
Locally Boolean Domains and
Universal Models for

Infinitary Sequential Languages

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation

von

Dipl.-Math. Tobias Löw

aus Offenbach am Main

Referent: Prof. Dr. Thomas Streicher
Korreferent: Dr. James David Laird
Tag der Einreichung: 23. Oktober 2006
Tag der mündlichen Prüfung: 1. Dezember 2006

Darmstadt 2007
D 17





Abstract
In the first part of this Thesis we develop the theory of locally boolean domains and
bistable maps (as introduced in [Lai05b]) and show that the category of locally boolean
domains and bistable maps is equivalent to the category of Curien-Lamarche games and
observably sequential functions (cf. [CCF94]). Further we show that the category of
locally boolean domains has inverse limits of ω-chains of embedding/projection pairs.

In the second part we consider the category of locally boolean domains and bistable
maps as model for functional programming languages: in [Lai05a] J. Laird has shown
that an infinitary sequential extension of the functional core language PCF has a fully
abstract model in the category of locally boolean domains. We introduce an extension
SPCF∞ of his language by recursive types and show that it is universal for its model in
locally boolean domains. Finally we consider an infinitary target language CPS∞ for the
CPS translation of [RS98] and show that it is universal for a model in locally boolean
domains which is constructed like Dana Scott’s D∞ where D = O = {⊥,>}.

3



Zusammenfassung
Im ersten Teil dieser Arbeit wird die Theorie lokal boolescher Bereiche und bistabiler
Abbildungen (siehe [Lai05b]) entwickelt. Es wird gezeigt, dass die Kategorie lokal boole-
scher Bereiche und bistabiler Abbildungen zur Kategorie von Curien-Lamarche Spielen
und beobachtbar sequenzieller Funktionen äquivalent ist. Weiterhin zeigen wir, dass
die Kategorie lokal boolescher Bereiche und bistabiler Abbildungen inverse Limiten von
ω-Ketten von Einbettungs-/Projektionspaaren besitzt.

Im zweiten Teil der Arbeit betrachten wir die Kategorie lokal boolescher Bereiche und
bistabiler Abbildungen als Modell für funktionale Programmiersprachen: in [Lai05a] hat
J. Laird gezeigt, dass es in der Kategorie lokal boolescher Bereiche ein voll abstraktes
Modell für eine infinitäre, sequentielle Erweiterung der funktionalen Kernsprache PCF
gibt. Wir definieren SPCF∞, eine Erweiterung von Lairds Sprache um rekursive Typen,
und zeigen, dass diese Sprache universell bezüglich ihres Modells in der Kategorie lokal
boolescher Bereiche ist. Schließlich betrachten wir für die CPS Übersetzung aus [RS98]
eine infinitäre Zielsprache CPS∞ und zeigen, dass sie universell bezüglich ihres Modells
in der Kategorie lokal boolescher Bereiche ist, welches wie Dana Scotts D∞ mit D =
O = {⊥,>} konstruiert ist.

Erklärung
Hiermit versichere ich, dass ich diese Dissertation selbständig verfasst und nur die
angegebenen Hilfsmittel verwendet habe.

Tobias Löw

4



Contents

1 Introduction 7
1.1 Sequentiality and Full Abstraction . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Locally boolean domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Locally Boolean Domains 13
2.1 Locally Boolean Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Locally Boolean Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Bistable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Locally boolean domains and Curien-Lamarche games 35
3.1 Curien-Lamarche games as locally boolean domains . . . . . . . . . . . . 35
3.2 Locally boolean domains as Curien-Lamarche games . . . . . . . . . . . . 40
3.3 Observable sequentiality vs. bistability . . . . . . . . . . . . . . . . . . . 46
3.4 Equivalence of the categories LBD and OSA . . . . . . . . . . . . . . . 50
3.5 Exponentials in the categories LBD and OSA . . . . . . . . . . . . . . . 52
3.6 Exponentials as function spaces . . . . . . . . . . . . . . . . . . . . . . . 58

4 Properties of the category LBD 63
4.1 Products, biliftings and sums . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Embedding/Projection Pairs in LBD . . . . . . . . . . . . . . . . . . . . 65
4.3 Inverse Limits of Projections in LBD . . . . . . . . . . . . . . . . . . . . 68
4.4 Countably based Locally Boolean Domains . . . . . . . . . . . . . . . . . 80

5 A universal model for the language SPCF∞ in LBD 85
5.1 Definition of SPCF∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Interpretation of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Denotational semantics of SPCF∞ . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Universality of SPCF∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 CPS∞: An infinitary CPS target language 99
6.1 The untyped language CPS∞ . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Universality of CPS∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Lack of faithfulness of the interpretation . . . . . . . . . . . . . . . . . . 103

7 Conclusion and possible extensions 105

5



Contents

Bibliography 107

Acknowledgements
The first person to thank here is my scientific advisor, Thomas Streicher, for his support
and for many helpful explanations, comments and discussions. Further, I am grateful
to Jim Laird on the one hand for refereeing this thesis and on the other hand for his
foundations of the theory of locally boolean domains and bistable maps.

This thesis was typeset using LATEX and a lot of macro packages. I would like to thank
all people involved in developing and providing all this free software.

Finally, very special thanks go to Daniela. Without her love and encouragement this
thesis would not have been possible.

6



1 Introduction

The aim of this thesis is to show that the category LBD of locally boolean domains
and bistable maps (as introduced by J. Laird in [Lai05b]) is equivalent to the category
OSA of Curien-Lamarche games and observably sequential maps (as introduced by
R. Cartwright, P.L. Curien and M. Felleisen in [CCF94]). Further we introduce the
language SPCF∞, a sequential extension of PCF by recursive types, error elements and a
catch-construct, and show that it is universal for its model in LBD. Finally we consider
an infinitary target language CPS∞ for the CPS translation (of [RS98]) and show that
CPS∞ is universal for a model in LBD which is constructed like Dana Scott’s D∞ where
D = O = {⊥,>}.

1.1 Sequentiality and Full Abstraction

The investigation of sequential functional programming languages started end of the
1960ies when D. Scott introduced the language LCF (Logic of Computable Functions) for
reasoning about computable functionals of higher type. This paper was finally published
as [Sco93] but circulated for a long time as an unpublished but most influencing technical
report. In [Plo77] G. Plotkin first gave a detailed meta-mathematical analysis of PCF
(Programming Computable Functions), the functional kernel language underlying the
logical calculus LCF.

The language PCF is simply typed λ-calculus extended by a base type of natural
numbers, some basic arithmetic operations, a conditional and fixpoint combinators for
expressing general recursion. In [Plo77] Plotkin formulated an operational semantics for
PCF as a term rewriting systems constrained by a leftmost-outermost reduction-strategy
which is sequential in the sense that each PCF term t contains a unique subterm t′ that
has to be reduced in the next step of evaluation.

Having an operational and denotational semantics for PCF there arises the question
how these two semantics should be related. Obviously, reduction preserves the denota-
tion of terms. In [Plo77] he proved computational adequacy, i.e. that a closed term t of
base type reduces to a numeral n whenever JtK = n. Thus for closed terms of base type
their denotational semantics coincides with their operational semantics. Two (closed)
terms t1 and t2 can be used interchangeably iff for all contexts C[−] of base type C[t1]
and C[t2] have the same meaning. Such terms are called observationally equivalent.
Obviously, if two terms have the same denotational semantics then they are also obser-
vationally equivalent. A model is called fully abstract iff denotational equality coincides
with observational equivalence. Already in [Sco93] D. Scott observed that his domain
model lacks full abstraction because of the parallel-or function which is continuous but

7



1 Introduction

not sequentially computable. In [Plo77] Plotkin showed that Scott’s domain model is
fully abstract for the extension of PCF with parallel-or. (If one further adds a contin-
uous existential quantifier then the denotable elements of the Scott model are precisely
the computable ones as also shown in [Plo77].)

In [Mil77] R. Milner constructed a fully abstract model as the ideal completion of
a quotient by observational equivalence of those PCF-terms which denote finite ele-
ments. Moreover, he showed that all order extensional fully abstract domain (i.e. cpo-
enriched)models of PCF are isomorphic. However, since Milner’s model is a (kind of)
term model it does not give rise to a syntax-free characterisation of sequentiality. Since
that a lot of people have tried to overcome this unsatisfying situation by suggesting
different approaches to a syntax-free semantical characterisation of PCF sequentiality.

First in [Ber78, Ber79] G. Berry introduced his stable domains as a model for PCF
which excludes the incriminated parallel-or but nevertheless contains functions which
are not sequential in the sense of Milner-Vuillemin [Mil77, Vui74] providing a satisfy-
ing characterisation of sequentiality for first order functions. In [KP93] G. Kahn and
G. Plotkin introduced so-called “concrete domains” allowing them to define a notion of
sequentiality à la Milner-Vuillemin for functions between them. A disadvantage of their
approach was that the underlying model is not cartesian closed anymore. This defect
was remedied in [BC82] by G. Berry and P.-L. Curien albeit where they introduced a
category SA of sequential data structures and sequential algorithms. But this model is
not well-pointed since sequential algorithms may be different although they are exten-
sionally equal, i.e. behave the same way for all arguments (e.g. “left” and “right” version
of addition etc.).

In a long range attack Bucciarelli and Ehrhard finally managed to characterise the
extensional collapse of SA in [BE91, Ehr96] as the category SS of strongly stable func-
tions between strongly stable domains. The category SS is still not order extensional
since it validates e.g. O× O ∼= 2⊥ and thus not fully abstract for PCF. Nevertheless, it
captures a more liberal notion of sequentiality which was studied thoroughly in [Lon02]
and also lies at the heart of our investigations in this Thesis.

In the early 1990ies F. Lamarche and P.-L. Curien came up with a reformulation of the
relevant part of SA in terms of games and strategies [Lam92, Cur94]. They restricted
concrete data structures to so-called filiform ones (every datum can be constructed
in only one way) which can be described as very simple games (with 2 player and no
winning) and reformulated sequential algorithms as strategies for these games. (We write
SA also for this slightly more restrictive category.) In [CCF94] (see also [CF92, AC98])
R. Cartwright, P.-L. Curien and M. Felleisen showed that an extension of SA with
non-recuperable error elements gives rise to a fully abstract model OSA (observably
sequential algorithms) for SPCF an extension of PCF with error elements and control
operators catch.

This was the starting point for the flourishing field of Game Semantics. Abramsky,
Malacaria and Jagadeesan in [AJM00] and Hyland and Ong [HO00] (see also Nickau
[Nic94]) came up with sophisticated games models capturing PCF definability without
being (order) extensional. It was shown by R. Loader in [Loa01] that already for finitary
PCF (booleans instead of natural numbers as basic data type) observational equivalence

8



1.2 Locally boolean domains

is not decidable. Hence PCF sequentiality cannot be characterised effectively and thus
there cannot exist a simple characterisation of the fully abstract model for finitary PCF.

Later on game semantics was extended to more complicated non-functional languages
where quotients can be obtained more easily. For languages with store observational
equality coincides with equality of strategies [AM97, AHM98]. In Laird’s Thesis [Lai98]
it was shown that PCFµ, i.e. PCF extended with continuations, has a fully abstract model
in SA (and that SA is the quotient of the model for PCFµ given by innocent, but not
necessarily well-bracketed strategies à la [HO00].

1.2 Locally boolean domains

Thus (observably) sequential algorithms have turned out as an important semantic model
capturing a notion of sequentiality more liberal than PCF definability. Moreover, this
model is wellpointed, i.e. extensional, in presence of error elements as shown in [CCF94].
Thus, there should be a presentation of OSA where functions are not given by algo-
rithms but rather as continuous functions preserving some structure. This structure was
identified by J. Laird around 2002 culminating in his notion of locally boolean domain
[Lai05b]. He started from G. Berry’s notion of bidomain [Ber78, Ber79] (domains with
an extensional and a stable order) for which he could show in [Lai03b] that they give rise
to a fully abstract model for unary PCF, i.e. PCF over base type O with basic operation
∧ : O× O→ O.

He further observed that ∧ can be eliminated by requiring that functions are also
“costable”, i.e. preserve binary suprema of elements which are bounded from below
w.r.t. a costable order. Instead of dealing with three different orders Laird showed that
it suffices to consider the extensional and the bistable order which is the intersection of
the stable and costable order. In [Lai03a] he then proved that one obtains a universal
model for the language SPCF+, i.e. SPCF extended by countable sums and products, in
the category BB of bistable biorders and monotone and bistable (i.e. preserving binary
infima and suprema of bistably bounded elements) functions.

As bistable biorders are far more general than observably sequential algorithms in
[Lai05b] (see also [Str04, Cur05] J. Laird identified a full subcategory LBD of BB
which is equivalent to OSA, namely so-called locally boolean domains where the bistable
structure is derived from an involution operation (w.r.t. the extensional order).

1.3 Overview of this thesis

In chapter 2 we give a detailed exposition of the theory of locally boolean domains. Based
on the work of J. Laird in [Lai05b] and an unpublished note [Str04] of T. Streicher we
define a locally boolean order as a partial ordered set (D,v) equipped with an involution
¬ : D → D where infima and suprema of certain bounded pairs have to exist. After
introducing a stable order ≤s and a costable order ≤c on D we define a locally boolean
domain as a complete locally boolean order where finite elements w.r.t. ≤s are also

9



1 Introduction

compact w.r.t. v and each element is the supremum of the finite primes stably below
it. We prove a lot of (sometimes fairly technical) lemmas that are useful later on. The
key observations are that a locally boolean domain is a dI-domain w.r.t. ≤s, and that
the prime elements of a locally boolean domain form a tree w.r.t. ≤s. We introduce the
notion of bistable map between locally boolean domains, i.e. Scott-continuous functions
that preserve infima of stably upper bounded and suprema of costably lower bounded
pairs.

In chapter 3 we give a quick recap of Curien-Lamarche games with error elements.
We show how to construct a locally boolean domain from a Curien-Lamarche game and
vice versa. After characterising the bistable maps between locally boolean domains as
those functions that are sequential in the sense of Milner-Vuillemin [Mil77, Vui74, KP93]
and error propagating we establish an equivalence between the category LBD and the
category OSA of Curien-Lamarche games and observably sequential maps/algorithms.
Finally we analyse the structure of exponentials in the category LBD and show that
LBD is cpo-enriched w.r.t. to the extensional order and w.r.t. to the stable order.

In chapter 4 we show that LBD is closed under basic categorical constructions like
products, biliftings and sums. Next we show that inverse limits of ω-chains of embed-
ding/projection pairs (w.r.t. ≤s) exist in LBD and are constructed as usual. Finally,
adapting a result of J. Longley in [Lon02] we show that every countably based locally
boolean domain appears as retract of U = [N→N] where N are the bilifted natural
numbers, i.e. that U is a universal object for countably based locally boolean domains.

In chapter 5 we introduce the language SPCF∞, an infinitary version of SPCF as
considered in [CCF94]. More explicitly, it is obtained from simply typed λ-calculus
by adding (countably) infinite sums and products, error elements, a control operator
catch and recursive types.1 Using evaluation contexts (in order to formalise the be-
haviour of the control operator catch) we present a call-by-name operational semantics
for SPCF∞. In the second part of this chapter we show that the category LBD gives
rise to a computationally adequate model for SPCF∞ and that SPCF∞ is universal for
this model. Recursive types in SPCF∞ are interpreted as bifree solutions of recursive
domain equations which can be constructed as bilimits of appropriate ω-chains of em-
bedding/projection pairs. Adopting techniques from [Pit96] one can show that the LBD
model of SPCF∞ is computational adequate. Next we exhibit each SPCF∞ type as an
SPCF∞ definable retract of the first order type N→N (where N is the type of bilifted
natural numbers) from which universality of SPCF∞ follows immediately since every
element of JN→NK is obviously SPCF∞ definable.

In the last chapter we construct a LBD model for a (kind of) infinitary untyped
λ-calculus CPS∞ where every element of the model can be denoted by a closed CPS∞
term. In [RS98] it has been observed that O∞, i.e. Scott’s D∞ with D = O = {⊥,>},
can be obtained as bifree solution (cf. [Pit96]) of the type equation D = [Dω→O]. Since
solutions of recursive type equations are available in LBD we may consider also the

1Notice that due to the presence of infinite sum and product types it will be sufficient to have a single
control operator catch whereas in SPCF there is associated a control operator catch with every
type σ1→ . . .→σn→N.

10



1.3 Overview of this thesis

bifree solution of the equation for D in LBD. Canonically associated with this type
equation is the language CPS∞ whose terms are given by the grammar

M ::= x | λ~x.M〈 ~M〉 | λ~x.>

where ~x ranges over infinite lists of pairwise distinct variables and ~M over infinite lists
of terms. Notice that CPS∞ is more expressive than untyped λ-calculus with an error
element > since one may apply a term to an infinite list of arguments. Consider e.g. the
term λ~x.x0〈~⊥〉 whose interpretation retracts D to O by sending > to > and everything
else to ⊥ which is not expressible in λ-calculus with a constant >. We show that CPS∞
is universal for its model in D. For this purpose we proceed as follows.

We first observe that the finite elements of D all arise from simply typed λ-calculus
over O. Since the latter is universal for its LBD model (as shown in [Lai05a]) and all
retractions of D to finite types are CPS∞ definable it follows that all finite elements of D
are definable in CPS∞. Then borrowing an idea from [Lai98] we show that the supremum
of any sequence of elements in D increasing w.r.t. ≤s is CPS∞ definable provided the
elements of the sequence are CPS∞ definable. Thus, universality of CPS∞ for its LBD
model D follows from the fact that every element of D appears as supremum of an
ω-chain of finite elements increasing w.r.t. ≤s.

Although the interpretation of CPS∞ in D is surjective it turns out that it may identify
terms with different infinite normal form, i.e. that the interpretation is not faithful.
Finally, we discuss a way how this shortcoming can be avoided, namely by extending
CPS∞ with a parallel construct ‖ and refining the observation type O to O′ ∼= List(O′).2

2This can be considered as a “qualitative” reformulation of a “quantitative” model considered by
F. Maurel in his Thesis [Mau04].

11



1 Introduction

12



2 Locally Boolean Domains

The notion of locally boolean orders and locally boolean domains was first introduced
by Jim Laird in [Lai05b]. The following foundation of locally boolean orders and locally
boolean domains is based on an unpublished note [Str04] of Thomas Streicher. We start
from scratch: first we give the definition of locally boolean orders and locally boolean
domains and deduce a set of basic lemmas that will be useful later on. Moreover we
introduce the notion of bistable maps between locally boolean domains.

We assume that the reader is familiar with basic categorical and domain-theoretic
notions.

2.1 Locally Boolean Orders

We define locally boolean orders as partially ordered sets with an involution satisfying
certain constraints:

Definition 2.1.1. An involution on a partial order (P,v) is a function ¬ : P → P with
¬¬x = x and ¬y v ¬x whenever x v y.

A locally boolean order (lbo) is a triple A = (|A|,v,¬) where (A,v) is a partial order
and ¬ : |A| → |A| is an involution such that

(1) for every x ∈ |A| the set {x,¬x} has a least upper bound x> = x t ¬x (and,
therefore, also a greatest lower bound x⊥ = ¬(x>) = x u ¬x)

(2) whenever x v y> and y v x> (notation x ↑ y) then {x, y} has a supremum x t y
and an infimum x u y.

A is complete if (|A|,v) is a cpo, i.e. every directed subset X has a supremum
⊔

X.
A is pointed if it has a least element ⊥ (and thus also a greatest element > = ¬⊥).

As usual, we write x ∈ A (resp. X ⊆ A) for x ∈ |A| (resp. X ⊆ |A|). �

We write x ↓ y as an abbreviation for ¬x ↑ ¬y, and x l y for x ↑ y and x ↓ y. A set
X ⊆ A is called stably coherent (notation ↑X) iff x ↑ y for all x, y ∈ X. Analogously, X
is called costably coherent (notation ↓X) iff x ↓ y for all x, y ∈ X. We call a set X ⊆ A
bistably coherent (notation lX) iff ↑X and ↓X.

If x ↓ y then x t y = ¬(¬x u ¬y) and x u y = ¬(¬x t ¬y). Accordingly, the dual of a
locally boolean order is a locally boolean order again.

Notice that for elements x and y we have x l y iff x⊥ = y⊥ iff x> = y> .

Proposition 2.1.2. If a lbo A is complete, then it is also cocomplete, i.e. every v-
codirected subset X has an infimum

d
X.

13



2 Locally Boolean Domains

Proof. If X is a codirected subset of A then the set {¬x | x ∈ X} is directed and has⊔
{¬x | x ∈ X} as supremum. By duality we get ¬

⊔
{¬x | x ∈ X} as the infimum of

X.

Furthermore, on a lbo A using ¬ one may define a stable and a costable order as
follows.

Definition 2.1.3. For a lbo A we define the following partial orders on |A|. For x, y ∈ A

stable order: x ≤s y iff x v y and x ↑ y

costable order: x ≤c y iff x v y and x ↓ y (iff ¬y ≤s ¬x)

bistable order: x ≤b y iff x ≤s y and x ≤c y (iff x v y and x l y) �

The following characterisation of ≤s (and ≤c) turns out as useful.

Lemma 2.1.4. Let A be a lbo and x, y ∈ A. Then the following are equivalent

(1) x ≤s y

(2) x v y v x>

(3) x v y and x⊥ v y⊥.

Proof. ad (1) ⇒ (2) : Suppose x ≤s y. Then x v y and y v x> (because x ↑ y).

ad (2)⇒ (3) : Suppose x v y v x>. Then x⊥ v y and x⊥ v ¬y, i.e. x⊥ v yu¬y = y⊥.

ad (3) ⇒ (1): Suppose x v y and x⊥ v y⊥. Then x v y v y> and y v y> v x>, i.e.
x ↑ y.

Notice that by duality we have x ≤c y iff y⊥ v x v y iff x v y and x> v y>. Further
we have x ≤b y iff x v y and y⊥ = x⊥ iff x v y and y> = x>.

Using Lemma 2.1.4 it is easy to check that ≤s, ≤c and ≤b are actually partial orders.

Lemma 2.1.5. Let A be a lbo and x, y ∈ A. Then x ↑ y iff x and y are bounded above
(by x t y) in the stable order.

Proof. Suppose x ↑ y. Then we have x, y v xty and xty v x>, y>. Thus x, y ≤s xty.
Suppose x, y ≤s z. Then x v z v y> and y v z v x> and thus x ↑ y.

Accordingly we have x ↓ y iff x and y are bounded below (by x u y) in the costable
order.

14



2.2 Locally Boolean Domains

2.2 Locally Boolean Domains

For the definition of locally boolean domains we introduce the notions of finite and prime
elements of a locally boolean order.

Definition 2.2.1. Let A be a lbo.
An element p ∈ A is called prime iff whenever x ↑ y or x ↓ y and p v x t y then

p v x or p v y. We write P(A) for the set {p ∈ A | p is prime} and P(x) for the set
{p ∈ P(A) | p ≤s x}.

An element e ∈ A is called finite iff the set {x ∈ A | x ≤s e} is finite. We write F(A)
for the set {e ∈ A | e is finite} and F(x) for the set {e ∈ F(A) | e ≤s x}.

Finally, an element p ∈ A is called finite prime iff p is finite and prime. We write
FP(A) for the set P(A) ∩ F(A) and FP(x) for the set P(x) ∩ F(A). �

Lemma 2.2.2. Let A be a lbo, p ∈ P(A) and x, y ∈ A with x ↑ y or x ↓ y. If x 6v ¬p
and y 6v ¬p then x u y 6v ¬p.

Proof. Suppose p ∈ P(A) and x, y ∈ A with x ↑ y or x ↓ y. Thus ¬x ↓ ¬y or ¬x ↑ ¬y.
If xu y v ¬p then p v ¬(xu y) = ¬xt¬y from which it follows that p v ¬x or p v ¬y,
i.e. x v ¬p or y v ¬p.

Definition 2.2.3. (locally boolean (pre-)domain)
A locally boolean predomain (lbpd) is a complete locally boolean order A such that for
all x ∈ A

(1) x =
⊔

FP(x) and

(2) all finite primes in A are compact w.r.t. v, i.e. for all p ∈ FP(A) and directed sets
X with p v

⊔
X there exists an x ∈ X with p v x.

A locally boolean domain (lbd) is a pointed locally boolean predomain. �

Lemma 2.2.4. Let x and y be elements of a lbpd A with x ↑ y. Then x t y and x u y
are the stable supremum and infimum of x and y, respectively.

Proof. Suppose x ↑ y.
From Lemma 2.1.5 we know that x, y ≤s x t y. Suppose x, y ≤s z. Then x t y v z.

Suppose p ∈ FP(z). Then p v x> and p v y>. Thus, as p is prime, we have (1) p v x
or (2) p v y or (3) p v ¬x,¬y. In cases (1) and (2) we have p v x t y and in case (3)
we have p v ¬xu¬y = ¬(xt y). Thus, in any case we have p v (xt y)>. By condition
(1) of Def. 2.2.3 it follows that z v (x t y)>. Thus x t y ≤s z as desired.

We have x u y v x, y. Suppose p ∈ FP(x). Then p v x v y> and thus (1) p v y or
(2) p v ¬y. In case (1) we have p v x u y and in case (2) we have p v ¬y v ¬x t ¬y =
¬(x u y). So in any case we have p v (x u y)>. Thus, by condition (1) of Def. 2.2.3
we have x v (x u y)> and therefore x u y ≤s x as desired. Similarly, one shows that
x u y ≤s y. Suppose z ≤s x, y. Then z v x u y and x u y v x, y v z>. Thus z ≤s x u y
as desired.

15



2 Locally Boolean Domains

Lemma 2.2.5. Let x and y be elements of a lbpd A. Then it follows that:

(1) The following statements are equivalent:

(i) x ↑ y

(ii) x t y and x⊥ t y⊥ exist and (x t y)⊥ = x⊥ t y⊥

(iii) x t y and x> u y> exist and (x t y)> = x> u y>

(2) The following statements are equivalent:

(i) x ↓ y

(ii) x u y and x> u y> exist and (x u y)> = x> u y>

(iii) x u y and x⊥ t y⊥ exist and (x u y)⊥ = x⊥ t y⊥

Proof. ad (1) (i) ⇒ (ii) : Suppose x ↑ y.
Then x⊥ v x v y> = (y⊥)> and y⊥ v y v x> = (x⊥)>, hence x⊥ ↑ y⊥ and it follows

that the suprema x t y and x⊥ t y⊥ exist.
For showing that x⊥ t y⊥ v (x t y)⊥, suppose p ∈ FP(x⊥ t y⊥). Then, as p is

prime we have (1) p v x⊥ or (2) p v y⊥. In case (1) we get p v x⊥ v x t y,¬x,¬y
(where x⊥ v ¬y follows from y v x>). Thus, we get p v x t y,¬x u ¬y, and finally,
p v (x t y) u ¬(x t y) = (x t y)⊥. In case (2) we proceed analogously.

For showing that (xty)⊥ v x⊥ty⊥, suppose p ∈ FP((xty)⊥). Then, p v xty,¬(xty),
thus, p v xty,¬xu¬y, thus, p v xty,¬x,¬y. As p is prime we have (1) p v x,¬x,¬y
or (2) p v y,¬x,¬y. In case (1) we get p v x⊥ v x⊥ t y⊥. In case (2) we proceed
analogously.

Thus, it follows that x⊥ t y⊥ = (x t y)⊥ as desired.

ad (1) (ii) ⇒ (iii) : Suppose xt y and x⊥ t y⊥ exist and (xt y)⊥ = x⊥ t y⊥. Then it
follows that

(x t y)> = ¬((x t y)⊥)

= ¬(x⊥ t y⊥)

= ¬x⊥ u ¬y⊥

= x> u y>

as desired.

ad (1) (iii) ⇒ (i) : Suppose (x t y)> = x> u y>, then it follows that

x, y v x t y

v (x t y)>

= x> u y>

v x>, y>

thus, we have x ↑ y.

ad (2) : This follows from (1) by duality.

16



2.2 Locally Boolean Domains

Given a set X we write Pf.n.e.(X) for the set of finite, nonempty subsets of X.

Lemma 2.2.6. Let A be a lbpd and X ∈ Pf.n.e.(A) with ↑X. Then it follows that:

(1) The set X has an infimum
d

X w.r.t. v which is an infimum also w.r.t. ≤s and
a supremum

⊔
X w.r.t. v which is a supremum also w.r.t. ≤s.

(2) If y ∈ A with ↑(X ∪ {y}) then y ↑
d

X and y ↑
⊔

X.

(3) (
⊔

X)⊥ =
⊔
{x⊥ | x ∈ X} and (

⊔
X)> =

d
{x> | x ∈ X}

Proof. We proceed by induction on the size of X. The claims are obvious if X contains
precisely one element. Suppose the claims hold for X and ↑X ∪ {y}.

ad (1) and (2) : By Lemma 2.2.4 it suffices to show that y ↑
d

X and y ↑
⊔

X. As
x v y> for all x ∈ X we have

d
X v y> and

⊔
X v y>. Suppose p ∈ FP(y). Then for all

x ∈ X we have p v y v x> and thus, as p is prime, that p v x or p v ¬x. Thus either (i)
p v x for all x ∈ X or (ii) p v ¬x for some x ∈ X. In case (i) we have p v

d
X and thus

also p v (
d

X)>. In case (ii) we have p v
⊔

x∈X ¬x = ¬
d

X v (
d

X)>. Thus, in any
case we have p v (

d
X)>. As p v y v x> for all x ∈ X we get p v

d
{x> | x ∈ X} and,

using (3) for X, that p v (
⊔

X)>. Accordingly, we have y v (
⊔

X)> and y v (
d

X)>

as desired.

ad (3) : We have

(
⊔

(X ∪ {y}))⊥ = (
⊔

X t y)⊥

= (
⊔

X)⊥ t y⊥ (†)

=
⊔
{x⊥ | x ∈ X} t y⊥ (ih)

=
⊔

({x⊥ | x ∈ X} ∪ {y⊥})

and

(
⊔

(X ∪ {y}))> = (
⊔

X t y)>

= (
⊔

X)> u y> (†)

=
l
{x> | x ∈ X} u y> (ih)

=
l

({x> | x ∈ X} ∪ {y>})

where (†) follows from Lemma 2.2.5(1).

Lemma 2.2.7. An element x of a lbpd is finite iff FP(x) is finite.

Proof. Obviously, if x is finite then FP(x) is finite.
Suppose FP(x) is finite. If y ≤s x then FP(y) ⊆ FP(x) and y =

⊔
FP(y). Thus there

are at most as many y ≤s x as there are subsets of FP(x). As a finite set has only finitely
many subsets it follows that {y ∈ A | y ≤s x} is finite, i.e. that x is finite.

