x, m̄.x) for m = λ∗a. p0(n.a). One can
view the formula A(x, y) as specifying the set of acceptable outputs y for the input
x. If one can prove constructively, that for each input x there exists an output y
meeting the specification A(x, y), then by the above reasoning there exists a program
m together with a constructive correctness proof.
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We summarize the direct consequences of the soundness of the rnt-interpretation.

Corollary 2.1.12 (Admissible rules of HA).

(i) For A containing at most x, y free, if HA ` ∀x∃y. A(x, y) then there is some
n ∈ N such that HA ` ∀x. n̄.x ↓ ∧ A(x, n̄.x).

(ii) For A containing at most x free, if HA ` ∃x. A(x) then there is some n ∈ N
such that HA ` A(n̄).

(iii) For A,B closed, if HA ` A ∨B then HA ` A or HA ` B.

Proof. Immediate consequences of Theorem 2.1.8.

The properties (i), (ii) and (iii) of the above corollary are called Church’s rule,
the explicit definability property (EDP) and the disjunction property (DP).1 As all
formalizations of arithmetic considered in this thesis possess Rosser sentences R, nei-
ther of these properties holds for their classical counterparts, as R∨¬R is classically
provable, but neither is R nor ¬R.

We could have as well used the rn-interpretation in order to derive Church’s rule for
HA+ECT0. The correctness of the algorithm n would in that case be provable only in
HA + ECT0 instead of HA. The provability of correctness in HA can be guaranteed,
if we require A ∈ CC(rn). However, in that case ECT0 would not contribute to
the proof of ∀x∃y. A(x, y), as the latter formula is as well in CC(rn). We therefore
prefer the rnt-interpretation over the rn-interpretation for the purpose of extracting
algorithms from proofs, as it applies to general formulas A.

2.1.2 Function realizability

In this section we recall the definition of Kleene’s function realizability as introduced
in [Kle65, Kle69] and some of its basic properties. We will omit those proofs which
parallel those of the previous section.

In function realizability, the notions of proof object and construction are instanti-
ated as functions and partial continuous function application, respectively.

Convention 2.1.13. As in Heyting arithmetic, in elementary analysis ∨ is definable
from ∃ and will be treated as a derived notion in this section. Furthermore, we
will regard equality on function type α = β as defined by ∀x. αx = βx. This has
the advantage that the prime formulae of elementary analysis with respect to this
presentation are decidable. Finally, we will omit typing annotations and instead use
roman letters for numbers and greek letters for infinite sequences.

1As disjunction can be defined from existence, DP follows from EDP. The converse is also true for
recursively enumerable extensions of HA, as shown in [Fri77].
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Definition 2.1.14 (Function realizability).
The function realizability interpretation is an inductively defined translation of a
formula A of elementary analysis into a formula α rf A of elementary analysis,
where α is a fresh variable not occuring in A,

α rf ⊥ ≡ ⊥
α rf t = s ≡ t = s
α rf A ∧B ≡ j0 α rf A ∧ j1 α rf B
α rf A→ B ≡ ∀β. β rf A→ α|β ↓ ∧ α|β rf B
α rf ∀x A ≡ ∀x. αx rf A
α rf ∃x A ≡ α+ rf A[α0/x]
α rf ∀β A ≡ ∀β α|β ↓ ∧ α|β rf A
α rf ∃β A ≡ j1α rf A[j0α/β]

with j0, j1 being the projection functions w.r.t. some fixed paring function j on N→ N
and α+ being the tail of α (i.e. α = 〈α0〉 ∗ α+).

Definition 2.1.15 (Function realizability combined with truth).
The function realizability combined with truth interpretation translates a formula A
into a formula α rft A. Its definition differs from that of rf only in the clause for
implication.

α rft A→ B ≡ (∀β. β rft A→ α|β ↓ ∧ α|β rft B) ∧ (A→ B)

Definition 2.1.16 (Special classes of formulae of EL).

1. A formula is negative if it does not contain ∃.

2. A formula is almost negative if it contains ∃x and ∃α only directly in front of
prime formulae.

3. A formula A is stable if EL ` ¬¬A→ A.

4. The rf-conservative class (CC(rf)) consists of all formulae A such that when-
ever B → C is a subformula of A, then B is almost negative.

Proposition 2.1.17 (Self realizing formulae).

(i) The formulae α rf A and ∃α. α rf A are equivalent to almost negative formu-
lae.

(ii) If A is almost negative, then EL ` A↔ (∃α. α rf A).

Proof. In order to see (ii), it is essential to notice that firstly, prime formulas are
decidable and secondly, for every prime formula it is provable that if A(α) then there
exists an n ∈ N such that for all β ∈ αn, A(β) holds. If A is prime, then a realizer
for ∃α.A can be defined essentially via an unbounded search through all infinite
sequences of the form a ∗ const0, where a ∈ N∗ and const0 is the infinite constant
zero sequence.
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2.1 Formalized realizability interpretation

Theorem 2.1.18 (Soundness and characterization of rf).

(i) EL + GC ` A ⇐⇒ EL ` ∃α. α rf A

(ii) If A is closed, then

EL+GC ` A ⇐⇒ there exists n ∈ N such that EL ` {n̄} total ∧ {n̄} rf A,

where GC is the generalized continuity principle

GC (∀α. D(α)→ ∃β. A(α, β))→ (∃γ ∀α. D(α)→ γ.α ↓ ∧ A(α, γ.α))

for almost negative D(α),

n̄ is the numeral associated with the natural number n and {k} is the kth partial
recursive function. Moreover, the number n can be computed from a derivation of A.

Proposition 2.1.19.

(i) EL ` (α rft A)→ A

(ii) If A ∈ CC(rf) then EL ` α rf A ↔ α rft A.

(iii) If A ∈ CC(rf) and EL + GC ` A then EL ` A.

Theorem 2.1.20 (Soundness and characterization of rft).

(i) EL ` A ⇐⇒ EL ` ∃α. α rft A

(ii) If A is closed, then

EL ` A ⇐⇒ there exists n ∈ N such that EL ` {n̄} total ∧ {n̄} rft A.

The number n can be computed from a derivation of A.

The soundness and characterization theorems hold also with respect to certain
extensions of EL, in particular for EL + BI.

Proposition 2.1.21. The soundness and characterization theorems hold mutatis mu-
tandis for EL + BI instead of EL.

Proof. It is stated in [Tro98, 2.9] that soundness and characterization hold in presence
of BID (see loc. cit.). As on the one hand, BI implies BID, and on the other hand BID
and GC imply BI (see [Dum77, Theorem 3.8]), the claim follows.

We skip the equiconsistency results for intuitionism that can be obtained via the
rf-interpretation and summarize the direct consequences of the soundness of the
rnt-interpretation.
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Corollary 2.1.22 (Admissible rules of EL).

(i) For A containing at most α, β free, if EL ` ∀α∃β. A(α, β) then there is some
n ∈ N such that EL ` {n̄} total ∧ ∀α. {n̄}|α ↓ ∧ A(α, {n̄}|α).

(ii) For A containing at most α free, if EL ` ∃α. A(α) then there is some n ∈ N
such that EL ` A({n̄}).

(iii) For A,B closed, if EL ` A ∨B then EL ` A or EL ` B.

Proof. Immediate consequences of Theorem 2.1.20.

2.1.3 Classically provably realizable formulas

In this section we will examine classes of formulas, whose realizability can be proved
classically.

Classically provably numerically realizable formulas of HA

The class of formulas whose rn-realizability can be proved constructively was axiom-
atized in Theorem 2.1.6. The following proposition gives an answer to the question of
what more formulas can be proved realizable if we use classical arithmetic. As classi-
cal arithmetic does not have the explicit definability property, two separate questions
arise.

Proposition 2.1.23.

(i) PA ` ∃n. n rn A if and only if HA + ECT0 + M ` ¬¬A

(ii) Let A be closed.
Then PA ` n̄ rn A for some n ∈ N if and only if HA + ECT0 + M ` A

Proof. (i) see [Tro73, 3.2.25]. (ii) The formula n̄ rn A is almost negative, hence
there exists a negative formula B such that HA + M ` (n̄ rn A) ↔ B. As PA is
conservative over HA with respect to negative formulas, we have HA ` B and thus
HA+M ` n̄ rn A. By the axiomatization part of Proposition 2.1.9, this is equivalent
to HA + ECT0 + M ` A. For the reverse direction, the existence of some n ∈ N
such that HA + M ` n̄ rn A follows from the soundness part of Proposition 2.1.9.
Consequently, PA ` n̄ rn A.

The answer to (i) of the above question is not actually an axiomatization of the
class of provably realizable formulas but of the class of their double negations. We are,
however, more interested in the case described in (ii), namely, the class of formulas,
whose realizability can be proven for a concretely given realizer, as opposed to the
class of formulas for which the existence of a realizer is classically provable.
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2.1 Formalized realizability interpretation

By definition, the rnt-interpretations entails truth, i.e.

HA ` (∃e. e rnt A)→ A

so asking for an axiomatization of rnt-realizable formulas is of course pointless, as
long as we interpret in HA. But this is no longer so if we interpret in PA. The class
of those formulas, whose rnt-realizability can be proven classically has the property
that ∀∃ quantifier combinations are required to be algorithmically tractable, yet
the corresponding correctness proof is only required to be classical. Put differently,
the class of formulas is strictly larger than the class of theorems of HA, yet enjoys
Church’s rule, EDP and DP and stays within the bounds of PA. This property makes
this class of formulas interesting from a classical, recursion theoretic point of view.
As far as we know, the following is an open problem.

Problem 2.1.24. Axiomatize the class of closed formulae A such that

PA ` n̄ rnt A for some n ∈ N.

The axiomatization problem can be naturally extended to open formulas. We wish to
give an axiomatization for the class of formulas such that

PA ` ∀~x. n̄.~x ↓ ∧ n̄.~x rnt A for some n ∈ N,

where ~x is the list of free variables in A.

In the following we shall give examples of realizable and non-realizable formulas
and give axiomatization with respect to special classes of formulas.

Lemma 2.1.25. HA ` (e rnt ¬A)↔ ¬A

Proof. By definition, e rnt ¬A if and only if (∀a. (a rnt A)→ (e.a ↓ ∧ e.a rnt ⊥))∧
¬A, which is equivalent to (∀a. (a rnt A) → ⊥) ∧ ¬A. As (a rnt A) → A, this is
equivalent to ¬A.

Proposition 2.1.26.

(i) There exists an n ∈ N such that PA ` n̄ rntM for each instance M of Markov’s
principle.

(ii) There exists an n ∈ N such that PA ` n̄ rnt D for each instance D of the
double negation shift principle.2

2I would like to gratefully acknowledge helpful suggestions regarding the axiomatization problem
made by Jaap van Oosten and Dana Scott. Dana Scott suggested to add the double negations
of all theorems of Peano arithmetic as axioms, Jaap van Oosten suggested to add principles that
guarantee that every stable formula is equivalent to a negative formula. The double negation
shift principle accomplishes the latter. The former is a direct consequence as, relative to DNS,
the double negation of a formula is equivalent to its negative translation.

47
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(iii) There is an instance I of IP such that for all k ∈ N, PA 6 ` k̄ rnt I.

(iv) There is an instance L of LPO such that for all k ∈ N, PA 6 ` k̄ rnt L.

Proof. (i) Let M ≡ ((∀x. A(n) ∨ ¬A(x)) ∧ ¬¬∃x. A(x)) → ∃x. A(x) and assume
e1 rnt ∀x. A(x) ∨ ¬A(x) and e2 rnt ¬¬∃x. A(x). The former gives rise to some
e such that ∀x. (p0(e.x) = 0 → p1(e.x) rnt A) ∧ (p0(e.x) > 0 → p1(e.x) rnt ¬A)
and the latter is equivalent to ¬¬∃x. A(x) by Lemma 2.1.25. A realizer can be
constructed by unbounded search using e as a halting condition. The termination of
this algorithm is provable in PA. Finally, M itself is provable in PA. Moreover, n
can be chosen independently of the particular instance of M.
(ii) Let D ≡ (∀x. ¬¬A) → (¬¬∀x. A). As e rnt ¬¬∀x. A is equivalent to ¬¬∀x. A
by Lemma 2.1.25, and asD is a theorem of PA, any code for a provably total recursive
function will do as a realizer.
(iii) We can use the same instance of IP that is used in [Tro98, 1.13(iii)] in order
to show the inconsistency of CT + M + IP, namely ((¬¬∃y. Txxy) → ∃z. Txxz) →
(∃z. (¬¬∃y. Txxy) → Txxz). As the hypothesis is an instance of M, the universal
closure of the conclusion, ∀x∃z. (¬¬∃y. Txxy) → Txxz) would be realizable. A
realizer would however give rise to a decision algorithm for the halting set, which is
absurd.
(iv) The formula (∃y. Txxy) ∨ (¬∃y. Txxy) is an instance of LPO. A realizer for
∀x. (∃y. Txxy) ∨ (¬∃y. Txxy) would again give rise to a decision algorithm for the
halting set.