17



2 Locally Boolean Domains

Notice that for a lbd A we always have ⊥ ∈ FP(A).

Lemma 2.2.8. If A is a lbpd and x ∈ A then FP(x) 6= ∅.

Proof. Suppose FP(x) = ∅. By the definition of lbpds x =
⊔
∅ = ⊥. Hence, ⊥ is the

least element of A, and we get ∅ = FP(⊥) = {⊥}.

Lemma 2.2.9. An element of a lbpd A is compact w.r.t. v iff it is finite.

Proof. Suppose c is a compact element of A. By Lemma 2.2.8 it follows that FP(c) is
nonempty. Let X := {

⊔
Y | Y ∈ Pf.n.e.(FP(c))}. Obviously, the set X is directed and

has supremum c. As c is compact there exists a finite nonempty subset X0 of FP(c)
with c =

⊔
X0. If p ∈ FP(c) then p ≤s c =

⊔
X0 and thus there exists a q ∈ X0 with

p v q. As p and q are stably bounded (by c) it follows that p ≤s q. Accordingly, we have
FP(c) ⊆

⋃
q∈X0

FP(q) which is finite since X0 is finite and the FP(q) are finite. Thus
FP(c) is finite from which it follows by Lemma 2.2.7 that c is finite in A as desired.

For showing the reverse implication suppose e is a finite element of A. Then FP(e) is
finite. As by Def. 2.2.3(2) all elements of FP(e) are compact and e =

⊔
FP(e) the element

e is a supremum of finitely many compact elements and thus compact as well.

Lemma 2.2.10. Let A be a lbpd and c, d ∈ F(A) with c ↑ d then c t d ∈ F(A).

Proof. It follows from Lemma 2.2.9 that c and d are compact w.r.t. v. Thus, it follows
that c t d is compact and thus also finite by Lemma 2.2.9.

Lemma 2.2.11. Let x and y be elements of a lbpd A then t.f.a.e.

(1) x v y

(2) ∀p∈FP(x).∃q∈FP(y). p v q

(3) ∀c∈F(x).∃d∈F(y). c v d

Proof. Suppose x, y ∈ A.

ad (1) ⇒ (2) : Suppose x v y and p ∈ FP(x). Then p v y =
⊔

F(y). As by
condition (2) of Def. 2.2.3 the element p is compact w.r.t. v there is a finite nonempty set
Y0 ⊆ FP(y) with p v

⊔
Y0. As p is prime and ↑Y0 there exists an element q ∈ Y0 ⊆ FP(y)

with p v q.

ad (2) ⇒ (3) : Suppose ∀p∈FP(x).∃q∈FP(y). p v q holds and c ∈ F(x). As by
condition (2) of Def. 2.2.3 the element c is compact w.r.t. v there is a finite nonempty
set X0 ⊆ FP(x) with c v

⊔
X0. For all p ∈ X0 there exists a p̂ ∈ FP(y) with p v p̂.

Now, let d :=
⊔
{p̂ | p ∈ X0} then c v d and it follows from Lemma 2.2.10 that d is

finite.

ad (3) ⇒ (1) : This is obvious.

Lemma 2.2.12. Every lbpd is algebraic w.r.t. the extensional order.

18



2.2 Locally Boolean Domains

Proof. By Lemma 2.2.9 every finite element is compact w.r.t. v. Every x ∈ A is the
supremum of the compact elements c v x because x =

⊔
FP(x) and all elements of

FP(x) are finite and thus compact.
It remains to show that the set {c | c compact and c v x} is directed w.r.t. v. Let

X := {
⊔

Y | Y ∈ Pf.n.e.(FP(x))}. Since by Lemma 2.2.8 the set FP(x) is nonempty it
follows that X is nonempty. Let c and c′ be compact elements with c, c′ v x. As X
is directed and x =

⊔
X there exist finite nonempty subsets X0 and X1 of FP(x) with

c v
⊔

X0 and c′ v
⊔

X1. Thus c, c′ v
⊔

(X0 ∪ X1) v x and
⊔

(X0 ∪ X1) is compact
since it is a finite supremum of compact elements.

The next two lemmas will show that suprema w.r.t. v of stably coherent directed
sets are also suprema w.r.t. ≤s and that suprema of arbitrary nonempty stably coherent
subsets exist. These facts will be crucial for showing that (|A|,≤s) is a dI-predomain
(cf. Thm. 2.2.18).

Lemma 2.2.13. Let A be a lbpd and X be a stably (i.e. w.r.t. ≤s) directed subset of A
then

⊔
X is the supremum of X w.r.t. ≤s.

Proof. As A is complete there exists the supremum
⊔

X of X w.r.t. v. As X is stably
directed we have x v y> for all x, y ∈ X. Thus

⊔
X v y> for all y ∈ X from which it

follows that
⊔

X is a stable upper bound of X. Suppose X ≤s z. Then
⊔

X v z. It
remains to show that z v (

⊔
X)>. For this purpose suppose p ∈ FP(z). As x ≤s z for all

x ∈ X we have p v z v x> for all x ∈ X. As p is prime we have p v x or p v ¬x for all
x ∈ X. Thus, either (1) p v x for some x ∈ X or (2) p v ¬x for all x ∈ X. In case (1) we
have p v

⊔
X v (

⊔
X)>. In case (2) we have p v

d
x∈X ¬x = ¬(

⊔
X) v (

⊔
X)>. Thus

p v (
⊔

X)> for all p ∈ FP(z) from which it follows that z v (
⊔

X)> as desired.

Lemma 2.2.14. Let A be a lbpd and X be a nonempty stably coherent subset of A then
the supremum

⊔
X exists and is also the supremum of X w.r.t. ≤s.

Proof. Let X be a nonempty stably coherent subset of A, and let Z := {
⊔

Y | Y ∈
Pf.n.e.(X)}. Obviously, by Lemma 2.2.6 the set Z is directed w.r.t. v and also ≤s. Thus
it follows from Lemma 2.2.13 that

⊔
Z is also a supremum w.r.t. ≤s. Thus

⊔
Z is a

stable upper bound of X (because every element of X is stably below some element of
Z). For showing that

⊔
Z is the least upper bound of X w.r.t. ≤s suppose X ≤s z.

Then z is also a stable upper bound of Z from which it follows by Lemma 2.2.13 that⊔
Z ≤s z.

Lemma 2.2.15. For a lbpd A all elements of F(A) are compact w.r.t. ≤s.

Proof. Suppose c ∈ F(A) with c ≤s

⊔
X. Then c v

⊔
X v c>. From Lemma 2.2.9 it

follows that c is compact. Thus, there exists an x ∈ X with c v x v
⊔

X v c>. Thus,
c ≤s x.

Lemma 2.2.16. Let A be a lbpd and x ∈ A. If x is compact w.r.t. v then x is compact
w.r.t. ≤s.

19



2 Locally Boolean Domains

Proof. Suppose x is a compact w.r.t. v. Let X ⊆ A be directed w.r.t. ≤s and x ≤s

⊔
X.

Then it follows that X is directed w.r.t. v and x v
⊔

X. As x is compact w.r.t. v there
exists a e ∈ X with x v e. As x, e ≤s

⊔
X it follows that x ↑ e. Thus we have x ≤s e

and it follows that x is a compact w.r.t. ≤s.

Next we give the definition of dI-(pre)-domains.

Definition 2.2.17. Let D be an algebraic dcpo. The properties d and I are defined as
follows:

(I) Each compact element dominates at most finitely many elements.

(d) If {x, y, z} are bounded then x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A bounded complete algebraic dcpo satisfying properties d and I is called a dI-predomain.
A dI-predomain with least element ⊥ is called a dI-domain. �

Next we show that a lbpd A is a dI-predomain w.r.t. ≤s which has suprema of all
nonempty bounded subsets. (Notice that the definition of dI-predomains only postulates
the existence of suprema of bounded nonempty finite subsets.)

Theorem 2.2.18. If A is a lbpd then (|A|,≤s) is a dI-predomain with stable suprema
of all nonempty stably coherent subsets.

Proof. From Lemma 2.2.13 and Lemma 2.2.14 it follows that (|A|,≤s) is a dcpo, and
that it has stable suprema of nonempty stably coherent sets from which it follows that
(|A|,≤s) has suprema of nonempty bounded subsets as required for dI-predomains.

Next we show that (|A|,≤s) is algebraic. As we already know that (|A|,≤s) has
suprema of nonempty bounded sets it suffices to show that every element of A is the
stable supremum of some set of compact elements. Let x ∈ A and Z := {

⊔
Y | Y ∈

Pf.n.e.(FP(x))}. Then all elements of Z are compact w.r.t. v and using Lemma 2.2.16 it
follows that all elements of Z are compact w.r.t. ≤s. Further, we get that Z is stably
directed (as FP(x) is nonempty and by Lemma 2.2.6) and it follows that x =

⊔
FP(x) =⊔

Z.
For verifying the I-property we have to show that every stably compact element c is

finite. W.l.o.g. assume that c is different from ⊥. Let Z := {
⊔

Y | Y ∈ Pf.n.e.(FP(c))}.
Obviously Z is stably directed and c =

⊔
Z. As c is assumed as stably compact there

exists a finite nonempty subset X0 of FP(c) with c =
⊔

X0. As the elements of X0 are
compact w.r.t. v their supremum

⊔
X0 is also compact w.r.t. v. Thus, by Lemma 2.2.9

it follows that c =
⊔

X0 is finite as desired.
For verifying the d-property suppose ↑{x, y, z}. We have to show that x u (y t z) =

(x u y) t (x u z). For showing the nontrivial inequality suppose p ∈ FP(x u (y t z)).
Then p v x and p v y t z. As p is prime we have (1) p v y or (2) p v z. In case
(1) we have p v x u y and in case (2) we have p v x u z. Thus in any case we have
p v (x u y) t (x u z). Thus, we have x u (y t z) v (x u y) t (x u z) as desired.

20



2.2 Locally Boolean Domains

Lemma 2.2.19. Let A be a lbpd and X be a nonempty subset of A with ↑X. If p ∈ FP(A)
and p v

⊔
X then there exists an element x ∈ X with p v x and (p ≤s x whenever

p ≤s

⊔
X).

Proof. For all F ∈ Pf.n.e.X it holds that ↑F and thus
⊔

F exists. Accordingly, the
set X̂ := {

⊔
F | F ∈ Pf.n.e.(X)} is stably coherent and directed. As p is compact

w.r.t. v there exists a finite subset F of X with p v
⊔

F , and as p is prime, there
exists an element x ∈ F with p v x. Furthermore, if p ≤s

⊔
X then it follows that

p v x v
⊔

X v p>, thus, p ≤s x as desired.

In the next two lemmas we show that the infimum (resp. the supremum) of stably
coherent nonempty set is given by the supremum of the intersection (resp. union) of the
sets of finite prime elements.

Lemma 2.2.20. Let A be a lbpd and X be a nonempty subset of A with ↑X. Then
d

X
exists, is also the infimum w.r.t. ≤s and

l
X =

⊔
(
⋂
x∈X

FP(x)) .

Proof. Suppose X is a nonempty subset of A with ↑X. Then the set Z := {
d

Y | Y ∈
Pf.n.e.(X)} is codirected. Hence its infimum

d
Z exists and

d
Z =

d
X. Let x ∈ X and

p ∈ FP(x). Then for all u ∈ X we have u ↑ x, thus it follows that p v x v u> = u t ¬u
and as p is prime we get p v u or p v ¬u. Thus we have either p v u for all u ∈ X
or there exists a u ∈ X with p v ¬u. In the first case we get p v

d
X v (

d
X)>, and

in the second case we get p v ¬u v
⊔
{¬y | y ∈ X} = ¬

d
X v (

d
X)> and it follows

that
d

X ≤s x. Thus
d

X is also the infimum of X w.r.t. ≤s.
For all y ∈ X we have

⋂
x∈X FP(x) ⊆ FP(y). Hence,

⋂
x∈X FP(x) is stably coherent

and
⊔

(
⋂

x∈X FP(x)) ≤s y for all y ∈ X. Thus,
⊔

(
⋂

x∈X FP(x)) ≤s

d
X. For showing

the reverse inequality suppose p ∈ FP(
d

X). As
d

X ≤s x for all x ∈ X it follows that
p ∈ FP(x) for all x ∈ X. Thus p ∈

⋂
x∈X FP(x) and we get p ≤s

⊔
(
⋂

x∈X FP(x)) as
desired.

Lemma 2.2.21. Let A be a lbpd and X be a nonempty subset of A with ↑X. Then it
follows that

FP(
⊔

X) =
⋃
x∈X

FP(x) and FP(
l

X) =
⋂
x∈X

FP(x) .

Proof. For showing FP(
⊔

X) =
⋃

x∈X FP(x) suppose p ∈ FP(
⊔

X). Then from it follows
Lemma 2.2.19 that there exists a x ∈ X with p ≤s x. Hence FP(

⊔
X) ⊆

⋃
x∈X FP(x).

For the reverse inclusion suppose p ∈
⋃

x∈X FP(x) then there exists a x ∈ X with
p ∈ FP(x). As ↑X it follows that p ≤s x ≤s

⊔
X. Thus p ∈ FP(

⊔
X).

21



2 Locally Boolean Domains

For showing the second equation consider

FP(
l

X) = FP(
⊔

(
⋂
x∈X

FP(x))) (†)

=
⋃
{FP(y) | y ∈

⋂
x∈X

FP(x)} (‡)

=
⋂
x∈X

FP(x) (§)

where (†) follows from Lemma 2.2.20, (‡) follows from the first equation of this lemma.
Finally we show that (§) holds. Since for all p ∈ FP(A) we have that p ∈ FP(p)
holds it follows immediately that

⋂
x∈X FP(x) ⊆

⋃
{FP(y) | y ∈

⋂
x∈X FP(x)} holds.

For the reverse inclusion suppose p ∈
⋃
{FP(y) | y ∈

⋂
x∈X FP(x)} then there exists

a y ∈
⋂

x∈X FP(x) with p ∈ FP(y), thus p ≤s y. Thus it follows that y ∈ FP(x) for
all x ∈ X, thus as p ≤s y it follows that p ∈ FP(x) for all x ∈ X. Thus we have
p ∈

⋂
x∈X FP(x) as desired.

Notice that a lbpd A gives rise to a bistable biorder (A,v, l) as introduced by J. Laird
in [Lai05a]. By Lemma 2.2.6 and its dual statement it follows that the relation l is an
equivalence relation. Further from Lemma 2.2.5 it follows that equivalence classes w.r.t.
l are closed under binary suprema and infima w.r.t. v and satisfy the distributivity law
(by Thm. 2.2.18).

Definition 2.2.22. If A is a lbpd and x ∈ A then we write [x]l for the set {y ∈ A | x l
y}. We call [x]l the bistably connected component of x.

If X is a nonempty subset of A with lX then we write [X]l for the connected com-
ponent {y ∈ A | l(X ∪ {y})} and X⊥ (resp. X>) for the bottom (resp. top) element of
[X]l. �

Lemma 2.2.23. If A is a lbpd and x ∈ A then [x]l is a boolean algebra w.r.t. ≤b.

Proof. Suppose x ∈ A. Then using Lemma 2.2.6 it follows that stable suprema and
costable infima coincide with those w.r.t. v and that l{x, y, xuy, xty} holds whenever
x l y. Using that and Thm. 2.2.18 it follows [x]l satisfies the distributivity law. Negation
on [x]l is given by the restriction of ¬ to [x]l. The bottom element is given by x⊥ and
the top element by x>.

Lemma 2.2.24. In a lbpd from x v y = y⊥ it follows that x = x⊥ and x ≤s y.

Proof. We have x v y = y⊥ v ¬y v ¬x. Thus x⊥ = x u ¬x = x, and as x⊥ = x v y⊥ it
follows x ≤s y as desired.

Lemma 2.2.25. In a lbpd from x ≤s y ≤s z and x l z it follows that l{x, y, z}.

Proof. We have x⊥ v y⊥ v z⊥ and x⊥ = z⊥. Thus x⊥ = y⊥ = z⊥ as desired.

Lemma 2.2.26. In a lbpd from x ≤s y it follows that x⊥ ≤s y⊥.

22



2.2 Locally Boolean Domains

Proof. From x ≤s y it follows that x⊥ v y⊥. Moreover, we have (x⊥)⊥ = x⊥ v y⊥ =
(y⊥)⊥. Thus x⊥ ≤s y⊥.

Lemma 2.2.27. Let A be a lbpd. If X ⊆ A is directed w.r.t. ≤s then (
⊔

X)⊥ =
⊔
{x⊥ |

x ∈ X}.

Proof. Suppose X ⊆ A is directed w.r.t. ≤s. If x ≤s y then from Lemma 2.2.26 it
follows that x⊥ ≤s y⊥. Thus the set {x⊥ | x ∈ X} is directed and

⊔
{x⊥ | x ∈ X}

exists. For all x ∈ X we have x ≤s

⊔
X and further that x⊥ v (

⊔
X)⊥. Thus it

follows that
⊔
{x⊥ | x ∈ X} v (

⊔
X)⊥. Now, suppose p ∈ FP((

⊔
X)⊥) then p = p⊥

by Lemma 2.2.24. As p is compact and p ≤s

⊔
X there exists an element x ∈ X with

p ≤s x and by Lemma 2.2.26 it follows that p ≤s x⊥. Thus p ≤s

⊔
{x⊥ | x ∈ X} and we

have (
⊔

X)⊥ v
⊔
{x⊥ | x ∈ X} as desired.

Lemma 2.2.28. Let A be a lbpd. If X, Y ⊆ A are directed w.r.t. ≤s and {[x]l | x ∈
X} = {[y]l | y ∈ Y } (i.e. X and Y touch the same bistably connected components of A),
then

⊔
X l

⊔
Y .

Proof. As {[x]l | x ∈ X} = {[y]l | y ∈ Y } it follows that {x⊥ | x ∈ X} = {y⊥ | y ∈ Y }.
Using Lemma 2.2.27 we get (

⊔
X)⊥ =

⊔
{x⊥ | x ∈ X} =

⊔
{y⊥ | y ∈ Y } = (

⊔
Y )⊥ as

desired.

Lemma 2.2.29. Let x and y be elements of a lbpd A.

(1) If x ↑ y then the following statements hold:

(i) (x u y)⊥ = x⊥ u y⊥

(ii) (x u y)> = x> t y>

(2) If x ↓ y then the following statements hold:

(i) (x t y)> = x> t y>

(ii) (x t y)⊥ = x⊥ u y⊥

Proof. ad (1)(i) : From x ↑ y it follows that x⊥ v x v y> = (y⊥)> and y⊥ v y v x> =
(x⊥)>. Thus, ↑{x, x⊥, y, y⊥} holds. From Lemma 2.2.6 it follows that x⊥ u y⊥ ≤s xu y.
Using Lemma 2.2.26 we get (x⊥ u y⊥)⊥ ≤s (x u y)⊥. Further, from Lemma 2.2.24 it
follows that (x⊥ u y⊥)⊥ = x⊥ u y⊥. Thus, we have x⊥ u y⊥ ≤s (x u y)⊥. For showing
(x u y)⊥ ≤s x⊥ u y⊥, notice that x u y ≤s x, y holds. From Lemma 2.2.26 we get
(x u y)⊥ ≤s x⊥, y⊥. Thus, (x u y)⊥ ≤s x⊥ u y⊥ as desired.

ad (1)(ii) : Using (1)(i) we get (x u y)> = ¬((x u y)⊥) = ¬(x⊥ u y⊥) = ¬x⊥ t ¬y⊥ =
x> t y>.

ad (2) : These statements follow from (1) by duality.

Lemma 2.2.30. Let A be a lbpd and x, y ∈ A and x v y then x ↑ ¬y.

Proof. Suppose x v y. Then x v y v y> = (¬y)> and ¬y v ¬x v x> as desired.

23



2 Locally Boolean Domains

Lemma 2.2.31. Let A be a lbpd and x, y ∈ A. Then x v y iff x ≤s z ≤c y for some
z ∈ A.

Proof. The reverse implication is obvious as ≤s and ≤c are included in v.
For the forward implication assume that x v y. Then x ↑ ¬y by Lemma 2.2.30. Thus

also x ↑ y⊥ and x⊥ ↑ y⊥. Putting z := x t y⊥ we have x ≤s z because x v z and
using Lemma 2.2.5 it follows that x⊥ v x⊥ t y⊥ = (x t y⊥)⊥ = z⊥, and z ≤c y because
x, y⊥ v y and y⊥ v x⊥ t y⊥ = z⊥, thus z v y and z> v y>.

Lemma 2.2.32. Let A be a lbpd and x, y ∈ A. If there exists a z ∈ A with z v x, y or
x, y v z then FP(x) ∩ FP(y) 6= ∅.

Proof. Suppose (1) x, y v z or (2) z v x, y. If (1) then it follows from Lemma 2.2.30 that
x ↑ ¬z and y ↑ ¬z, thus x⊥ ↑ z⊥ and y⊥ ↑ z⊥. If (2) then it follows from Lemma 2.2.30
that z ↑ ¬x and z ↑ ¬y, thus z⊥ ↑ x⊥ and z⊥ ↑ y⊥. Thus in either case we get x⊥ ↑ z⊥
and y⊥ ↑ z⊥. Thus x⊥ u z⊥ ≤s z⊥ and y⊥ u z⊥ ≤s z⊥. Hence x⊥ u z⊥ ↑ y⊥ u z⊥ and
it follows that u := (x⊥ u z⊥) u (y⊥ u z⊥) ≤s x⊥, y⊥. From Lemma 2.2.8 it follows that
FP(u) 6= ∅, and as FP(u) ⊆ FP(x⊥) ⊆ FP(x) and FP(u) ⊆ FP(y⊥) ⊆ FP(y) we get
FP(x) ∩ FP(y) 6= ∅.

Next we introduce the notion of atom and investigate the structure of the bistably
connected components [x]l.

Definition 2.2.33. Let A be a lbpd and x ∈ A. We write At(x) for the set of atoms of
the boolean algebra ([x]l,≤b). �

Lemma 2.2.34. Let A be a lbpd and X be a nonempty subset of A with lX. Then it
follows that

⊔
X,

d
X ∈ [X]l.

Proof. Suppose X is a nonempty subset of A with lX. Then due to Lemma 2.2.23 the
subset [X]l forms a boolean algebra w.r.t. ≤b. For all finite nonempty subsets F of X we

have that
⊔

F ∈ [X]l. Thus, the set X̂ := {
⊔

F | F ∈ Pf.n.e.(X)} is bistably coherent

and directed. As
⊔

X̂ is the least upper bound of X, it follows that
⊔

X exists and
using Lemma 2.2.13 we get that x ≤s

⊔
X holds for all x ∈ X. For all x ∈ X we have

that x ≤s x> = X>. Thus as
⊔

X is supremum w.r.t. ≤s it follows from Lemma 2.2.13
that

⊔
X ≤s X>. From Lemma 2.2.25 it follows that x l

⊔
X for all x ∈ X, thus we

get
⊔

X ∈ [X]l.
As

d
X = ¬

⊔
{¬x | x ∈ X} l

⊔
{¬x | x ∈ X} and {¬x | x ∈ X} ⊆ [X]l it follows

that
d

X ∈ [X]l.

Theorem 2.2.35. Let A be a lbpd and x ∈ A then [x]l is a complete atomic boolean
algebra w.r.t. ≤b.

Proof. Suppose x ∈ A. Then from Lemma 2.2.23 and Lemma 2.2.34 it follows that [x]l
is a complete boolean algebra.

Suppose y ∈ [x]l and p ∈ FP(y) with p 6= p⊥. Then we get that p⊥ v y⊥ = x⊥ holds.
As p, x⊥ ≤s y it follows that p t x⊥ exists. Further, as x⊥ ≤s p t x⊥ ≤s y it follows

24



2.2 Locally Boolean Domains

from Lemma 2.2.25 that p t x⊥ ∈ [x]l. For showing that p t x⊥ is an atom suppose
p t x⊥ = u t v for u, v ∈ [x]l. As p v u t v we have p v u or p v v. If p v u then
p ≤s u (as p⊥ v x⊥ = u⊥) and thus p t x⊥ ≤s u ≤s p t x⊥, i.e. p t x⊥ = u. Similarly,
one shows that p t x⊥ = v if p v v. Thus u = p t x⊥ or v = p t x⊥ as desired.

If y ∈ [x]l and y 6= x⊥ then for every p ∈ FP(y) we have p⊥ v y⊥ = x⊥. Thus every
y ∈ [x]l is the supremum of all p t x⊥ with p ∈ FP(y) and p⊥ 6= p, i.e. a supremum of
atoms in [x]l.

Notice that in a complete atomic boolean algebra B we have B ∼= (P(A),⊆) where A
is the set atoms of B and

⊔
x∈X(xu y) = (

⊔
x∈X x)u y and

d
x∈X(xt y) = (

d
x∈X x)t y

holds for all X ⊆ B and y ∈ B.

Lemma 2.2.36. If A is a lbpd and p ∈ FP(A) then either p = p⊥ or p ∈ At(p).

Proof. If neither p = p⊥ nor p ∈ At(p) then p = u t v for some u, v ∈ [p]l with u, v 6= p
in contradiction to p being prime.

Lemma 2.2.37. Let A be a lbpd and p ∈ FP(A) with p 6= p⊥. Then p = q whenever
p ≤s q ∈ FP(A).

Proof. Suppose p ∈ FP(A) with p 6= p⊥. Then by Lemma 2.2.36 we have p ∈ At(p).
Suppose p ≤s q ∈ FP(A). Then q v p> = p t ¬p, and as q is prime it follows that (1)
q v p or (2) q v ¬p holds. In case (1) we immediately get p = q. In case (2) we have
p v ¬q. Thus as p v q from Lemma 2.2.30 it follows that p ↑ ¬q. Thus p ≤s 6= q. Thus
p ≤s q u¬q = q⊥ which entails p = p⊥ (by Lemma 2.2.24) contradicting the assumption
p 6= p⊥.

Lemma 2.2.38. Let A be a lbpd and p ∈ FP(A) such that p is not ≤s-maximal in FP(A).
Then p = p⊥ holds.

Proof. This is an immediate consequence of Lemma 2.2.37.

Lemma 2.2.39. Let A be a lbpd and x ∈ A. Then x = x⊥ iff p = p⊥ for all p ∈ FP(x).

Proof. For the forward implication suppose p ∈ FP(x). Then p ≤s x = x⊥, thus p = p⊥
by Lemma 2.2.24.

For the reverse implication suppose p = p⊥ for all p ∈ FP(x). Then p = p⊥ v x⊥ for
all p ∈ FP(x). Thus we have x =

⊔
FP(x) v x⊥ and it follows that x = x⊥.

Lemma 2.2.40. Let A be a lbpd, x ∈ A and a ∈ At(x). Then there exists a unique
p ∈ FP(a) with a = p t a⊥. Further, for this unique p it holds that p 6= p⊥.

Proof. Suppose a ∈ At(x). Then a 6= a⊥. If p ∈ FP(a) with p = p⊥ then p = p⊥ ≤s a⊥
and p t a⊥ = a⊥ 6= a. Hence, we need a p ∈ FP(A) with p 6= p⊥. As a 6= a⊥ it follows
from Lemma 2.2.39 that there exists a p ∈ FP(a) with p 6= p⊥. Suppose there exists
a q ∈ FP(a) with q 6= q⊥ and p 6= q. Let Z := FP(a) \ {q}. From Lemma 2.2.39 it
follows that p, q /∈ FP(a⊥) ⊆ FP(a) thus FP(a⊥) $ Z $ FP(a). As Z is stably coherent
let z :=

⊔
Z then a⊥ =

⊔
FP(a⊥) <s z <s

⊔
FP(a) = a (because p 6≤s q and q 6≤s p by

25



2 Locally Boolean Domains

Lemma 2.2.37). Thus l{a⊥, z, a} by Lemma 2.2.25, and a⊥ <b z <b a contradicting the
assumption that a ∈ At(x).

Now, given an atom a ∈ At(x) let p be the unique element in FP(a) with p 6= p⊥. We
have shown FP(a) = {r ∈ FP(a) | r = r⊥} ∪ {p}. As {r ∈ FP(a) | r = r⊥} = FP(a⊥) we
get a =

⊔
FP(a) = p t

⊔
FP(a⊥) = p t a⊥ as desired.

Given an x ∈ A with x = x⊥ there arises the question how to characterise those finite
prime elements p for which the stable supremum of x and p exists and is an atom in
[x]l.

Lemma 2.2.41. Let A be a lbpd, x ∈ A with x = x⊥ and p ∈ FP(A) with p 6= p⊥ ∈
FP(x). Then the stable supremum of x and p exists iff x v ¬p. Further, if x ↑ p then
x t p ∈ At(x).

Proof. Suppose p 6= p⊥ ≤s x. Then x v p>. The stable supremum of x and p exists iff
x ↑ p, i.e. iff x v p> and p v x>. Thus x ↑ p iff p v x> iff x⊥ v ¬p iff x v ¬p. Now, if
x ↑ p then (x t p)⊥ = x⊥ t p⊥ = x⊥, and it follows that x <b x t p. Thus, there exists
an atom a ∈ At(x) with a ≤b x t p. From Lemma 2.2.40 it follows that there exists a
unique q ∈ FP(a) with q 6= q⊥ and a = xt q. Thus, q ≤s xt p. As q is prime and q 6v x
we get that q v p holds. As p ↑ x it follows that p ≤s xt p. Thus we have q, p ≤s xt p.
Thus q ↑ p and as q v p it follows that q ≤s p. As q 6= q⊥ it follows from Lemma 2.2.37
that q = p. Thus we get a = x t p as desired.

Lemma 2.2.42. Let A be a lbpd, x ∈ A with At(x) 6= ∅ and p ∈ FP(A) with p v x>.
Then there exists an a ∈ At(x) with p v a. Further, if p 6= p⊥ then there exists a unique
a ∈ At(x) with p v a.

Proof. Suppose x ∈ A with At(x) 6= ∅ and p ∈ FP(A) with p v x>. As At(x) is nonempty
and ↑At(x) and x> =

⊔
At(x) hold it follows from Lemma 2.2.19 that there exists an

a ∈ At(x) with p v a.
Further, suppose p 6= p⊥. If p v a1, a2 for different a1, a2 ∈ At(x) then p v a1ua2 = x⊥.

Thus it follows that p = p⊥ in contradiction with p 6= p⊥.

Theorem 2.2.43. Let A be a lbpd. Then FP(A) is a tree and downward closed w.r.t.
≤s, i.e. for all p ∈ FP(A) the set FP(p) is linearly ordered by ≤s and p′ ≤s p implies
p′ ∈ FP(A).