Markov’s principle and the double negation shift principle are validated by the
interpretation under discussion. In HA, every negative formula is almost negative
and stable. Markov’s principle can be thought of as the principle responsible for
making every almost negative formula equivalent to a negative formula, while the
double negation shift principle can be thought of as making every stable formula
equivalent to a negative formula. It is not known, whether these constitute a complete
axiomatization, although it seems very unlikely.

The axiomatization problem appears to be very hard. The main obstacle may be
that, whereas in the case of rn-realizability the formula x rn A is always almost neg-
ative, we are not able to abstractly describe the class of formulas that are equivalent
to a formula of the form x rnt A.

The following proposition states that HA+M+DNS is a complete axiomatization
for two (however) very restricted classes of formulae.

Proposition 2.1.27. Let A be closed.

(i) If A is stable, then there exists n ∈ N such that PA ` n̄ rnt A if and only if
PA ` A if and only if HA + DNS ` A.

(ii) If A ∈ CC(rn), then there exists n ∈ N such that PA ` n̄ rnt A if and only if
HA + M ` A.
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Proof. (i) The first equivalence follows immediately from Lemma 2.1.25, as A is
equivalent to a negated formula. The second equivalence follows from the fact that
HA + DNS ` AG ↔ ¬¬A, where AG is the negative translation of A.
(ii) As A ∈ CC(rn), PA ` n̄ rnt A if and only if PA ` n̄ rn A. By Proposition
2.1.23, this is the case if and only if HA + M + ECT0 ` A. As HA + M + ECT0 is
conservative over HA + M with respect to CC(rn) by Corollary 2.1.10, HA + M ` A.
The reverse direction follows from the soundness of the rnt-interpretation and the
fact that M is realized.

We have thus far examined, in how far theorems of PA are realized. As rnt-
realizability entails truth, principles that are not theorems of PA are not realizable.
In fact, by (i) of the previous proposition, negations of instances of principles that
are refuted by PA are realized. In particular, there are instances E of CT such that
¬E is realized.

Classically provably function realizable formulas of EL

An analogous set of questions can be posed for the rf- and rft-interpretations. We
will omit those proofs which closely resemble the respective proofs for numerical
realizability, which can be found in the previous section.

Proposition 2.1.28.

(i) EL(c) ` ∃α. α rf A if and only if EL + GC + M ` ¬¬A

(ii) Let A be closed.
Then EL(c) ` {n̄} total ∧ {n̄} rf A for some n ∈ N
if and only if EL + GC + M ` A.

Proof. It is crucial to notice that also in EL, the principle M suffices to show that ev-
ery almost negative formula is equivalent to a negative formula. The rest is analogous
to the proof of Proposition 2.1.23.

Problem 2.1.29. Axiomatize the class of closed formulae A such that

EL(c) ` {n̄} total ∧ {n̄} rf A for some n ∈ N.

As in problem 2.1.24, the axiomatization problem can be naturally extended to open
formulas.

Proposition 2.1.30.

(i) There exists an n ∈ N such that EL(c) ` {n̄} total ∧ {n̄} rft M for each
instance M of Markov’s principle.

(ii) There exists an n ∈ N such that EL(c) ` {n̄} total ∧ {n̄} rft D for each
instance D of the double negation shift principle.
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(iii) There is an instance I of IP such that for all k ∈ N, EL(c) 6 ` {k̄} total ∧
{k̄} rft I.

(iv) There is an instance L of LPO such that for all k ∈ N, EL(c) 6 ` {k̄} total ∧
{k̄} rft L.

Proposition 2.1.31. Let A be closed.

(i) If A is stable, then EL(c) ` {n̄} rft A for some n ∈ N if and only if EL(c) ` A
if and only if EL + DNS ` A.

(ii) If A ∈ CC(rf), then EL(c) ` {̄n} rft A for some n ∈ N if and only if EL+M `
A.

Again, the class of formulae under discussion here is strictly larger than EL, satisfies
Church’s rule, the continuity rule, EDP and DP, but stays within the bounds of EL(c).
It is worth noticing that it also includes BD-N.

Proposition 2.1.32. Every instance of the boundedness principles BD-N is classi-
cally rft-realized.

Proof. The boundedness principle can be formalized as

(∀α∃n∀k > n. β(α(k)) < k)→ (∃N∀x. β(x) < N)

Let H ≡ ∀α∃n∀k > n. β(α(k)) < k and C ≡ ∃N∀x. β(x) < N . Note that the
boundedness principle H → C is an implication between the two CC(rf) formulas
H and C. By Proposition 2.1.19 (ii),

γ rft H → C
≡ (∀δ. δ rft H → γ|δ ↓ ∧ γ|δ rft C) ∧ (H → C)
⇔ (∀δ. δ rf H → γ|δ ↓ ∧ γ|δ rf C) ∧ (H → C)
⇔ (γ rf (H → C)) ∧ (H → C)

By the above, there exists an n ∈ N such that EL(c) proves that {n̄} rft-realizes
(the universal closure of) BD-N if and only if there exists an n ∈ N such that EL(c)

proves that {n̄} rf-realizes BD-N and EL(c) proves BD-N. By Proposition 2.1.28, the
former is the case if and only if EL + GC + M proves BD-N. As shown in [Ish92,
Proposition 3], EL + WC-N suffices to prove BD-N. The latter is also the case, as
BD-N is a theorem of EL(c). The classical proof of BD-N requires an instance of the
axiom of choice for prime formulas, which is contained in the definition of EL.

Corollary 2.1.33. Let A be a formula of the form B → C, where B and C are
in CC(rf). Then there exists an n ∈ N such EL(c) proves that {n} rft-realizes the
universal closure of A if and only if A is a theorem of both EL + GC + M and EL(c).

Proof. The claim follows from the proof of Proposition 2.1.32.
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2.2 Categorical Realizability Semantics

One might give realizability interpretations for E-HAω and higher order arithmetic
in the same style as for HA and EL, now. We shall, however, take a different route.
We define categories of sets equipped with a realizability structure. These categories
will, as we shall observe, have good properties that allow for the interpretation of
constructive arithmetic. The advantage is that, once we have defined the category,
the rest of the interpretation is fixed up to isomorphism. This allows for a more
concise description of realizability models, compared to those given in 2.1.2 and
2.1.14, where we needed a clause for every logical connective and quantifier. If one
wants to retain the metamathematical flavor of realizability interpretation one can
express the validity in the categorical model in a sufficiently expressive logical system.

Mind that a complete change of paradigm happens, here. Whereas in the previous
section we described the interpretation of every feature of some formal system of
arithmetic, we will now define the categorical model first and then observe which
features and hence which formal system of arithmetic finds an interpretation in this
model. In particular, we will give a characterization of those categorical models that
allow for an interpretation of higher order arithmetic in Theorem 2.2.20.

We will also make an abstraction as to the notion of realizers. Whereas we have
used numbers and functions as models of computation in the previous section, we
will use the more abstract notion of a partial combinatory algebra (pca), here. Both
notions of realizers employed in the previous section are pca’s. As an extension,
we allow the realizers to have types, an idea that originates from Kreisel’s modified
realizability (see [Kre59]). While both typed combinatory algebra and partial com-
binatory algebra are known for some time, their combination has been introduced
only recently by John Longley in [Lon99b].

2.2.1 Typed Partial Combinatory Algebras

In this section we review the notions of partial combinatory algebra and typed partial
combinatory algebra and give some examples.

Definition 2.2.1. A partial combinatory algebra (pca) is a set A equipped with a
partial binary application that has elements s, k ∈ A such that for all a, b, c ∈ A

s a b ↓, s a b c � a c (b c), k a b = b

Notice that e = e′ means that both sides are defined and equal and e � e′ (as in
[FS91]) means that whenever e is defined then e′ is defined and equal to e. As a con-
vention, application associates to the left and is often denoted by mere juxtaposition,
as above. In the following, for any expression e the statement e  x is supposed to
imply that e is defined.
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Remark 2.2.2. Combinatory completeness holds for every pca A, i.e., for any poly-
nomial e (a term built up from typed variables and constants) and any variable x
there is a polynomial λ∗x. e whose variables are those of e excluding x such that
λ∗x. e ↓ and (λ∗x. e) a � e[a/x] for all a ∈ A and all valuations of the free variables.
Conversely, every partial applicative structure that is combinatory complete is a pca.

Example 2.2.3.

(i) The set N, equipped with partial recursive application (x, y) 7→ {x}(y), where
{·} is an admissible numbering of the set of partial recursive functions, is a pca.
We denote this pca by K1 (for first Kleene algebra).

(ii) The set N → N equipped with partial continuous function application | as
defined in section 1.4.1 is a pca. We denote this pca by K2 (for second Kleene
algebra).

Remark 2.2.4. One often encounters a stronger definition of pca’s, with s a b c �
a c (b c) replaced by the requirement

s a b c ' a c (b c),

where e ' e′ means that e is defined if and only if e′ is defined, in which case both
are equal. Both K1 and K2 are also pca’s in this stronger sense, we will however
not need this extra requirement for our results. Moreover, although an s combinator
for K2 satisfying the stronger requirement exists, it has to be forced to diverge on
certain arguments, which unnecessarily complicates its definition.

Definition 2.2.5. A typed partial combinatory algebra (tpca) is a non-empty set T
of types together with

1. binary operations × and → on T ,

2. a set |T | of realizers of type T for every T ∈ T

3. a partial application function ·S,T : |S → T | × |S| −→ |T | for all S, T ∈ T

such that for all S, T, U ∈ T there are elements

kS,T ∈ |S → T → S|, sS,T,U ∈ |(S → T → U)→ (S → T )→ (S → U)|
pairS,T ∈ |S → T → S × T |, fstS,T ∈ |S × T → S|, sndS,T ∈ |S × T → T |

satisfying
k a b = a, s a b ↓, s a b c � a c (b c)
fst (pair a b) = a, snd (pair a b) = b

for all appropriately typed a, b, c.
As usual,→ associates to the right and × binds stronger than→, type annotations

are frequently omitted. In the following, for any expression e the statements e ∈ |T |
and e  x are supposed to imply that e is defined.
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Remark 2.2.6. The notion of typed pca was introduced by John Longley in [Lon99b]
under the name partial combinatory type structure. Although typed combinators as
well as (untyped) partial combinatory algebra have been studied for a long time,
surprisingly enough a combination of both had not been considered before. Our
definition differs from that given in [Lon99b] only in the respect that Longley requires
that every type is inhabited, whereas we decided not to do so in view of some of
the following examples. However, as soon as there is some type T there also is an
inhabited type, as T → T is inhabited by i = skk.

The notion of tpca should be viewed as open, as it is possible to extend it with
additional features such as sum types, arithmetic, recursion etc.

Remark 2.2.7. A typed version of combinatory completeness holds for every tpca,
i.e., for any polynomial e : T (a well-typed term built up from typed variables and
constants) and any variable x : S there is a polynomial λ∗x : S. e : S → T whose
variables are those of e excluding x such that λ∗x :S. e ↓ and (λ∗x :S. e) a � e[a/x]
for all a ∈ |T | and all valuations of the free variables.

Examples of tpca’s are abundant. First of all, any pca can be made into a tpca with
one single type. Examples arising from typed functional programming languages are
studied in [Lon99a].

Example 2.2.8. Let A be a pca.

(i) We define the tpca P(A) as follows. The underlying set of types is the power
set of A and for any type S let |S| = S. For types S, T we define

|S × T | = {a ∈ A | p0 a ∈ |S| and p1 a ∈ |T |}
|S → T | = {a ∈ A | ∀b ∈ |S|. a b ∈ |T |}

where p, p0, p1 ∈ A are appropriate combinators for pairing and projection.
The typed application operations are defined as restrictions of the application
operation in A to the respective subsets and, therefore, are total.

(ii) If we restrict the set of types to the nonempty subsets of A we obtain another
tpca which we call P+(A).

(iii) Let a ∈ A be such that paa = a and ∀x ∈ A. ax = a. Then we can further
restrict the set of types to those subsets of A containing a and call the resulting
tpca Pa(A).

(iv) Finally, we can restrict the set of types to the set of finite types over some chosen
ground type. For appropriate choices of A this gives rise to HRO (hereditary
recursive operations) and ICF (intensional continuous functionals) as discussed
in [Tro73]).
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Example 2.2.9. Interesting examples arise from cartesian closed categories. Let C
be a CCC. We obtain a tpca as follows. Define the set of types to be the set of
objects3 of C and for any type T let |T | be the set C(1, T ) of global sections of T .
For instance, the cartesian closed category of algebraic lattices gives rise to a notion
of realizability investigated in [BBS98]. Other interesting examples arise from the
cartesian closed category PER(A) of partial equivalence relations on a pca A. In
analogy to Example 2.2.8 (ii) and (iii) one can consider the subcategory PER+(A)
of nonempty per’s and the subcategory PERa(A) of those per’s containing some
suitable fixed element a in their carrier, as both are exponential ideals. Finally
one can restrict to subcategories of finite types over some chosen ground type thus
obtaining HEO and ECF (see [Tro73]).

Example 2.2.10.

(i) Fix a set B of base types and define the set of types as the set freely generated
from B by × and →. For any type T define |T | to be the set of closed simply
typed λ–terms of type T modulo β or βη equality. Application is induced by
the application of λ–calculus.

(ii) Let the set of types be those of Gödel’s system T (with product types) and for
each type T let |T | be the set of closed terms of system T of type T modulo an
appropriate conversion equality or observational equivalence.

(iii) Similarly one may take the closed types of Girard’s system F (polymorphic
λ–calculus) and for |T | the closed terms of type T modulo β or βη equality.

Remark 2.2.11. Notice that for example 2.2.8 (ii) and (iii) (but not (i)!) it suffices
to require that A is a conditional pca (see [HO93]), in which the axiom s a b ↓ need
not hold. In a sense, the introduction of types makes up for the lack of definedness
of s a b in A. In Example 2.2.8(iii) instead of requiring that all types contain some
fixed element a we can require that all types contain some fixed right–absorptive set
Θ of A (see [HO93]).

Correspondingly, in Example 2.2.9 for the cases of PER+(A) and PERa(A) (but
not PER(A)!) it suffices that A is a conditional pca. Furthermore, instead of the
category PERa(A) we can consider the cartesian closed category PERΘ(A) of those
per’s R satisfying θRθ′ for all θ, θ′ ∈ Θ for some right–absorptive set Θ.

In Example 2.2.9 the category C need not be cartesian closed. Instead, one may
take for C a weak version of a partial cartesian closed category as in [Bir99].

2.2.2 Universal Types

Definition 2.2.12. Let T be a tpca. A type U ∈ T is called universal if for
any type T ∈ T there are realizers eT ∈ |T → U | and rT ∈ |U → T | such that

3ignoring size matters for the moment
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∀x ∈ |T |. rT (eT x) = x i.e. every type is a partial4 retract of the type U .

A universal type U in a tpca gives rise to a pca as in particular U → U is a retract
of U . The underlying set of the pca is |U | and for x, y ∈ |U | application is defined
as rU→Uxy. This structure is combinatory complete. For any untyped U -polynomial
e and variables x1, . . . , xn define λ∗x1 · · ·xn. e as eU→U λ

∗x1 :U. · · · eU→U λ
∗xn :U. e′,

where e′ is e with applications MN replaced by rU→UMN . In particular, combinators
s and k can be defined for U in this way.

In [Lon99b] a 2-category of tpca’s and applicative morphisms is introduced, con-
taining the 2-category of pca’s familiar from [Lon94] as a full subcategory. We will
not repeat the definition of the 2-category here but rather state the induced notion
of equivalence for typed pca’s as a definition, although it is a bit lengthy.

Definition 2.2.13. Two tpca’s T and S are equivalent whenever there are functions
f : T → S and g : S → T together with a function uT : |T | → |f(T )| for every T ∈ T
and a function vS : |S| → |g(S)| for every S ∈ S satisfying the following properties.
For every pair T, T ′ ∈ T there is some qT,T ′ ∈ |f(T → T ′) → f(T ) → f(T ′)| such
that

qT,T ′ uT→T ′(a)uT (b) � uT ′(ab) for all a ∈ |T → T ′|, b ∈ |T |.

Likewise, for every pair S, S ′ ∈ S there is some rS,S′ ∈ |g(S → S ′) → g(S) → g(S ′)|
such that

rS,S′ vS→S′(a) vS(b) � vS′(ab) for all a ∈ |S → S ′|, b ∈ |S|.

Furthermore, for every T ∈ T there are elements iT ∈ |T → g(f(T ))| and jT ∈
|g(f(T ))→ T | satisfying

iT a = vf(T )(uT (a)) and a = jT vf(T )(uT (a))

for all a ∈ |T | and for every S ∈ S there are elements kS ∈ |S → f(g(S))| and
lS ∈ |f(g(S))→ S| satisfying

kS a = ug(S)(vS(a)) and a = lS ug(S)(vS(a))

for all a ∈ |S|.

For instance, the tpca’s P0(K1) and P+(K1) are equivalent. The following propo-
sition says that a tpca is equivalent to a pca if and only if it has a universal type.

Proposition 2.2.14. If a tpca T has a universal type U , then it is equivalent to the
induced pca on U . Conversely, if a tpca is equivalent to a pca, then it has a universal
type.

4meaning that rT may be partial although eT is still total
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Proof. straightforward exercise.

One consequence of the existence of a universal type is the existence of fixpoint
combinators for all types.

Proposition 2.2.15 (Shin-ya Katsumata). Let T be a tpca with a universal type
U ∈ T . Then for every type T ∈ T there is an element YT ∈ |(T → T ) → T |
satisfying ∀f ∈ |T → T |. (YTf) � f(YTf).

Proof. Since U is universal, U → (T → T ) → T is a retract of U with realizers
r : U → (U → (T → T )→ T ) and e : ((U → (T → T )→ T )→ U . Let

A = λ∗x : Uλ∗y : T → T. y(rxxy) : U → (T → T )→ T )

and YT = A(eA) : (T → T )→ T . Then for any f : T → T ,

YTf = A(eA)f (by definition of YT )
= (λ∗x : Uλ∗y : T → T. y(rxxy))(eA)f (by definition of A)
� f(r(eA)(eA)f) (by remark 2.2.7)
= f(A(eA)f) (since r(e(x)) = x)
= f(YTf) (by definition of YT again)

Corollary 2.2.16. Let T be a tpca with an s combinator satisfying s a b c ' a c (b c)
with a universal type U ∈ T . Then for every type T ∈ T there is an element
YT ∈ |(T → T )→ T | satisfying ∀f ∈ |T → T |. f(YTf) ' (YTf).5

Proof. The claim follows from the proof of Proposition 2.2.15 and the fact that if
s a b c ' a c (b c) then (λ∗x : S. e) a ' t[a/x].

The existence of a universal type is a rather strong requirement for a tpca. As
shown in the following proposition, a lot of natural examples of tpca’s do not have a
universal type.

Proposition 2.2.17.

(i) The tpca P(A) has no universal type.

(ii) The tpca’s P+(A) and Pa(A) have no universal type unless A has only one
element.

5At the time of writing the article [LS02], we were only able to prove this weaker statement about
the existence of fixpoint combinators and posed the existence of a fixpoint combinator with the
properties described in 2.2.15 as a question. Although it is well known that Turing’s fixpoint
combinator has the desired property in the untyped case, it is not obvious how to transfer this
result into the typed case. Upon reading our article, Shin-ya Katsumata communicated his
solution to us.
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(iii) The tpca PΘ(A) has no universal type unless A = Θ.

(iv) The tpca’s HRO and ICF have no universal type.

(v) The tpca induced by a well-pointed CCC has a universal type if and only if there
is an object U such that any object A in the category is a retract of U .

(vi) The tpca induced by the cartesian closed category of algebraic lattices has no
universal type.

(vii) The tpca PER(A) has no universal type

(viii) The tpca’s PER+(A) and PERa(A) have no universal type unless A has only
one element.

(ix) The tpca’s HEO and ECF have no universal type

(x) None of the tpca’s in example 2.2.10 has a universal type.

Proof. Statements (i), (ii) and (iii) hold for cardinality reasons. Let us suppose T is
one of the tpca’s P(A), P+(A), Pa(A) or PΘ(A). Assume there exists a universal
type U ∈ T . Then for any T ∈ T , T = {rT u |u ∈ U}. Thus, the number of types
were bounded by the cardinality of A which is not the case.

Similarly for (vii) and (viii). Statements (iv), (ix) and (x) hold because of Propo-
sition 2.2.15. All application functions are total but there are realizable endomaps
without fixpoint. Statement (v) is only the expansion of the definition of universal
type. Finally, (vi) follows from (v) as there clearly is no universal algebraic lattice
for cardinality reasons.

2.2.3 Realizability Models

Now we generalize various constructions of realizability models from pca’s to typed
pca’s.

Definition 2.2.18. Let T be a tpca.

(i) The category Asm(T ) of assemblies over T is defined as follows. An object X
consists of an underlying set I together with an underlying type T ∈ T and a
realizability relation X⊆ |T | × I such that ∀i ∈ I.∃t ∈ |T |. t X i. For any
i ∈ I we define the set of realizers of i, ||i||X to be the set {t ∈ |T | | t X i}.
A morphism from X to X ′ is a map f : I //I ′ which is tracked by some
a ∈ |T → T ′|, i.e. ∀i ∈ I.∀b ∈ |T |. b X i→ a b X′ f(i).
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(ii) The category D(T ) of discrete sets over T is the full subcategory of Asm(T )
on those objects X = (I, T,X) which satisfy ∀t ∈ |T |.∀i, i′ ∈ I. t X i ∧ t X

i′ → i = i′.6

(iii) The fibration UFam(D(T )) over Asm(T ) of uniform families of discrete sets
induced by T is defined as follows. An object in the total category is an assem-
bly X = (I, T,X) together with an I-indexed familiy of discrete sets (Di)i∈I

over one common type S. A morphism from (X,S, (Di)i∈I) to (X ′, S ′, (D′
i)i∈I′)

consists of a morphism of assemblies f : X //X ′ together with a family of

morphisms of discrete sets (fi : Di
//D′

f(i) )i∈I which is uniformly tracked, i.e.
there is a realizer a ∈ |T → S → S ′| such that ∀i ∈ I.∀b ∈ |T |. b X i→ a b 
fi. The fibration itself is given by the projection functor sending (X,S, (Di)i∈I)
to X and (f, (fi)i∈I) to f .

(iv) The hyperdoctrine H(T ) over Set is defined as follows. An element in the fibre
over a set I is a type T ∈ T together with a function ϕ : I //P(|T |). The
entailment ϕ `I ϕ

′ holds if there is some a ∈ |T → T ′| such that ∀i ∈ I.∀b ∈
ϕ(i). a b ∈ ϕ′(i). Reindexing is given by precomposition.

(v) The realizability category over T , RC(T ), is defined as Set[H(T )], i.e. the
category whose objects are formal partial equivalence relations w.r.t. H(T )
and whose morphisms are formal strict functional relations (see [Pit99] for the
exact definition).

One can prove that all constructions of Definition 2.2.18 applied to equivalent
tpca’s yield equivalent (fibred) categories. For tpca’s with just one type, the con-
structions above coincide with the well known constructions for pca’s. Next we
discuss which of the properties of realizability models lift to the typed case.

The categories Asm(T ) and D(T ) are regular and locally cartesian closed. The
global sections functor Γ : Asm(T ) //Set has a right adjoint ∇ : Set //Asm(T )
which can be described concretely as follows. Let T ∈ T be a type inhabited by
∗ ∈ |T |. Then for any set I define ∇I as the assembly with underlying set I, un-
derlying type T and ||i||∇I

= {∗} for all i ∈ I. An assembly X = (I, T,X) is called
codiscrete iff it is isomorphic to ∇I, i.e. iff there exists a t ∈ |T | such that t X i for
all i ∈ I. Note that an object of Asm(T ) is in D(T ) if and only if it is internally
orthogonal to ∇(2). Furthermore, the fibration UFam(D(T )) over Asm(T ) is a
split fibration equivalent to the fibration of discrete families in Asm(T ), i.e. those
families that are internally orthogonal to ∇(2). Thus it follows immediately that the
fibration is complete and a fibred CCC (see [HRR90]). However, there need not exist

6Note that this category is frequently called the category of modest sets in the untyped case. In
calling it the category of discrete sets we follow the argument given in [OS00, Section 2.2].
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a generic family.7

The hyperdoctrine H(T ) is a model for the (>,∧,→,∀,∃,=)–fragment of first
order predicate logic. However, in general H(T ) need not be a tripos (see [HJP80,
Pit81]) as there need not exist a generic predicate allowing for an interpretation of
higher order logic. Moreover, the fibres need not have finite suprema allowing for an
interpretation of (⊥,∨).

The category RC(T ) is locally cartesian closed and exact. It contains Asm(T )
as a full reflective subcategory closed under subobjects and the inclusion preserves
the locally cartesian closed structure. The category RC(T ) is the exact completion
of the regular category Asm(T ) and was in fact defined this way in [Lon99b]. Every
object of RC(T ) is covered via a regular epi by an object of Asm(T ) (see [FS91,
Car95, CV98]). In general RC(T ) need not be a topos.

2.2.4 Impredicativity entails Untypedness

We will show now that a tpca T has a universal type, i.e. is essentially untyped,
if and only if the ensuing realizability models of Definition 2.2.18 have the usual
impredicative features.

For this purpose we need the following somewhat technical lemma.

Lemma 2.2.19. Suppose there exists a morphism m : A //X in Asm(T ) such
that for every subobject n : B //Y of a codiscrete Y there is a pullback diagram

B

n

��

//
y A

m

��
Y // X

Then T has a universal type.