Proof. Suppose there exists a prime p such that FP(p) is not linearly ordered by ≤s.
As (A,≤s) is a dI-domain there exists a ≤s-minimal prime p such that FP(p) is not
linearly ordered by ≤s. We show that this is impossible from which it follows that for
all p ∈ FP(A) the set FP(p) is linearly ordered by ≤s as desired.

Let p1, p2 ∈ FP(p) such that neither p1 ≤s p2 nor p2 ≤s p1. Obviously, then both
p1 and p2 are strictly below p w.r.t. ≤s. Thus, by minimality of p both FP(p1) and
FP(p2) are linearly ordered by ≤s. As p1 ↑ p2 there exists p0 = p1 u p2 which is an
infimum w.r.t. ≤s and v. Obviously, both p1 and p2 are different from p0. Thus we have
p0 <s pi <s p for i ∈ {1, 2}. From Lemma 2.2.38 it follows that pi = pi⊥ for i ∈ {0, 1, 2}.

26



2.2 Locally Boolean Domains

As p0 <s p we get p0 < p v p>0 and it follows that p0 6= p>0 . Thus we get that At(p0) 6= ∅
and as p v p>0 and p is prime it follows from Lemma 2.2.42 that there exists a unique
a ∈ At(p0) with p v a. By Lemma 2.2.40 there exists a unique q ∈ FP(a) with q 6= q⊥
and a = p0 t q. As p1 v p v a = q t p0 and p1 is prime it follows that p1 v q or p1 v p0.
The latter cannot happen as otherwise p0 = p1 and, accordingly, we have p1 v q. Thus,
we have a = q t p0 v q t p1 = q ∈ FP(A), i.e. that a = q and a is prime. As p0⊥ = p0

we have a v p>0 = ¬p0 = ¬(p1 u p2) = ¬p1 t ¬p2. As a is prime it follows that a v ¬p1

or a v ¬p2 (because ¬p1 ↓ ¬p2). Thus p1 v ¬a or p2 v ¬a. As p1, p2 v p v a we have

p0⊥ = p0 v p1 v a u ¬a = a⊥ = p0⊥ or

p0⊥ = p0 v p2 v a u ¬a = a⊥ = p0⊥ ,

i.e. p1 = p0⊥ = p0 or p2 = p0⊥ = p0 which is impossible since p1, p2 6= p0.

Finally, suppose p ∈ FP(A) and p′ ≤s p. As FP(p) is finite and linearly ordered w.r.t.
≤s, so is FP(p′). Thus, we have p′ =

⊔
FP(p′) = max≤s FP(p′) and it follows that p′ is

prime.

From Lemma 2.2.24 and Thm. 2.2.43 it follows that for a finite prime element p with
p = p⊥ and x ∈ A we have x v p iff x ≤s p and x is finite prime with x = x⊥. In
Lemma 2.2.47 we will characterise those cases when a prime is extensionally below a
cell, i.e. a finite prime q with q ∈ At(q) (cf. section 3.1). For this purpose we will need
the following auxiliary lemmas.

Lemma 2.2.44. Let A be a lbpd and x, y ∈ A with x v y. Then x ↑ y⊥.

Proof. We have x v y v y> = (y⊥)> and y⊥ v ¬y v ¬x v x>.

Lemma 2.2.45. Let A be a lbpd and x ∈ A with FP(x) = {x}. Then x is minimal w.r.t.
v.

Proof. Suppose FP(x) = {x} and y < x, then by Lemma 2.2.44 it follows that y ↑ x⊥.
Thus we get yux⊥ <s x and FP(yux⊥) $ FP(x). Hence we have FP(yux⊥) = ∅ which
is impossible by Lemma 2.2.8.

Lemma 2.2.46. Let A be a lbpd and p, q ∈ FP(A). If p is minimal w.r.t. ≤s and p v q
then already p ≤s q.

Proof. Suppose p ∈ FP(A) is ≤s-minimal and q ∈ FP(A) with p v q. Then FP(p) = {p}
and p = p⊥. Due to Lemma 2.2.44 we have p ↑ q⊥, and thus p u q⊥ ≤s p. As p is
≤s-minimal we have p u q⊥ = p. Thus we get p⊥ = p v q⊥ and hence p ≤s q as
desired.

Lemma 2.2.47. Let A be a lbpd and q ∈ FP(A) with q 6= q⊥. For p ∈ FP(A) we have
p v q iff p ≤s q or p ≤c q.

27



2 Locally Boolean Domains

Proof. The implication from right to left is obvious. The reverse implication we prove
by induction on |FP(p)|.

If |FP(p)| = 1 and p v q then p is ≤s-minimal and, therefore, by Lemma 2.2.46 we
have p ≤s q.

Suppose |FP(p)| > 1 and p v q. As FP(p) is finite and linearly ordered w.r.t. ≤s, let
p0 be the greatest (w.r.t. ≤s) element in FP(p) with p0 6= p. Obviously, we have p0 = p0⊥
and |FP(p0)| < |FP(p)|. Thus, by induction hypothesis we have p0 ≤s q or p0 ≤c q. We
show that in either case p ≤s q or p ≤c q.

Suppose p0 ≤c q. Then q⊥ v p0⊥ v p⊥. As p v q by assumption we have p ≤c q as
desired.

Suppose p0 ≤s q. As p0 = q implies p0 ≤c q we can assume that p0 <s q holds. We
have that p0 = p0⊥ v q⊥ holds. Suppose neither p ≤s q nor p ≤c q, i.e. p⊥ 6v q⊥ and
q⊥ 6v p⊥. Then p⊥ 6= p0 as otherwise p⊥ = p0 = p0⊥ v q⊥ (because p0 ≤s q). Thus
as p0 6= p⊥, p⊥ ≤s p and p0 is the greatest (w.r.t. ≤s) element in FP(p) with p0 6= p it
follows that p = p⊥. As p0 <s q we have q v p0

>. Thus p0 < p>0 and it follows that
At(p0) 6= ∅ and as q is prime and q v p0

> it follows from Lemma 2.2.42 that there exists
an atom a ∈ At(p0) with q v a. As p v q it follows by Lemma 2.2.44 that p ↑ q⊥. Thus
p u q⊥ is an infimum w.r.t. ≤s and v. As p = p⊥ and q⊥ are incomparable w.r.t. v it
follows that p u q⊥ 6= p and p u q⊥ 6= p. Thus, as p0 ≤s p u q⊥ we have p0 = p u q⊥
and, accordingly, also p0

> = ¬p t q>. By Lemma 2.2.40 there exists a prime c with
c ↑ a⊥ = p0 and a = c t p0. Thus, we have c v a v p0

> = ¬p t q>. As p ↑ q⊥ it follows
that ¬p ↓ q>. Thus as c is prime it follows that c v ¬p or c v q>. As p0 v p and
p0 v q v q> hold anyway it follows that a v ¬p or a v q>. This, however, is impossible
as shown by the following reasoning. If a v ¬p then p v ¬a and as p v q v a it follows
that p v a u ¬a = p0 in contradiction to p0 v p and p0 6= p. If a v q> then q⊥ v ¬a
and as q⊥ v q v a it follows that q⊥ v a u ¬a = p0. As p0 v q⊥ we get p0 = q⊥. Thus
we have q⊥ = p0 v p = p⊥ in contradiction to the fact that p⊥ and q⊥ are incomparable
w.r.t. v.

Thus we have shown that it cannot hold that neither p ≤s q nor p ≤c q, hence it
follows that p ≤s q or p ≤c q as desired.

Theorem 2.2.48. Let A be a lbpd and p, q ∈ FP(A). Then p v q iff p ≤s q or p ≤c q.

Proof. The implication from right to left is immediate.
We prove the reverse implication by case analysis on q. If q = q⊥ and p v q then from

Lemma 2.2.24 it follows that p ≤s q. If q 6= q⊥ then it follows from Lemma 2.2.36 that
q ∈ At(q). As p v q we get from Lemma 2.2.47 that p ≤s q or p ≤c q as desired.

Thm. 2.2.48 allows us to give the following slightly improved characterisation of the
extensional order.

Theorem 2.2.49. Let A be a lbpd and x, y ∈ A. Then x v y iff for all p ∈ FP(x) there
exists a q ∈ FP(y) with p ≤c q.

Proof. The implication from right to left is obvious (using Lemma 2.2.11).

28



2.2 Locally Boolean Domains

For the reverse implication suppose x v y and p ∈ FP(x). By Lemma 2.2.11 there
exists a q′ ∈ FP(y) with p v q′. By Thm. 2.2.48 we have p ≤s q′ or p ≤c q′. In the
first case putting q := p we have q = p ∈ FP(y) and p ≤c q. In the second case putting
q := q′ we have q ∈ FP(y) and p ≤c q.

Theorem 2.2.50. Let A be a lbpd and x, y ∈ A. Then x v y iff for all c ∈ F(x) there
exists a d ∈ F(y) with c ≤c d.

Proof. The implication from right to left is obvious (using Lemma 2.2.11).
For the reverse implication suppose x v y and c ∈ F(x). Then there exists p1, . . . , pn ∈

FP(x) with
⊔
{p1, . . . , pn} = c. Using Thm. 2.2.49 we get q1, . . . , qn ∈ FP(y) with

q⊥ v pi v qi for i ∈ {1, . . . , n}. Now, we have
⊔
{p1, . . . , pn} v

⊔
{q1, . . . , qn} and,

using Lemma 2.2.5(1),
⊔
{q1, . . . , qn}⊥ =

⊔
{q1⊥, . . . , qn⊥} v

⊔
{p1, . . . , pn}. Thus, c =⊔

{p1, . . . , pn} ≤c

⊔
{q1, . . . , qn} ∈ F(y) as desired.

Based on Thm. 2.2.49 we will obtain a characterisation of the costable ordering. For
this purpose, however, we need the following lemma.

Lemma 2.2.51. Let A be a lbpd and p ∈ FP(A). Then p is minimal w.r.t. ≤c iff
p = p⊥.

Proof. Let p ∈ FP(A). Suppose p = p⊥. If q is an element with q ≤c p then q v p =
p⊥ v q⊥ v q and thus p = q. Thus p is minimal w.r.t. ≤c. If p ∈ FP(A) is minimal w.r.t.
≤c then p = p⊥ since p⊥ ≤c p.

Theorem 2.2.52. Let A be a lbpd and x, y ∈ A. Then x ≤c y iff the following two
conditions hold

(1) for every p ∈ FP(x) there exists a q ∈ FP(y) with p ≤c q

(2) for every q ∈ FP(y⊥) there exists a p ∈ FP(x) with q ≤c p.

Proof. Let x, y ∈ A. We have x ≤c y iff y⊥ v x v y. By Thm. 2.2.49 the second
inequality is equivalent to (1) and the first inequality is equivalent to (2).

Lemma 2.2.53. Let A be a lbpd x ∈ A and p ∈ FP(x). Then the following statements
are equivalent:

(1) p ≤s ¬x

(2) p v ¬x

(3) p = p⊥

Proof. Suppose x ∈ A and p ∈ FP(x).

ad (1) ⇒ (2) : This is obvious.

ad (2) ⇒ (3) : Suppose p v ¬x. As p ∈ FP(x) it follows that p ≤s x. Thus
p v x u ¬x = x⊥. Using Lemma 2.2.24 we get p = p⊥.

ad (3)⇒ (1) : Suppose p = p⊥. As p ∈ FP(x) we have p ≤s x. Thus by Lemma 2.2.26
it follows that p = pbot ≤s x⊥. As x⊥ ≤s ¬x it follows p ≤s ¬x as desired.

29



2 Locally Boolean Domains

Lemma 2.2.54. Let A be a lbpd and x, y ∈ A with x l y. Then it holds that

(1) ∀p∈FP(x).∃q∈FP(y). p l q

(2) ∀c∈F(x).∃d∈F(y). c l d

Proof. Suppose x, y ∈ A with x l y.

ad (1) : Suppose p ∈ FP(x). From Thm. 2.2.43 it follows that p⊥ ∈ FP(x). As p⊥ ≤s x
it follows that p⊥ ≤s x⊥ by Lemma 2.2.26. Thus, p⊥ ≤s x⊥ = y⊥ ≤s y and we have
p⊥ ∈ FP(y) and p l p⊥.

ad (2) : Suppose c ∈ F(x) then c is finite and c ≤s x. It follows that c⊥ is finite
and c⊥ ≤s x. From Lemma 2.2.26 it follows that c⊥ ≤s x⊥. As x⊥ = y⊥ we have
c⊥ ≤s x⊥ ≤s y⊥ ≤s y, thus c⊥ ∈ F(y) and c l c⊥.

Lemma 2.2.55. Let A be a lbpd and x, y ∈ A.

(1) If x ↓ y then there exist elements x′, y′ ∈ [x t y]l with x′ ≤s x, y′ ≤s y and
x′ t y′ = x t y.

(2) If x ↑ y then there exist elements x′, y′ ∈ [x u y]l with x ≤c x′, y ≤c y′ and
x′ u y′ = x u y.

Proof. Suppose x, y ∈ A.

ad (1) : Putting x′ :=
⊔

FP(xty)∩FP(x) and y′ :=
⊔

FP(xty)∩FP(y) it follows that
x′ ≤s x, x t y and y′ ≤s y, x t y. From Lemma 2.2.29(2)(ii) we get (x t y)⊥ = x⊥ u y⊥.
Thus, (x t y)⊥ ≤s x⊥. If p ∈ FP((x t y)⊥) then p ∈ FP(x t y) and p ∈ FP(x⊥) ⊆ FP(x).
Thus (x t y)⊥ ≤s x′. Now, as (x t y)⊥ ≤s x′ ≤s x t y using Lemma 2.2.25 we get
x t y l x′. Analogously, it follows that x t y l y′. Thus, x′, y′ ∈ [x t y]l. For showing
x′ t y′ = x t y, consider

x′ t y′ = (
⊔

FP(x t y) ∩ FP(x)) t (
⊔

FP(x t y) ∩ FP(y))

=
⊔

(FP(x t y) ∩ FP(x)) ∪ (FP(x t y) ∩ FP(y))

=
⊔

FP(x t y) ∩ (FP(x) ∪ FP(y)) (†)

=
⊔

FP(x t y) (†)

= x t y

where (†) follows from Lemma 2.2.21 and (‡) holds as p ∈ FP(x t y) implies p ∈ FP(x)
or p ∈ FP(y) (since p is prime).

ad (2) : This follows from (1) by duality.

As final result of this section we show that one can reconstruct a lbpd from the
underlying bistable biorder (cf. [Lai05a]). Thus being a lbpd is property of a bistable
biorder rather than an additional structure.

30



2.3 Bistable maps

Theorem 2.2.56. Let A be a lbpd. Then the involution ¬ : |A| → |A| is uniquely
determined by the extensional order v and the stable order ≤s.

Proof. Suppose A is a lbpd. Given the stable order ≤s we can reconstruct the stable
coherence relation ↑ by

x ↑ y iff ∃z∈A. x, y ≤s z

for all x, y ∈ A.
Since ∀x, y∈A.(x↑y → yvx>) it follows that x> = maxv{y ∈ A | x ↑ y}. Thus as

x l y iff x> = y> we obtain the bistable coherence relation of A. Finally since for all
x ∈ A the set [x]l is a boolean algebra with ¬|[x]l as boolean negation we get ¬x as the

least element of all y ∈ [x]l with x t y = x>.
Thus we have determined the involution ¬ in terms of v and ≤s.

2.3 Bistable maps

In this section we introduce bistable maps. The notion of bistable map is an extension
of Berry’s notion of stable maps. A stable map preserves infima of stably coherent pairs
while in Lemma 2.3.3 we show that bistable maps can be characterised as those stable
maps that are also costable i.e. preserve suprema of costably coherent pairs.

As usual we call a function f : A → B between lbpds (Scott) continuous iff f is
monotone, i.e. for all x, y ∈ A, x v y implies f(x) v f(y) and preserves directed least
upper bounds w.r.t. v, i.e.

f(
⊔

D) =
⊔

f(D)

for all v-directed subsets D ⊆ A.

Definition 2.3.1. Let A and B be lbpds. A function f : A→ B

• preserves stable (resp. costable, resp. bistable) coherence iff for all x, y ∈ A, x ↑ y
(resp. x ↓ y, resp. x l y) implies

f(x) ↑ f(y) (resp. f(x) ↓ f(y), resp. f(x) l f(y))

• preserves stably coherent infima (resp. costably coherent suprema, resp. bistably
coherent infima and suprema) iff for all x, y ∈ A, x ↑ y (resp. x ↓ y, resp. x l y)
implies

f(x u y) = f(x) u f(y)

(resp. f(x t y) = f(x) t f(y),

resp. f(x u y) = f(x) u f(y) and f(x t y) = f(x) t f(y))

A function f : A→ B is called stable (resp. costable, resp. bistable) iff

31



2 Locally Boolean Domains

(1) f is (Scott) continuous,

(2) f preserves stable (resp. costable, resp. bistable) coherence

(3) f preserves stably coherent infima (resp. costably coherent suprema, resp. bistably
coherent infima and suprema)

If A and B are pointed then a bistable map f is called strict if f(⊥A) = ⊥B, and f is
called bistrict if f(⊥A) = ⊥B and f(>A) = >B �

Obviously the identity map on a lbpd is bistable and it is an easy exercise to verify
that the composition of bistable maps is also bistable. The ensuing category of locally
boolean (pre)domains and sequential maps will be denoted by LBD (resp. LBPD).

Lemma 2.3.2. Let A and B be lbpds and f : A→ B a monotone function then t.f.a.e.

(1) f preserves the bistable order

(2) f preserves bistable coherence

(3) f(x)⊥ = f(x⊥)⊥ for all x ∈ A

(4) f(x)> = f(x>)> for all x ∈ A

(5) f preserves stable and costable coherence

(6) f preserves the stable and the costable order

Proof. Suppose f : A→ B is a monotone function.

ad (1) ⇒ (2) : Obvious.

ad (2) ⇒ (3) : Suppose f preserves bistable coherence. As x l x⊥ it follows that
f(x) l f(x⊥). Thus, f(x)⊥ = f(x⊥)⊥.

ad (3) ⇒ (4) : Suppose f(x)⊥ = f(x⊥)⊥ for all x ∈ A. Using negation we get
f(x)> = f(x⊥)> for all x ∈ A. In particular, we have f(x>)> = f((x>)⊥)> = f(x⊥)>

for all x ∈ A. Thus f(x)> = f(x>)> for all x ∈ A.

ad (4) ⇒ (5) : Suppose that f(x)> = f(x>)> holds for all x ∈ A. Suppose x ↑ y,
i.e. x v y> and y v x>. Then f(x) v f(y>) v f(y>)> = f(y)>. Analogously, we get
f(y) v f(x)>, thus f(x) ↑ f(y).

For the preservation of the costable coherence notice that from ∀x∈A. f(x)> = f(x>)>

it follows that ∀x∈A. f(x)⊥ = f(x>)⊥. Thus for all x ∈ A it follows that f(x⊥)⊥ =
f((x⊥)>)⊥ = f(x>)⊥ = f(x)⊥. Suppose x ↓ y, i.e. x⊥ v y and y⊥ v x. Then f(x)⊥ =
f(x⊥)⊥ v f(x⊥) v f(y), and analogously, f(y)⊥ v f(x), thus, f(x) ↓ f(y).

ad (5) ⇒ (6) : Suppose f preserves stable and costable coherence. Suppose x ≤s y,
then f(x) v f(y) as f is monotone, and f(x) ↑ f(y) as f preserves stable coherence.
Analogously, it follows that f preserves the costable order.

ad (6) ⇒ (1) : Suppose preserves the stable and the costable order and x l y. Then
x ↑ y and x ↓ y, thus, f(x) ↑ f(y) and f(x) ↓ f(y), thus, f(x) l f(y).

32



2.3 Bistable maps

Lemma 2.3.3. Let A and B be lbpds and f : A → B be monotone. Then f preserves
bistable coherence and bistably coherent infima and suprema iff f preserves stable and
costable coherence, stably coherent infima and costably coherent suprema.

Proof. The reverse implication is obvious.
For the forward implication suppose that f preserves bistable coherence and bistably

coherent infima and suprema and let x, y ∈ A.
Suppose x ↑ y. As f preserves bistable coherence it follows from Lemma 2.3.2 that f

preserves stable coherence. Thus we get f(x) ↑ f(y). As f is monotone it follows that
f(xu y) v f(x)u f(y). Because of Lemma 2.2.55(2) there exist elements x′, y′ ∈ A with
x′ l y′, x ≤c x′, y ≤c y′ and xu y = x′ u y′. Thus we have f(x)u f(y) v f(x′)u f(y′) =
f(x′ u y′) = f(x u y). Thus we get f(x) u f(y) = f(x u y) as desired. The preservation
of costably coherent suprema follows by duality and using Lemma 2.2.55(1).

As an immediate consequence of Lemma 2.3.3 we get the following characterisation
of bistable maps which will be used implicitly from now on.

Corollary 2.3.4. Let A and B be lbpds and f : A → B a function. Then f is bistable
iff f is stable and costable.

33



2 Locally Boolean Domains

34



3 Locally boolean domains and
Curien-Lamarche games

3.1 Curien-Lamarche games as locally boolean domains

One of the simplest notion of games is the notion of Curien-Lamarche games or Sequen-
tial Data Structures as given in [CCF94, AC98]. The morphism between those games
are given by observably sequential functions. In [CCF94] R. Cartwright, P.L. Curien
and M. Felleisen have shown that Curien-Lamarche games and observably sequential
functions provide a fully abstract model for the language SPCF i.e. an extension of PCF
by error elements and control operators catch. Since we want to interpret an infini-
tary extension of SPCF in locally boolean domains we first show that the categories of
Curien-Lamarche games and observably sequential algorithms and locally boolean do-
mains and bistable maps (cf. section 2.3) are equivalent. We will establish a translation
from locally boolean domains to Curien-Lamarche games and vice versa.

We will only give the basic definition of Curien-Lamarche games. For a detailed
introduction we refer to [Lam92, CCF94, AC98].

Definition 3.1.1. A Curien-Lamarche game (or simply a CL-game from now on) is a
triple A = (C, V, P ) where C is a set of cells, V is a set of values and P is a prefix-closed
set of (finite) sequences whose entries at odd positions are cells and whose entries at even
positions are values. We write (C, V )∗ for the set of all such alternating sequences, QueA

for the set of all s in P whose length is odd and RspA for the set of all s in P whose
length is even. We write Rsp>A for the set RspA ∪ (QueA×{>}).

A strategy of A is a subset x of Rsp>A such that

(1) x is closed under even length prefixes and

(2) q·v1, q·v2 ∈ x implies v1 = v2 for all q ∈ QueA and v1, v2 ∈ V ∪ {>}.

Notice, that we assume w.l.o.g. that > /∈ V . We write Strat(A) for the set of all strategies
of A. �

Thus a strategy x may be understood as (the graph of) a partial function σ : QueA ⇀
V ∪{>} whose domain of definition is closed under odd length prefixes and satisfies the
condition q·σ(q) ∈ Rsp>A for all q ∈ dom(σ).

Given a CL-game A the set Strat(A) ordered by set inclusion is denoted by D(A). A
partial order that is isomorphic to D(A) is called the observably sequential domain gen-
erated by A. We write OSA for the category of Curien-Lamarche games and observably
sequential algorithms (cf. [CCF94, AC98] and section 3.3).

35



3 Locally boolean domains and Curien-Lamarche games

Next we present the object part of an equivalence between the category LBD of locally
boolean domains and bistable maps and the category OSA. For this purpose we first
define an extensional order on the strategies of a CL-game.

Definition 3.1.2. Let A = (C, V, P ) be a CL-game and x a strategy of A and q ∈ QueA

• If q·v ∈ x for some v ∈ V ∪ {>} we write q ∈ Fill(x) (q is filled in x).

• If r ∈ x and q = r·c for some c ∈ C, we say that q is enabled in x.

• If q is enabled in x but q /∈ Fill(x), we write q ∈ Acc(x) (q is accessible from x).

�

Definition 3.1.3. Let A be a CL-game. For elements r, s ∈ Rsp>A we write

r v s iff r is a prefix of s or (s = q·> and q is a prefix of r).

For strategies x, y ∈ Strat(A) we write

x v y iff ∀r∈x.∃s∈y. r v s . �

Lemma 3.1.4. Let A be a CL-game. Then v is a partial order on Rsp>A.

Proof. Obviously, v is reflexive.
Suppose there are r, s ∈ Rsp>A with r v s and s v r. Then (r is a prefix of s or

(s = q·> and q is a prefix of r)) and (s is a prefix of r or (r = q′·> and q is a prefix of
s)). Assuming that r is a proper prefix of s it follows that r = q′·> and q is a prefix of s
which is impossible. Assuming that r 6= s, s = q·> and q is a prefix of r it follows that
s is a proper prefix of r which is also impossible. Thus it follows that r = s and we have
shown that v is antisymmetric.

Suppose there are r, s, t ∈ Rsp>A with r v s and s v t. Then (r is a prefix of s or
(s = q·> and q is a prefix of r)) and (s is a prefix of t or (t = q′·> and q is a prefix of
s)).

Suppose that r is a prefix of s. If s is a prefix of t then obviously r is a prefix of t. If
t = q′·> and q is a prefix of s then r is a prefix of q′ or q′ is a prefix of r. Thus in both
cases we get r v t.

Suppose that s = q·> and q is a prefix of r. If s is a prefix of t then it follows that
s = t. If t = q′·> and q is a prefix of s then q′ is a prefix of r. Thus in both cases we
get r v t.

Thus we have shown that v is transitive.

Lemma 3.1.5. Let A be a CL-game. Then v is a partial order on Strat(A).

Proof. Reflexivity and transitivity of v follow immediately from the definition of v and
Lemma 3.1.4.

For showing that v is antisymmetric suppose there are x, y ∈ Strat(A) with x v y
and y v x. Let r ∈ x. Then there exists a s ∈ y with r v s. If r is a prefix of s then as

36



3.1 Curien-Lamarche games as locally boolean domains

y is closed under even length prefixes (by Def. 3.1.1(1)) it follows that r ∈ y. Otherwise
we have that s = q·> and q is a prefix of r. If s = r then r ∈ y. So, we can assume that
s = q·>, q is a prefix of r and s 6= r.

As y v x there exists r′ ∈ x with s v r′. If s is a prefix of r′ then as s = q·> it follows
that r′ = s. Otherwise we have that r′ = q′·> and q′ is a prefix of s. Thus in both cases
it follows that r′ = q′·> for some q′ and that q′ is a prefix of s. Thus it follows that q′

is a prefix of r. As r 6= s it follows that there exists a v′ 6= > with q′ · v′ is a prefix of
r. Hence it follows from Def. 3.1.1(1) that q′ · v′ ∈ x. Thus we have q′ · v′, q′ · > ∈ x in
contradiction with Def. 3.1.1(2)

Thus it follows that r ∈ y. Hence we get x ⊆ y. Analogously, it follows that y ⊆ x.
Thus we get x = y and it follows that v is antisymmetric.

Definition 3.1.6. Given a CL-game A = (C, V, P ) we define D(A) := (Strat(A),v,¬)
where negation ¬ : Strat(A)→ Strat(A) is defined by

¬x := (x ∩ RspA) ∪ {q·> | q ∈ Acc(x)}

for all x ∈ Strat(A). �

Lemma 3.1.7. Let A be a CL-game and x ∈ D(A). Then

(1) x t ¬x = x ∪ ¬x = x ∪ {q·> | q ∈ Acc(x)} and

(2) x u ¬x = x ∩ ¬x = x ∩ RspA

hold.

Proof. Suppose x ∈ D(A). The second equality of (1) (resp. (2)) is an immediate
consequence of the definition of the negation.

ad (1) : Let y ∈ D(A) with x,¬x v y and r ∈ x ∪ ¬x. Thus r ∈ x or r ∈ ¬x and it
follows that there exists a s ∈ y with r v s as desired.

ad (2) : Obviously, we have x ∩ ¬x v x,¬x. We show that y v x ∩ ¬x whenever
y v x,¬x.

Let y ∈ D(A) with y v x,¬x and r ∈ y. Thus there exist s ∈ x and s′ ∈ ¬x with
r v s, s′. If s ∈ RspA then we get s ∈ x ∩ RspA. Analogously, if s′ ∈ RspA we get
s′ ∈ x∩RspA. In case that s, s′ /∈ RspA we get s = t·c·> and s′ = t′·c′·>. We proceed by
case analysis on r. If r is a prefix of t or t′ we are finished. Otherwise t·c and t′·c′ are
both prefixes of r (because r v s, s′). Thus t·c is a prefix of t′·c′ or vice versa. W.l.o.g.
suppose that t·c is a prefix of t′·c′. As t·c·> = s ∈ x and t′·c′·> = s′ ∈ ¬x it follows from
(1) that t·c·>, t′·c′·> ∈ xt¬x. As t·c is a prefix of t′·c′ it follows from Def. 3.1.1(2) that
t·c = t′·c′. Thus we have t·c·> ∈ x,¬x which contradicts Def. 3.1.6.

Thus for each r ∈ y there exists an s ∈ x ∩ ¬x with r v s and it follows that
x ∩ ¬x = x u ¬x.

Notice that the previous lemma allows for the definition of stable coherence in D(A).
Next we show that infima (resp. suprema) of stably coherent pairs exists and is given
by their intersection (resp. union).

37



3 Locally boolean domains and Curien-Lamarche games

Lemma 3.1.8. Let A be a CL-game and x, y ∈ D(A) with x ↑ y. If q·> ∈ x and r ∈ y
and q is a prefix of r then q·> = r.

Proof. Suppose x, y ∈ D(A) with x ↑ y and q·> ∈ x. It suffices to show that q·v ∈ y
implies v = >. Thus suppose q·v ∈ y. As x v y> there exists a s ∈ y> with q·> v s.
Thus we have either case q·> = s and get v = > by Def. 3.1.1(2), or s = q′·> and q′ is
a proper prefix of q but this contradicts the assumption that q·> ∈ y.

Lemma 3.1.9. Let A be a CL-game and x, y ∈ D(A) with x ↑ y. Then

(1) x t y = x ∪ y and

(2) x u y = x ∩ y

hold.

Proof. Suppose x, y ∈ D(A). Then obviously x ∩ y ∈ D(A). For showing that x ∪ y ∈
D(A) suppose q·v1 ∈ x and q·v2 ∈ y. As x v y> we get v2 = v1 or v2 = >. In case
v2 = > it follows from y v x> that v1 = v2 or v1 = >, hence v1 = > = v2.

ad (1) : Let z ∈ D(A) with x, y v z and r ∈ x∪ y. Thus r ∈ x or r ∈ y and it follows
that there exists a s ∈ z with r v s as desired.

ad (2) : Let z ∈ D(A) with z v x, y and r ∈ z. Thus there exist s ∈ x and s′ ∈ y with
r v s, s′. We proceed by case analysis on r. If r is a prefix of s and s′ then r ∈ x ∩ y.
In case that r is not a prefix of s we have s = q·> and q is a prefix of r. If r is a prefix
of s′ then q is a prefix of s′ and it follows from Lemma 3.1.8 that s = s′. If r is not a
prefix of s′ then s′ = q′·> and q is a prefix of q′ or vice versa. W.l.o.g. suppose that q
is a prefix of q′. As q·> = s ∈ x, q′·> = s′ ∈ y and q is a prefix of q′ it follows from
Lemma 3.1.8 that s = s′ holds.