Proof. Let U be the type of A. We claim that U is universal. For an arbitrary
type T ∈ T let ∆T be the assembly with underlying set |T |, underlying type T and
||t||∆T

= {t} for all t ∈ |T |. Let i : ∆T
//∇|T | be the morphism whose underlying

map is the identity on |T |. As i is monic and ∇|T | is codiscrete there is a pullback
diagram

∆T

i
��

f //
y A

m

��
∇|T | u

// X

7Notice that we call an object X in the total category of a fibration generic whenever for each
object Y in the total category there is a cartesian morphism from Y to X. We do not require
uniqueness in any form.
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due to our assumption on m. Let eT ∈ |T → U | be a realizer of f . Note that eT is
defined for all t ∈ |T |. Let D be the assembly with underlying set |T |, underlying
type U and ||t||D = {eT t} for all t ∈ |T |. Let i′ : D //∇|T | and f ′ : D //A be
the morphisms whose underlying maps are those of i and f , respectively. Therefore,
u ◦ i′ = m ◦ f ′. Let g : D //∆T be the mediating morphism, i.e. i ◦ g = i′ and
f ◦ g = f ′. Notice that g(t) = t for all t ∈ |T |, as i ◦ g = i′. Let rT be a realizer of
g. Then for all t ∈ |T | we have rT (eT t) ∆T

g(t) = t and, therefore, rT (eT t) = t, as
desired.

Theorem 2.2.20. Let T be a tpca. The following are equivalent.

(i) T has a universal type

(ii) Asm(T ) has a generic mono

(iii) H(T ) is a tripos

(iv) RC(T ) is a topos

(v) UFam(D(T )) over Asm(T ) has a generic family.

Proof. If T has a universal type then it is equivalent to a pca. As all constructions
considered in (ii) - (v) preserve equivalence, the induced structures are equivalent
to ones induced by a pca. For these the properties (ii) - (v) are well known and,
therefore, condition (i) implies conditions (ii) - (v).

Assume (ii) and let m be a generic mono. As any mono arises as a pullback of m,
this holds in particular for subobjects of codiscrete objects. Therefore, condition (i)
follows by Lemma 2.2.19.

Clearly (iii) implies (iv).
Assume (iv). Let > : 1 //Ω be a subobject classifier in RC(T ). Then Ω is

covered by an assembly X via an epi e : X //Ω. Let m : A //X be the pullback
of > along e. As Asm(T ) is closed under subobjects A is an assembly, too. We show
that all subobjects of codiscrete objects arise as pullbacks of m. Let n : B //C be
a subobject of a codiscrete assembly C. As C is projective in RC(T ) the classifying
morphism χ : C //Ω for n factors through e and, therefore, in the diagram

B

n

��

//___ ((
y A

m

��

//
y 1

>
��

C //___

χ

55X
e // Ω

the left square is a pullback, too. Thus, by Lemma 2.2.19 the tpca T has a universal
type. Hence (iv) entails (i).

Finally, assume (v). Remember that the fibration UFam(D(T )) is equivalent to
the fibration of discrete families in Asm(T ). As any mono is a discrete family this
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implies that every mono appears as a pullback of a fixed morphism in Asm(T ). Thus
by Lemma 2.2.19 condition (i) follows.

In the proof of (v) ⇒ (i) we have actually shown more. Whenever there is a
subfibration of the codomain fibration of Asm(T ) that contains all monos and has
a generic family, then T has a universal type.

Moreover, whenever there is an arbitrary fibration over Asm(T ) that contains the
subobject fibration of Asm(T ) as a definable subfibration and has a generic family,
then T has a universal type. This is because a definable subfibration as opposed to
an arbitrary subfibration inherits the property of having a generic family. See [Bor94]
for a treatment of definability in fibrations.

But, equally important, from Theorem 2.2.20 and Proposition 2.2.17 we get quite
a few examples of realizability models which are not impredicative. We just discuss
those examples which have already been considered in other contexts.

As the category ALat of algebraic lattices does not have a universal object the
exact completion of the regular category Asm(ALat) is not a topos. Observe that
as Asm(ALat) is the regular completion of the category Sp of topological spaces
(see [Ros99]) it follows immediately that the exact completion of Sp as a lex category
is not a topos. Moreover, the fibration UFam(D(ALat)) has no generic family and,
therefore, is not a model of polymorphic λ–calculus or even Calculus of Constructions.
This confirms a conjecture raised in [BBS98].

Next notice that the category of ¬¬–separated objects of the modified realizability
topos Mod (see [Gra81, Oos97b]) is equivalent to the category Asm(P0(K1)) where
K1 is the 1st Kleene algebra and P0(K1) is the tpca defined in Example 2.2.8. In this
case the underlying type of an assembly is called its set of potential realizers.

More generally, whenever A is a conditional pca and Θ ⊆ A is a right–absorptive
set then the category of ¬¬–separated objects in the modified realizability topos over
(A,Θ) (see [HO93, OR94]) is equivalent to the category Asm(PΘ(A)) (see Remark
2.2.11). As tpca’s of the form PΘ(A) do not have a universal type it follows from
Theorem 2.2.20 that there is no generic family for the fibration of discrete families
in the category of ¬¬–separated objects of a modified realizability topos. Another
consequence of Theorem 2.2.20 is that a modified realizability topos does not arise
as the exact completion of its regular subcategory of ¬¬–separated objects as the
exact completion is not a topos.

All these considerations apply as well to extensional versions of modified realiz-
ability as considered in [Gra81] replacing P0(K1) by PER0(K1).

We have seen that one can build realizability models over arbitrary typed pca’s,
i.e. typed models of computation, such as for example models of Gödel’s system T .
Traditional untyped pca’s can be considered as particular instances of typed pca’s,
namely those with a universal type. It is well known that realizability over untyped
pca’s gives rise to models of impredicative type theory. We have shown that this
implication can be reversed in the sense that a realizability model over a typed pca
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T is impredicative if and only if T admits a universal type, i.e. is essentially untyped.
There are, however, examples of typed pca’s without a universal type whose cate-

gories of assemblies are nevertheless equivalent to categories of ¬¬–separated objects
of appropriate toposes. For example, the category of assemblies over P0(K1)) turns
out to be equivalent to the category of ¬¬–separated objects of the modified realiz-
ability topos introduced independently by Hyland and Grayson in the early eighties
and studied in greater detail by van Oosten [Oos97b, Oos91]. Another example is
the category of assemblies over PER0(K1), which is equivalent to the category of
¬¬–separated objects of the extensional modified realizability topos of [Gra81]. But
it is not clear in general when a category of assemblies over a tpca without a universal
type can be reconstructed as the category of ¬¬–separated objects for some topos.
For instance, the categories of assemblies over the tpca’s listed in Example 2.2.10 are
not categories of ¬¬–separated objects of any topos. The category of assemblies over
the tpca described in Example 2.2.10 (i) has no NNO. The categories of assemblies
over the tpca’s described in Example 2.2.10 (ii) and (iii) fail to validate sentences of
the form ∀x : N∃y : N. T (e, x, y) for appropriately chosen e ∈ N, which hold in (the
category of ¬¬–separated objects of) any topos.

2.2.5 Discussion of related work

L. Birkedal [Bir99] has proved a result analogous to ours but for his wcpc’s instead of
typed pca’s. Birkedal’s wcpc’s are a bit more general than tpca’s as the former cover
also the relative realizability toposes of [Bir99]. His proof relies on A. Pitts’ [Pit99]
characterization of those hyperdoctrines which give rise to a topos when applying
the “tripos–to–topos construction”. This use of Pitts’ characterization theorem was
inspired by discussions with the author of this thesis in the autumn of 1999 and an
early version of [LS02], in which we proved our result using Pitts’ result of [Pit99].

When reading a draft version of the paper “An abstract look at realizability”
[dMRR99] and trying to understand some proof therein it appeared to us that we
can reuse an older result of ours, namely that a tpca T has a universal type if and
only if Asm(T ) has a generic mono, with almost no modification. The point was
that we saw that firstly, a subobject classifier in RC(T ) gives rise to a mono m
in Asm(T ) from which one may obtain every subobject of a codiscrete object ∇I
via pullback and secondly, that from such a mono m we can construct a universal
type in T in literally the same way as from a generic mono in Asm(T ). Using this
method one can prove the respective results of [Bir99] and [dMRR99] in a simpler
way even though these are formulated for more general settings than just tpca’s.
In particular, the intensional notion of computation employed in [dMRR99] is given
by just a category C together with a faithful functor U from C to the category of
sets and partial functions both satisfying some elementary conditions but without
any assumptions about the existence of weak partial function spaces. Using a result
from [CR98] it follows that C has weak dependent products whenever the ensuing
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realizability category is locally cartesian closed.
One also should mention the work of M. Menni. In [Men99] he gave a very nice char-

acterization of those finite limit categories C whose exact completion is a topos. In
the subsequent paper [Men00] under the assumption that the global sections functor
Γ : C→ Set has a full and faithful right adjoint ∇ (a so–called “chaotic situation”)
he could simplify the characterization of [Men99] as follows: the exact completion of
C is a topos if and only if C has weak dependent products and a generic mono. As
partitioned assemblies over a typed pca (or arising from the more general situations
considered in [Bir99, dMRR99]) are instances of a “chaotic situation” the result of
[Men00] provides a conceptual explanation for the central role that generic monos
play—explicitly or implicitly—in our work and the above mentioned papers.

2.3 Separating models for continuity axioms

The dependencies between the continuity principles introduced in section 1.4.1 can
be charted as follows.

WC-N

��

+3 WCcp-N

��

+3 WCseq-N

��
CP(N→ N,N) +3 CP(N→ 2,N) +3 CP(N+,N)

We will demonstrate that all of these implications are strict by exhibiting separating
models. All of these models can be extend to toposes, which shows that even in
higher order arithmetic, none of the above implications can be reversed.

We start by giving a model that refutes all principles in the top row and satisfies
all principles in the bottom row.

Proposition 2.3.1.

(i) The category Asm(K1) validates Church’s thesis and (when interpreted with a
classical metalogic) Markov’s principle.

(ii) The category Asm(K1) validates CP(N→ N,N).

(iii) The category Asm(K1) refutes WCseq-N.

Proof. (i) follows from Proposition 2.1.23, as the rn-interpretation is the formalized
version of the interpretation in Asm(K1). (ii) The principle CP(N → N,N) follows
from CT and M by the KLST theorem (see Theorem 1.4.4). (iii) As a consequence
of Church’s thesis, ∀α : N+∃n : N. α = {n}. By applying WCseq-N we get ∃m,n :
N ∀α : N+. α ∈ 0m → α = {n}. We conclude ∃m : N ∀α : N+. α ∈ 0m → α = 0ω,
which is absurd.
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As Asm(K1) validates the strongest of the principles in the bottom row and re-
futes the weakest of the principles in the top row of the above diagram, the vertically
depicted implications can be seen to be strict. Moreover, as Asm(K1) is the subcate-
gory of ¬¬-separated objects of the effective topos Eff (see [Hyl82]), the implications
cannot be reversed even in higher order arithmetic.

We will now give two models that both separate the principles in the leftmost
column from those in the middle column.

Definition 2.3.2.

(i) Let ωALat be the category of ω-algebraic lattices and continuous (with respect
to the Scott-topology) maps.

(ii) Let Dom be the category of coherently complete Scott-domains, i.e. the cate-
gory of ω-algebraic, coherently complete dcpo’s with a least element and con-
tinuous (with respect to the Scott-topology) maps.

Proposition 2.3.3.

(i) The category Asm(Dom) validates AC(σ, τ) for all σ, τ in the finite type hier-
archy over N.

(ii) The category Asm(Dom) validates WCcp-N.

(iii) The category Asm(Dom) refutes CP(N→ N,N).

Proof. (i) As the interpretations of the finite types over N in Asm(Dom) are dis-
crete objects, these can be identified with the induced partial equivalence relations
on the respective domains of realizers. The domain Dι of realizers for the type N is
N⊥. For finite types σ, τ the domain Dσ→τ of realizers for σ → τ is the domain DDσ

τ .
The induced partial equivalence relation on Dσ coincides with the binary totality
relation ∼σ on Dσ. Let z ∈ Dσ→τ such that for all x ∈ Dσ, if x ∼σ x then zx ∼τ zx.
By a result of Y.L. Ershov (see [Ers75] and also [LM84]), it is the case that for all
x, y ∈ Dσ, if x ∼σ y then zx ∼τ zy. In other words, every a priori intensional
operation from σ to τ is extensional and thus AC(σ, τ) holds in for all finite types
σ, τ over N in Asm(Dom).
(ii) As AC(N → 2,N) holds in the model under discussion, it suffices to show
CP(N→ 2,N). The interpretation of the finite type hierarchy in Asm(Dom) yields
the Kleene-Kreisel hierarchy of countable functionals. It is well known that in the
hierarchy of countable functionals there exists a functional Φ : ((N→ 2)→ N)→ N)
that has the property that for all F : (N→ 2)→ N and all α, β : N→ 2,

if α(Φ(F )) = β(Φ(F )) then F (α) = F (β),

in other words, Φ(F ) is a uniform modulus of continuity for F . Therefore, a fortiori
CP(N→ 2,N) holds.
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(iii) The principles CP(N → N,N) and AC((N → N) → N,N) entail the existence of
a “modulus of continuity at const0” functional Ψ : ((N → N) → N) → N), which is
absurd by [TvD88b, Corollary 6.11].

The category Dom is well-pointed and has Tω (and N→ N⊥) as universal objects
as shown in [Plo78]. Therefore, the category Asm(Dom) is the subcategory of ¬¬-
separated objects of the topos RC(Dom) = RC(Tω), which demonstrates that the
implications cannot be reversed in higher order arithmetic, either. Note also that
the use of typed realizability allowed for an easier and more transparent proof, here,
compared to working with the (albeit equivalent) category Asm(Tω).

Proposition 2.3.4.

(i) The category Asm(ωALat) validates AC(σ, τ) for all σ, τ in the finite type
hierarchy over N.

(ii) The category Asm(ωALat) validates WCcp-N.

(iii) The category Asm(ωALat) refutes CP(N→ N,N).

Proof. (i) See [TvD88b, 9.4.10–9.4.13].
(ii) The interpretation of the finite type hierarchy in Asm(ωALat) yields the Kleene-
Kreisel hierarchy of countable functionals. The rest of the argument follows the proof
of Proposition 2.3.3 (ii).
(iii) follows by the same argument as the proof of 2.3.3 (iii).

The category ωALat is well-pointed and has P(ω) as a universal object. Therefore,
the category Asm(ωALat) is the subcategory of ¬¬-separated objects of the topos
RC(ωALat) = RC(P(ω)), which demonstrates that the implications cannot be
reversed in higher order arithmetic, either.

Remark 2.3.5. The subcategory D(ωALat) of discrete objects of the category
Asm(ωALat) is equivalent to Scott’s category Equ of countably based equilogical
spaces. As the interpretation of HAω takes place in this subcategory, Proposition
2.3.4 holds for the category of equilogical spaces, as well.

We will now give two models that both separate the principles in the middle column
from those in the rightmost column. For this purpose, we will make use of a form of
extensional realizability.

Proposition 2.3.6.

(i) The category Asm(PER0(K1)) validates AC(σ, τ) for all σ, τ in the finite type
hierarchy over N.

(ii) The category Asm(PER0(K1)) validates WCseq-N.
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(iii) The category Asm(PER0(K1)) refutes CP(N→ 2,N).

Proof. (i) By the very definition of extensional realizability, the intensional opera-
tions from σ to τ coincide with the extensional operations and thus AC(σ, τ) holds
for all finite types σ, τ over N in Asm(PER0(K1)).
(ii) As AC(N+,N) holds in the model under discussion, it suffices to show CP(N+,N).
As CT is not valid in extensional realizability, we have to argue “externally”. By
the KLS theorem of recursion theory (see [Rog67]), there is an algorithm computing
from every realizer of an effective operation F from N+ to N a modulus of continuity
n at const0, i.e. an n ∈ N such that for all α ∈ 0n, Fα = F const0. The set const0 is
complemented in N+ by the finite set C = {0k10ω | k < n}. Therefore, the smallest
modulus of continuity of F at const0 can be computed by evaluating F on all ele-
ments of C. Now, the smallest modulus of continuity functional is extensional and
therefore a realizer for CP(N+,N) in extensional realizability.
(iii) By a theorem of Kleene, there exists a primitive recursive tree TK ⊆ 2∗ (the
Kleene tree) which is well-founded with respect to recursive branches (in the sense
that every recursive 01-valued function eventually leaves the tree), but contains ar-
bitrarily long finite sequences (see e.g. [TvD88b, 4.7.6]). This result can be used to
establish the fact that N→ 2 and N→ N are homeomorphic (w.r.t. the product topol-
ogy) in extensional realizability. Therefore, CP(N → 2,N) entails CP(N → N,N).
But CP(N → N,N) is refuted by AC((N → N) → N,N), as shown in the proof of
Proposition 2.3.3 (iii).

Although RC(PER0(K1)) is not a topos by Theorem 2.2.20, the category
Asm(PER0(K1)) is the subcategory of ¬¬-separated objects of the extensional re-
alizability topos introduced independently in [Gra81] and [Pit81], see also [Oos97a].
Therefore, again, the implications can not be reversed in higher order arithmetic,
either.

The idea of searching for a model with the properties described in Proposition 2.3.6
was stimulated by reading an early version of [BS03] and discussions with the authors.
Conversely, our Proposition 2.3.6 found a first application in [BS03, Example 4.12],
which states the following.

Proposition 2.3.7. In the extensional realizability topos, the statement

all functions from R to R are sequentially continuous

holds, whereas the statement

all functions from R to R are ε-δ-continuous

does not hold.

As all models mentioned in this section except for Asm(K1) and Eff separate con-
tinuity principles which are equivalent relative to Ishihara’s boundedness principle,
all of these models falsify the latter.
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Corollary 2.3.8. The boundedness principle BD-N does not hold in the categories
Asm(Dom), Asm(ωALat), Asm(PER0(P(ω))) and Equ. Moreover, BD-N does
not hold in the toposes RC(Dom), RC(ωALat) and the extensional realizability
topos.

Proof. BD-N and CP(N+,N) entail CP(N→ N,N).

The only previously known countermodel of BD-N in the literature was Beeson’s fp-
realizability, a notion of realizability combined with formalized provability introduced
in [Bee75]. Is is our hope that the further and above all simpler countermodels
exhibited here can be put to good use as a test bed for constructive mathematics in
the following sense: Ishihara has proved that a number of mathematical statements
are equivalent to BD-N, and thus not provable in pure constructive mathematics. If
the exact status of some new statement A with respect to BD-N is not yet settled,
that is, neither has a purely constructive proof of A, nor a proof of BD-N from
A been found, then the interpretation in one of the models mentioned here would
constitute an alternative handle for the purpose of refuting the provability of A in
pure constructive mathematics.
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3 Computable Analysis

Computable Analysis is a branch of classical mathematics in which one studies the
computability and complexity aspects of analytic theorems. One therefore has to
extend classical recursion theory to structures with continuum cardinality. The be-
ginnings of computable analysis can be traced back as far as [Tur36]. Although there
exist several non-equivalent approaches to computable analysis, in this thesis we will
concentrate on the Type–2 theory of effectivity (TTE) approach initiated by Kreitz
and Weihrauch (see [Wei00] for a complete presentation).

3.1 Introduction

We shall briefly recall some basic notions and facts of computable analysis.

3.1.1 Numberings

Following Church’s thesis1, we call a function f : Nn /N computable if f is a
partial recursive function. In order to extend the notion of computability to other
countable sets, we introduce numberings of these sets. A numbering of a set X is
a partial surjection ν : N / /X . Given numbered sets (X1, ν1), . . . , (Xn, νn) and
(Y, µ), a partial function f : X1 × · · · ×Xn

/Y is computable if and only if there
exists a partial recursive function r : Nn /N such that for all ~x = (x1, . . . , xn) ∈
Nn, f(ν1(x1), . . . , νn(xn))) � µ(r(~x)). This situation is depicted in the following
diagram.

Nn

�ν1×···×νn
��

r / N
µ

��
X1 × · · · ×Xn f

/ Y

For instance, let {·} : N // //PR be some standard numbering of the set of partial
recursive functions and let N be numbered by the identical function. Then the
functions

eval : PR× N /N (ϕ, x) 7→ ϕ(x)

and
abs : PR× N //PR (ϕ, x) 7→ λy. ϕ(p(x, y))

1not to be confused with the principle CT, introduced in Subsection 1.4.1
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3 Computable Analysis

(where p is some primitive recursive pairing function) are computable, that is, there
exist partial recursive functions r, s : N2 //N such that

N2

�{·}×id
����

r / N

PR× N
eval

/ N

N2

�{·}×id
����

s / N
{·}

����
PR× N

abs
// PR

Moreover, it is an elementary recursion theoretic fact that, if ϕ, ϕ′ are numberings
of PR such that the functions eval and abs are computable with respect to both ϕ
and ϕ′, then ϕ and ϕ′ are equivalent in the sense that there exist partial recursive
functions r, s : N //N such that ϕ(x) � ϕ′(r(x)) and ϕ′(x) � ϕ(s(x)) for all x ∈ N.

N r /

ϕ ! !CC
CC

CC
CC

�
N

ϕ′}}{{
{{

{{
{{

PR

N s /

ϕ′ ! !CC
CC

CC
CC

�
N

ϕ}}{{
{{

{{
{{

PR

The same holds mutatis mutandis for numberings of the set of total recursive func-
tions. A numbering meeting these requirement is called an admissible Gdel number-
ing.

3.1.2 Representations

In order to study computability aspects in analysis, numberings can not be employed,
as most interesting structures in analysis are of continuum cardinality. We therefore
use the elements of Baire space B = N → N in order to represent elements of
spaces with continuum cardinality. As is to be expected, topology will play a greater
role in the theory of representations than it does in the theory of numberings. We
standardly equip Baire space with the product topology, also referred to as initial
segment topology or simply Baire topology.

Definition 3.1.1 (Baire space). Baire space (B) is the set of all functions from
N to N, equipped with the initial segment topology, i.e. the subsets of the form
{aα | α ∈ B} for a ∈ N∗ form a basis for the topology.

Even though Baire space is uncountable, there is a self-evident notion of com-
putability for partial functions r : B /B . We call a partial function r : B /B
(continuously) realizable if it is realized by some γ ∈ B, i.e. f(α) ' γ |α for all
α ∈ B. The realizable functions are exactly the continuous functions with a Gδ do-
main of definition. Every partial continuous function r : B /B has a realizable
extension. We call a function r : B /B computably realizable if it is realized by
some computable function α ∈ B.
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3.1 Introduction

Now that the notions are settled for Baire space, we can extend them to represented
spaces.

Definition 3.1.2.

(i) A representation of a set X is a partial surjection ρ : B / /X .

(ii) An element x ∈ X is called computable with respect to the representation ρ if
there is a computable function α ∈ B such that ρ(α) = x.

(iii) Let (X, ρ) and (X ′, ρ′) represented sets. Then a partial function f : X /X ′

is called (continuously) realizable if there is a a realizable function r : B /B
such that

B
�ρ

��

r / B
ρ′

��
X

f
/ X ′

(iv) In the above situation, the function is called computably realizable if there is a
computable funtion r : B /B such that the above diagram commutes.

(v) LetR ⊆ X×X ′. Then the relationR is called realizable / computably realizable
if there is a realizable / computably realizable function r : B /B such that
R(ρα, ρ′(rα)) for all α ∈ dom(ρ).

(vi) Two representations ρ, ρ′ of the same set X are called topologically equiva-
lent / computably equivalent if and only if idX : (X, ρ) //(X, ρ′) and idX :
(X, ρ′) //(X, ρ) are both realizable / computably realizable.

3.1.3 Admissibility

The notion of representation is of course rather general. A goodness to fit criterium
that in fact determines the representation of a topological space up to topological
equivalence is admissibility. The notion of admissibility was introduced by Weihrauch
for countably based T0-spaces and extended to arbitrary spaces by Schrder in [Sch02].

Definition 3.1.3. Let X be a topological space. A representation ρ : B / /X is
called admissible if

1. The map ρ : B / /X is partial continuous.

2. For every partial continuous ρ′ : B / /X , there is a partial continuous map
r : B /B such that ρ′(α) � ρ(r(α)) for all α ∈ B.

B

ρ′ � �@
@@

@@
@@

r /

�
B

ρ��~~
~~

~~
~

X
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3 Computable Analysis

A signed digit representation of the real numbers is an example for an admissible
representation. It is well known that with respect to the unsigned decimal digit
representation, multiplication by three is not realizable. By the following theorem,
it follows that the unsigned digit representation is an example of a non-admissible
representation.

Theorem 3.1.4. Let (X, ρX) and (Y, ρY ) be admissibly represented topological spaces.
Then a function f : X /Y is continuously realizable if and only if it is sequentially
continuous.

Proof. See [Sch02].

A subset O of a topological space X is sequentially open if, whenever a sequence
(xn) of elements of X converges to some x ∈ O, then all but finitely many elements
of the sequence (xn) are in O. The sequentially open sets of a topological space
form a topology, which is (possibly) finer than the original topology. By seq(X) we
denote the sequentialization of X, that is the set X, equipped with the topology
of sequentially open sets. A topological space is sequential if it coincides with its
sequentialization, i.e., if every sequentially open set is open.

Theorem 3.1.5. Given a partial surjection ρ : B / /X then

(i) The map ρ : B / /seq(X) is continuous if and only if ρ : B / /X is.

(ii) The map ρ : B / /seq(X) is an admissible representation if and only if
ρ : B / /X is.

(iii) If ρ is admissible, then the topology seq(X) coincides with the final topology
induced by ρ.

Proof. See [Sch02].

Remark 3.1.6. By the above theorem, the property of ρ being an admissible repre-
sentation is independent of the topology on X in the following sense: if ρ : B / /X
is admissible, then ρ is admissible with respect to all topologies on X such that ρ
is continuous, that is, with respect to all topologies that are coarser than the final
topology induced by ρ. Thus, the notion of admissibility makes sense even for repre-
sented sets as opposed to represented spaces. Note also that, up to sequentialization,
the original topology on X can be recovered from the final topology induced by ρ.

The class of admissible representations is closed under various constructions. We
cite the two closure properties needed in this thesis.

Theorem 3.1.7.

(i) Let (X, ρ) be an admissible representation. Then for every S ⊆ X the restric-
tion (S, ρ|S) of ρ to S is an admissible representation.
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3.2 Category theoretic approach to representations

(ii) Let (X, ρX), (Y, ρY ) be a admissible representations Then the representation
[ρX , ρY ] of the cartesian product of X and Y (defined in [Wei00, Definition
3.3.3]) is admissible.