Thus for each r ∈ z there exists an s ∈ x ∩ y with r v s and it follows that x ∩ y =
x u y.

Thus we have shown that (D(A),v,¬) is a locally boolean order. Next we show that
(D(A),v,¬) is directed complete.

First we have the following characterisation of the stable order of D(A).

Lemma 3.1.10. Let A be a CL-game and x, y ∈ D(A). Then x ≤s y iff x ⊆ y.

Proof. The forward implication is an immediate consequence of Lemma 3.1.9. For the
reverse implication suppose x ⊆ y. Thus, we have x v y.

For showing that y v x> suppose r ∈ y. Then r ∈ x or r /∈ x. Notice that by
Lemma 3.1.7 we have x> = x ∪ {q·> | q ∈ Acc(x)}. Hence, if r ∈ x then r ∈ x>. Hence
we assume that r /∈ x.

Suppose there exists a s ∈ x with r v s. If r is a prefix of s then it follows from
Def. 3.1.1(1) that r ∈ x in contradiction with r /∈ x. If s = q·> and q is a prefix of r
then as x ⊆ y we get s ∈ y, thus it follows from Def. 3.1.1(2) that s = r and hence r ∈ x
in contradiction with r /∈ x.

38



3.1 Curien-Lamarche games as locally boolean domains

Thus we have shown that ¬∃s∈x. r v s holds. Hence there exists a maximal prefix t
of r with t ∈ x (t might be ε). As t ∈ RspA and t is a proper prefix of r there exists a
cell c such that t·c is a prefix of r and t·c ∈ Acc(x). Thus, t·c·> ∈ x>. As r v t·c·> we
get y v x> as desired.

Next we show that (D(A),v,¬) is directed complete.

Lemma 3.1.11. Let A be a CL-game and X ⊆ D(A) a directed subset then
⊔

X exists
and is given by

SX := {r ∈
⋃

X | ¬(∃y∈X, q∈QueA. q·>∈y ∧ r < q·> ∧ q prefix of r)}

Proof. Suppose X ⊆ D(A) is directed. First we show that SX is an element of D(A).
Suppose r ∈ SX and r′ is an even length prefix of r. If there was a q·> ∈ y ∈ X with

r′ < q·> and q′ a prefix of r′ then we get r < q·> and q a prefix of r in contradiction
with r ∈ SX .

Suppose q·v1, q·v2 ∈ SX and v1 6= v2. As X is directed there exists a q′·> ∈ y ∈ X
with q·v1, q·v2 v q′·> and q′ is a prefix of q. Thus as v1 6= > or v2 6= > it follows that
q·v1 /∈ SX or q·v2 /∈ SX .

Next we show that SX is the supremum of X.
First notice the following fact. Let x ∈ X and r ∈ x. Then r ∈ SX or there exists a

y ∈ X with q·> ∈ y and q is a prefix of r. Iterating this argument it follows that r ∈ SX

or there exists a y ∈ X and q·> ∈ y with q·> ∈ SX and q is a prefix of r. (Since r has
only finitely many prefixes we eventually get such a y ∈ X and a q·> ∈ y.)

Hence it follows that for all x ∈ X and r ∈ x there exists a s ∈ SX with r v s. Thus
SX is an upper bound of X.

Finally let y ∈ D(A) with x v y for all x ∈ X. If r ∈ SX then r ∈ x for some x ∈ X,
thus there exists a s ∈ y with r v s. Hence it follows that SX v y.

Given an element r ∈ Rsp>A then we write r̂ for the set of even length prefixes of r.
Obviously, it follows that r̂ ∈ Strat(A).

Lemma 3.1.12. Let A be a CL-game. Then p ∈ FP(D(A)) iff p = r̂ for a uniquely
determined element r ∈ Rsp>A.

Proof. Suppose x ∈ D(A). If |x| is not finite then as r̂ ⊆ x for all r ∈ x it follows from
Lemma 3.1.10 that x /∈ F(D(A)). On the other hand, if |x| is finite then x has at most
finitely many subsets hence it follows from Lemma 3.1.10 that x ∈ F(D(A)).

So, suppose |x| is finite and suppose that there does not exist an element r ∈ Rsp>A
with r̂ = x. As x is finite there exists a maximal sequence s in x. Thus it follows that
x \ {s} and ŝ are stably coherent elements of D(A) with (x \ {s}) t ŝ = x.

Assuming that x v x \ {s} holds. Then as x \ {s} ⊆ x it follows that x \ {s} ≤s x,
hence x \ {s} v x, thus we get x = x \ {s} as contradiction.

39



3 Locally boolean domains and Curien-Lamarche games

Assuming that x v ŝ holds. Let r ∈ x and suppose q·> ∈ ŝ such that q is a prefix of
r. Then it follows that q·> = s and from Lemma 3.1.8 it follows that r = s. Thus is
x v ŝ then for all r ∈ x it follows that r = s or r is a prefix of s. Hence it follows that
x = ŝ′ for some prefix s′ of s in contradiction with the assumption that x is not of the
form r̂ for some r ∈ Rsp>A.

Thus it follows that x is not prime.

Now, suppose p = r̂ for some r ∈ Rsp>A. Let x, y ∈ D(A) with x ↑ y or x ↓ y and
p v x t y.

In case of x ↑ y there exists an s ∈ x t y = x ∪ y with r v s. Hence, p v x or p v y.
In case of x ↓ y then x t y = ¬(¬x u ¬y) = ¬(¬x ∩ ¬y). Thus there exists an

s ∈ ¬(¬x ∩ ¬y) with r v s. If s = q·v with v 6= > then s ∈ ¬x ∩ ¬y, thus s ∈ ¬x,¬y,
thus s ∈ x, y and it follows that p v x or p v y.

If s = r·c·> then r ∈ ¬x ∩ ¬y and r·c·> /∈ ¬x ∩ ¬y, thus w.l.o.g. r·c·> /∈ ¬x and
r ∈ ¬x, thus r·c·> ∈ ¬¬x = x and it follows that p v x.

Hence we can identify the finite prime elements of D(A) with the set Rsp>A.

Lemma 3.1.13. Let A be a CL-game and x ∈ FP(D(A)). Then x =
⊔

FP(x).

Proof. Let x ∈ D(A). It is easy to check that FP(x) = {r̂ | r ∈ x}. Thus
⊔

FP(x) =
x.

Lemma 3.1.14. Let A be a CL-game and p ∈ FP(D(A)). Then p is compact (w.r.t.
v).

Proof. Suppose p ∈ FP(D(A)). Then by Lemma 3.1.12 there exists a r ∈ Rsp>A with
r̂ = p. Let X ⊆ D(A) be directed with p v

⊔
X. Thus there exists a s ∈

⊔
X with

r v s. Using Lemma 3.1.11 it follows that there exists a x ∈ X with s ∈ x and hence
p v x.

Theorem 3.1.15. Let A be a CL-game. Then D(A) is a locally boolean domain.

Proof. From Lemma 3.1.7, Lemma 3.1.9 and Lemma 3.1.11 it follows that D(A) is
a complete lbo. From Lemma 3.1.13 and Lemma 3.1.14 ensure that D(A) fulfils the
requirements (1) and (2) of Def. 2.2.3.

3.2 Locally boolean domains as Curien-Lamarche games

In this section we show how to construct a CL-game from a locally boolean domain. For
this purpose we divide the set of finite prime elements of a lbd into a set of cells and a
set of values. The set of positions of the CL-game will be derived from the tree structure
of the finite prime elements.

Notice that we will write ≺s to denote the neighbourhood relation induced by the
stable order ≤s, i.e. x ≺s y iff x ≤s y, x 6= y and there does not exist an element z with
x ≤s z ≤s y and x 6= z 6= y.

40



3.2 Locally boolean domains as Curien-Lamarche games

Definition 3.2.1. Let A be a lbpd. A cell in A is an element c ∈ FP(A) with c 6= c⊥.
We write Cell(A) for the set of cells in A. �

Lemma 3.2.2. Let A be a lbpd, p ∈ FP(A) and a ∈ A with a ∈ At(a). If a⊥ ≺s p v a
then a ∈ Cell(A).

Proof. Let p ∈ FP(A), a ∈ A with a ∈ At(a) and a⊥ ≺s p v a. From Lemma 2.2.40 it
follows that there exists a unique q ∈ FP(a) with qt a⊥ = a. As p v a = qt a⊥ and p is
prime we get p v q since p 6v a⊥. Thus a⊥ < q and as qta⊥ = a we get q = a 6= a⊥.

Lemma 3.2.3. Let A be a lbpd and p ∈ FP(A). If p is not ≤s-minimal then there exists
a unique cell c ∈ Cell(A) with c⊥ ≺s p v c. We also write C(p) for this unique cell c.

Proof. Let p ∈ FP(A) such that p is not ≤s-minimal. Thus, it follows from Thm. 2.2.43
that there exists a unique d ∈ FP(A) with d ≺s p. Further, by Lemma 2.2.38 it follows
that d = d⊥. As d⊥ = d ≺s p it follows that d⊥ < p v d>. Thus d⊥ < d>. Thus
At(d) 6= ∅. Hence it follows from Lemma 2.2.42 that there exist an atom a ∈ At(d) with
p v a and using Lemma 3.2.2 it follows that a ∈ Cell(A).

For showing uniqueness of a suppose there exists a cell a′ ∈ Cell(A) with a 6= a′ and
a′⊥ ≺s p v a′. Then it follows from Thm. 2.2.43 that a′⊥ = a⊥. Thus we have a′⊥ l a⊥
and as p v a, a′, a 6= a′ and a, a′ ∈ At(a′) it follows that p v au a′ = a′⊥ in contradiction
with a′⊥ ≺s p.

Definition 3.2.4. Let A be a lbpd, c ∈ Cell(A) and x ∈ A. We say that x fills c with
value v iff v ∈ FP(x) and c⊥ ≺s v v c. We say that x fills c iff there exists a v ∈ FP(x)
with c⊥ ≺s v v c. We define

Fill(x) := {c ∈ Cell(A) | x fills c} .

We call a cell c accessible from x iff c⊥ ≤s x and x does not fill c. We define

Acc(x) := {c ∈ Cell(A) | c is accessible from x} . �

Next we collect a few properties of the notion of filling.

Lemma 3.2.5. Let A be a lbpd, c ∈ Cell(A) and x ∈ A with c⊥ ∈ FP(x). Then x does
not fill c iff x v ¬c.

Proof. Due to the assumption c⊥ ∈ FP(x) we have x v c>. Thus, for every p ∈ FP(x)
we have p v c> = c t ¬c and as p is prime that p v c or p v ¬c.

The statement x v ¬c is equivalent to ∀p∈FP(x).∃q∈FP(¬c). p ≤c q which in turn is
equivalent to the negation of ∃p∈FP(x).∀q∈FP(¬c). p 6≤c q. We are finished if we can
show that for all p ∈ FP(x) it holds that

p fills c iff ∀q∈FP(¬c). p 6≤c q

as then x v ¬c iff ¬∃p ∈ FP(x). (p fills c), i.e. iff x does not fill c.

41



3 Locally boolean domains and Curien-Lamarche games

Suppose x fills c, i.e. there exists a p ∈ FP(x) with c⊥ ≺s p v c. Suppose q ∈ FP(¬c)
with p ≤c q. Then p v c and p v q v ¬c and thus c⊥ v p v c u ¬c = c⊥, i.e. p = c⊥
contradicting the assumption c⊥ ≺s p.

Suppose that

∀q ∈ FP(¬c). p 6≤c q (†)

holds. Then it cannot hold that p ≤s c⊥ as then p ∈ FP(¬c) which implies p 6≤c p by
(†). As p v x v c> it follows that p v c or p v ¬c.

Next we show that p v ¬c cannot hold. Suppose p v ¬c. Then as p is finite prime
there is a q ∈ FP(¬c) with p v q. By Thm. 2.2.48 we have p ≤s q or p ≤c q. Thus we
have to consider the cases p ≤c q and p <s q (since p = q implies p ≤c q).

If p ≤c q holds then using (†) we get a contradiction since q ∈ FP(¬c).
If p <s q holds then p = p⊥ v q⊥ v c⊥ and, therefore, by Lemma 2.2.24 it follows

that p ≤s c⊥ in contradiction with c⊥ ≺s p.
Thus we have shown p 6v ¬c and since p v c or p v ¬c it follows that p v c, i.e. p <s c

or p ≤c c. If p <s c then p⊥ = p v c⊥ and thus p ≤s c⊥ which we have already seen
to be impossible. Thus we have p ≤c c, i.e. p v c and c⊥ v p⊥. Thus c⊥ ≤s p⊥ ≤s p.
It follows that c⊥ 6= p as otherwise p ≤s c⊥ which we have already refuted. Thus we
have shown that c⊥ <s p v c holds and using Thm. 2.2.43 it follows that there exists a
v ∈ FP(p) (namely p itself) with c⊥ ≺s v v c, i.e. p fills c as desired.

Lemma 3.2.6. Let A be a lbpd, p ∈ FP(A) and c ∈ Cell(A). Then p fills c iff c⊥ <s p v
c.

Proof. For the forward implication suppose p fills c, i.e. there exists an element v ∈ FP(p)
with c⊥ ≺s v v c. Thus we get that c⊥ ∈ FP(p) and it follows from Lemma 3.2.5 that
p 6v ¬c. As c⊥ <s p it follows that p v c> = c t ¬c and as p is prime we get p v c or
p v ¬c. Thus p v c since p v ¬c is impossible.

For the reverse implication suppose c⊥ <s p v c. As FP(p) is finite, c⊥ ∈ FP(p) and
c⊥ <s p there exists an element v ∈ FP(p) with c⊥ ≺s v ≤s p v c. Thus p fills c.

Lemma 3.2.7. Let A be a lbpd and p, q ∈ FP(A). If p fills cell c with value v and p ≤s q
then q also fills c with v.

Proof. Suppose p fills cell c with value v. Then v ∈ FP(p). If p ≤s q then v ∈ FP(p) ⊆
FP(q), thus q fills c with v.

Lemma 3.2.8. Let A be a lbpd and c a cell in A. If p1, p2 ∈ FP(A) with p1 ↑ p2 that
both fill c then p1 u p2 also fills c.

Proof. As p1 ↑ p2 their infimum p1 u p2 exists and is an infimum also w.r.t. ≤s. As p1

and p2 both fill the cell c we have c⊥ ≤s p1up2 v c. It remains to show that c⊥ 6= p1up2.
Suppose c⊥ = p1 u p2. Then c v c> = ¬p1 t ¬p2. As c is prime we have c v ¬p1 or
c v ¬p2, i.e. p1 v ¬c or p2 v ¬c. As p1, p2 v c it follows that p1 v c⊥ or p1 v c⊥. As
c⊥ v p1, p2 we have p1 = c⊥ or p2 = c⊥ in contradiction with the assumption that both
p1 and p2 fill c.

42



3.2 Locally boolean domains as Curien-Lamarche games

Lemma 3.2.9. Let A be a lbpd and c a cell in A. Let p1, p2 ∈ FP(A) that both fill c and
are ≤s-minimal with this this property. Then p1 ↑ p2 implies p1 = p2.

Proof. Suppose p1 and p2 are finite primes that both fill c and are ≤s-minimal with this
property. Assume p1 ↑ p2. Then by Lemma 3.2.8 the element p1up2 fills c as well. Thus,
as p1 and p2 are ≤s-minimal primes filling c it follows that p1 = p1 u p2 = p2.

As an immediate consequence of the above lemmas we get:

Corollary 3.2.10. Let A be a lbpd, c ∈ Cell(A) and x ∈ A. Then x fills c with at most
one value.

Corollary 3.2.11. Let A be a lbpd, c ∈ Cell(A) and x, y ∈ A with x ↑ y. If x fills c with
value v and y fills c with value v′ then v = v′.

Further for elements x and y that belong to the same connected component w.r.t. ≤s,
i.e. FP(x) ∩ FP(y) 6= ∅, we get the following characterisation of stable coherence.

Lemma 3.2.12. Let A be a lbpd and x, y ∈ A with FP(x) ∩ FP(y) 6= ∅. Then x ↑ y iff
each cell c filled by x and y is filled by both with the same value.

Proof. Suppose x, y ∈ A with FP(x) ∩ FP(y) 6= ∅.
The forward implication is given in Cor. 3.2.11.
For the reverse implication suppose that each cell c filled by x and y is filled by both

with the same value. Let p ∈ FP(x). We show that p v q>.
If p is ≤s-minimal then as FP(x) ∩ FP(y) 6= ∅ it follows that p ∈ FP(y) and thus

p ∈ FP(y>). Hence we can assume that p is not ≤s-minimal. Thus by Lemma 3.2.2
there exists a unique cell c with c⊥ ≺s p v c, thus x fills c with p. We proceed by case
analysis:

Suppose y fills c. Then y fills c with p and it follows that p ∈ FP(y), thus p ∈ FP(y>).
Suppose y does not fill c. As p is finite it follows using Thm. 2.2.43 that there exists a

q ∈ FP(y) that is ≤s-maximal with q ≤s p. As q <s p there is a v ∈ FP(x) with q ≺s v,
i.e. there is a cell c′ filled by x with v and c′⊥ = q. As v /∈ FP(y) it follows that c′ is
not filled in y. Using Lemma 3.2.5 we get y v ¬c′. Thus, c′ v ¬y v y>. As p fills c′ it
follows that p v c′, thus p v y>.

Thus we have shown that ∀p∈FP(x). p v y>. Hence we get x v y>.
Analogously, one can show that y v x> holds, thus we get x ↑ y as desired.

Lemma 3.2.13. Let A be a lbpd, x ∈ A, c ∈ Cell(A) and x fills c with value v. Then
either v = v⊥ or v = c.

Proof. Suppose x fills c with v. Then c⊥ ≺s v v c. Assuming v 6= c it follows that
v /∈ [c]l since c is an atom. Thus c⊥ 6= v⊥ and as c⊥ <s v it follows that c⊥ <s v⊥ ≤s v
and hence v⊥ = v since c⊥ ≺s v.

Lemma 3.2.14. Let A be a lbpd, c ∈ Cell(A) and x, y ∈ A with x v y and c⊥ ∈
FP(x) ∩ FP(y). If x fills c with value v then y fills c with v or c.

43



3 Locally boolean domains and Curien-Lamarche games

Proof. Suppose c ∈ Cell(A), x, y ∈ A with x v y, c⊥ ∈ FP(x) ∩ FP(y) and x fills c with
value v. Then by Lemma 3.2.5 it follows that x 6v ¬c, thus y 6v ¬c and using Lemma 3.2.5
again we get that y fills c. Thus, there exists a v′ ∈ FP(y) with c⊥ ≺s v′ v c. If v′ = c we
are done. Hence we assume that v′ 6= c. Thus, we have v′ = v′⊥ by Lemma 3.2.13 and it
follows that v′ ∈ FP(y⊥) ⊆ FP(¬y). As x ↑ ¬y it follows that v ↑ v′ and by Lemma 3.2.9
we get v = v′ as desired.

Using the above lemma we get the following characterisation of the extensional order
of lbds:

Lemma 3.2.15. Let A be a lbd and x, y ∈ A. Then x v y iff

∀c∈Cell(A).∀v∈FP(A). (x fills c with v →
(y fills c with v ∨ ∃c′∈Cell(A). (v fills c′ ∧ y fills c′ with c′))) .

Proof. Suppose x, y ∈ A.
For the forward implication suppose that x v y, c is a cell and x fills c with v. Thus

v ∈ FP(x) and it follows from Thm. 2.2.49 that there exists a q ∈ FP(y) with v ≤c q.
If v ≤s q then v ∈ FP(y) and it follows that y fills c with v. Hence we can assume
that v 6≤s q. Thus v <c q. Thus q⊥ v v⊥ and v < q. As q⊥ v v⊥ it follows that
q⊥ ≤s v⊥ ≺s v. Thus we get q⊥ <s v v q, i.e. q is a cell filled by v and y fills q with q.

For the reverse implication we show that ∀p∈FP(x).∃q∈FP(y). pvq holds.
Suppose p ∈ FP(x) and w.l.o.g. p 6= ⊥. Then there exists a cell c filled by x with value

p and we have to consider two cases:

(1) y fills c with p : Then p ∈ FP(y) and we are finished.

(2) ∃c′∈Cell(A). (p fills c′∧y fills c′ with c′) : Then by Lemma 3.2.6 we get that p v c′.
As y fills c′ with c′ we have c′ ∈ FP(y). Thus p v y as desired.

Next we show how to construct a CL-game from a lbd. We will interpret the elements of
a lbd as strategies of the associated CL-game. Notice that for cells c we have c⊥ ≺s c v c
and we interpret c ∈ FP(x) as the strategy x fills the cell c with >. The following notion
will be useful:

Definition 3.2.16. Let A be a lbd and p ∈ FP(A) with p 6= ⊥. We write ←−p for the
sequence

• c1v1 . . . cnvn iff p = p⊥ and vn = p

• c1v1 . . . cn−1vn−1cn iff p 6= p⊥ and cn = p

with c1⊥ = ⊥, ci⊥ ≺s vi v ci for all i ∈ {1, . . . , n} and vi = ci+1⊥ for all i ∈
{1, . . . , n−1}. We call ←−p the position generated by p.
Notice that Lemma 3.2.3 and Thm. 2.2.43 ensure that ←−p is well defined. �

44



3.2 Locally boolean domains as Curien-Lamarche games

Theorem 3.2.17. Let A be a lbd. Then G(A) := (CA, VA, PA) with

• CA := Cell(A)

• VA := FP(A) \ ({⊥} ∪ Cell(A))

• PA := {←−p | p ∈ FP(A) \ {⊥}}

is a CL-game.

Proof. The set of positions PA is obviously closed under non-empty prefixes. Thus
(CA, VA, PA) is a CL-game.

Lemma 3.2.18. Let A be a lbd and p, q ∈ FP(A). If ←−p ∧←−q ∈ RspG(A) then p ↑ q.

Proof. Suppose p, q ∈ FP(A) with ←−p ∧ ←−q ∈ RspG(A). W.l.o.g. we assume that p 6= q.
Thus there exists a response r ∈ RspG(A) and c, d ∈ Cell(A) with c 6= d such that r·c
is a prefix of ←−p and r·d is a prefix of ←−q . It follows from Def. 3.2.16 that c⊥ = d⊥.
Now using Lemma 3.2.3 and Thm. 2.2.43 it follows that p does not fill the cell d, and
as d⊥ = c⊥ ∈ FP(p) it follows from Lemma 3.2.5 that p v ¬d. Thus d v ¬p v p>, and
since q fills d using Lemma 3.2.6 we get q v d v ¬p v p>. Analogously, we can show
that p v q> holds. Thus p ↑ q as desired.

Lemma 3.2.19. Let A be a lbd and x ∈ A. Then

Sx :=
{←−p | p ∈ FP(x) ∩ VA

}
∪
{←−c ·> | c ∈ FP(x) ∩ CA

}
is an element of G(A). Further, |G(A)| = {Sx | x ∈ A}.

Proof. Suppose x ∈ A. Then it follows from Thm. 2.2.43 that Sx is closed under response
prefixes. Let r1, r2 ∈ Sx with r1 ∧ r2 6= ε. Suppose r1 ∧ r2 is not a response, i.e. r1 ∧ r2

is a query q = r′·c. Thus there exist v1, v2 ∈ V such that q·v1 is a prefix of r1, q·v2 is a
prefix of r2 and v1 6= v2. As v1, v2 ∈ FP(x) it follows that v1 ↑ v2, and since v1 and v2

both fill c and are minimal with this property it follows from Lemma 3.2.9 that v1 = v2

in contradiction with v1 6= v2.
For showing that each strategy of G(A) is of the form Sx for some x ∈ X suppose

s ∈ G(A). Let
FPs := {v ∈ VA | ←−v ∈ s} ∪ {c ∈ CA | ←−c ·> ∈ s} .

we will prove that ↑FPs and SF
FPs = s. Suppose p, q ∈ FPs and w.l.o.g. we assume

p 6= p′. As s is a strategy it follows that ←−p ∧ ←−q ∈ RspG(A). Hence, it follows from
Lemma 3.2.18 that p ↑ q. For showing that SF

FPs = s suppose r ∈ s. Thus there exists
a p ∈ FP(A) with r = ←−p or r = ←−p ·>. In either case it follows that p ∈ FPs. Thus
p ∈ FP(

⊔
FPs), thus r ∈ SF

FPs . For the reverse inclusion suppose r ∈ SF
FPs . Hence,

there exists a p ∈ FP(
⊔

FPs) with r = ←−p or r = ←−p ·>. Thus, there exists a p′ ∈ FPs

with p ≤s p′ and as s is closed under response prefixes it follows that p ∈ FPs. Hence,
we have r ∈ s as desired.

45



3 Locally boolean domains and Curien-Lamarche games

3.3 Observable sequentiality vs. bistability

In this section we show that the notion of bistable maps between lbpds coincides with
the notion of observably sequential maps between CL-games as introduced in [CCF94,
Cur05]. For this purpose we show that bistable maps are exactly those maps that
are sequential in the sense of Milner-Vuillemin (cf. [Mil77, Vui74, KP93]) and error
propagating.

Definition 3.3.1. Let A and B be lbpds and f : A → B a function that is continuous
w.r.t. ≤s. If c′ is a cell accessible from f(x) and there exists a y ∈ A with x ≤s y and
f(y) fills c′ then a sequentiality index for f at (x, c′) is a cell c accessible from x such
that for every y with x ≤s y if f(y) fills c′ then y fills c. �

Definition 3.3.2. Let A and B be lbpds. A function f : A → B is called sequential
in the sense of Milner-Vuillemin (or simply MV-sequential), iff f is continuous w.r.t.
≤s and whenever x ≤s y, c′ ∈ Acc(f(x)) and f(y) fills c′ then there exists a unique
sequentiality index for f at (x, c′).

We say that a MV-sequential function f is error propagating iff for any sequentiality
index q at (x, q′), if q′ is filled by f(y) for some y with x <s y then f(x t q) fills q′ with
q′.

We further say that f is observably sequential if f is MV-sequential and error prop-
agating. �

In the following sequence of lemmas we show that a bistable map between locally
boolean predomains is also observably sequential.

Lemma 3.3.3. Let A and B be lbpds and f : A→ B a bistable map. Suppose x, y ∈ A
with x ≤s y and c′ ∈ Acc(f(x)) such that f(y) fills c′. Then there exists a unique
a ∈ At(x) with f(a) 6v ¬c′ and for this unique a it holds that f(¬a) v ¬c′.

Proof. Suppose x, y ∈ A with x ≤s y and c′ ∈ Acc(f(x)) such that f(y) fills c. As
c′⊥ ≤s f(x) ≤s f(y) and f(y) fills c′ it follows from Lemma 3.2.5 that f(y) 6v ¬c′. As
x ≤s y we get y v x>, thus f(x>) 6v ¬c′ (as otherwise f(y) v ¬c′). As f(x>) =
f(
⊔

At(x)) =
⊔

a∈At(x) f(a) (because lAt(x) and f is bistable) there exists an atom

a ∈ At(x) with f(a) 6v ¬c′.
Suppose there exists an atom a′ ∈ At(x) with a′ 6= a and f(a′) 6v ¬c′. As c′ is prime,

f(a) l f(a) and f(a), f(a′) 6v ¬c′ it follows from Lemma 2.2.2 that f(a) u f(a′) 6v ¬c′.
Thus f(x⊥) = f(a u a′) = f(a) u f(a′) 6v ¬c′ and it follows that f(x) 6v ¬c′. By
Lemma 3.2.5 it follows that f(x) fills c′ in contradiction with c′ ∈ Acc(f(x)).

Since c′ ∈ Acc(f(x)) it follows from Lemma 3.2.5 that f(x) v ¬c′. Thus we have
f(a) u f(¬a) = f(a u ¬a) = f(x⊥) v f(x) v ¬c′ and as c′ is prime it follows that
f(a) v ¬c′ or f(¬a) v ¬c′. As f(a) v ¬c′ is impossible it follows that f(¬a) v ¬c′ as
desired.

Lemma 3.3.4. Let A and B be lbpds. If f : A → B is bistable then f is observably
sequential.

46



3.3 Observable sequentiality vs. bistability

Proof. Suppose f : A→ B is bistable.
First we show that f is continuous w.r.t. ≤s. Let X ⊆ A be directed w.r.t. ≤s. Then

X ⊆ A be directed w.r.t. v and as f is continuous it follows that f(
⊔

X) =
⊔

f [X]. As
f is monotone w.r.t. ≤s it follows that f [X] is directed w.r.t. ≤s. Thus it follows from
Lemma 2.2.13 that

⊔
f [X] is also the supremum of f [X] w.r.t. ≤s.

Next we show that f is MV-sequential. Suppose x, y ∈ A with x ≤s y and c′ ∈
Acc(f(x)) such that f(y) fills c′. Then by Lemma 3.3.3 there exists a unique atom
a ∈ At(x) with

f(a) 6v ¬c′ (†)

and for this unique a it holds that

f(¬a) v ¬c′ (‡)

From Lemma 2.2.40 it follows that there exists a unique c ∈ FP(a) with a = x⊥ t c and
for this c it holds that c 6= c⊥. Thus c is a cell. We show that c is a sequentiality index
for f at (x, c′).

First notice that for all z ∈ A with x⊥ ≤s z it holds that z v x>, thus

z v ¬a ⇔ z v ¬(x⊥ t c)

⇔ z v x> u ¬c

⇔ z v x> and z v ¬c
⇔ z v ¬c

(§)

Suppose x 6v ¬c. Then by (§) we get x 6v ¬a. Thus as a ∈ At(x) it follows that
a ≤b x. As f(a) 6v ¬c′ it follows that f(x) 6v ¬c′. Thus by Lemma 3.2.5 it follows that
f(x) fills c′ in contradiction with c′ ∈ Acc(f(x)). Hence we have x v ¬c, and as c ≤s a
we have c⊥ ≤s a⊥ = x⊥ ≤s x. Thus from Lemma 3.2.5 it follows that x does not fill c.
Hence as c⊥ ≤s x we get c ∈ Acc(x).