(iii) Let (X, ρX), (Y, ρY ) be representations and assume that (Y, ρY ) is admissible.
Then the representation [ρX → ρY ]X of the space of continuously realizable
maps (defined in [Wei00, Definition 3.3.13]) is admissible. The final topology
induced by [ρX → ρY ]X is the sequential topology whose convergence relation is
defined as

(fn) −→ f 
 for all (xn) ⊆ X if (xn) −→X x then (fn(xn)) −→Y f(x)

Proof. (i) and (ii) are trivial. (iii) see [Sch03, Proposition 4.2.5].

3.2 Category theoretic approach to

representations

In this section we will make use of the fact that the category of representations and
continuously realizable maps has a rich logical structure. The standard constructions
known from computable analysis can be rediscovered via their universal properties.
An abstract proof of Schrder’s theorem that every T0–quotient of a subset of Baire
space has an admissible representation can be conducted. Finally, a logical charac-
terization of admissible representations will be given.

3.2.1 The category of representations

Let us denote by Rep the category of represented sets and continuously realizable
maps. By Definition 3.1.2, a representation of a set X is defined to be a partial
surjection ρX : B / /X . Let us define the relation X⊆ B × X by α X x 

ρX(α) = x. Then (X,X) is a discrete set over the pca K2. Conversely, if (X,X) is
a discrete set, then the inverse relation ρX of X is a partial surjection ρX : B / /X .

Now, let (X, ρX) and (Y, ρY ) be represented spaces, and let (X,X) and (Y,Y )
be the corresponding discrete sets. Then a function f : X //Y is continuously
realizable with respect to ρX and ρY if and only if it is a morphism from (X,X) to
(Y,Y ) in D(K2). That is, the categories Rep and D(K2) are equivalent. Categories
of discrete sets are well known to have very pleasent logical properties. See [Bau00]
for an extensive treatment. As we try to derive results for computable analysis, which
is a classical discipline, we use classical set theory with choice as our metalogic. The
interpretation in Rep ' D(K2) validates the generalized continuity principle and
Markov’s principle by Proposition 2.1.28 and it validates bar induction by Proposition
2.1.21. That is, Rep is in particular a model of Intuitionism as described in Section
1.2.2.

73
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The standard representations of N and R are the category theoretic natural number
object and real number object, respectively.2 Standard representations of the product
of two represented spaces and the space of continuously realizable maps between
two represented spaces have been defined in [Wei00, Definition 3.3.3] and [Wei00,
Definition 3.3.13], respectively. These particular choices of representations are well
justified from a category theoretic point of view.

Proposition 3.2.1. Let (X, ρX) and (Y, ρY ) be represented sets. Then the stan-
dard representation [ρX , ρY ] of the set-theoretic product X × Y is the category theo-
retic product (Y, ρY ) × (X, ρX) and the standard representation [ρX → ρY ]X of the
space of continuously realizable maps from X to Y is the category theoretic exponent
(Y, ρY )(X,ρX).

Proof. The universal property of the representation [ρX , ρY ] follows from [Wei00,
Lemma 3.3.4]. The universal property of the representation [ρX → ρY ]X follows
from [Wei00, Lemma 3.3.14 and Theorem 3.3.15].

Remark 3.2.2. In the light of the preceeding proposition, Theorem 3.1.7 (iii) states
that the admissible representations form an exponential ideal in the category of
representations.

In order to familiarize ourselves with the internal logic of the category of represen-
tations, we shall have a look at what subobjects look like concretely. A subobject
of a represented space (X, ρ) is a represented space (S, δ) and a continuously realiz-
able injection i : S // //X . Without loss of generality, we can (and will henceforth)
assume that S is a subset of X and i is the subset inclusion of S into X.

B ∃ /

δ
��
�

B
ρ

��
S

� �

i
// X

A subobject S of an object X is called stable if the sentence

∀x ∈ X. ¬¬(x ∈ S)→ (x ∈ S)

holds in the internal logic and dense if the sentence

∀x ∈ X. ¬¬(x ∈ S)

2By real number object, we refer to the Cauchy construction of the real numbers as opposed to
the Dedekind construction, as the category D(K2) provides no means to interpret higher order
arithmetic. Nevertheless, the Dedekind construction of the real numbers, interpreted in the
topos RC(K2), which contains the category D(K2) as the subcategory of discrete objects, will
yield an object isomorphic to the Cauchy construction, as the axiom of countable choice holds
in RC(K2).
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3.2 Category theoretic approach to representations

holds in the internal logic of the category. In the case of the category of represented
sets, the stable subobjects of (X, ρ) are up to isomorphism exactly those subobjects
(S, δ), S ⊆ X, where δ is the restriction ρ|S of ρ to S. The dense subobjects of (X, ρ)
are exactly those subobjects (S, δ) where S = X.

For instance, the interpretation of

{x ∈ R | x < 0 ∨ x ≥ 0} ⊆ R

is a dense subset of R, as ∀x ∈ R.¬¬(x < 0 ∨ x ≥ 0) holds in the category of
representations (as it is provable constructively). On the other hand, the subobject
is not stable, as ∀x ∈ R. x < 0 ∨ x ≥ 0 does not hold. On the other hand, R>0 and
R≥0 are stable subobjects of R (the proof of the stability of R>0 requires classical
metalogic), but obviously not dense subobjects.

Remark 3.2.3. In the light of the preceeding comments, Theorem 3.1.7 (i) states
that the class of admissible representations is closed under stable subobjects in the
category of representations.

We will now define an admissible representation of a non T1-space that plays an
important role in the categorical approach to the theory of representations.

Definition 3.2.4. The Sierpinski space Σ is the set {⊥,>}, equipped with the
topology {∅, {>}, {⊥,>}}.

The Sierpinski space has the important property that for every topological space
X, the constinuous functions f : X //Σ correspond exactly to the open subsets of
X. An admissible representation of Σ can be defined by

ρ(α) =

{
> if ∃x : N. α(x) > 0
⊥ if ∀x : N. α(x) = 0

The standard representation of Σ is definable in the internal logic of the category of
representations as the quotient set

Σ = 2N/ ∼

where 2 = {0, 1} and α ∼ β is defined as (∀x : N. αx = 0)↔ (∀x : N. βx = 0). The
quotient exists, as the relation ∼ is ¬¬-stable. The object Σ is a dominance in the
sense of Rosolini, see [Bau00, Section 5.3].

3.2.2 Logical aspects of admissibility

The following theorem by Schröder characterizes those topological spaces that have
an admissible representation.
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Theorem 3.2.5 (Schröder). A sequential space has an admissible representation
if and only if it is T0 and is the topological quotient of a subset of Baire space.

Proof. See [Sch03, Theorem 3.2.4]. Actually, the cited theorem states that a se-
quential space has an admissible representation if and only if it is T0 and is the
topological quotient of a countably based T0–space. As every countably based T0–
space is a quotient of a subspace of Baire space, both statements are easily seen to
be equivalent.

By Remark 3.1.6, the admissibility of a representation does not depend on the
topology on X, but is a property of the represented set (X, ρX), alone. We will
reprove the harder direction of Schröder’s theorem, using the internal logic of the
category of represented sets and concepts of synthetic domain theory (cf. [Hyl91]).
As a corollary, we obtain a logical characterization of the admissibile representations.

Theorem 3.2.6. Every T0–quotient of a subspace of Baire space has an admissible
representation.

Proof. A quotient of a subset of Baire space is nothing but a represented set, equipped
with its final topology. For a represented set X, regardless of whether the repre-
sentation is admissible, by the universal property of the final topology, the set of
morphisms from X to Σ corresponds to the set of open sets of X with respect to
the final topology induced by ρX . Thus, the object ΣX is a representation of the set
O(X) of open subsets of X which is admissible by Remark 3.2.2to be defined . The
convergence relation on O(X) can be described as follows: a sequence (On) of open
subsets of X converges to O ∈ O(X) if for every sequence (xn) in X, whenever (xn)
converges to x (with respect to the final topology on X induced by ρX) and x ∈ O,
then there exists n0 ∈ N such that xn ∈ On for all n ≥ n0.

Let ηX : X //ΣΣX
be the transpose of the evaluation function εX : ΣX ×X //Σ .

For every x ∈ X, ηX(x)(O) = > if and only if x ∈ O. Therefore, the map ηX is a
mono if and only if the final topology on X is T0.

Given a represented set X, we can factor the map ηX as follows,

X

e
��?

??
??

??
?

ηX // ΣΣX

X
==

ι

=={{{{{{{{

where X = {ϕ ∈ ΣΣX | ¬¬∃x : X. ηXx = ϕ}. As Σ is an admissible representations
and as admissible representations form an eponential ideal by Remark 3.2.2, ΣΣX

is admissible. Being a stable subobject of an admissible representation, X is an
admissible representation, too, by Remark 3.2.3. The morphism e : X //X is
epic, as its image is dense. Moreover, it is monic if ηX is. Therefore, if X is T0, then
the underlying map of the morphism e is a bijection.
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3.2 Category theoretic approach to representations

It remains to be shown that e is also a homeomorphism from X to X with respect
to the final topologies induced by ρX and ρX , respectively. This is tantamount to the
underlying map of Σe : ΣX //ΣX being a bijection. In fact, we can show that Σe is

always an isomorphism. A morphism f : A //B such that Σf is an isomorphism is
called Σ-equable. We will demonstrate the Σ–equability of Σe by showing separately
that Σe is monic and split epic.

As to the fact that Σe is monic, we prove in the internal logic of Rep that Σe is
one–one. Let f, f ′ ∈ ΣX such that f ◦ e = f ′ ◦ e. We have to show that f = f ′. Let
z ∈ X. Then

(∃x : X.e(x) = z)→ f(z) = f ′(z)

As equality on Σ is stable, it is also true that

(¬¬∃x : X.e(x) = z)→ f(z) = f ′(z)

But the above hypothesis is true by definition for all elements of X and so in partic-
ular for z.

The fact that Σe is split epic follows by pure category theory. The contravariant
functor Σ( ) is self–adjoint on the right. The triangular equation applied to this
adjunction yields

ΣηX ◦ ηΣX = idΣX

As ηX = ι ◦ e, by functoriality of Σ( ) it is the case that Σe ◦Σι = ΣηX and therefore
By the triangular equation of this adjunction

Σe ◦ Σι ◦ ηΣX = idΣX

which finishes the proof.

The real advantage of the purely logical description of the admissible representa-
tion corresponding to some arbitrary representation is that we can now express the
admissibility of a representation in terms of the internal language of Rep.

Theorem 3.2.7. An object X in Rep is an admissible representation if and only if

∀ϕ : ΣΣX

. (¬¬∃x : X. ηXx = ϕ)→ (∃!x : X. ηXx = ϕ)

is satisfied in the internal logic of Rep.

Proof. The formula expresses that the morphism e : X //X is an iso. This is both
sufficient and (because of the uniqueness of admissible representations of a topological
space) necessary.
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We will now describe the object ΣX more concretely for the case that X is a
complete separable metric space. Mind that in the presence of the continuity principle
WC-N, any two metrics rendering X a complete separable metric space can be shown
to be topologically equivalent. This means that with respect to the internal logic
of Rep, being a csm is a property of the set X alone, and not a property of some
additional structure on X. We already know that the morphisms from X to Σ
correspond to the open subsets of X with respect to the final topology induced by
ρX . In the internal logic of the category of representations, we can prove that if X
is a csm, then the elements of ΣX can be identified with those subsets of X that are
countable unions of open balls.

Proposition 3.2.8. Let (X, d) be a csm with a dense sequence (qi) and let S ⊆ X
be a subset of X. Consider the following two statements about the subset S.

(1) There exists α : N //N with

∀x : X. x ∈ S ←→ ∃n : N. αn > 0 ∧ x ∈ B(qp0(αn−1), 2
−p1(αn−1)).

(2) There exists χ : X //Σ such that

∀x : X. x ∈ S ←→ χ(x) = >.

The implication (1) ⇒ (2) holds constructively. Moreover, χ is uniquely determined
by S. As to the reverse direction, under the additional assumption of CONT, the
implication (2)⇒ (1) holds constructively.

Proof. The membership of some x ∈ X in the union of the balls B(qp0(αn), 2
−p1(αn))

can be expressed as a Σ0
1–statement, i.e., given x and α, one can construct a sequence

β auch that x ∈ S if and only if there is some n ∈ N such that β(n) > 0. This is
tedious, but straightforward. As to the converse direction, for the space (X, d) there
exists a representation ρ with the properties described in Proposition 1.4.1. By
CONT, we can find a neighborhood function for χ ◦ ρ. From such a neighborhood
function, one can construct an appropriate enumeration of open balls with the help
of [TvD88b, 7.2.4 (v)].

As a first application of the logical characterization of admissible representations
we show constructively that wheneverX is a csm, then it satisfies the characterization
formula for admissible representations.

Theorem 3.2.9. The statement

(X, d) is a csm → ∀ϕ : ΣΣX

. (¬¬∃x : X. ηXx = ϕ)→ (∃!x : X. ηXx = ϕ)

is constructively provable under the assumption of Markov’s principle.

78



3.2 Category theoretic approach to representations

Proof. For the sake of brevity, we will write η for ηX . Let ϕ ∈ ΣΣX
and assume ¬¬∃x :

X. ηx = ϕ. Furthermore, let (qn)n∈N be a dense sequence in X. By Proposition
3.2.8, every open ball B(c, r) in X induces an element of ΣX , to which we can apply
ϕ ∈ ΣΣX

. We will construct a sequence (xk)k∈N such that ϕ(B(xk, 2
−k)) = > and

d(xk, xk+1) < 2−k for all k ∈ N.

We define the sequence (q
(0)
n )n∈N by setting q

(0)
n = qn for all n ∈ N. The family

(B(q
(0)
n , 20))n∈N covers X. Hypothetically, from the assumption ∃x : X. ηx = ϕ we

can conclude

∃n : N. ϕ(B(q(0)
n , 20)) = >,

as (ηx)(B(c, r)) = > ↔ x ∈ B(c, r). Therefore, our assumption ¬¬∃x : X. ηx = ϕ
entails

¬¬∃n : N. ϕ(B(q(0)
n , 20)) = >,

which, however, by Markov’s principle yields

∃n : N. ϕ(B(q(0)
n , 20)) = >.

Set x0 = q
(0)
n for the n found above.

Assume now that xk ∈ X has been found such that ϕ(B(xk, 2
−k)) = >. In order

to find xk+1, first assume hypothetically that ∃x : X. ηx = ϕ. For such x one can
show (ηx)(B(xk, 2

−k)) = ϕ(B(xk, 2
−k)) = >, which is equivalent to x ∈ B(xk, 2

−k).
In particular, we can conclude ∃x : X. x ∈ B(x0, 2

−k) ∧ ηx = ϕ from the temporary
hypothesis. Thus, from the main assumption of this proof we can conclude

¬¬∃x : X. x ∈ B(xk, 2
−k) ∧ ηx = ϕ

Let (q
(k+1)
n )n∈N be some enumeration of all elements of the sequence (qn)n∈N that

are in B(xk, 2
−k). The family (B(q

(k+1)
n , 2−(k+1)))n∈N covers B(xk, 2

−k). By the same
argument as before, we can conclude

∃n : N. ϕ(B(q(k+1)
n , 2−(k+1))) = >.

Set xk+1 = q
(k)
n for the n found above.

By dependent choice, we obtain a sequence (xk) such that ϕ(B(xk, 2
−k)) = >

and d(xk, xk+1) < 2−k for all k ∈ N. Set x̂ = limk→∞ xk. We claim that ηx̂ = ϕ.
Assume ∃x : X. ηx = ϕ. For such x, as (ηx)(B(xk, 2

−k)) = ϕ(B(xk, 2
−k)) = >, we

conclude x ∈ B(xk, 2
−k), i.e. d(x, xk) < 2−k for all k ∈ N. Therefore x = x̂ and thus

ηx̂ = ηx = ϕ. As equality on ΣΣX
is stable, ηx̂ = ϕ and the unicity of x̂ follow

simultaneously from the assumption ¬¬∃x : X. ηx = ϕ.
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Remark 3.2.10. As a consequence of Theorem 3.2.7 and 3.2.9, whenever (the syn-
tactic description of) a set can be shown to be a csm with respect to the internal logic
of the category Rep, then its interpretation in Rep is an admissible representation.
In particular, this is true for every set such that it is provable in Intuitionism that
the set can be equipped with a metric rendering it a csm.

Many important spaces used in functional analysis are not metrizable but fall into
the following, more general class of spaces.

Definition 3.2.11 (Inductive Limit of CSMs). Let (X, d) be a metric space and
let (Xn)n∈N be a sequence of subsets of X such that

1. Xn ⊆ Xn+1

2. (Xn, d) is a complete separable metric space

for all n ∈ N. The inductive limit topology on X is defined as follows. A set O ⊆ X
is declared open if and only if O ∩Xn is open in (Xn, d) for all n ∈ N.

Note that in the above definition we assume that all subsets Xn are csm’s with
respect to the restriction of one and the same metric d on X. We will meet examples
of inductive limits of csm’s in Section 3.3.3. In the following proposition, we describe
the object ΣX if X is an inductive limit of csm’s.

Proposition 3.2.12. Let (X, d) be a metric space and let (Xn)n∈N be an increasing

sequence of subsets of X such that (q
(n)
i )i∈N is a dense sequence in (Xn, d) and (Xn, d)

is complete for all n ∈ N. Let S ⊆ X be a subset of X. Consider the following two
statements about the subset S.

(1) There exists an α : N× N //N with

∀n : N ∀x : Xn. x ∈ S ∩Xn

←→ ∃k : N. α(n, k) > 0 ∧ x ∈ B(q
(n)
p0(α(n,k)−1), 2

−p1(α(n,k)−1)).

(2) There exists a χ : X //Σ such that

∀x : X. x ∈ S ←→ χ(x) = >.

The implication (1) ⇒ (2) holds constructively. Moreover, χ is uniquely determined
by S. As to the reverse direction, under the additional assumption of CONT, the
implication (2)⇒ (1) holds constructively.

Proof. From (1) we can conclude by Proposition 3.2.8 that there is a family of maps
χn : Xn

//Σ characterizing the sets S ∩ Xn. This family of maps gives rise to
a unique χ : X //Σ such that each χn is the restrictions of χ to Xn. For the
converse direction, simply apply Proposition 3.2.8 to the family of restrictions of χ
to all Xn.
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It would be desirable to prove an extension of Theorem 3.2.9 to inductive limits
of csm’s. The proof is invariably harder in this case, as it would have to necessarily
involve to show the convergence of a net or a filter (as opposed to the convergence
of a sequence). For the time being, we therefore have to content ourselves with the
following theorem.

Theorem 3.2.13. Let X be an object of Rep. If (X, d) is an inductive limit of
csm’s (Xn, d) with respect to the internal logic of Rep, then X is admissible.

Proof. The formula ∀x : X ∃n : N. x ∈ Xn holds with respect to the internal logic of
Rep. The interpretation in Rep of the existential quantifier corresponds exactly to
the definition of the representation δ in line 3 of [Sch02, Theorem 19] if we let δn be
the interpretation of Xn.

3.3 Categorical approach to computable analysis

3.3.1 Motivation

In the previous two sections we have talked mainly about continuous realizability of
functions. In computable analysis, one examines which functions and operations in
classical analysis are computable with respect to the standard representations on the
spaces involved. The standard representations are defined in such a way that the
canonical operations on these spaces are computable.

The standard representation ρR on the space of real numbers equipped with the
euclidean topology is defined as in example 1.2.2. Its domain of definition is (defined
by) a spread. The standard representation ρC on the complex numbers is induced by
the product representation [ρR, ρR] on R2.

With respect to these representations, the computable elements of R are exactly the
computable real numbers as defined by Turing. These form a real closed field, con-
taining amongst others all algebraic numbers, π and e. As to computable functions
from R to R (or C to C) with respect to the standard representations, polynomials
with computable coefficients are computable functions, so is the exponential function
and hence so are the trigonometric functions. For n ∈ N, n > 0, define R ⊆ Cn × C
by

R(a0, . . . , an−1, a) 
 a0a
0 + a1a

1 + · · ·+ an−1a
n−1 + an = 0

The relation R is computably realizable, that is, there is a computable realizer which
computes a realizer for a zero of the polynomial from realizers of its coefficients.
Different realizers for the same coefficients will possibly result in a realizer for a
different zero of the polynomial.

We would like to achieve this type of result in an abstract way, by interpreting
constructive mathematics in categorical realizability models. Moreover, we would
like to systematically obtain representations of spaces with desirable properties by
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interpreting an appropriate constructive description of the underlying set of the space
in a suitable realizability category. The connection between constructive analysis and
computable analysis has already been pointed out in [Tro92].

3.3.2 Models

The categories we will use are variants of the category of assemblies over the second
Kleene algebra K2.

Definition 3.3.1.

(i) An object of the category Asm(K2) is a set X together with a relation X⊆
B×X such that for all x ∈ X there is an α ∈ B such that α X x. A morphism
from (X,X) to (Y,Y ) is a function f : X //Y such that there exists γ ∈ B
such that if α X x then γ|α X f(x).

(ii) The objects of the category Asm(K2, K
eff
2 ) are those of Asm(K2). A morphism

from (X,X) to (Y,Y ) is a function f : X //Y such that there exists a
computable γ ∈ B such that if α X x then γ|α X f(x).

(iii) An object of the category Asmt(K2) is a set X together with a relation X⊆
B ×X. A morphism from (X,X) to (Y,Y ) is a function f : X //Y such
that there exists γ ∈ B such that if α X x then γ|α X f(x).

(iv) The objects of the category Asmt(K2, K
eff
2 ) are those of Asmt(K2). A mor-

phism from (X,X) to (Y,Y ) is a function f : X //Y such that there exists
a computable γ ∈ B such that if α X x then γ|α X f(x).

The category Asm(K2) is the semantic version of the rf–interpretation. It is
equivalent to the category of multirepresentations (cf. [Sch03]) and continuously re-
alizable maps. Its full subcategory D(K2) is equivalent to the category of represen-
tations. The category Asm(K2, K

eff
2 ) is called the relative realizability category over

K2 and Keff
2 (cf. [Bir99]). This category is equivalent to the category of multirepre-

sentations and computably realizable maps. The inclusion functor of Asm(K2, K
eff
2 )

into Asm(K2) is logical. The category Asmt(K2) is the semantic version of the
rft–interpretation. Its subcategory Asmt(K2, K

eff
2 ) is a combination of relative and

truth–realizability. Again, the inclusion functor of Asmt(K2, K
eff
2 ) into Asmt(K2) is

logical.
As computable analysis is a branch of classical mathematics, we must make sure

that the sets and functions we reason about correspond to actual sets and functions
in the world of classical mathematics. While the internal logics of Asm(K2) and
Asm(K2, K

eff
2 ) validate principles like the continuity principle, which are incompati-

ble with classical mathematics, this is not the case for their truth–variants Asmt(K2)
and Asmt(K2, K

eff
2 ). As the forgetful functor U : Asmt(K2) //Set is logical, the
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3.3 Categorical approach to computable analysis

interpretation of the description of a set will result in just that set, equipped with
some realizability relation. On the other hand, the category Asm(K2) is well suited
for reasoning about the intrinsic topology and the admissibility of some object. For-
tunately, for many spaces of interest in analysis the interpretations in both categories
will coincide.

Proposition 3.3.2. For a predicate R ⊆ B × B definable in elementary analysis
(EL), assume that

1. R ∈ CC(rf)

2. EL proves that R is a partial equivalence relation.

3. EL proves ¬¬R(x, y)→ R(x, y).

Then the interpretations of the quotient set B/R in all categories of Definition 3.3.1
yield computably equivalent realizability structures.

Proof. The proposition follows from the fact that the toposes in question are the se-
mantic variants of the rf and rft interpretations and that these coincide for CC(rf)–
formulas. Condition 3 guarantees that the subquotient can be interpreted in these
categories.

Proposition 3.3.3. Assume that EL proves that (X, d) is a csm. Then the inter-
pretations of (X, d) in all categories of Definition 3.3.1 yield computably equivalent
realizability structures.

Proof. As shown implicitly in [TvD88b, Proposition 7.2.4], there is a partial equiv-
alence relation R on B which is negative such that X can be identified with B/R.
Every negative formula in particular belongs to CC(rf). Moreover, every negative
formula is stable.

The previous proposition can be generalized to inductive limits of csm’s.

Proposition 3.3.4. Assume that EL proves that (X, d) is an inductive limit of csm’s
with respect to the sequence of subsets (Xn)n∈N. Then the interpretations of (X, d) in
all categories of Definition 3.3.1 yield computably equivalent realizability structures.

Proof. For all n ∈ N, let (q
(n)
i )i∈N be a dense sequence in Xn. Similar to Section 7.2.3

of [TvD88b], there is a function α : N5 //Q such that∣∣∣d(q(n)
i , q

(n′)
i′ )− α(n, i, n′, i′, k)

∣∣∣ < 2−k

A sequence β is in the domain |R| of R, the partial equivalence relation to be defined,
if and only if

∀k > 0. α(β0, βk, β0, β(k + 1), k + 1) < 2−k+1
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Two sequences β, β′ of |R| are equivalent with respect to R if

∀k > 0. α(β0, βk, β′0, β′k, k) < 2−k+3

The partial equivalence relation R is hence negative. Moreover, B/R can be identified

with X by associating with a sequence β ∈ |R| the limit of the sequence (q
(β0)
β(i+1))i∈N

in Xβ0.

We will summarize our results in the following theorem.

Theorem 3.3.5. Assume that EL proves that (X, d) is an inductive limit of csm’s
with respect to the sequence of subsets (Xn)n∈N. Then

(i) The interpretations of X in all categories of Definition 3.3.1 yield computably
equivalent realizability structures. In particular, the underlying set of the in-
terpretation of X in Asm(K2) and Asm(K2, K

eff
2 ) coincides with the classical

interpretation.