Let z ∈ A with x ≤s z and suppose f(z) fills c′. Then from Lemma 3.2.5 we get
f(z) 6v ¬c′. As f(¬a) v ¬c′ it follows that z 6v ¬a. Thus by (§) it follows that z 6v ¬c,
and as c⊥ ≤s x ≤s y it follows from Lemma 3.2.5 that z fills c. Thus we have shown
that c is a sequentiality index for f at (x, c′).

For showing uniqueness of this sequentiality index suppose there exists a sequentiality
index d for f at (x, c′) with d 6= c. As c′⊥ ≤s f(x) it follows that c′⊥ ≤s f(x)⊥ = f(a)⊥ ≤s

f(a) and as f(a) 6v ¬c′ it follows from Lemma 3.2.5 that f(a) fills c′. Thus a fills d with
some value v.

Suppose v = v⊥. Then as v ≤s a (since a fills d with v) it follows that v⊥ ≤s a⊥. Thus
v = v⊥ ≤s a⊥ = x⊥ ≤s x. Thus x fills d in contradiction to d ∈ Acc(x). Thus we have
v 6= v⊥ and it follows from Lemma 3.2.13 that v = d. Thus d ∈ FP(a). As x⊥ ↑ d it
follows from Lemma 2.2.41 that x⊥ t d ∈ At(x). Thus as x⊥, d ≤s a we get x⊥ t d = a.
From Lemma 2.2.40 it follows that d is the unique element in FP(a) with d 6= d⊥ and
a = d t x⊥ in contradiction to c ∈ FP(a), c 6= c⊥, a = c t x⊥ and c 6= d.

47



3 Locally boolean domains and Curien-Lamarche games

Finally, for showing that f is error propagating notice that we have already shown
that f(a) fills c′. Thus there exists a v′ ∈ FP(f(a)) with c′⊥ ≺s v′ v c′. As a l x
and f is bistable it follows that f(a) l f(x) thus f(a)⊥ = f(x)⊥. Suppose v′ = v′⊥
then v′ = v′⊥ ≤s f(a)⊥ = f(x)⊥ ≤s f(x), thus v′ ∈ FP(f(x)) in contradiction to
c′ ∈ Acc(f(x)). Thus v′ 6= v′⊥ and it follows that v′ = c′. As c′ ∈ FP(f(a)) and
a = x⊥ t c ≤s x t c it follows that c′ ∈ FP(f(x t c)). Thus f(x t c) fills c′ with c′.

In the next lemma we show that an observably sequential map between locally boolean
predomains is also bistable.

Lemma 3.3.5. Let A and B be lbpds and f : A→ B. If f is observably sequential then
f is bistable.

Proof. Suppose f is observably sequential.

f is monotonic w.r.t. v : Suppose x v y and p ∈ FP(f(x)). We show that p v f(y)
holds.

As f is continuous w.r.t. ≤s there exists an e ∈ F(x) with p ≤s f(e). Since x v y by
Thm. 2.2.50 it follows that there exists a d ∈ F(y) with e ≤c d. Let s :=

⊔
(FP(e)∩FP(d)).

(Since e v d it follows from Lemma 2.2.32 that FP(e) ∩ FP(d) 6= ∅, thus s exists.)

If p v f(s) then p v f(s) ≤s f(d) ≤s f(y).

Hence we can assume that p 6v f(s). Then p /∈ FP(f(s)). Let q be the greatest
element w.r.t. ≤s of {q ∈ FP(p) | q ≤s f(s)} (q exists because FP(p) is finite and by
Thm. 2.2.43 linearly ordered w.r.t. ≤s.) As q <s p we have q⊥ = q. Then there exists a
unique cell c′ ∈ Cell(B) such that c′⊥ = q and c′ is filled by p and f(e) with some value w.
As c′⊥ = q ≤s f(s) ≤s f(e) it follows from Cor. 3.2.11 that if f(s) fills c′ then f(s) fills
c′ with w which is impossible since otherwise q = c′⊥ <s w ≤s p, f(s) in contradiction to
maximality of q. Thus c′ ∈ Acc(f(s)). Since f is MV-sequential there exists a unique
sequentiality index c for f at (s, c′). As f(e) fills c′ and s ≤s e it follows that e fills c
with some value v. As c⊥ ≤s s ≤s d it follows from Lemma 3.2.14 that d fills c with v
or c. If d fills c with v then since both e and d fill c with v and s =

⊔
(FP(e) ∩ FP(d))

it follows that s fills c with v in contradiction to c ∈ Acc(s). Thus d fills c with c from
which it follows that c′ ≤s f(c) ≤s f(d) as f is error propagating. As p fills c′ it follows
from Lemma 3.2.6 that p v c′. Thus p v c′ ≤s f(c) ≤s f(d) ≤s f(y).

f is continuous w.r.t.v : Let X ⊆ A be directed w.r.t.v. As we already know that f is
monotone w.r.t. v it follows that f(X) is directed,

⊔
f(X) exists and

⊔
f(X) v f(

⊔
X).

For showing the reverse inequality let p ∈ FP(f(
⊔

X)). As f is continuous w.r.t. ≤s

there exists an element e ∈ F(
⊔

X) with p ≤s f(e). As e is compact there exists a x ∈ X
with e v x, and as f is monotone w.r.t. v we get f(e) v f(x). Thus, we have that
p ≤s f(e) v f(x) v

⊔
f(X).

f preserves bistable coherence: By Lemma 2.3.2 it suffices to show that f(x⊥)⊥ =
f(x)⊥ for all x ∈ A. Suppose x ∈ A. As f is monotone w.r.t. ≤s it follows that
f(x⊥) ≤s f(x), thus f(x⊥)⊥ ≤s f(x)⊥. For showing the reverse inequality suppose
p ∈ FP(f(x)⊥). Then we have p = p⊥. If p is ≤s-minimal we get p ≤s f(x⊥)⊥ since

48



3.3 Observable sequentiality vs. bistability

p ↑ f(x⊥)⊥. Hence we can assume that p is not ≤s-minimal. Thus, there exists a unique
cell c with c⊥ ≺s p v c, i.e. p fills c with value p.

We show that f(x⊥)⊥ fills c′. Suppose f(x⊥)⊥ does not fill c. Hence p /∈ FP(f(x⊥)⊥).
Let q be the greatest element w.r.t. ≤s of {q ∈ FP(p) | q ≤s f(x⊥)⊥} (q exists because
p ↑ f(x⊥)⊥ and FP(p) is finite and by Thm. 2.2.43 linearly ordered w.r.t. ≤s.) As
q ≤s f(x⊥)⊥ we get q⊥ <s q and as q <s p it follows that there exists a cell c′ with
c′⊥ = q that is filled by p value v′. By maximality of q it follows that v′ /∈ FP(f(x⊥)⊥).
Thus as p ↑ f(x⊥)⊥ it follows from Cor. 3.2.11 that f(x⊥)⊥ does not fill c′. As c′⊥ = q ∈
FP(f(x⊥)⊥) we get c′ ∈ Acc(f(x⊥)⊥).

Suppose that f(x⊥) fills c′ with value w′. If w′ = w′
⊥ then from w′ = w′

⊥ ≤s f(x⊥) we
get w′ ≤s f(x⊥)⊥ which is impossible since f(x⊥)⊥ does not fill c′. Assuming w′ 6= w′

⊥
then w′ = c′ and as w′ = c′ ≤s f(x⊥) and f is monotone w.r.t. ≤s it follows that
c′ ∈ FP(f(x)). As p⊥ = p ∈ FP(f(x)) fills c′ with value v′ = v′⊥ it follows that f(x) fills
c′ with v′ 6= c′ and we have a contradiction.

Thus as c′⊥ ≤s f(x⊥)⊥ ≤s f(x⊥) and f(x⊥) does not fill c′ we have c′ ∈ Acc(f(x⊥)).
As f is observably sequential and p fills c′ and p ≤s f(x)⊥ it follows that there exists a
unique sequentiality index r for f at (x⊥, c′).

As f(x)⊥ and therefore also f(x) fills c′ it follows that x fills r with some value u.
Assuming u = u⊥ it follows from u = u⊥ ≤s x that u ≤s x⊥. Hence x⊥ fills r in
contradiction with r ∈ Acc(x⊥). Thus u⊥ 6= u = r and it follows that r ∈ FP(x). As f
is error propagating and x⊥ ≤s x and f(x) fills c′ it follows that f(x⊥t r) fills c′ with c′.
Thus c′ ∈ FP(f(x⊥ t r)) and as x⊥, r ≤s x, thus x⊥ t r ≤s x, and f is monotone w.r.t.
≤s it follows that c′ ∈ FP(f(x)). As p = p⊥ ∈ FP(f(x)) fills c′ with some value v′ = v′⊥
we get a contradiction and it follows that f(x⊥)⊥ fills c′.

Thus f(x⊥)⊥ fills c with some value v. As f(x⊥)⊥ ↑ f(x)⊥ by Cor. 3.2.11 we get v = p.
Thus we have p ∈ FP(f(x⊥)⊥).

f preserves bistably coherent infima and suprema: Suppose x, y ∈ A with x l y.
As we already know that f preserves bistable coherence it follows that f(x) l f(y).
Hence f(x) u f(y) and f(x) t f(y) exist, and as f is monotonic w.r.t. ≤s we have
f(x u y) ≤s f(x) u f(y) and f(x) t f(y) ≤s f(x t y).

Suppose f(x u y) <s f(x) u f(y) then there exists a cell c′ that is accessible from
f(x u y) and filled by f(x) u f(y). Let c be the sequentiality index at (x u y, c′). Then
c ∈ Acc(x u y) and there exist v and w such that c is filled by x with v and by y with
w. As x ↑ y it follows from Cor. 3.2.11 that v = w. Thus using Lemma 2.2.21 we get
v ∈ FP(x u y) in contradiction with c ∈ Acc(x u y).

For showing that f(x t y) v f(x) t f(y) suppose p ∈ FP(f(x t y)). We have either
(1) p = p⊥ or (2) p 6= p⊥. In case (1) we get p = p⊥ ≤s f(x t y)⊥ = f(x)⊥ ≤s f(x) ≤s

f(x) t f(y) since f is monotone w.r.t. ≤s and preserves bistable coherence.

In case (2) first notice that:

(‡)
If c is a cell filled by x but not filled by x⊥ then x fills c with value c (since for
all finite prime elements p with p = p⊥ we have p ∈ FP(x) iff p ∈ FP(x⊥)) and
c ∈ Acc(x⊥) (since c⊥ ≤s x and hence c⊥ ≤s x⊥).

49



3 Locally boolean domains and Curien-Lamarche games

We have p 6= p⊥, hence p is a cell.

Let us assume that f(xty)⊥ fills p. Then as f(xty)⊥ ↑ f(xty) and as f(xty) fills p
with p it follows from Cor. 3.2.11 that f(xt y)⊥ fills p with p. Hence p ∈ FP(f(xt y)⊥)
in contradiction with p 6= p⊥. Thus f(x t y)⊥ does not fill p.

If f(x) fills p then as f(x)⊥ = f(x t y)⊥ (since f preserves bistable coherence) it
follows from (‡) that f(x) fills p with p, and hence p ≤s f(x) v f(x) t f(y).

Thus, suppose f(x) does not fill p. Thus f(x⊥) does not fill p (since f(x⊥) ≤s f(x)). As
p⊥ ≤s f(x t y)⊥ = f((x t y)⊥)⊥ = f(x⊥)⊥ = f(x)⊥ ≤s f(x⊥) we have p ∈ Acc(f(x⊥)).
As x⊥ ≤s x t y and p ∈ FP(f(x t y)), i.e. f(x t y) fills p (with p), there exists a
sequentiality index c for f at (x⊥, p). As (x t y)⊥ = x⊥ and x⊥ does not fill p it follows
by (‡) that x t y fills c with c, i.e. c ≤s x t y. As c is prime it follows that c v x or
c v y. As c ∈ Acc(x⊥) we have c⊥ v x⊥ = y⊥ and thus c ≤s x or c ≤s y.

As f is error propagating f(x⊥ t c) fills p with p. If c ≤s x then x⊥ t c ≤s x and
thus f(x⊥ t c) ≤s f(x) from which it follows that f(x) fills p with p contradicting the
assumption that f(x) does not fill p. Thus we have c ≤s y. As x⊥ t c ≤s y and thus
f(x⊥ t c) ≤s f(y) it follows that f(y) fills p with p. Thus p ≤s f(y) ≤s f(x)t f(y).

Using Lemma 3.3.4 and Lemma 3.3.5 we get the following characterisation of bistable
maps between locally boolean domains.

Theorem 3.3.6. Let A and B be lbpds and f : A → B. Then f is bistable iff f is
observably sequential.

3.4 Equivalence of the categories LBD and OSA

Using the results of the previous sections of this chapter we show that the categories
LBD and OSA are equivalent.

Theorem 3.4.1. Let A be a lbd. Then A ∼= D(G(A)).

Proof. We have D(G(A)) = (|G(A)|,¬,v) = ({Sx | x ∈ A},¬,v) by Lemma 3.2.19.
Obviously, the mapping x 7→ Sx is a bijection from |A| to {Sx | x ∈ A}.

Suppose x, y ∈ A with x v y, i.e. ∀p∈FP(x).∃q∈FP(y). p v q, or equivalently (†)
∀p∈FP(x).∃q∈FP(y). p ≤s q ∨ p ≤c q (by Thm. 2.2.48). Since (†) is equivalent to the
fact that ∀r∈Sx.∃s∈Sy. r v s we get x v y iff Sx v Sy.

Suppose x ∈ A. Then

S¬x =
{←−p | p ∈ FP(¬x) ∩ VA

}
∪
{←−c ·> | c ∈ FP(¬x) ∩ CA

}
and

¬Sx = (Sx ∩ RspG(A)) ∪ {q·> | q ∈ Acc(Sx)} .

50



3.4 Equivalence of the categories LBD and OSA

Suppose r ∈ RspG(A). Then

r ∈ ¬Sx ⇔ r ∈ Sx

⇔ ∃p∈FP(x)∩VA. r =←−p
⇔ ∃p∈FP(x). p = p⊥ ∧ r =←−p
⇔ ∃p∈FP(¬x). p = p⊥ ∧ r =←−p
⇔ ∃p∈FP(¬x)∩VA. r =←−p
⇔ r ∈ S¬x .

Suppose r ∈ RspG(A), c ∈ CA and q = r·c ∈ QueG(A). First notice that:

(†)

If q is enabled in Sx then either q = c or there exist q′ ∈ QueG(A) and v ∈ VA such
that q = q′·v·c. In the first case we have c⊥ = ⊥ and in the second case we have
c⊥ = v, thus in both cases we have c⊥ ∈ FP(x). On the other hand, if c⊥ ∈ FP(x)
then obviously ←−c is enabled in Sx.

Thus, we get

q·> ∈ ¬Sx ⇔ q ∈ Acc(Sx)

⇔ q is enabled but not filled in Sx

⇔ q is enabled in Sx and x v ¬c (‡)
⇔ q is enabled in Sx and c v ¬x
⇔ c ∈ FP(¬x) (§)
⇔ q·> ∈ S¬x

where (‡) follows by (†) and Lemma 3.2.5, and (§) holds as ←−c = q is enabled in Sx iff
c⊥ ∈ FP(x) iff c⊥ ∈ FP(¬x), and c⊥ ≤s x⊥ and c v ¬x iff c ≤s ¬x.

Thus, we have shown that S¬x = ¬Sx and it follows that A ∼= D(G(A)).

Notice that in the category of CL-games and observably sequential maps two objects
A and B are isomorphic iff (Strat(A),⊆) ∼= (Strat(B),⊆).

Theorem 3.4.2. Let A = (C, V, P ) be a CL-game. Then A ∼= G(D(A)).

Proof. Suppose s ∈ A. Then s ∈ D(A) and it follows from Lemma 3.1.12 that FP(s) =
s ∩ Rsp>A. Hence, we get by Lemma 3.2.19 that

Ss =
{←−p | p ∈ s ∩ RspA

}
∪
{←−c ·> | c ∈ s ∩ (QueA×{>})

}
is a strategy of G(D(A)). The map s 7→ Ss is obviously injective and preserves and
reflects the subset relation. As the strategies of A are the elements of D(A) it follows
from Lemma 3.2.19 that s 7→ Ss is surjective.

Theorem 3.4.3. The category LBD of locally boolean domains and bistable maps is
equivalent to the category OSA of Curien-Lamarche games and observably sequential
algorithms.

51



3 Locally boolean domains and Curien-Lamarche games

Proof. We define the functors D : OSA → LBD and G : LBD → OSA on objects
as given above. If f ∈ OSA(A, B) then we put D(f)(x) = f(x) for all x ∈ D(A). If
f ∈ LBD(A, B) then we put G(f)(x) = Sf(

F
FPx) for all x ∈ G(A).

In Thm. 3.4.1 and Thm. 3.4.2 we have show that the object parts of the functors D and
G are essentially surjective. Further it follows from Thm. 3.3.6 that for all observably
sequential domains A and B the induced map OSA(A, B) → LBD(D(A),D(B)) is a
bijection.

In [McC96] G. McCusker constructed a category of games with sums. In an analogous
way we can construct a category POSA which is a free coproduct completion of the
category OSA. Further, J. Laird has shown in [Lai05b] that every lbd is the limit of
an ω-chain of prenex normal forms constructed using only products and sums. Hence it
follows that the category POSA is equivalent to the category LBPD.

In [CCF94] it is shown that OSA is cartesian closed. Thus we get cartesian closedness
of POSA, and hence also of LBD and LBPD, for free.

Theorem 3.4.4. The categories LBD and LBPD are cartesian closed.

3.5 Exponentials in the categories LBD and OSA

In the final section of this chapter we give a characterisation of the extensional order and
the involution of exponentials in the category LBD. The extensional order will happen
to coincide with the pointwise extensional order for morphisms in LBD. Finally we
show that the category LBD is cpo-enriched w.r.t. the extensional order v and w.r.t.
the stable order ≤s.

Next we present the definition of the exponential of CL-games as introduced in [CCF94]
(see also for further details). Notice that given a sequence s = p0 · . . . · pn then we write
s@i for pi.

Definition 3.5.1. Let A = (C, V, P ) be a CL-game. A path sequence s over A is a
sequence over the alphabet (QueA ∪ RspA) such that:

1. s ∈ (QueA, RspA)∗, and s is non-repetitive in QueA (which implies that s is also
non-repetitive in RspA);

2. for all i ≥ 1 such that 2i + 1 ≤ |s| there exists a v ∈ V such that s@(2i + 1) =
s@(2i) · d;

3. s@0 ∈ C; and

4. for all i ≥ 1 such that 2i ≤ |s| there exists a j such that 2j + 1 < 2i and s@(2i) =
s@(2j + 1) · c for some c ∈ C.

�

52



3.5 Exponentials in the categories LBD and OSA

A path sequence is constructed from tokens that are paths. Thus we can consider a
path sequences as a linearisation of a state. In [CCF94] it is shown that the exponential
of CL-games is given by the following construction.

Given a path sequence s over A we write ‖s‖ for the set {s@(2i + 1) | 2i + 1 ≤ |s|}.
In [CCF94, Lemma 6.8] it is shown that for any path sequence s over A the set ‖s‖ is a
state of A.

Theorem 3.5.2. Let G1 = (C1, V1, P1) and G2 = (C2, V2, P2) be CL-games. Let Rsp1 =
RspG1

, Que1 = QueG1
and S1 be the set of path sequences over G1. Then the exponential

[G1→G2] is given by G = (C, V, P ) where

C = RspG1
+ C2

V = QueG1
+ V2

P = {p ∈ (C, V )∗ | π⇒1 (p) ∈ S1, π
⇒
2 (p) ∈ P2

p@0 ∈ C2,

if p@(i+1) ∈ C2 then p@i ∈ V2,

if p@(i+1) ∈ Rsp1 then p@i ∈ Que1}

The corresponding functions π⇒1 , π⇒2 : P → P are defined as follows:

π⇒i (ε) = ε

π⇒i (p · >) = π⇒i (p) · >
π⇒i (p · 〈x, i〉) = π⇒i (p) · x
π⇒i (p · 〈x, j〉) = π⇒i (p) if i 6= j

π⇒i (ε) = ε, π⇒i (p·〈x, i〉) = π⇒i (p)·x, π⇒i (p·〈x, j〉) = π⇒i (p) if i 6= j, π⇒i (p·>) = π⇒i (p)·>
for x ∈ C2 ∪ V2 ∪ Rsp1 ∪ Que1 and i, j ∈ {1, 2}.

The application of some f ∈ D([G1→G2]) to some x ∈ D(G1) is given by

f(x) ={π⇒2 (p)∈RspG2
| ‖π⇒1 (p)‖ ⊆ x, p∈f} ∪

{π⇒2 (p)·>∈Rsp>G2
|

∃q∈QueG1
.(‖π⇒1 (p)‖∪{q·>}⊆x ∧ p·〈q, 1〉∈f)} .

Lemma 3.5.3. Let f ∈ D([G1→G2]) and x ∈ D(G1) then f(x) =
⋃
{p̂(x) | p ∈ f}.

Proof. This follows immediately from the definition of f(x) in Thm. 3.5.2

Definition 3.5.4. Let A, B be lbds and f, g : A → B be bistable maps. Then we write
f vpw g iff ∀x ∈ A. f(x) v g(x). If f vpw g then we say that f is pointwise extensionally
below g. �

Lemma 3.5.5. Let A = (CA, VA, PA) and B = (CB, VB, PB) be CL-games and p, q ∈
FP([D(A)→D(B)]). Then p vpw q implies p v q.

53



3 Locally boolean domains and Curien-Lamarche games

Proof. Suppose p, q ∈ FP([D(A)→D(B)]). As [D(A)→D(B)] is isomorphic to D(A→B)
it follows from Thm. 3.2.17 that ←−p and ←−q are positions of the CL-game G(D(A→B))
which is isomorphic to the CL-game A→B. Thus we have ←−p = c1v1 · · · cnvn and ←−q =
c′1v

′
1 · · · c′mv′m.
Consider the following proposition

P (i) := ∀j ≤ i.(cj = c′j ∧ vj = v′j) ∨ ∃j ≤ i.(←−q = c1v1 · · · cj>) .

With induction we show that ∀i≤n. P (i) holds.
Suppose i < n and P (i) holds. We show that P (i + 1) holds.
Since P (i) holds we have that ∀j ≤ i.(cj = c′j ∧ vj = v′j) or ∃j ≤ i.(q = c1v1 · · · cj>)

holds. If the second proposition holds then we immediately get P (i + 1).
So, suppose that ∀j ≤ i.(cj = c′j ∧ vj = v′j) holds. We have that ci+1 ∈ CB or

ci+1 ∈ RspA. If ci+1 ∈ CB (resp. ci+1 ∈ RspA) then it follows that vi ∈ VB (resp.
vi ∈ QueA). As vi = v′i we get c′i+1 ∈ CB (resp. c′i+1 ∈ RspA) or c′i+1 does not exist, i.e.
m < i + 1.

Suppose ci+1 6= c′i+1 or c′i+1 does not exist. Let

x :=

{
‖π⇒1 (c1v1 · · · ci+1vi+1)‖ if vi+1 ∈ VB ∪ {>},
‖π⇒1 (c1v1 · · · ci+1vi+1) · >‖ if vi+1 ∈ QueA.

and let k be the maximal index k ≤ i + 1 with ck ∈ CB. Then it follows that p(x) fills
ck with vi+1 (resp. with >). If c′i+1 does not exist then q(x) obviously does not fill ck. If
c′i+1 ∈ CB \ {ci+1} then k = i+1 and q(x) does not fill ck. Finally if c′i+1 ∈ RspA \ {ci+1}
then there exist w,w′ ∈ VA with ci+1 = vi · w and c′i+1 = vi · w′, hence as vi · w′ /∈ x it
follows that q(x) does not fill ck. So, q(x) does not fill ck and it follows that p(x) 6v q(x)
in contradiction with p vpw q. Thus we have that

c1v1 · · · civici+1 = c′1v
′
1 · · · c′iv′ic′i+1 . (†)

Suppose vi+1 ∈ VB ∪ {>}. Then p(x) fills ck with value vi+1. If v′i+1 ∈ (VB \ {vi+1})∪
QueA then it follows from (†) that q(x) enables ck but does not fill it. Thus from (†)
and p(x) v q(x) it follows that v′i+1 = vi+1 or v′i+1 = > as desired.

Finally suppose vi+1 ∈ QueA. Then p(x) fills ck with >. If v′i+1 ∈ QueA \ {vi+1} then
it follows from (†) that q(x) enables ck but does not fill it. If v′i+1 ∈ VB then q(x) fills
ck with value v′i+1. As in both cases it follows that p(x) 6v q(x) we get v′i+1 = vi+1 or
v′i+1 = > as desired.

Now using induction it follows that P (n) holds. Thus we have

q = c1v1 · · · cnvnc
′
n+1v

′
n+1 · · · c′mv′m with m ≥ n or

q = c1v1 · · · cj> with j ≤ n.

and it follows that p v q.

Lemma 3.5.6. Let A = (CA, VA, PA) and B = (CB, VB, PB) be CL-games and p ∈
FP([D(A)→D(B)]) and g ∈ [D(A)→D(B)]. If p vpw g then there exists a q ∈ FP(g)
with p vpw q.

54



3.5 Exponentials in the categories LBD and OSA

Proof. Suppose p ∈ FP([D(A)→D(B)]) and g ∈ [D(A)→D(B)] with p vpw g. As
[D(A)→D(B)] is isomorphic toD(A→B) it follows from Thm. 3.2.17 that←−p is a position
of the CL-game G(D(A→B)) which is isomorphic to the CL-game A→B. Thus we have

←−p = c1v1 · · · cnvn .

Let

x :=

{
‖π⇒1 (c1v1 · · · ci+1vi+1)‖ if vi+1 ∈ VB ∪ {>},
‖π⇒1 (c1v1 · · · ci+1vi+1) · >‖ if vi+1 ∈ QueA.

Then as p(x) is prime it follows from Lemma 3.5.3 that there exists a q ∈ FP(g) with
p(x) v q(x). We show that p vpw q holds.

Suppose there exists a y ∈ A such that p(y) 6v q(y). Let

y′ := (x ∩ y ∩ RspA) ∪ {q · > ∈ y | ∃v. q · v ∈ x} .

Then it follows that p(y) = p(y′) (since y′ contains all the responses (possibly ending
with >) of y that may be inspected by p) and hence p(y′) 6v q(y′). As p(y′) v g(y′) there
exists a q′ ∈ FP(g) with p(y′) v q′(y′).

As q, q′ ∈ FP(g) it follows that both are stably coherent. Thus as q 6= q′ we get that

ci+1ri+1 · · · cnrn = q

c1r1 · · · ciri

c′i+1r
′
i+1 · · · c′mr′m = q′

where ci+1 6= c′i+1. From the definition of the positions given in Thm. 3.5.2 it follows
that either ci+1, c

′
i+1 ∈ CB or ci+1, c

′
i+1 ∈ RspA.

Suppose that ci+1, c
′
i+1 ∈ CB. If q′(y′) does not fill c′i+1 then it follows that q′(y′) v

q(y′) and thus p(y′) v q(y′) in contradiction with p(y′) 6v q(y′). Otherwise suppose q′(y′)
fills c′i+1. Then c′i+1 is also filled by p(y′) (as otherwise it follows that p(y′) v q(y′)) but
then in order to get extensionally above p(x), q(x) fills some cell cj with j ≤ i (and
cj ∈ CB) with >. Since q′(y′) fills c′i+1 it follows that q′(y′) fills cj and thus q(y′) fills cj.
From the definition of y′ it follows that q(y′) fills cj with >. Thus q′(y′) fills cj with >
in contradiction with the fact that q′(y′) fills c′i+1.

Now suppose ci+1, c
′
i+1 ∈ RspA. Thus as ci+1 6= c′i+1 there exists values v, v′ ∈ VA

with v 6= v′ and a q ∈ QueA such that ci+1 = q · v and c′i+1 = q · v′. If q′(y′) does not
fill c′i+1 then it follows that q′(y′) v q(y′) and thus p(y′) v q(y′) in contradiction with
p(y′) 6v q(y′). Otherwise suppose q′(y′) fills c′i+1. Then q · v′ ∈ y′ and by definition of y′

it follows that q · v′ ∈ x. Thus q · v /∈ x. Hence in order to get extensionally above p(x),
q(x) fills some cell cj with j ≤ i (and cj ∈ CB) with >. Since q′(y′) fills c′i+1 it follows
that q′(y′) fills cj and thus q(y′) fills cj. From the definition of y′ it follows that q(y′)
fills cj with >. Thus q′(y′) fills cj with > in contradiction with the fact that q′(y′) fills
c′i+1.

55



3 Locally boolean domains and Curien-Lamarche games

Theorem 3.5.7. Let A, B be lbds and f, g : A → B be bistable maps. Then f v g iff
f vpw g holds.

Proof. Suppose f, g : A → B are bistable. For the forward implication suppose f v g.
Let x ∈ A. Since the category LBD is cartesian closed it follows that

f(x) = evalA,B(f, x) v evalA,B(g, x) = g(x)

as desired.
For the reverse implication suppose f vpw g. Let p ∈ FP(f). Then p v f holds and

using the already shown forward implication of this lemma we get p vpw f . Thus it fol-
lows that p vpw g holds. As [A→B] ∼= [D(G(A))→D(G(B))] it follows from Lemma 3.5.6
that there exists a q ∈ FP(g) with p vpw q. Finally it follows from Lemma 3.5.5 that
p v q as desired.

Notice, that a bistable map f between lbpds A and B is continuous w.r.t. the ex-
tensional order and continuous w.r.t. the stable order. However, a bistable map will in
general not be cocontinuous w.r.t. the costable order as shown by the following example.

Example 3.5.8. Let O be the lbd ({⊥,>},vO,¬O) with ⊥ vO > and ¬O(⊥) = >, and
N be the lbd (N ∪ {⊥,>},vN,¬N) with ⊥ vN n vN > and ¬O(⊥) = > and ¬O(n) = n
for all n ∈ N.

Let F : [N→OO] → O be defined recursively as F (f) = f(0)(F (λn.f(n+1))). Let
f = λn.idO and fn(k) = idO for k < n and fn(k) = λn.> for k ≥ n. Obviously, the set
X := {fn | n ∈ N} is costably coherent, codirected w.r.t. ≤c and f =

d
X. As F is least

with the properties of its defining equation we have F (f) = ⊥ and F (fn) = > for all n.
Thus, we have F (

d
X) = ⊥ whereas

d
F [X] = >, i.e. F fails to be cocontinuous w.r.t.

≤c.

Whereas in the finite case there is a perfect symmetry between ⊥ and > this symmetry
is broken in the infinitary case where ⊥ can manifest itself as nontermination which
cannot be detected in finite time.

In the following two lemmas we analyse for bistable maps f : A → B the strategy
corresponding to the map ¬f . These observations lead to the characterisation of the
involution ¬ for exponentials in the category LBD given in Thm. 3.5.11.

Lemma 3.5.9. Let A = (CA, VA, PA) and B = (CB, VB, PB) be CL-games, x ∈ D(A),
f ∈ LBD(D(A),D(B)) and c ∈ Cell(D(B)). If f(x) fills c with > then there exists a
unique minimal (w.r.t. the prefix order) path s := c1v1 · · · civi ∈ f such that ŝ(x) fills c
with >.

Proof. Suppose f ∈ LBD(D(A),D(B)), x ∈ D(A) and c ∈ Cell(D(B)) such that
f(x) fills c with >. Then from Lemma 3.5.3 it follows that there exists a path s :=
c1v1 · · · civi ∈ f such that ŝ(x) fills c with >. W.l.o.g. we can assume that s is minimal.

Suppose there exists another minimal path s′ := c′1v
′
1 · · · c′jv′j ∈ f such that s 6= s′

and ŝ′(x) fills c with >. As ŝ ↑ ŝ′ and ŝ u ŝ′ = ŝ ∩ ŝ′ it follows that ŝ u ŝ′ $ ŝ. As

(ŝu ŝ′)(x) = ŝ(x)u ŝ′(x) fills c with > we get a contradiction to the minimality of s.

56



3.5 Exponentials in the categories LBD and OSA

Lemma 3.5.10. Let A = (CA, VA, PA) and B = (CB, VB, PB) be CL-games, f ∈
LBD(D(A),D(B)) and e ∈ F(D(A)). Then (¬f)(e) = ¬f(¬e) holds.

Proof. Suppose f ∈ LBD(D(A),D(B)) and e ∈ F(D(A)). Let c ∈ Cell(D(B)).
Suppose that (¬f)(e) fills c with value v and v 6= >. Thus there exists a path p ∈ ¬f

with p = c1v1 · · · civi and vi = v and cj = c for some j ≤ i and ∀k > j. ck /∈ CB. As
v 6= > it follows from Def. 3.1.6 that p ∈ f . Thus we get that f(e) fills c with v. As
s := ‖π⇒1 (c1v1 · · · civi)‖ ⊆ e and s does not fill any cell with > it follows that s ∈ ¬e.
Thus f(¬e) fill c with v. And as v 6= > it follows that ¬f(¬e) fills c with v.

Suppose that (¬f)(e) fills c with >. Then by Lemma 3.5.9 there exists a unique
minimal path s := c1v1 · · · civi ∈ ¬f such that ŝ(e) fills c with >. We consider the case
vi = > and vi 6= >.

Suppose vi = >. Then it follows that s is a maximal path in ¬f . Thus s is the only
path in ¬f such that ŝ(e) fills c with >. Further from minimality of s and since vi = >
it follows that ŝ(e⊥) fills c with >. Thus ŝ(¬e) fills c with >. Thus (¬f)(¬e) fills c with
>. As s /∈ f but all s′ ∈ f for all prefixes of s it follows that c is accessible from f(¬e).
Thus ¬f(¬e) fills c with >.

Suppose vi 6= >. Then s ∈ f and it follows that f(e) fills c with >. As s is the least
path w.r.t. the prefix order such that ŝ(e) fills c with > it follows that ‖π⇒1 (c1v1 · · · civi) ·
>‖ ⊆ e. As ‖π⇒1 (c1v1 · · · civi) · >‖ 6⊆ ¬e but ‖π⇒1 (c1v1 · · · ci)‖ ⊆ ¬e it follows that c is
accessible from f(¬e). Thus ¬f(¬e) fills c with >.

If cell c is enabled but not filled by (¬f)(e) then as e is finite this cannot result from
an infinite sequence of queries and responses in A. Thus with a similar argument as
above one can show that c ∈ Acc((¬f)(e)) implies c ∈ Acc(¬f(¬e)). Finally if c is not
enabled in (¬f)(e) then it follows from Def. 3.1.6 that c is not enabled in ¬f(¬e).

Thus we have shown that (¬f)(e) and ¬f(¬e) fill the cells of B identically and it
follows that (¬f)(e) = ¬f(¬e).

Theorem 3.5.11. Let A and B be lbds, f : A→ B be bistable and x ∈ A. Then

(¬f)(x) =
⊔
{¬f(¬e) | e ∈ F(x)}

holds.

Proof. Suppose f : A→ B is bistable. Then we get

(¬f)(x) = (¬f)(
⊔

F(x))

=
⊔
{(¬f)(e) | e ∈ F(x)} (†)

=
⊔
{¬f(¬e) | e ∈ F(x)} (‡)

where (†) follows as F(x) is directed and ¬f is continuous and (‡) from Lemma 3.5.10
and as D(G(A)) ∼= A and D(G(B)) ∼= B.

Corollary 3.5.12. Let A and B be lbds and f : A→ B be bistable. Then

57



3 Locally boolean domains and Curien-Lamarche games

(1) (¬f)(e) = ¬f(¬e) for all e ∈ F(A) and

(2) (¬f)(x) ≤b ¬f(¬x) for all x ∈ A

holds.

Proof. Suppose A and B are lbds and f : A→ B is a bistable map.

ad (1) : This follows immediately from Thm. 3.5.11.

ad (2) : Suppose x ∈ A. As f l ¬f it follows from Lemma 3.6.2 that f(x) l (¬f)(x).
Thus we get l{(¬f)(x), f(x),¬f(x),¬f(¬x)}. As ¬f(¬c) ≤s ¬f(¬x) for all c ∈ F(x),
we get that (¬f)(x) ≤s ¬f(¬x) holds. Thus, it follows that (¬f)(x) ≤b ¬f(¬x) as
desired.

3.6 Exponentials as function spaces

In this section we show that the exponential [A→B] of lbds A and B can also be
considered as function space of bistable maps. The main results of this section are the
fact that infima and suprema of stably or costably coherent bistable maps are computed
pointwise and that the category LBD is cpo-enriched w.r.t. the extensional order v and
w.r.t. the stable order ≤s.

Notice, that throughout this section we use the fact that the binary products of lbds
A and B is given by (|A| × |B|,v,¬) where v and ¬, and thus also the (co-/bi-)stable
relations and orders are defined componentwise (cf. section 4.1).

Lemma 3.6.1. Let A and B be lbpds, f : A→ B a bistable map and x ∈ A. Then

(1) f⊥(x) = f(x) u (¬f)(x) and

(2) f>(x) = f(x) t (¬f)(x)

holds.

Proof. Suppose f : A → B is bistable and let x ∈ A. Then f l ¬f and hence (f, x) l
(¬f, x). As evalA,B is a bistable map it follows that

f⊥(x) = (f u ¬f)(x)

= evalA,B(f u ¬f, x)

= evalA,B((f, x) u (¬f, x))

= evalA,B(f, x) u evalA,B(¬f, x)

= f(x) u (¬f)(x)

holds. Analogously, one can show that f>(x) = f(x) t (¬f)(x) holds.

Lemma 3.6.2. Let A and B be lbpds and f, g : A→ B bistable maps. Then

(1) f ↑ g implies ∀x∈A. f(x) ↑ g(x) and

58



3.6 Exponentials as function spaces

(2) f ↓ g implies ∀x∈A. f(x) ↓ g(x) .

Proof. ad (1) : Suppose f, g : A → B be bistable maps and let x ∈ A. If f ↑ g then
(f, x) ↑ (g, x) and as evalA,B preserves stable coherence it follows that f(x) ↑ g(x).

ad (2) : This follows analogously.

Lemma 3.6.3. Let A and B be lbpds and f, g : A→ B bistable maps with f ↑ g. Then

(1) (f u g)(x) = f(x) u g(x) and

(2) (f t g)(x) = f(x) t g(x)

holds.

Proof. Suppose f, g : A → B are bistable maps with f ↑ g and let x ∈ A. Then
(f, x) ↑ (g, x) holds and as evalA,B is a bistable map it follows that

(f u g)(x) = (f u g)(x)

= evalA,B(f u g, x)

= evalA,B((f, x) u (g, x))

= evalA,B(f, x) u evalA,B(g, x)

= f(x) u g(x)

holds.
For showing that (f t g)(x) = f(x) t g(x) notice that from Lemma 3.1.9 it follows

that the supremum of the strategies Sf and Sg is given by their union. Thus it follows
from the definition of the application in Thm. 3.5.2 that (Sf tSg)(x) = Sf (x)∪Sg(x) =
Sf (x) t Sg(x) (where the last equation follows as Sf (x) ↑ Sg(x) and by Lemma 3.6.2).
As [A→B] ∼= D(G([A→B])) ∼= D(G(A)→G(B)) we get (f t g)(x) = f(x) t g(x).

Lemma 3.6.4. Let A and B be lbpds and f, g : A→ B bistable maps with f ↓ g. Then

(1) (f u g)(x) = f(x) u g(x) and

(2) (f t g)(x) = f(x) t g(x)

holds.

Proof. Suppose f, g : A → B are bistable maps with f ↑ g and let x ∈ A. Then
(f, x) ↓ (g, x) holds and as evalA,B is a bistable map it follows that

(f t g)(x) = (f t g)(x)

= evalA,B(f t g, x)

= evalA,B((f, x) t (g, x))

= evalA,B(f, x) t evalA,B(g, x)

= f(x) t g(x)

59



3 Locally boolean domains and Curien-Lamarche games

holds.
Next we show that (f u g)(x) = f(x) u g(x) holds. As f ↓ g it follows that ¬f ↑ ¬g.

Thus we get

(f u g)(x) = (¬(¬f t ¬g))(x)

=
⊔
{¬(¬f t ¬g)(¬e) | e ∈ F(x)}

=
⊔
{¬((¬f)(¬e) t (¬g)(¬e)) | e ∈ F(x)} (†)

=
⊔
{¬(¬f)(¬e) u ¬(¬g)(¬e) | e ∈ F(x)}

=
⊔
{(¬¬f)(e) u (¬¬g)(e) | e ∈ F(x)} (‡)

=
⊔
{f(e) u g(e) | e ∈ F(x)}

= f(x) u g(x) (§)

where (†) follows as ¬f ↑ ¬g and from Lemma 3.6.3 and (‡) follows from Cor. 3.5.12(1).
Finally, (§) holds for the following reason: obviously we have

⊔
{f(e) u g(e) | e ∈

F(x)} v f(x) u g(x). For showing the reverse inequality suppose p ∈ FP(f(x) u g(x))
holds. Thus, as p v f(x), g(x) and p is compact there exist e1, e2 ∈ F(x) with p v f(e1)
and p v g(e2). As F(x) is directed there exists a e3 ∈ F(x) with e1, e2 v e3. Hence, we
have p v f(e3), g(e3) and it follows that p v f(e3) u g(e3) v

⊔
{f(e) u g(e) | e ∈ F(x)}

as desired.

Thus, we have shown that infima and suprema of stably or costably coherent bistable
maps are computed pointwise. Next we show that the category LBD is cpo-enriched
w.r.t. v and w.r.t. ≤s.

Lemma 3.6.5. Let A and B be lbpds. If F is a directed subset of [A→B] then

(
⊔

F )(x) =
⊔
{f(x) | f ∈ F}

for all x ∈ A.

Proof. Suppose F is a directed subset of [A→B] and x ∈ A. Then F ×{x} is a directed
subset of [A→B] × A with

⊔
(F × {x}) = (

⊔
F, x). As evalA,B is continuous it follows

that

(
⊔

F )(x) = evalA,B(
⊔

F, x)

= evalA,B(
⊔

(F × {x}))

=
⊔
{evalA,B(f, x) | f ∈ F}

=
⊔
{f(x) | f ∈ F}

as desired.

60



3.6 Exponentials as function spaces

Theorem 3.6.6. The categories LBD and LBPD are cpo-enriched w.r.t. v and w.r.t.
≤s.

Proof. Suppose A, B and C are lbpds and f ∈ [A→B] and g ∈ [B→C]. Let F be a
directed (resp. stably directed) subset of [A→B] with

⊔
F = f and x ∈ A. Then it

follows that

g((
⊔

F )(x)) = g(
⊔
{f ′(x) | f ′ ∈ F}) (†)

=
⊔
{g(f ′(x)) | f ′ ∈ F} (‡)

=
⊔
{(g ◦ f ′)(x) | f ′ ∈ F}

= (
⊔
{g ◦ f ′ | f ′ ∈ F})(x) (†)

holds, where (†) follows from Lemma 3.6.5 and (‡) holds as
⊔
{f ′(x) | f ′ ∈ F} is directed.

Thus it follows that g ◦ (
⊔

F ) =
⊔

f ′∈F{g ◦ f ′} holds.
Analogously one can show that (

⊔
G)◦f =

⊔
g′∈G{g′◦f} holds for all directed subsets

G of [B→C]. Thus it follows that composition of morphisms is continuous w.r.t. v and
w.r.t. ≤s.

61



3 Locally boolean domains and Curien-Lamarche games

62



4 Properties of the category LBD

In this chapter we show that LBD and LBPD are closed under basic categorical con-
structions. In the first section we show how to construct products, coproducts, biliftings
and sums in LBPD (resp. LBD). In the next sections we introduce the notion of embed-
ding/projection pair and show that inverse limits of ω-chains of embedding/projection
pairs (w.r.t. ≤s) exist in LBD and are constructed as usual. Finally, adapting a result
of J. Longley in [Lon02] we show that every countably based locally boolean domain
appears as retract of U = [N→N] where N are the bilifted natural numbers, i.e. that U
is a universal object for countably based locally boolean domains.

4.1 Products, biliftings and sums

In this section we show how to construct products, coproducts, biliftings and sums in
LBPD (resp. LBD). We only present the results and leave the proofs as an easy exercise
to the reader. Further notice that for notational convenience we assume set unions to
be disjoint when building coproducts, biliftings and sums.

Definition 4.1.1. Let (Ai)i∈I be a family of lbpds. If j ∈ I then we define εj : |Aj| →∏
i∈I |Ai| by

(εj(x))i :=

{
x if i = j and

⊥ otherwise

for all x ∈ |Aj| and i ∈ I. �

Theorem 4.1.2. Let (Ai)i∈I be a family of lbpds. Further let∏
i∈I

Ai := (
∏
i∈I

|Ai|,v,¬)

with x v y iff xi v yi for all i ∈ I and ¬x = (¬xi)i∈I for all x, y ∈
∏

i∈I |Ai|. Then∏
i∈I

Ai with πi :
∏
i∈I

Ai → Ai : (xi)i∈I 7→ xi for all i ∈ I

is a product of the Ai in LBPD (resp. LBD).
An element x ∈

∏
i∈I Ai is finite prime (resp. a cell) iff x = εi(p) for some i ∈ I and

p ∈ FP(Ai) (resp. p ∈ Cell(Ai)).
Further,

∏
i∈I Ai is pointed iff all the Ai are.

As an immediate consequence we get:

63



4 Properties of the category LBD

Corollary 4.1.3. The object 1 := ({∗},v,¬) with ∗ v ∗ and ¬(∗) = ∗ is terminal in
LBPD (resp. LBD).

Next, we consider coproducts.

Theorem 4.1.4. Let (Ai)i∈I be a family of lbpds. Further let∐
i∈I

Ai := (
∐
i∈I

|Ai|,v,¬)

where (i, x) v (j, y) iff i = j and x v y and ¬(i, x) = (i,¬(x)) for all (i, x), (j, y) ∈∐
i∈I |Ai| Then ∐

i∈I

Ai with ιi : Ai →
∐
i∈I

Ai : x 7→ (i, x) for all i ∈ I

is a coproduct of the Ai in LBPD.
An element (i, x) ∈

∐
i∈I Ai is finite prime (resp. a cell) iff x ∈ FP(Ai) (resp. x ∈

Cell(Ai)).

In contrast to the category LBPD, the category LBD does not have coproducts,
since coproducts in general do not have a least element. Nevertheless we can construct
separated sum of lbds by bilifting the coproduct given in LBPD.

Theorem 4.1.5. Let A be a lbpd then its bilifting A↑ is a lbd with

|A↑| := |A| ∪ {⊥′,>′} (we assume ⊥′,>′ /∈ |A|),

the extensional order is the extensional order on A extended by ⊥′ v x v >′ for
all x ∈ |A↑|,

negation is given by the negation on A extended by ¬⊥′ = >′, ¬>′ = ⊥′.
Further we have FP(A↑) = FP(A) ∪ {⊥′,>′} and Cell(A↑) = Cell(A) ∪ {>′}.
Theorem 4.1.6. Let A and B be lbpds and f : A → B a sequential map. Then
f↑ : A↑ → B↑, defined by

f↑(x) =


⊥′ if x = ⊥′

>′ if x = >′

f(x) otherwise

is sequential.
Further ( )↑ : LBPD→ LBD is a locally continuous functor, and for all lbds A we have
sequential functions upA : A→ A↑ and downA : A↑ → A with

upA(x) = x

and

downA(x) =


⊥ if x = ⊥′

> if x = >′

x otherwise

64



4.2 Embedding/Projection Pairs in LBD

Theorem 4.1.7. Let (Ai)i∈I be a family of lbpds. Then∑
i∈I

Ai := (
∐
i∈I

Ai)↑ .

is the separated sum of the Ai, i.e. given a lbd B and bistable maps fi : Ai → B for all i ∈
I, there exists a unique bistrict bistable map f :

∑
i∈I Ai → B with fi = f ◦up‘

i∈I Ai
◦ιi.

Finally we get the following result which is crucial for the interpretation of product
and sum types in LBD.

Theorem 4.1.8. For all sets I we have the following local continuous functors:

(1)
∏

i∈I : LBDI → LBD with
∏

i∈I fi = (fi ◦ πi)i∈I

(2)
∐

i∈I : LBPDI → LBPD with
∐

i∈I fi = [ιi ◦ fi]i∈I

(3)
∑

i∈I : LBDI → LBD with
∑

i∈I fi = (
∐

i∈I fi)↑

4.2 Embedding/Projection Pairs in LBD

For constructing recursive types in LBD we have to introduce an appropriate notion of
embedding/projection pairs in LBD and, further, a notion of inverse limit for ω-chains
of embedding/projection pairs.

Definition 4.2.1. An embedding/projection pair (ep-pair) from A to B in LBD (no-
tation (ι, π) : A → B) is a pair of LBD morphisms ι : A → B and π : B → A with
πι = idA and ιπ ≤s idB.

If (ι, π) : A → B and (ι′, π′) : B → C then their composition is defined as (ι′, π′) ◦
(ι, π) = (ι′ ◦ ι, π ◦π′). We write LBDep for the ensuing category of embedding/projection
pairs in LBD. �

Notice that this is the usual definition of ep-pair when viewing LBD as order enriched
by the stable and not by the extensional order.

Lemma 4.2.2. Suppose (ι, π) : A → B then ι is left adjoint to π w.r.t. ≤s, i.e. for all
x ∈ A and y ∈ B we have ι(x) ≤s y iff x ≤s π(y).

Proof. Suppose ι(x) ≤s y then x = π(ι(x)) ≤s π(y). If x ≤s π(y) then ι(x) ≤s

ι(π(y)) ≤s y where the last inequality holds since ιπ ≤s idB and ιπ(y) = evalB,B(ιπ, y) ≤s

evalB,B(id, y) = y.

Lemma 4.2.3. Suppose (ι, π) : A→ B. Then

(1) ι(x⊥) = ι(x)⊥

(2) π(y⊥) = π(y)⊥

65



4 Properties of the category LBD

holds for all x ∈ A and y ∈ B.

Proof. Suppose (ι, π) : A→ B.

ad (1) : Obviously, we have ι(x)⊥ ≤b ι(x⊥). Further, we get π(ι(x)⊥) ≤b π(ι(x⊥)) =
x⊥, thus, x⊥ = π(ι(x)⊥). It follows that ι(x⊥) = ι(π(ι(x)⊥)) ≤s ι(x)⊥ as desired.

ad (2) : As ι(π(y⊥)) ≤s y⊥ we have ι(π(y⊥)) = ι(π(y⊥))⊥ = ι(π(y))⊥ by Lemma 2.2.24.
Using ι(π(y))⊥ = ι(π(y)⊥) which holds by (1) we get

π(y⊥) = π(ι(π(y⊥))) = π(ι(π(y))⊥) = π(ι(π(y)⊥)) = π(y)⊥

as desired.

Corollary 4.2.4. Suppose (ι, π) : A→ B. Then

(1) ι(¬x) ≤b ¬ι(x)

(2) ι(¬x) = ¬ι(x) u ι(x>)

(3) π(¬y) ≤b ¬π(y)

(4) π(¬y) = ¬π(y) u π(y>)

holds for all x ∈ A and y ∈ B.

Proof. Suppose (ι, π) : A→ B.

ad (1) : Suppose x ∈ A. As [x]l is a boolean algebra and ι(x) u ι(¬x) = ι(x u ¬x) =
ι(x⊥) = ι(x)⊥ it follows that ι(¬x) ≤b ¬ι(x).

ad (2) : Suppose x ∈ A. Then it follows that

¬ι(x) u ι(x>) = ¬ι(x) u ι(x t ¬x)

= ¬ι(x) u (ι(x) t ι(¬x))

= (¬ι(x) u ι(x)) t (¬ι(x) u ι(¬x))

= ι(x)⊥ t (¬ι(x) u ι(¬x))

= ¬ι(x) u ι(¬x)

= ι(¬x) by (1)

ad (3) : Suppose y ∈ B. Then as [y]l is a boolean algebra and π(y) u π(¬y) =
π(y u ¬y) = π(y⊥) = π(y)⊥ we get π(¬y) ≤b ¬π(y).

ad (4) : Suppose y ∈ B. Then it follows that

¬π(y) u π(y>) = ¬π(y) u π(y t ¬y)

= ¬π(y) u (π(y) t π(¬y))

= (¬π(y) u π(y)) t (¬π(y) u π(¬y))

= π(y)⊥ t (¬π(y) u π(¬y))

= ¬π(y) u π(¬y)

= π(¬y) by (3)

66



4.2 Embedding/Projection Pairs in LBD

Lemma 4.2.5. Let f, g ∈ LBD(A, B) then

f ≤s g ⇔ ∀x, y∈A. x ≤s y → (f(y)↑g(x) ∧ f(x)=f(y)ug(x)) .

Proof. This is proven in [AC98, Lemma 12.2.7.].

Lemma 4.2.6. Suppose (ι, π) : A → B and x, y ∈ B. Then x ≤s y = ιπ(y) implies
x = ιπ(x).

Proof. Suppose ιπ ≤s idB holds. It follows from Lemma 4.2.5 that ιπ(x) = ιπ(y) u x =
y u x = x.

As an immediate consequence of Lemma 4.2.6 we get

Corollary 4.2.7. Suppose (ι, π) : A→ B. Then ιπ(A) is downward closed w.r.t. ≤s.

Lemma 4.2.8. Suppose (ι, π) : A → B and x ∈ B. Then ∃y∈[x]l. y = ιπ(y) holds iff
x⊥ = ιπ(x⊥).

Proof. Suppose y ∈ [x]l with y = ιπ(y). Hence, x⊥ ≤s y and using Lemma 4.2.6 we get
x⊥ = ιπ(x⊥). The reverse implication is trivial as x⊥ ∈ [x]l.

Lemma 4.2.9. Suppose (ι, π) : A → B. Let X ⊆ A be v-codirected then π(
d

X) =d
π(X).

Proof. As π is monotone the set π(X) is codirected and π(
d

X) v
d

π(X). If x ∈ X
then ι(π(x)) ≤s x, thus

d
ι(π(X)) v

d
X. As ι is monotone we get ι(

d
π(X)) vd

ι(π(X)) v
d

X. Thus,
d

π(X) = π(ι(
d

π(X))) v π(
d

X) as desired.

Lemma 4.2.10. Suppose (ι, π) : A→ B. Then

(1) ι(x t y) = ι(x) t ι(y) if x, y ∈ A with x ↑ y

(2) π(x t y) = π(x) t π(y) if x, y ∈ B with x ↑ y

hold.

Proof. Suppose (ι, π) : A→ B.

ad (1) : As ι is a left adjoint w.r.t. ≤s it preserves stable suprema.

ad (2) : Let % : B → B denote the retraction ι ◦ π, then from % ≤s idB it follows
that %(x) = %(x t y) u x and %(y) = %(x t y) u y. Hence, %(x) t %(y) = (%(x t y) u x) t
(%(x t y) u y) = %(x t y) u (x t y) = %(x t y). As ι preserves stable suprema we get
ι(π(x) t π(y)) = ι(π(x)) t ι(π(y)) = ι(π(x t y)). Finally, as ι is an injection it follows
that π(x t y) = π(x) t π(y).

Notice that embeddings and projections preserve stable infima and suprema but they
do not preserve negation.

67



4 Properties of the category LBD

Example 4.2.11. Consider the embedding ι : 1 → O then we have ι(∗) = ⊥ = ι(¬∗)
whereas ¬⊥ = >. Further, consider the projection π : OO → O : f 7→ f(⊥) (whose
corresponding embedding sends u to λx.u). We have π(idO) = ⊥ = π(¬idO) whereas
¬⊥ = >.

Moreover, projections π need not to be constant on bistably connected components
not containing any fixpoint of ιπ. Consider the first projection O × OO → O whose
associated embedding sends u to (u,⊥). Notice that π is not constant on the equivalence
class {(⊥, idO), (>, idO)} as its image under π is {⊥,>}.

However, we can show that embeddings send atoms to atoms and projections send
atoms to atoms or ⊥-elements.

Lemma 4.2.12. Let (ι, π) : A → B be an ep-pair in LBD. Then for all x ∈ A and
a ∈ At(x) it follows that ι(a) ∈ At(ι(a)).

Proof. Suppose x ∈ A and a ∈ At(x). As π(ι(a)⊥) = π(ι(a))⊥ = a⊥ 6= a it follows that
ι(a) 6= ι(a)⊥. As [ι(a)]l is a complete atomic boolean algebra it suffices to show that
ι(a) bistably dominates at most one atom. Hence, suppose b, b′ ∈ At(ι(a)) with b 6= b′

and b, b′ ≤b ι(a). Thus, b, b′ <b ι(a). Then as b l b′ and b t b′ ≤b ι(a) and we get
π(b) t π(b′) = π(b t b′) ≤b π(ι(a)) = a. Thus π(b) = a or π(b′) = a since a is an atom
and l{a, π(b), π(b′)}. Assuming w.l.o.g. that π(b) = a it follows that ι(π(b)) = ι(a) >b b
in contradiction with ι(π(b)) ≤s b.

Lemma 4.2.13. Let (ι, π) : A → B be an ep-pair in LBD. Then for all y ∈ B and
b ∈ At(y) either π(b) ∈ At(π(b)) or π(b)⊥ = π(b).

Proof. W.l.o.g. we assume that ι is an inclusion. Suppose b ∈ At(y). As [π(b)]l is a
complete atomic boolean algebra it suffices to show that from a1, a2 ∈ At(π(b)) and
a1, a2 ≤b π(b) it follows that a1 = a2. Hence, suppose a1, a2 ∈ At(π(b)) with a1 6= a2

and a1, a2 ≤b π(b). First we show that (†) ai t b⊥ = b holds for i = 1, 2. Obviously b is
an upper bound for ai and b⊥ w.r.t. ≤s since b⊥ ≤b b and ai ≤b π(b) ≤s b. Thus ai t b⊥
exists. Suppose ai, b⊥ ≤s y ≤s b. Then we have b⊥ v y⊥ v b⊥, i.e. b⊥ = y⊥, from which
it follows that b⊥ ≤b y ≤b b. Accordingly, as b is an atom, we have b⊥ = y or y = b.
If b⊥ = y then ai ≤s y = b⊥ from which it follows by Lemma 2.2.24 that ai⊥ = ai in
contradiction with ai ∈ At(π(b)). Thus y = b, which finishes the proof of (†).

As ↑{a1, a2, b⊥} we have

b = b u b = (a1 t b⊥) u (a2 t b⊥) = (a1 u a2) t b⊥ = π(b⊥)⊥ t b⊥ = b⊥

contradicting the assumption that b is an atom.

4.3 Inverse Limits of Projections in LBD

This section is dedicated to the proof, that inverse limits exist in LBDep and are
computed in the usual way. So, let A : ω → LBDep be a functor. Then, we write

68



4.3 Inverse Limits of Projections in LBD

(ιn+1,n, πn,n+1) for the ep-pair A(n, n+1) : An → An+1. The inverse limit of A (notation
A∞), provided it exists, has the set of all sequences x ∈

∏
n∈ω An with xn = πn,n+1(xn+1)

for all n ∈ ω as underlying set. The extensional order on A∞ is defined pointwise, i.e.
x v y iff xn v yn for all n ∈ ω.

Unfortunately, we can not simply define negation on A∞ in a pointwise way. The
reason is that projections in general do not commute with negation (cf. Example 4.2.11).

Definition 4.3.1. Let A : ω → LBDep be a functor. Then we write (ιn+1,n, πn,n+1) for
the ep-pair A(n, n+1) for all n ∈ ω and set

A∞ := {x ∈
∏
n∈ω

An | xn = πn,n+1(xn+1) for all n ∈ ω} .

For elements x, y ∈ A∞ we write x v y iff xn v yn for all n ∈ ω. �

Further, we will use the following notation: given a functor A : ω → LBDep and
n < k then we write πn,k for πn,n+1 ◦ · · · ◦ πk−1,k and ιk,n for ιk,k+1 ◦ · · · ◦ ιn−1,n. For
n = k, we put πn,n = ιn,n = idAn .

Lemma 4.3.2. Let A and B be lbpds, f : A→ B a bistable map and x ∈ A. Then

f(¬x) = (¬f(x) u f(x>)) t f(x⊥) = (¬f(x) t f(x⊥)) u f(x>)

resp.
¬f(¬x) = (f(x) t ¬f(x>)) u ¬f(x⊥) = (f(x) u ¬f(x⊥)) t ¬f(x>)

holds.

Proof. As f is bistable and x l ¬x it follows that l{f(x), f(¬x),¬f(x)}, thus

(¬f(x) u f(x>)) t f(x⊥) = (¬f(x) u f(x t ¬x)) t f(x u ¬x)

= (¬f(x) u (f(x) t f(¬x))) t (f(x) u f(¬x))

= ((¬f(x) u f(x)) t (¬f(x) u f(¬x))) t (f(x) u f(¬x))

= f(x)⊥ t (¬f(x) u f(¬x)) t (f(x) u f(¬x))

= (¬f(x) u f(¬x)) t (f(x) u f(¬x))

= (¬f(x) t f(x)) u f(¬x)

= f(x)> u f(¬x)

= f(¬x)

further, we have

(¬f(x) u f(x>)) t f(x⊥) = (¬f(x) t f(x⊥)) u (f(x>) t f(x⊥))

= (¬f(x) t f(x⊥)) u f(x>)

as desired.