(ii) The transpose of the realizability relation on the interpretation of X is an ad-
missible representation.

(iii) The final topology induced by the representation is the inductive limit topology.

Proof. (i) is the contents of Proposition 3.3.4.
(ii) As the interpretation of EL in Asm(K2) takes place in the subcategory of discrete
objects, the transpose of the realizability relation is a partial surjective function. By
Theorem 3.2.13, this function is an admissible representation.
(iii) follows from Proposition 3.2.12.

The above theorem states that in many interesting cases, in particular for all
separable Banach spaces,3 we do not have to define a representation ad hoc, but the
realizability interpretation systematically provides us with a good representation. As
all separable Banach spaces are csm’s, in the next section we shall have a closer look
at two examples of inductive limits of csm’s, which are not metrizable.

3.3.3 Examples of inductive limits of csm’s

Dual spaces

By the dual of a normed space we mean the set of all continuous linear functionals.
In constructive analysis it cannot be proved that every such functional has a norm,
as this would require bounded completeness of the real numbers, which is not con-
structively true. We can, however, prove that the dual of a separable normed space
is an inductive limit of csm’s. We take the following definition from [BB85, Section
7.6].

3at least those where this property can be demonstrated constructively
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3.3 Categorical approach to computable analysis

Definition 3.3.6. LetX be a separable normed space. For a dense sequence (xn)n∈N,
we define the corresponding double norm on X∗ by

|||u||| =
∞∑

n=1

|u(xn)|
1 + ||xn||

While we cannot define a norm on the dual space X∗ of a normed space X, we can
constructively define the unit ball of X∗, i.e. the set of functionals that map the unit
ball of X into the unit ball of C. Now we make use of the fact that a constructive
version of the Banach-Alaoglu theorem holds in Bishop’s mathematics.

Theorem 3.3.7. The unit ball B∗ of the dual X∗ of a separable normed space X is
complete and totally bounded with respect to the double norm.

Proof. See [BB85, Chapter 7, Theorem (6.7)] for a constructive proof.

This means in particular that the dual of a separable normed space is the inductive
limit of a sequence of csm’s, as, if B∗ is the unit ball of X∗, then X∗ =

⋃
n∈N nB

∗.
The question arises whether the final topology induced by the admissible repre-

sentation (which coincides with the inductive limit topology induced by the sequence
of csm’s) is equal to the usual weak∗ topology on X. For infinite dimensional sep-
arable Banach spaces this is never the case, as shown in [HS96]. A consequence of
Theorem 2.5 of loc. cit. is that the weak∗ topology on X∗ is not sequential if X has
infinite dimension. However, as the application function X × X∗ −→ C is sequen-
tially continuous with respect to the weak∗ topology on X∗ by the Banach–Steinhaus
theorem (see [Rud73, Theorem 2.17]), the notions of sequential convergence of the
weak∗-topology and the inductive limit topology coincide, and hence the latter is the
sequentialization of the former.

Test functions

A similar situation arises in the case of the space of Schwartz test functions D, that
is the set of infinitely differentiable functions with compact support. It is easy to
see that this set is an inductive limit of csm’s, constructively. To this end, for every
k ∈ N one defines C∞

k ⊆ D to be the set of those test functions, whose support
is contained in the interval [−k, k]. Each C∞

k is a Frchet space and hence a csm.
Furthermore, D is the union of all spaces C∞

k . Therefore, the function realizability
interpretation yields an admissible representation of D and the final topology induced
by this representation is the inductive limit topology on D. This topology is not
identical with the usual vector space topology on D, as the latter has been shown to
be non-sequential by T. Shirai. Nevertheless, the notions of sequential convergence
of the usual topology on D and the inductive limit topology coincide, and hence the
latter is the sequentialization of the former.
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The space `p

As we have seen, if one can constructively prove that X is a Banach space or an
inductive limit of csm’s, then the realizability interpretation of the description of the
underlying set alone will be interpreted as an admissible representation of that space
with respect to the expected topology. How can this be, if one and the same set can
carry several meaningful vector space topologies? For instance, we can meaningfully
equipp the space `p with its norm, or with the weak topology. Can we define admis-
sible representations for both spaces logically? The answer is yes. The crucial point
is that in constructive mathematics, classically indistinguishable variations in the
description of a set can have a big impact. We will find an admissible representation
of the Banach space `p as the result of the interpretation of the set

{(xn)n∈N |
∞∑

n=0

|xn|p is convergent}

whereas we find an admissible representation of the space `p equipped with the weak
topology as the result of the interpretation of the set

{(xn)n∈N |
∞∑

n=0

|xn|p <∞}.

By the constructive failure of the bounded completeness of the real numbers, a limit
of the series

∑∞
n=0 |xn|p need not exist, even if an upper bound for the sequence of

partial sums is known.

3.3.4 From constructive mathematics to computable analysis

We have already seen how one can obtain useful representations for a wide class of
spaces by applying realizability semantics. In this section we will obtain computabil-
ity results from constructive existence proofs. Let (X, ρX) and (Y, ρY ) be represented
sets. The representations give rise to objects (X,X) and (Y,Y ) of Asmt(K2, K

eff
2 ).

Furthermore, every relation R ⊆ X × Y corresponds uniquely to a stable subobject
of (X,X) × (Y,Y ) which we will denote by R as well. In the above situation,
the relation R is computably realizable with respect to ρX and ρY in the sense of
definition 3.1.2 if and only if the formula ∀x : X∃y : Y.R(x, y) holds with respect to
the internal logic of Asmt(K2, K

eff
2 ).

This fact allows us to relate constructive mathematics and computable analysis.
We can perform the proof of ∀x : X ∃y : Y.R(x, y) on an abstract level and do
not have to manipulate realizers concretely. For instance, recall the example of
finding a complex zero of a non-constant polynomial mentioned in section 3.3.1. The
computable realizability of the relation follows immediately from the existence of
constructive proofs of the Fundamental Theorem of Algebra.
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On the other hand, it can be shown that a relation R is not computably realizable
by deriving a statement from the assumption ∀x : X∃y : Y.R(x, y) which is known
to be false in Asmt(K2, K

eff
2 ). Useful such statements are omniscience principles like

LPO or LLPO.
We will now look at some mini-examples from basic numerical mathematics. We

use the following notations.

M(n) : real n× n matrices

O(n) : orthogonal n× n matrices

∆(n) : upper triangular n× n matrices

One can prove in classical mathematics that every matrix A can be written as a
product A = QR of an orthogonal matrix Q and an upper triangular matrix R. Is it
the case that we can compute such matrices Q and R from A?

The set M(n) = Rn·n is interpreted as the standard representation of Rn·n. Its
subsets O(n) and ∆(n) are defined by equations and thus stable. Therefore, their
interpretations are the corestrictions of the standard representation of Rn·n to the
respective subsets, as expected. Finally, the relation R(A,Q,R)↔ A = QR is stable.

From the assumption

∀A ∈ M(n)∃Q ∈ O(n)∃R ∈ ∆(n). A = QR

we can infer
∀x ∈ Rn∃H ∈ O(n). Hx ∈ Re1

by looking only at the first column of each matrix. The latter statement entails the
principle LLPO for the following reason. Given a sequence α such that α(n) = 1 for
at most one argument n, one can define the vector

∑∞
n=0 an where an = 2−ne2 if n

is even and an = 2−ne1 if n is odd. Now H−1e1 is either off the line Re1 or off the
line Re2, which gives us the information whether α is zero for all odd or all even
arguments.

On the other hand

∀A ∈ Gl(n)∃Q ∈ O(n)∃R ∈ ∆(n). A = QR

holds because
∀x ∈ Rn \ {0}∃H ∈ O(n). Hx ∈ Re1

holds and the whole decomposition can be assembled from this transformation. Fur-
thermore, a version of the original theorem with the weaker conclusion that R is
upper triangular only up to an arbitrary ε > 0 can be proved and hence computed
by an algorithm.

A similar situation occurs for the Gauss factorization. It is not possible to compute
from an arbitrary matrix A a permutation matrix P , a lower diagonal matrix L and
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an upper diagonal matrix U such that PA = LU . However, if we either require A to
be invertible or else allow the matrices L and U to be lower and upper diagonal up
to ε, a decomposition can be computed.

Our last example will be concerned with the computability of eigenvectors. We can
prove classically that every real symmetric matrix has an eigenvector. Nevertheless,
the assumption

∀M ∈ Sym(2)∃v ∈ R2. v ∈ EV(M)

entails LLPO. This can be seen as follows. Let a, b ∈ R such that ab = 0. From

∃λ ∈ R∃v ∈ R2. ||v|| = 1,

(
1 + a b
b 1

)
v = λv

it is not too hard to infer a = 0 or b = 0. The implication ab = 0→ (a = 0 ∨ b = 0)
is an equivalent of LLPO. Accordingly, there exists no algorithm computing an eigen-
value for an arbitrary symmetric matrix, and we were able to show this on a purely
logical level.
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In order to get a semantic strong normalization proof for a type theory to work
as proposed in [HO93, OR94], it is necessary to build a model of the respective
type theory based on a right–absorptive conditionally partial combinatory algebra
(SN∗,Θ) consisting of (equivalence classes of) strongly normalizing λ–terms with a
distinguished constant ∗.

We recall the definition of a conditional pca.

Definition 4.0.8. A conditionally partial combinatory algebra (c-pca) is a set A
equipped with a partial binary application that has elements s, k ∈ A such that for
all a, b, c ∈ A

s a b c ' a c (b c), k a b = b

Whereas we believe that one could relax the condition on s without any harm by
requiring merely s a b c � a c (b c), we will refrain from doing so for now.

Remark 4.0.9. Conditional combinatory completeness holds for every c-pca A, i.e.,
for any polynomial e (a term built up from typed variables and constants) and any
variable x there is a polynomial λ∗x. e whose variables are those of e excluding x such
that (λ∗x. e) a ' e[a/x] for all a ∈ A and all valuations of the free variables. That
means, λ∗x. e is only guaranteed to exist if e[a/x] exists for some a.

Definition 4.0.10. A subset Θ ⊆ A of a c-pca is called an ideal if for all a ∈ A
and all θ ∈ Θ, the result θa exists and is an element of Θ. A c-pca equipped with a
distinguished ideal is called right–absorptive.

As we have seen in section 2.2, there is no generic family for the fibration of discrete
families in Asm(PΘ(A)) and, therefore, this fibration cannot be used for a semantic
strong normalization proof for an impredicative type theory. There are, however,
fibrations built upon the notion of right–absorptive c-pca that do have a generic
family. In [HO93] the fibration of PER–extension pairs over Set is introduced. This
fibration is a complete fibred CCC with a generic family and gives rise to a semantic
strong normalization proof for system F.

In [OR94] this fibration is extended to the fibration of PER–extension pairs over
Asm(PΘ(A)). Roughly, the difference between the fibration of PER–extension pairs
over Asm(PΘ(A)) on the one hand and the fibration of uniform families of discrete
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sets over Asm(PΘ(A)) on the other hand is that in the former there need not be
one single set of potential realizers common to all elements of a family but the set
of potential realizers may depend on the index. Therefore, the fibration of PER–
extension pairs over Asm(PΘ(A)) does have a generic family. However, as we shall
see this fibration does not have Lawvere comprehension any more (i.e. the terminal
object functor of the fibration has no right–adjoint). Accordingly, it cannot arise as
the fibration of propositions induced by a model of the Calculus of Constructions in
Asm(PΘ(A)) in contradiction to what is claimed in [OR94].

Theorem 4.0.11. The fibration of PER–extension pairs over Asm(PΘ(A)) does not
have Lawvere comprehension unless A = Θ.

Proof. Assume that C is a right–adjoint of the terminal object functor. Let X be the
family over ∇(PΘ(A)) that associates with any T ∈ PΘ(A) the PER–extension pair
〈=T , T 〉. Let U be the set of potential realizers of CX. Now, for any T ∈ PΘ(A) let
f = (ft)t∈T : 1CX → X be the morphism over constT : ∆T → ∇(PΘ(A)) defined by
ft(∗) = {t}. As C is right-adjoint to 1 the diagram can be completed as indicated.
From the realizers of f∨ and ε we obtain elements eT ∈ |T → U | and rT ∈ |U → T |
satisfying rT (eT t) = t for all t ∈ |T |. By Proposition 2.2.17 this is a contradiction.

1∆T
f

&&
1f∨ ""E

E
E

E

1CX ε
// X

CX Pε // ∇(PΘ(A))

∆T

Pf=constT

77
f∨

<<z
z

z
z

z

Instead of the modified realizability topos over a right–absorptive c-pca (A,Θ)
we propose to use a different topos. It can be defined by a tripos that has Σ =
{(A,P ) | A ⊆ P ⊆ A, A = ∅ ⇒ P = ∅, A 6= ∅ ⇒ Θ ⊆ P} as truth values.
Entailment is defined as for the tripos representing the topos Eff→. The category of
¬¬–separated objects of this topos does indeed provide a model of the Calculus of
Constructions. Moreover, it avoids the major complication caused by the fact that
in the modified realizability topos, the global sections functor is not left-adjoint to
the inclusion of ¬¬-sheaves.
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