69



4 Properties of the category LBD

In the next lemma we show that bistable maps restricted to a bistably connected
component preserve arbitrary infima and suprema.

Lemma 4.3.3. Let A and B be lbpds, f : A→ B a bistable map and X be a nonempty
subset of A with lX then

(1) f(
⊔

X) =
⊔
{f(x) | x ∈ X} and

(2) f(
d

X) =
d
{f(x) | x ∈ X} .

Proof. Suppose f : A→ B is bistable and X is a nonempty subset of A with lX.

ad (1) : As the set {
⊔

F | F ∈ Pf.n.e.(X)} is directed, it follows that

f(
⊔

X) = f(
⊔
{
⊔

F | F ∈ Pf.n.e.(X)})

=
⊔
{f(
⊔

F ) | F ∈ Pf.n.e.(X)}

=
⊔
{
⊔
{f(x) | x ∈ F} | F ∈ Pf.n.e.(X)}

=
⊔
{f(x) | x ∈ X}

as desired.

ad (2) : As f preserves bistable coherence it follows that for all x ∈ X the terms f(x),
f(¬x), f(X>), f(X⊥) and their respective negation happen to be bistably coherent,
thus we get

f(
l

X)

= f(¬
⊔
{¬x | x ∈ X})

= (¬f(
⊔
{¬x | x ∈ X}) u f(X>)) t f(X⊥) (†)

= (¬
⊔
{f(¬x) | x ∈ X} u f(X>)) t f(X⊥) (‡)

= (¬
⊔
{(¬f(x) t f(X⊥)) u f(X>) | x ∈ X} u f(X>)) t f(X⊥) (†)

= (¬
⊔
{¬((f(x) u ¬f(X⊥)) t ¬f(X>)) | x ∈ X} u f(X>)) t f(X⊥)

= (
l
{(f(x) u ¬f(X⊥)) t ¬f(X>) | x ∈ X} u f(X>)) t f(X⊥)

= (((
l
{f(x) | x ∈ X} u ¬f(X⊥)) t ¬f(X>)) u f(X>)) t f(X⊥) (§)

= (((
l
{f(x) | x ∈ X} u ¬f(X⊥)) u f(X>)) t (¬f(X>) u f(X>))) t f(X⊥)

= (
l
{f(x) | x ∈ X} u ¬f(X⊥)) t f(X>)⊥ t f(X⊥) (¶)

= (
l
{f(x) | x ∈ X} u ¬f(X⊥)) t f(X⊥)

= (
l
{f(x) | x ∈ X} t f(X⊥)) u (¬f(X⊥) t f(X⊥))

=
l
{f(x) | x ∈ X} u f(X⊥)> (||)

=
l
{f(x) | x ∈ X} (††)

70



4.3 Inverse Limits of Projections in LBD

where (†) follows from Lemma 4.3.2, (‡) follows from (1), (§) follows from Thm. 2.2.35,
(¶) follows as

d
{f(x) | x ∈ X} u ¬f(X⊥) ≤b f(X>) (since f(x) ≤b f(X>) for all

x ∈ X), (||) follows as f(X⊥) ≤b f(x) for all x ∈ X and (††) follows as f(x) ≤b f(X⊥)>

for all x ∈ X.

Lemma 4.3.4. Let A : ω → LBDep be a functor and x ∈ A∞. Then for all n, k ∈ ω
with n ≤ k we have

(1) πn,k(¬xk) ≤b πn,k′(¬xk′) for all k′ ∈ ω with n ≤ k′ ≤ k

(2)
d

k≥n πn,k(¬xk) ∈ An

(3)
d

k>n πn,k(¬xk) = πn,n+1(
d

k≥n+1 πn+1,k(¬xk))

Proof. Suppose A : ω → LBDep is a functor and x ∈ A∞.

ad (1) : Suppose k′ ∈ ω with n ≤ k′ ≤ k. Then we have πn,k(¬xk) = πn,k′(πk′,k(¬xk)).
As πk,k′(¬xk′) ≤b ¬πk,k′(xk′) by Cor. 4.2.4(3), it follows that

πn,k(¬xk) ≤b πn,k′(¬πk,k′(xk)) = πn,k(¬xk′)

as desired.

ad (2) : From (1) it follows that l{πn,k(¬xk) | k ≥ n}. As bistably connected
components are complete boolean algebras it follows that

d
k≥n πn,k(¬xk) exists and is

in An.

ad (3) : From Lemma 4.3.3(2) it follows that

πn,n+1(
l

k≥n+1

πn+1,k(¬xk)) =
l

k≥n+1

πn,n+1(πn+1,k(¬xk))

=
l

k≥n+1

πn,k(¬xk)

=
l

k≥n

πn,k(¬xk)

where the last equation follows from (1).

Using Lemma 4.3.4 we can define negation A∞. Notice that the sequence in the
definition of (¬x)n is decreasing w.r.t. the bistable order. Taking the infimum of this
sequence eliminates all those occurrences of > in ¬xn whose corresponding occurrences
of ⊥ in xn “develop” to something different from ⊥ in subsequent xk.

Definition 4.3.5. Let A : ω → LBDep be a functor and x ∈ A∞. Then we define
¬x : A∞ → A∞ by

(¬x)n :=
l

k≥n

πn,k(¬xk) .

�

71



4 Properties of the category LBD

Lemma 4.3.6. Let A : ω → LBDep be a functor and x ∈ A∞. Then for all n ∈ ω we
have (¬x)n l xn and (¬x)n ≤b ¬xn.

Proof. Suppose x ∈ A∞ and n ∈ ω. Then we have xn = πn,k(xk) l πn,k(¬xk) for all
k ∈ ω with n ≤ k. Thus l{πn,k(¬xk) | k ≥ n}. From Lemma 2.2.34 it follows that
l{πn,k(¬xk) | k ≥ n} ∪ {(¬x)n}. Thus, (¬x)n l xn and (¬x)n =

d
k≥n πn,k(¬xk) ≤b

πn,n(¬xn) = ¬xn as desired.

Lemma 4.3.7. Let A : ω → LBDep be a functor and (ιn+1,n, πn,n+1) = A(n, n+1) :
An → An+1 for all n ∈ ω. Then

l

j≥i

⊔
k≥j

πi,j(¬πj,k(x
>
k )) = xi⊥

holds for all i ∈ ω and x ∈ A∞.

Proof. Suppose i ∈ ω and x ∈ A∞. Then

l

j≥i

⊔
k≥j

πi,j(¬πj,k(x
>
k )) =

l

j≥i

⊔
k≥j

(
πi,j(πj,k(x

>
k )>) u ¬πi,j(πj,k(x

>
k ))
)

(†)

=
l

j≥i

⊔
k≥j

(
πi,j(x

>
j ) u ¬πi,k(x

>
k )
)

=
l

j≥i

(
πi,j(x

>
j ) u

⊔
k≥j

¬πi,k(x
>
k )

)

=
l

j≥i

(
πi,j(x

>
j ) u ¬

l

k≥j

πi,k(x
>
k )

)

=
l

j≥i

(
πi,j(x

>
j ) u ¬

l

k≥i

πi,k(x
>
k )

)
(‡)

=

(
l

j≥i

πi,j(x
>
j )

)
u

(
¬

l

k≥i

πi,k(x
>
k )

)
=xi u ¬xi

=xi⊥

where (†) follows from Cor. 4.2.4(4) and (‡) holds since πk′,k(x
>
k ) ≤b x>k′ (since xk′ =

πk′,k(xk)) and therefore πi,k(x
>
k ) ≤b πi,k′(x

>
k′) for all k ≥ k′ ≥ i.

Lemma 4.3.8. Let A : ω → LBDep be a functor. Then for all x ∈ A∞ and n ∈ ω it
holds that (¬¬x)n = xn.

72



4.3 Inverse Limits of Projections in LBD

Proof. Suppose x ∈ A∞ and n ∈ ω. Then we have

(¬¬x)n =
l

k≥n

πn,k(¬(¬x)k)

=
l

k≥n

πn,k(¬
l

l≥k

πk,l(¬xl))

=
l

k≥n

πn,k(
⊔
l≥k

¬πk,l(¬xl))

=
l

k≥n

⊔
l≥k

πn,k(¬πk,l(¬xl)) (†)

=
l

k≥n

⊔
l≥k

πn,k(πk,l(xl) t ¬πk,l(x
>
l )) (‡)

=
l

k≥n

⊔
l≥k

πn,k(πk,l(xl)) t πn,k(¬πk,l(x
>
l ))

=
l

k≥n

⊔
l≥k

xn t πn,k(¬πk,l(x
>
l ))

= xn t
l

k≥n

⊔
l≥k

πn,k(¬πk,l(x
>
l )) (§)

= xn t xn⊥ (¶)
= xn

where (†) follows as ¬πk,l(¬xl) is ascending w.r.t. ≤b, (‡) follows by Cor. 4.2.4(4), (§) by
Lemma 2.2.34 and (¶) by Lemma 4.3.7.

Using the above lemma we now can show that ¬ : A∞ → A∞ is an involution.

Lemma 4.3.9. Let A : ω → LBDep be a functor and (ιn+1,n, πn,n+1) ep-pairs A(n, n+1) :
An → An+1 for all n ∈ ω. Then for all x, y ∈ A∞ we have that x v y implies ¬y v ¬x.

Proof. Suppose x, y ∈ A∞ with x v y. As xn v yn for all n ∈ ω it follows that
¬yn v ¬xn for all n ∈ ω. Thus πn,k(¬yk) v πn,k(¬xk) for all n, k ∈ ω with n ≤ k.
Hence, we have

(¬y)n =
l

k≥n

πn,k(¬yk) v
l

k≥n

πn,k(¬xk) = (¬x)n

for all n ∈ ω as desired.

Next we show that for all x ∈ A∞ the infimum x u ¬x (resp. the supremum x t ¬x)
exist and is computed pointwise.

Lemma 4.3.10. Let A : ω → LBDep be a functor and x ∈ A∞ then x u ¬x = (xn u
(¬x)n)n∈ω and x t ¬x = (xn t (¬x)n)n∈ω.

73



4 Properties of the category LBD

Proof. Suppose x ∈ A∞. From Lemma 4.3.6 it follows that xn l (¬x)n for all n ∈ ω.
Thus,

πn,n+1(xn+1 u (¬x)n+1) = πn,n+1(xn+1) u πn,n+1((¬x)n+1) = xn u (¬x)n

and

πn,n+1(xn+1 t (¬x)n+1) = πn,n+1(xn+1) t πn,n+1((¬x)n+1) = xn t (¬x)n .

Thus, we have (xn u (¬x)n)n∈ω, (xn t (¬x)n)n∈ω ∈ A∞. Since (xn u (¬x)n)n∈ω (resp.
(xn t (¬x)n)n∈ω) is the infimum (resp. supremum) of x and ¬x in

∏
n∈ω An it follows

that it is also the infimum (resp. supremum) in A∞.

Lemma 4.3.11. Let A : ω → LBDep be a functor and x ∈ A∞. Then x⊥ = ((xn)⊥)n∈ω.

Proof. Suppose x ∈ A∞ and n ∈ ω. From Lemma 4.3.10 it follows that (x u ¬x)n =
xn u (¬x)n and from Lemma 4.3.6 it follows that xn l (¬x)n. As (¬x)n ≤b ¬xn by
Lemma 4.3.6 we get xn u (¬x)n ≤b xn u ¬xn = (xn)⊥. Thus, xn u (¬x)n = (xn)⊥ as
desired.

Lemma 4.3.12. Let A : ω → LBDep be a functor. If x ∈ A∞ and n ∈ ω then

(x>)n =
l

k≥n

πn,k((xk)
>) ≤b (xn)> .

Proof. The inequality (x>)n ≤b (xn)> follows as xn l (¬x)n for all n ∈ ω and by
Lemma 4.3.10 the supremum x t ¬x is computed pointwise. As x⊥ = ((xn)⊥)n∈ω by
Lemma 4.3.11, we get

(x>)n = (¬(x⊥))n

=
l

k≥n

πn,k(¬(x⊥)k)

=
l

k≥n

πn,k(¬(xk)⊥)

=
l

k≥n

πn,k((xk)
>)

as desired.

Lemma 4.3.13. Let A : ω → LBDep be a functor and x, y ∈ A∞. Then x v y> holds
iff xn v y>n holds for all n ∈ ω.

Proof. Suppose x, y ∈ A∞. The forward implication is trivial as (y>)n v y>n by
Lemma 4.3.12 for all n ∈ ω. For the reverse implication suppose xn v y>n holds for all
n ∈ ω. Thus xn = πn,k(xk) v πn,k(y

>
k ) for all n ≤ k and it follows, also by Lemma 4.3.12,

that xn v
d

k≥n πn,k(yk
>) = (y>)n for all n ∈ ω as desired.

74



4.3 Inverse Limits of Projections in LBD

Lemma 4.3.14. Let A : ω → LBDep be a functor and x, y ∈ A∞. Then we have

(1) x ↑ y ⇔ xn ↑ yn for all n ∈ ω

(2) x ↓ y ⇔ xn ↓ yn for all n ∈ ω

(3) x l y ⇔ xn l yn for all n ∈ ω

(4) x ≤s y ⇔ xn ≤s yn for all n ∈ ω

(5) x ≤c y ⇔ xn ≤c yn for all n ∈ ω

(6) x ≤b y ⇔ xn ≤b yn for all n ∈ ω

Proof. Suppose A : ω → LBDep is a functor and x, y ∈ A∞.

ad (1) : This follows immediately from Lemma 4.3.13.

ad (2) : Using Lemma 4.3.11 we get (z⊥)n = (zn)⊥ for all z ∈ A∞. Thus, we have
x ↓ y iff x⊥ v y and y⊥ v x iff xn⊥ v yn and yn⊥ v xn for all n ∈ ω iff xn ↓ yn for all
n ∈ ω.

ad (3) : This follows immediately from (1) and (2).

ad (4), (5) and (6) : These are immediate consequences of (1), (2) and (3) and the
fact that v is defined pointwise on A∞.

Lemma 4.3.15. Let A : ω → LBDep be a functor and x, y ∈ A∞.

(1) If x ↑ y then x u y = (xn u yn)n∈ω and x t y = (xn t yn)n∈ω.

(2) If x ↓ y then x t y = (xn t yn)n∈ω.

Proof. Suppose A : ω → LBDep is a functor and x, y ∈ A∞.

ad (1) : Suppose x, y ∈ A∞ with x ↑ y. Then by Lemma 4.3.14 we have xn ↑ yn for
all n ∈ ω. Thus, xn u yn and xn t yn exist for all n ∈ ω. From Cor. 2.3.4 it follows that

πn,n+1(xn+1 u yn+1) = πn,n+1(xn+1) u πn,n+1(yn+1) = xn u yn

and from Lemma 4.2.10 it follows that

πn,n+1(xn+1 t yn+1) = πn,n+1(xn+1) t πn,n+1(yn+1) = xn t yn .

Further (xn u yn)n∈ω (resp. (xn t yn)n∈ω) is the pointwise infimum (resp. supremum) of
x and y, thus the infimum (resp. supremum) in

∏
n∈ω An and hence also in A∞.

ad (2) : Suppose x, y ∈ A∞ with x ↓ y then by Lemma 4.3.14 we have xn ↓ yn for all
n ∈ ω. Thus, xn t yn exists for all n ∈ ω. From Cor. 2.3.4 it follows that

πn,n+1(xn+1 t yn+1) = πn,n+1(xn+1) t πn,n+1(yn+1) = xn t yn .

As (xn t yn)n∈ω is the pointwise supremum of x and y it the supremum in
∏

n∈ω An and
hence also in A∞.

75



4 Properties of the category LBD

Lemma 4.3.16. Let A : ω → LBDep be a functor. Then A∞ is a lbo.

Proof. From Lemma 4.3.9 and Lemma 4.3.8 it follows that ¬ : |A∞| → |A∞| is an
involution. Lemma 4.3.10 ensures the existence of x> and x⊥ for all x ∈ |A∞|, and
Lemma 4.3.15 provides binary infima and suprema of stably coherent elements.

Lemma 4.3.17. Let A : ω → LBDep be a functor then (A∞,v) is a cpo. If X is a
directed subset of A∞ then

⊔
X = (

⊔
{xn | x ∈ X})n∈ω.

Proof. Suppose X ⊆ A∞ is v-directed. As the extensional order v is given pointwise
on A∞ it follows that for all n ∈ ω the set {xn | x ∈ X} is directed w.r.t. v. As
πn,n+1(

⊔
{xn+1 | x ∈ X}) =

⊔
{πn,n+1(xn+1) | x ∈ X} =

⊔
{xn | x ∈ X} and (

⊔
{xn |

x ∈ X})n∈ω is the supremum of X in
∏

n∈ω An it follows that it is also the supremum in
A∞.

Next we study finite prime elements of A∞.

Definition 4.3.18. If A : ω → LBDep is a functor. Then we define πn : A∞ → An by

πn(x) := xn

and ιn : An → A∞ by

(ιn(x))k :=

{
πk,n(x) if k ≤ n,

ιk,n(x) otherwise,

for all k ∈ ω. Further, we put rn := ιn ◦ πn for all n ∈ ω. �

Lemma 4.3.19. For all n ∈ ω the functions πn : A∞ → An, ιn : An → A∞ and
rn : A∞ → A∞ from Def. 4.3.18 are bistable.

Proof. This follows as πk,n and ιk,n are bistable for all k ≤ n and using Lemma 4.3.14.

Lemma 4.3.20. Let A : ω → LBDep be a functor, x ∈ A∞ and y ∈ An for some n ∈ ω.
Then

(1) y v xn implies ιn(y) v x and

(2) y ≤s xn implies ιn(y) ≤s x.

Proof. Suppose x ∈ A∞ and y ∈ An.

ad (1) : If y v xn then (ιn(y))n = y v xn. Let k ∈ ω, if k ≤ n then (ιn(x))k =
πk,n(y) v πk,n(xn) = xk. If k > n then (ιn(x))k = ιk,n(y) v ιk,n(xn) v xk. Thus,
ιn(y) v x as desired.

ad (2) : If y ≤s xn then (ιn(y))n = y ≤s xn. Let k ∈ ω, if k ≤ n then (ιn(x))k =
πk,n(y) ≤s πk,n(xn) = xk. If k > n then (ιn(x))k = ιk,n(y) ≤s ιk,n(xn) = ιk,n(πn,k(xk)) ≤s

xk. Thus, ιn(y) ≤s x as desired.

76



4.3 Inverse Limits of Projections in LBD

Lemma 4.3.21. Let A : ω → LBDep be a functor then

FP(A∞) = {ιn(p) | n ∈ ω and p ∈ FP(An)} .

Proof. Suppose p ∈ FP(A∞) then the set {q ∈ A∞ | q ≤s p} is finite. Let n := |{q ∈
A∞ | q ≤s p}|. By Lemma 4.3.20 n is an upper bound for |{q ∈ Ai | q ≤s pi}| for all
i ∈ ω. Further, there exists a k ∈ ω such that |{q ∈ Ak | q ≤s pk}| = n. As pi+1 stably
dominates at least as many elements as pi it follows that |{q ∈ Al | q ≤s pl}| = n for
all l ≥ k. As all the maps ιl,k are injective and preserve the stable order it follows that
|{r ∈ Al | r ≤s ιl,k(pk)}| ≥ n. Thus, as ιl,k(pk) ≤s pl we get ιl,k(pk) = pl for all l ≥ k.
Hence, p = ιk(pk) and pk is finite.

For showing that pk is prime suppose x, y ∈ Ak with x ↑ y or x ↓ y. If pk v x t y
then from Lemma 4.3.20 it follows that p v ιk(x t y). Using Cor. 2.3.4 (in case x ↓ y)
and Lemma 4.2.10 (in case x ↑ y) we get πl,k(x t y) = πl,k(x) t πl,k(y) for all l ≤ k and
ιl,k(x t y) = ιl,k(x) t ιl,k(y) for all l > k. Thus, it follows that ιk(x t y) = ιk(x) t ιk(y).
As ιk(x) ↑ ιk(y) or ιk(x) ↓ ιk(y) (since ιk is bistable) and p v ιk(x t y) = ιk(x) t ιk(y)
we get p v ιk(x) or p v ιk(y). Thus, pk v x or pk v y as desired.

For the reverse inclusion suppose p ∈ FP(Ak) for some k ∈ ω and y, z ∈ A∞ with y ↑ z
or y ↓ z. If ιk(p) v y t z then it follows from Lemma 4.3.15 that (y t z)k = yk t zk,
and from Lemma 4.3.14 that yk ↑ zk or yk ↓ zk. As (ιk(p))k v yk t zk and (ιk(p))k =
p ∈ FP(Ak) we get p v yk or p v zk. W.l.o.g. assume p v yk. Then by Lemma 4.3.20
it follows that ιk(p) v y. Thus, ιk(p) ∈ P(A∞). Suppose l > k. From Lemma 4.2.6 it
follows that ιl,k(πk,l(r)) = r for all r ≤s ιl,k(p). Thus, if x ∈ A∞ with x ≤s ιk(p) then
xl ≤s ιk(p)l = ιl,k(p) and it follows that x = ιk(xk) = ιk(q) for some q ≤s p. As p is
finite there exist only finitely many q with q ≤s p. Thus, ιk(p) is also finite.

Lemma 4.3.22. Let A : ω → LBDep be a functor and x ∈ A∞ then

FP(x) = {ιn(p) | n ∈ ω and p ∈ FP(xn)} .

Proof. Suppose x ∈ A∞. Then we have FP(x) = {y ∈ FP(A∞) | y ≤s x}. Thus, from
Lemma 4.3.21 it follows that

FP(x) = {ιn(q) | n ∈ ω, q ∈ FP(An) and ιn(q) ≤s x} .

Using Lemma 4.3.14 we get

FP(x) = {ιn(q) | n ∈ ω, q ∈ FP(An) and q ≤s xn}
= {ιn(p) | n ∈ ω and p ∈ FP(xn)}

as desired.

Theorem 4.3.23. Let A : ω → LBDep be a functor. Then A∞ is a lbd.

77



4 Properties of the category LBD

Proof. We already know from Lemma 4.3.16 and Lemma 4.3.17 that A∞ is a complete
lbo. Further, as every An has a least element ⊥ it follows that A∞ has also a least
element ⊥. Thus, A∞ is pointed. It remains to show that A∞ fulfils the requirements
(1) and (2) of Def. 2.2.3:

ad (1) : Suppose x ∈ A∞. Then it follows from Lemma 4.3.22 that FP(x) = {ιn(p) |
n ∈ ω and p ∈ FP(xn)}. For all n ∈ ω and p ∈ FP(xn) we have (ιn(p))n = p and it
follows that xn ≤s (

⊔
{ιn(p) | p ∈ FP(xn)})n. As ιn(p) ≤s x for all n ∈ ω and p ∈ FP(xn)

by Lemma 4.3.20, it follows that xn = (
⊔
{ιn(p) | p ∈ FP(xn)})n Thus, x =

⊔
FP(x) as

desired.

ad (2) : Suppose p ∈ FP(A∞), X a directed subset of A∞ and p v
⊔

X. From
Lemma 4.3.21 it follows that there exists an i ∈ ω and a q ∈ Ai with p = ιi(q). Further,⊔

X = (
⊔
{xn | x ∈ X})n∈ω by Lemma 4.3.17. Thus, there exists an x ∈ X with q v xi.

From Lemma 4.3.20 it follows that ιi(q) v x. Thus, p v x as desired.

Theorem 4.3.24. Let A : ω → LBDep be a functor then the following holds:

(1) The locally boolean domain A∞ together with the morphisms πn : A∞ → An for all
n ∈ ω is a limit over the diagram D←− := ((An)n∈ω, (πn,n+1)n∈ω) in LBD.

(2) The locally boolean domain A∞ together with the morphisms ιn : An → A∞ for all
n ∈ ω is a colimit over the diagram D−→ := ((An)n∈ω, (ιn+1,n)n∈ω) in LBD.

(3) (ιn, πn) is an ep-pair for every n ∈ ω.

(4)
⊔

n∈ω ιn ◦ πn = idA∞

Proof. ad (1) : The construction of the limiting object A∞ and the projections πn is the
usual one for categories of domains. Thus, having another cone (B, (fn)n∈ω) over the
diagram D←− it follows that the function f : B → A∞ with f(x) := (fn(x))n∈ω is Scott

continuous. Thus, it remains to show that f is bistable. Suppose x, y ∈ B with x l y.
Then it follows that fn(xuy) = fn(x)ufn(y) and fn(xty) = fn(x)tfn(y) for all n ∈ ω
and we get

f(x u y) = (fn(x u y))n∈ω

= (fn(x) u fn(y))n∈ω

= (fn(x))n∈ω u (fn(y))n∈ω (†)
= f(x) u f(y)

and

f(x t y) = (fn(x t y))n∈ω

= (fn(x) t fn(y))n∈ω

= (fn(x))n∈ω t (fn(y))n∈ω (†)
= f(x) t f(y)

78



4.3 Inverse Limits of Projections in LBD

where (†) holds as fn(x) l fn(y) for all n ∈ ω and the infimum (resp. supremum) is
computed pointwise (by Lemma 4.3.15).

ad (2) : Like in the proof of (1) it remains to show that if (B, (fn)n∈ω) is a co-
cone over the diagram D−→ then the function f : A∞ → B with f(x) :=

⊔
n∈ω fn(xn)

is bistable. First, notice that for x ∈ A∞ we have fn(xn) = fn+1(ιn+1,n(xn)) =
fn+1(ιn+1,n(πn,n+1(xn+1))) ≤s fn+1(xn+1), thus we have

fn(xn) ≤s fn+1(xn+1) (†)

for all n ∈ ω. Suppose x, y ∈ A∞. If x l y then it follows that xn l yn and fn(xn) l fn(yn)
for all n ∈ ω. Thus, using Lemma 2.2.28 it follows that f(x) l f(y). Further, we have
fn(xn t yn) = fn(xn) t fn(yn) for all n ∈ ω and it follows that

f(x t y) =
⊔
n∈ω

fn((x t y)n)

=
⊔
n∈ω

fn(xn t yn)

=
⊔
n∈ω

fn(xn) t fn(yn)

=
⊔
n∈ω

fn(xn) t
⊔
n∈ω

fn(yn)

= f(x) t f(y)

From monotonicity of f we get f(x u y) v f(x) u f(y). Suppose p ∈ FP(
⊔

n∈ω fn(xn) u⊔
n∈ω fn(yn)) then p ∈ FP(

⊔
n∈ω fn(xn)) and p ∈ FP(

⊔
n∈ω fn(yn)). Thus, there exists an

i ∈ ω such that p v fi(xi) u fi(yi) v f(x) u f(y) as desired.

ad (3) : Suppose n ∈ ω. Then we have πn ◦ ιn(x) = πn(ιn(x)) = ιn(x)n = x, thus
πn ◦ ιn = idAn . If x, y ∈ A∞ and x ≤s y then for all n, k ∈ ω it follows that

((ιn ◦ πn)(x))k = (ιn(xn))k =

{
πk,n(xn) if k ≤ n,

ιk,n(xn) if k > n,

((ιn ◦ πn)(y) u x)k = ιn(yn)k u xk =

{
πk,n(xn) if k ≤ n,

ιk,n(yn) u xk if k > n.

As ιk,n ◦ πn,k ≤s idAk
for all k > n and xk ≤s yk it follows that ιk,n ◦ πn,k(xk) =

ιk,n ◦ πn,k(yk) u xk. Thus, we have ιk,n(xn) = ιk,n(yn) u xk as desired.

ad (4) : We have ιn ◦ πn ≤s idA∞ for all n ∈ ω thus
⊔

n∈ω ιn ◦ πn ≤s idA∞ . On
the other hand, we have (idA∞(x))m = (ιm ◦ πm(x))m ≤s

(⊔
n∈ω ιn ◦ πn(x)

)
m

. Thus,⊔
n∈ω ιn ◦ πn = idA∞ .

79



4 Properties of the category LBD

4.4 Countably based Locally Boolean Domains

We will now restrict to those locally boolean (pre)domains where the set of finite prime
elements is countable. Notice that countably based lbds will be sufficient for the inter-
pretation of the language SPCF∞ (cf. chapter 5).

Further, adapting a result of J. Longley in [Lon02] we show that every countably
based locally boolean domain appears as retract of U = [N→N] where N are the bilifted
natural numbers, i.e. that U is a universal object for countably based locally boolean
domains.

Definition 4.4.1. A lbpd (resp. lbd) A is countably based (a cblbpd (resp. cblbd)) iff
the set FP(A) is countable.
We write ωLBPD (resp. ωLBD) for the category of countably based locally boolean
(pre)domains and sequential maps. �

Obviously, for a lbpd A the set FP(A) is countable iff F(A) is countable.

Lemma 4.4.2. The category ωLBD has countable bilifted sums and products, is carte-
sian closed, and is closed under inverse limits of ω-chains of embedding projection
pairs.

Proof. It is well known that the category OSA restricted to Curien-Lamarche games
with countable sets of cells and values forms a cartesian closed category and this category
is obviously equivalent to ωLBD.

The other statements are left as an exercise to the reader.

We now define abbreviations for some frequently used cblbds.

Definition 4.4.3. We define the following cblbds:

1 :=
∏
i∈∅

(The empty product.)

O :=
∑
i∈∅

(The empty sum.)

N :=
∑
i∈ω

1 (The bilifted natural numbers.)

U := [N→N] (The bistable endomaps on N.)

Further, given a lbpd A we introduce the abbreviation Aω for
∏

i∈ω A. �

We call the type O the type of observations. More explicitly O can be described as
the lbd ({⊥,>},v,¬) with ⊥ v > and ¬⊥ = >. Notice that [A→O] separates points
in A for any lbd A.

The data type N will serve as the type of bilifted natural numbers. More explicitly N
can be described as the lbd (N ∪ {⊥,>},v,¬) with x v y iff x = ⊥ or y = > or x = y,

80



4.4 Countably based Locally Boolean Domains

and negation is given by ¬⊥ = > and ¬n = n for all n ∈ N. The extensional order of N
can by visualised by the following diagram

>

· · ·

0

uuuuuuuuuuuuuuuuu

IIIIIIIIIIIIIIIII 1

������������

??
??

??
??

??
??

2

����������

00
00

00
00

00
3 4

0000000000

��
��
��
��
��

5

????????????

��
��

��
��

��
��

6

KKKKKKKKKKKKKKKKK

sssssssssssssssss · · ·

· · ·

⊥

where the bistably connected components are [⊥]l = [>]l = {⊥,>} and [n]l = {n} for
all n ∈ ω. Thus, N is isomorphic to the bilifted set of natural numbers, and we will refer
to the elements of N as given in the diagram above. In terms of CL-games the lbd N has
exactly one cell c = > and FP(N) = {c} ∪ {vn | n ∈ ω}.

Further using Thm. 4.1.2 it follows that the locally boolean domain Nω has as cells
the set {cn | n ∈ ω}

In [Lon02] J. Longley has shown that in SA (i.e. the category of sequential data
structures (without error elements) and sequential algorithms/function) the sequential
data structure of partial functions on the natural numbers is universal. We will modify
this proof and show that the lbds U and Nω both are universal in the category ωLBD.

Definition 4.4.4. Let A and B be lbpds and e : A → B and p : B → A be sequential
maps. We call the pair [e, p] a retraction pair and write [e, p] : A → B iff p ◦ e = idA.

�
If [e, p] is a retraction pair, then e is called embedding, p is called projection. Notice

that we do not impose any condition on e ◦ p. Thus, p is not necessarily a projection in
the sense of Def. 4.2.1.

In the following we will show that the locally boolean domain Nω is universal in the
category ωLBD, i.e. if A is a cblbd then there exists a retraction pair [e, p] : A→ Nω.

As A is a countably based we can pick some identification ν : FP(A) ↪→ ω of FP(A)
with a subset of the natural numbers. Further, we write ε for the (partial) inverse
function of ν, and write ε(n) ↓ iff there is a p ∈ FP(A) with ν(p) = n and ε(n) ↑
otherwise.

Next we define functions eA and e[
A from a cblbpd A to Nω. The intuition behind the

definition of e[
A is that e[

A(x) fills cell i with j (resp. >) iff ε(i) is a cell that is filled by
x with value ε(j) 6= ε(i) (resp. ε(i)). The definition of eA is like the definition of e[

A but
eA(x) additionally fills a cell ci with > if ε(i) fills some cell c ∈ FP(x) with c. Notice
that eA(x) and e[

A(x) agree on all cells that are filled by e[
A(x), and if a cell c is filled by

eA(x) with value v 6= > then c is also filled by e[
A(x) with value v.

81



4 Properties of the category LBD

Definition 4.4.5. If A is a cblbd we define the functions eA, e[
A : A→ Nω by

(e[
A(x))i :=


> if ε(i) ↓, ε(i) ∈ Cell(A) and x fills ε(i) with ε(i)

j if ε(i) ↓, ε(i) ∈ Cell(A), ε(j) ↓, ε(j) = (ε(j))⊥

and x fills ε(i) with ε(j)

⊥ otherwise

(eA(x))i :=



> if ε(i) ↓, ε(i) ∈ Cell(A) and

∃c∈FP(x)∩Cell(A). c filled by ε(i)

j if ε(i) ↓, ε(i) ∈ Cell(A), ε(j) ↓, ε(j) = (ε(j))⊥

and x fills ε(i) with ε(j)

⊥ otherwise

for all x ∈ A and i ∈ ω. �

Notice that in the above definitions the cases for > and j ∈ ω are mutually exclusive.
Thus both functions are well-defined. Further from the preceeding remarks we get that:

Lemma 4.4.6. Let A be a cblbd. Then e[
A(x) ≤s eA(x) for all x ∈ A.

Lemma 4.4.7. Let A be a cblbd. Then the functions e[
A and eA preserve bistable coher-

ence and bistably coherent infima and suprema.

Proof. Suppose x l y.
For showing that eA(x) l eA(y) holds, we have to check that (eA(x))i = j for some

j ∈ ω implies (eA(y))i = j and vice versa. If (eA(x))i = j then ε(j) = (ε(j))⊥ and x fills
ε(i) with ε(j). Thus, ε(j) ∈ FP(x) and as ε(j) = (ε(j))⊥ it follows that ε(j) ∈ FP(x⊥) =
FP(y⊥) ⊆ FP(y). Thus, y fills ε(i) with ε(j) and we have that (eA(y))i = j.

For showing that eA(x u y) = eA(x) u eA(y) and eA(x t y) = eA(x) t eA(y) hold it
suffices to check the cases where (eA(x))i, (eA(y))i ∈ {⊥,>}. Using Lemma 2.2.21 it
follows that (eA(x u y))i = > iff (eA(x))i = > and (eA(y))i = >, and (eA(x t y))i = >
iff (eA(x))i = > or (eA(y))i = >.

Analogously, one shows that e[
A has the required properties.

Lemma 4.4.8. Let A be a cblbd. Then functions eA and e[
A preserve ⊥-elements, i.e.

eA(x⊥) = eA(x)⊥ (resp. e[
A(x⊥) = e[

A(x)⊥) for all x ∈ A.

Proof. Immediately from the definition of eA and e[
A.

Lemma 4.4.9. Let A be a cblbd. Then the functions eA and e[
A reflect stable coherence,

i.e. if x, y ∈ A then eA(x) ↑ eA(y) (resp. e[
A(x) ↑ e[

A(y)) implies x ↑ y.

Proof. Suppose x, y ∈ A with x 6 ↑ y. Then as A has a least element it follows that
FP(x) ∩ FP(y) 6= ∅. Thus from Lemma 3.2.12 it follows that there is a cell c that
is filled by x with vx and by y with vy and vx 6= vy. Thus, by Def. 4.4.5 we get
(eA(x))ν(c) = ν(vx) 6= ν(vy) = (eA(y))ν(c) and it follows that eA(x) 6 ↑ eA(y). Analogously,
one can show that x 6 ↑ y implies e[

A(x) 6 ↑ e[
A(y).

82



4.4 Countably based Locally Boolean Domains

Lemma 4.4.10. Let A be a cblbd. Then the function eA is bistable.

Proof. Suppose x, y ∈ A with x v y. If (eA(x))i = > then ε(i) ∈ Cell(A) and
∃c∈FP(x)∩Cell(A). c filled by ε(i) and it follows from Lemma 3.2.15 that (eA(y))i =
>. Now suppose (eA(x))i = j. Then ε(j) = (ε(j))⊥ and x fills ε(i) with ε(j). By
Lemma 3.2.15 there exist two cases:

(1) y fills ε(i) with ε(j) : Thus (eA(y))i = j and we are finished.
(2) There exists a cell c′ filled by ε(j) and y fills c′ with c′ : As ε(j) and ε(i) fill the

same cells it follows that c′ is filled by ε(i), and we get (eA(y))i = >.

Continuity follows immediately from monotonicity, as the definition of eA refers only
to compact elements of A.

Applying Lemma 4.4.7 finishes the proof.

Lemma 4.4.11. Let A be a cblbpd. Then for all x ∈ Nω the set {y ∈ A | e[
A(y) ≤s x}

has a greatest element w.r.t. ≤s.

Proof. If x ∈ Nω then it follows from Lemma 4.4.9 that the set {y ∈ A | e[
A(y) ≤s x}

is stably coherent. Thus, mx :=
⊔
{y ∈ A | e[

A(y) ≤s x} exists. From Lemma 2.2.21
it follows that FP(mx) =

⋃
{FP(y) | y ∈ A, e[

A(y) ≤s x}. Assuming p ∈ FP(mx) and
w.l.o.g. p 6= ⊥ it follows that there exists a unique cell c with c⊥ ≺s p v c, further
p ∈ FP(y) for some y ∈ A with e[

A(y) ≤s x. Hence, we get

(x)ν(c) =

{
> if c = p, and

ν(p) otherwise.

Thus, e[
A(mx) ≤s x.

Using the just proven lemma we can define a projection from Nω to a cblbd A.

Definition 4.4.12. If A is a cblbd then we define the function pA : Nω → A by

pA(x) :=
⊔
{y ∈ A | e[

A(y) ≤s x}

for all x ∈ Nω. �

Notice that Lemma 4.4.11 ensures that pA is well-defined.

Lemma 4.4.13. Let A be a cblbd. Then the function pA is observably sequential.

Proof. For showing that pA is continuous w.r.t. ≤s suppose x, y ∈ Nω with x ≤s y. Let
z ≤s pA(x) then e[

A(z) ≤s x ≤s y, thus z ≤s pA(y). Further let X ⊆ Nω be directed
w.r.t. ≤s. As pA is monotone w.r.t. ≤s it follows that

⊔
pA(X) ≤s pA(

⊔
X). For the

showing reverse inequality suppose q ∈ FP(pA(
⊔

X)), thus e[
A(q) ≤s

⊔
X. As q is finite

it follows that q fills at most finitely many cells. Thus (e[
A(q))i 6= ⊥ for at most finitely

many i ∈ ω. It follows from Thm. 4.1.2 that e[
A(q) is finite. Hence as X is directed w.r.t.

≤s there exists a x ∈ X with e[
A(q) ≤s x, thus q ≤s pA(x) ≤s

⊔
pA(X).

83



4 Properties of the category LBD

For showing that pA is observably sequential suppose x, y ∈ Nω with x ≤s y, c′ ∈
Acc(pA(x) and pA(y) fills c′. Then e[

A(c′⊥) <s y and it follows that y fills the cell cν(c′),
thus cν(c′) is the unique sequentiality index for pA at (x, c′). Uniqueness follows as
pA(x t cν(c′)) fills c′. Further by definition of e[

A it follows that pA(x t cν(c′)) fills c′ with
value c′, thus pA is error propagating.

Thus we can show that each cblbd is a retract of the lbd Nω.

Theorem 4.4.14. The cblbd Nω is universal in the category ωLBD, i.e. if A is a cblbd
then there exists a retraction pair [e, p] : A→ Nω.

Proof. We show that [eA, pA] : A→ Nω is a retraction pair. By Thm. 3.3.6, Lemma 4.4.10
and Lemma 4.4.13 and it follows that eA and pA are bistable maps.

For showing that pA ◦ eA = idA suppose x ∈ A. As e[
A(x) ≤s eA(x) by Lemma 4.4.6 it

follows that x ≤s pA(eA(x)).
For showing the reverse inequality suppose p ∈ FP(pA(eA(x))) and w.l.o.g. p 6= ⊥.

Then e[
A(p) ≤s eA(x) and p fills a unique cell c ∈ Cell(A) with value p. We proceed by

case analysis on p. In case that p = p⊥ then (e[
A(p))ν(c) = ν(p). As e[

A(p) ≤s eA(x) it
follows that (eA(x))ν(c) = ν(p), thus p ∈ FP(x). In case that p 6= p⊥ then p = c and
(e[

A(p))ν(c) = >. Thus (eA(x))ν(c) = > and it follows that there exists a cell c′ that is
filled by c and x fills c′ with value c′. As p, x ≤s pA(eA(x)) we have p ↑ x and it follows
from Cor. 3.2.11 that the filling of p and x agrees on those cells filled by both. Thus, as
all cells except c that are filled by p are filled with values v = v⊥ it follows that c = c′.
Hence we get p = c ∈ FP(x) as desired.

As an easy consequence it follows that type of bistable endomaps on the bilifted
natural numbers is also universal.

Corollary 4.4.15. The cblbd U is universal in the category ωLBD.

Proof. It is an easy exercise to verify that the maps e : Nω → U and p : U → Nω given
by

e(x) :=


> 7→ >
i 7→ xi for all i ∈ ω

⊥ 7→ ⊥

and

p(f)i := f(i) for all i ∈ ω

are both bistable and form a retraction pair [e, p] : Nω → U. Using Thm. 4.4.14 it follows
that U is universal.

84



5 A universal model for the language SPCF∞
in LBD

In the first part of this chapter we introduce the language SPCF∞ and its operational se-
mantics. The language SPCF∞ is an infinitary version of SPCF as introduced in [CCF94].
More explicitly, it is obtained from simply typed λ-calculus by adding (countably) infinite
sums and products, error elements, a control operator catch and recursive types. We
give a call-by-name operational semantics for SPCF∞ where we use evaluation contexts
in order to formalise the behaviour of the control operator catch.

In the second part of this chapter we present a computationally adequate model for
SPCF∞ in the category LBD. Further we exhibit each SPCF∞ type as an SPCF∞
definable retract of the type N→N from which we deduce universality of SPCF∞ for its
LBD model.

5.1 Definition of SPCF∞

First we define the types of the language SPCF∞. Since SPCF∞ has recursive types we
also have to consider types with free type variables.

We assume a given set of type variables (denoted by α, α′ and so on) and generate
the types of SPCF∞ as follows:

σ ::= α | σ→σ | µα.σ | Σi∈nσ | Πi∈nσ

where n ∈ ω + 1.

A type σ is called closed iff it does not contain a free type variable α, i.e. each
occurrence of a type variable α is bound under by some µα. We introduce the following
abbreviations for types:

0 := Σi∈∅ (type of observations)

1 := Πi∈∅ (empty product)

N := Σi∈ω1 (natural numbers)

n := Σi∈n1 (for all n ∈ ω+1)

σ↑ := Σi∈1σ (bilifting)

σ0+ · · ·+σn−1 := Σi∈nσi (n-ary sum)

σ0× · · ·×σn−1 := Πi∈nσi (n-ary product)

85



5 A universal model for the language SPCF∞ in LBD

Additionally, for a given SPCF∞ type σ and n ∈ ω + 1 we define the abbreviation

σn := Πi∈nσ

The terms of SPCF∞ are derived using the following grammar:

t ::= x | (λx : σ.t) | (tt) |
〈ti〉i∈n | prΠi∈nσi

i (t)

inΣi∈nσi

i (t) | caseΣi∈nσi,τ tof (ini x⇒ ti)i∈n

foldµα.σ(t) | unfoldµα.σ(t) |
>Σi∈nσi | catch(t)

for any variable x, n ∈ ω + 1 and all types σ, σi, τ and type variables α.
By 〈ti〉i∈n we denote

〈t0, . . . , tn−1〉 if n ∈ ω

and
〈t0, t1, t2, . . .〉 if n ∈ ω .

Accordingly, by caseΣi∈nσi,τ tof (ini x⇒ t)i∈n we denote

caseΣi∈nσi,τ tof (in0 ⇒ t0, . . . , inn−1 ⇒ tn−1) if n ∈ ω

and
caseΣi∈nσi,τ tof (in0 ⇒ t0, in1 ⇒ t1, in2 ⇒ t2, . . .) if n ∈ ω .

Further we define the values of SPCF∞ by the grammar

v ::= (λx : σ.t) |
〈ti〉i∈n

inΣi∈nσi

i (t)

foldµα.σ(t)

>Σi∈nσi

for all terms t. The values >Σi∈nσi are called error values the other values are called
proper values.

Type annotations are merely used for type inference, we will omit them when they are
clear from the context. Terms not containing any free variables are called closed terms
or programs the other terms are called open terms.

For the typing rules (as given in table Table 5.1), we look at terms-in-context of the
form Γ ` M : τ , where M is a term, τ a closed type and Γ ≡ x1 : σ1, . . . , xn : σn is a
context assigning closed types σ1, . . . , σn to a finite set of variables x1, . . . , xn. If Γ is the
empty context, then we also write M : τ for Γ `M : τ .

Notice that even in the presence of infinite constructions (countable product and sum)
we do not consider contexts with infinitely many free variables as we are interested only
in those terms-in-context that can be transformed into closed terms.

86



5.1 Definition of SPCF∞

(Ax var)
x1 : σ1, . . . , xn : σn ` xi : σi

(Ax>)
Γ ` >Σi∈nσi : Σi∈nσi

Γ, x : σ ` t : τ
(I→)

Γ ` (λx : σ.t) : σ→τ

Γ ` t : σ→τ Γ ` s : σ
(E→)

Γ ` (ts) : τ

Γ ` ti : σi for all i ∈ n
(IΠ)

Γ ` 〈ti〉i∈n : Πi∈nσi

Γ ` t : Πi∈nσi
(EΠ)

Γ ` prΠi∈nσi

i (t) : σi

Γ ` t : σi
(IΣ)

Γ ` inΣi∈nσi

i (t) : Σi∈nσi

Γ ` t : Σi∈nσi Γ, x : σi ` si : τ for all i ∈ n
(EΣ)

Γ ` caseΣi∈nσi,τ tof (ini x⇒ si)i∈n : τ

Γ ` t : σ[µα.σ/α]
(Iµ)

Γ ` foldµα.σ(t) : µα.σ

Γ ` t : µα.σ
(Eµ)

Γ ` unfoldµα.σ(t) : σ[µα.σ/α]

Γ ` t : 0ω→0
(catch)

Γ ` catch(t) : N

Table 5.1: Typing rules for SPCF∞

87



5 A universal model for the language SPCF∞ in LBD

For sake of convenience we introduce the following abbreviations:

Yσ :≡k(foldτ (k))

with τ :≡ µα.(α→(σ→σ)→σ)

and k :≡ λx : τ.λf : σ→σ.f(unfoldτ (x)xf)

idσ :≡λx : σ.x

⊥σ :≡Yσ idσ

∗ :≡〈〉1

zero :≡ inN
0 (∗)

succ :≡λn : N. caseN,N nof
(
inN

i x⇒ inN
i+1 x

)
i∈ω

pred :≡λn : N. caseN,N nof

(
inN

i x⇒ ⊥N if i = 0,

inN
i x⇒ inN

i−1 x otherwise

)
i∈ω

ifz :≡λn : N.λk : N.λl : N. caseN,N nof

(
inN

i x⇒ k if i = 0,

inN
i x⇒ l otherwise

)
i∈ω

catchσ0→...→σn−1→N :≡λf. catch(λx : 0ω. case f(e0(pr0(x)), . . . , en−1(prn−1(x)))

of (ini y ⇒ pri+n(x))i∈ω)

with ei :≡ λx : 0. case0,σi xof () for all i ∈ {0, . . . , n− 1}

If n ∈ ω+1 and m < n then we also write m for the term inn
m(∗) of type n.

Hence we get SPCF∞ as an extension of ordinary SPCF defined by R. Cartwright,
P.L. Curien and M. Felleisen in [CCF94] and of SPCF+ defined by Jim Laird in [Lai03a].
(It is tedious but straightforward to check that the operational semantics of SPCF∞ (as
given in section 5.2) is sound w.r.t. to the other operational semantics.)

We also remark that due to the countably infinite case construct any bistable function
from JNK to JNK is implementable in SPCF∞ (and not only functions that are computable
in the classical sense).

5.2 Operational semantics

In order to formalise the behaviour of the control operator catch we introduce the notion
of evaluation contexts.

Definition 5.2.1. A (call-by-name) evaluation context E is defined by the grammar

E ::= [ ] |
Et |
pri(E) |
caseE of (ini si ⇒ t)i∈n |
unfold(E) |
catch(λx : 0ω.E)

88



5.2 Operational semantics

for any i ∈ ω and where t and the si range over SPCF∞ terms. �
The notion E[t] stands for E with the [ ] hole filled by t. Further, if we write E[x] we

assume that the occurrence of the variable x in the hole of E is a free occurrence, and,
analogously, if t is an open term. We allow only those evaluation contexts E that are
typeable, i.e. there exists a context Γ and closed types σ and τ with Γ ` E[x : σ] : τ ,
then we say that E is of type τ .

Definition 5.2.2 (SPCF∞-redexes). The SPCF∞-redexes are given by the following pro-
duction rules:

∆ ::=(λx : σ.t)s |
pri(〈ti〉i∈n) |
case ini sof (ini x⇒ ti)i∈n |
unfold(fold(t)) |
catch(λx : 0ω.E ′[x]) |
E[>]

for all n ∈ ω+1, terms t, ti and s and evaluation contexts E and E ′, with the constraint
that E 6= []. A redex of the form E[>] is called an error redex, the other redexes are
called proper redexes. �

Lemma 5.2.3. Let t be a SPCF∞ term. Then either t is a proper value or there exists a
unique decomposition of t into an evaluation context E and a term R where R is either
a free variable, > or a proper redex with t ≡ E[R].

Proof. The proof is a standard induction on the structure of the term t and similar to
the proof of Lemma 8.5 in [CCF94].

The operational semantics of the language SPCF∞ is described by means of the fol-
lowing deterministic evaluation relation →op.

Definition 5.2.4. For all terms t, ti and s and evaluation contexts E we define the
following redex reductions:

(λx : σ.t)s→red t[s/x] (beta)

pri(〈ti〉i∈n)→red ti (prod)

case ini sof (ini x⇒ ti)→red ti[s/x] (case)

unfold(fold(t))→red t (fold)

For all evaluation contexts E of type 0 the evaluation relation →op is given by

E[t]→op E[t′] if t→red t′ (red)

E[>]→op > if E 6= [] (>)

E[catch t]→op t〈E[n]〉n∈ω (catch) �

It follows from Lemma 5.2.3 that →op is deterministic.

89



5 A universal model for the language SPCF∞ in LBD

5.3 Interpretation of types

As the language SPCF∞ includes recursive types the interpretation of SPCF∞-types has
to be defined inductively on the type structure. Hence we cannot restrict ourselves to
closed types but have to define the interpretation of types relative to a context.

The canonical way of interpreting a type α1, . . . , αn ` σ in domain theory is as a
locally continuous functor Fα1,...,αn`σ : Cn → C over some suitable category C.

For example the type α1, α2 ` α1→α2 corresponds to the functor

F ((X1, Y1), (X2, Y2)) =Y X1
2 for objects X1, Y1, X2, Y2 ∈ C

F ((f1, g1), (f2, g2)) =gf1

2 for morphisms fi : X ′
i → Xi, gi : Yi → Y ′

i

with i ∈ {1, 2} where

gf1

2 : Y X1
2 → Y ′X′

1
2 , gf1

2 (h) = g2 ◦ h ◦ f1

It is straightforward to define such functors for function, sum and product types. Tak-
ing recursive types into account, things get more complicated. In the theory of domains
recursive types are usually interpreted as the solution of recursive domain equations,
which can be constructed as bilimits over some suitable diagram of embeddings and
projections. For this purpose we have to restrict our category LBD to the category
LBDs of locally boolean domains and strict bistable maps. (This is in fact no restric-
tion as all embeddings and projections are strict.) Our approach is related to Freyd’s
results on initial algebras and final co-algebras, see [Fre91] and [Fre92]. Following the
notational convention introduced in [Pit96] we will decorate variable names with super-
scripts + and − . to distinguish between ‘co- and contravariant arguments’.

As W. K. Ho pointed out in [Ho06] we have to carry out the constructions in the cat-

egory L̃BDs which is the diagonal category of LBDop
s ×LBDs, i.e. the full subcategory

of LBDop
s ×LBDs whose objects are those of LBDs and morphisms are pairs of LBDs

morphisms of the form

A
f //

B
g

oo

Definition 5.3.1. Let Θ ≡ α1, . . . , αn by a type context. For any type-in-context Θ ` σ

we define a corresponding functor FΘ`σ : L̃BDs

n

→ L̃BDs by induction on the structure
of the type σ.

For any collection ~x∓ := (x−1 , x+
1 , . . . , x−n , x+

n ) of either objects or morphisms in the

90



5.3 Interpretation of types

category L̃BDs, respectively, we define

FΘ`αi
(~x∓) := x+

i

FΘ`σ→τ (~x
∓) := [FΘ`σ(~x±)→FΘ`τ (~x

∓)]

FΘ`Πi∈Iσi
(~x∓) :=

∏
i∈I

FΘ`σi
(~x∓)

FΘ`Σi∈Iσi
(~x∓) :=

∑
i∈I

FΘ`σi
(~x∓)

FΘ`µα.σ(~x∓) := rec1(Fα,Θ`σ)(~x∓) for α 6∈ Θ

where rec1(Fα,Θ`σ) is the functor H : L̃BDs

n−1

→ L̃BDs such that for all ~x′ :=
(x2, x2, . . . , xn, xn) we have

FΘ`µα.σ(H(~x′), H(~x′), ~x′) ' H(~x′)

According to the results of Freyd, H(~x′) is the free algebra for the functor FΘ`µα.σ. �

Lemma 5.3.2. For any type-in-context Θ ` σ the functor FΘ`σ is locally continuous.

Proof. The proof is done by induction on the structure of the type-in-context Θ ` σ

ad Θ ` αi : We have FΘ`αi
(~x∓) = x+

i , which is obviously locally continuous.

ad Θ ` σ→τ : We have FΘ`σ→τ (~x
∓) = [FΘ`σ(~x±)→FΘ`τ (~x

∓)]. If ~x∓ is a collection of
morphisms and X a directed set with

⊔
X = ~x∓ then

FΘ`σ→τ (~x
∓) = [FΘ`σ(~x±)→FΘ`τ (~x

∓)]

= FΘ`τ (~x
∓) ◦ ◦ FΘ`σ(~x±)

=
⊔

y∓∈X

{FΘ`τ (~y
∓)} ◦ ◦

⊔
y∓∈X

{FΘ`σ(~y±)}

=
⊔

y∓∈X

{FΘ`τ (~y
∓) ◦ ◦ FΘ`σ(~y±)} (†)

=
⊔

y∓∈X

{[FΘ`σ(~y±)→FΘ`τ (~y
∓)]}

=
⊔

y∓∈X

{FΘ`σ→τ (~y
∓)}

where (†) holds as LBDs is cpo-enriched.

ad Θ ` Πi∈Iσi and Θ ` Σi∈Iσi : For all i ∈ I the functor FΘ`σi
is locally continuous

by induction hypothesis. Further,
∏

i∈I and
∑

i∈I are locally continuous by Thm. 4.1.8.

ad Θ ` µα.σ : According to the results of W. K. Ho in [Ho06] it follows that the
functor H is locally continuous.

91



5 A universal model for the language SPCF∞ in LBD

Definition 5.3.3. Let σ be a closed SPCF∞-type. Then we define its interpretation by

JσK := F`σ

and identify the constant functor F`σ with the corresponding object JσK in the category
LBDs. Further, if Γ = x1 : σ1, . . . , xn : σn is an SPCF∞ contexts then we put JΓK :=
Jσ1K× . . .× JσnK. �

5.4 Denotational semantics of SPCF∞

In the previous section we have given an interpretation of closed SPCF∞-types. In order
to give a denotational semantics we introduce the following sequential maps between
locally boolean domains.

Lemma 5.4.1. For all i, n with i ∈ n ∈ ω + 1 and lbds Xi and Y the function

case : (
∑
i∈n

Xi ×
∏
i∈n

[Xi→Y ])→ Y

case(x, (fi)i∈n) =


fj(w) iff x = ιj(w) for some j ∈ n and w ∈ Xi

>Y iff x = >P
i∈n Xi

⊥Y iff x = ⊥P
i∈n Xi

is sequential.

Proof. It is an easy exercise to check that for all i, n, Xi and Y the function case is
continuous and bistable.

Next, we take a closer look at the locally boolean domain [Oω→O]. We show that for
all f ∈ [Oω→O] the function f is either constant or a projection. As l Oω it follows from
Lemma 4.3.3 that f preserves arbitrary infima and suprema. If a, b ∈ At(Oω) with a 6= b
and f(a) = f(b) = > then it follows that f(⊥) = f(a u b) = f(a) u f(b) = >, thus f is
constant >. If f(a) = ⊥ for all a ∈ At(Oω) then f(>) = f(

⊔
At(Oω)) =

⊔
f [At(Oω)] =

⊥, thus f is constant ⊥.
Thus, it follows that f is either constant or f = πi, i.e. the i-th projection, for some

i ∈ ω.
Further, one easily verifies that ¬⊥ = > and ¬πi = πi for all i ∈ ω. Thus, it follows

that [Oω→O] ' N and we have isomorphisms

[Oω→O]
catch //

Ndcaseoo

where ĉase is the transpose of case : (N× Oω)→ O.1

Definition 5.4.2. The inductive definition of the interpretation of SPCF∞ terms-in-
context is given in table Table 5.2. �

1We used the fact [1→X] ' X implicitly.

92



5.5 Universality of SPCF∞

Jx1 : σ1, . . . , xn : σn ` xi : σiK := πi

JΓ ` > : Σi∈nσiK := xJΓK 7→ >JΣi∈nσiK

JΓ ` (λx : σ.t) : σ→τK := curryJΓK,JσK(JΓ, x : σ ` t : τK)

JΓ ` ts : τK := eval ◦〈JΓ ` t : σ→τK, JΓ ` s : σK〉
JΓ ` 〈ti〉Πi∈nσi

i∈n : Πi∈nσiK := 〈JΓ ` ti : σiK〉i∈n

JΓ ` pri(t) : σK := πi ◦ JΓ ` t : σK
JΓ ` caseΣi∈nτi,σ tof (ini x⇒ ti) : σK := case ◦〈JΓ ` tK,

〈JΓ ` (λx : τi.ti) : τi→σK〉i∈n〉
JΓ ` ini(t) : Σi∈nσiK := ιi ◦ JΓ ` t : σiK
JΓ ` catch(t) : NK := catch ◦JΓ ` t : 0ω→0K

JΓ ` foldµα.σ(t) : µα.σK := fold ◦JΓ ` t : σ[µα.σ/α]K
JΓ ` unfoldµα.σ(t) : σ[µα.σ/α]K := unfold ◦JΓ ` t : µα.σK

where fold and unfold are the respective isomorphisms between Jµα.σK and Jσ[µα.σ/αK
from the construction of the minimal invariant

Table 5.2: Interpretation of SPCF∞-terms-in-context

For showing that the LBD model of SPCF∞is computationally adequate we have to
show that the model is correct w.r.t. the operational semantics, i.e. evaluation of terms
does not change their denotational values. This can be done as usual by induction on the
reduction rules and hence is omitted. Further, we have to ensure that the operational
semantics is complete w.r.t. to the model, i.e. JtK 6= ⊥ implies t→∗

op > for any closed term
t : 0. For this purpose one can adopt the method in [Plo85] and use results from [Pit96]
to establish a type-indexed family of formal-approximations to deduce completeness.
The proof for this is similar to the one for a call-by-name variant of the language FPC
given in [Roh02] and hence also omitted.

5.5 Universality of SPCF∞

In this section we show that the first order type U = N→N is universal for the language
SPCF∞ by proving that every type is a SPCF∞ definable retract of U. Since all elements
of the lbd JUK can be defined syntactically we get universality of SPCF∞ for its model
in LBD.

Definition 5.5.1. A closed SPCF∞-type σ is called a SPCF∞-definable retract of a
SPCF∞-type τ (denoted σ � τ) iff there exist closed terms e : σ → τ and p : τ → σ such
that

JpK ◦ JeK = idJσK . �

93



5 A universal model for the language SPCF∞ in LBD

Definition 5.5.2. An SPCF∞-type σ is called universal iff every closed SPCF∞-type τ
is a SPCF∞-definable retract of σ. �

For the next lemma we will not give a prove here as it is a standard induction on the
structure of type in contexts and can be found for a call-by-name variant of the language
FPC in [Roh02].

Lemma 5.5.3. An SPCF∞-type U is universal iff for all n ∈ ω + 1 the types

U→U, Πi∈nU, Σi∈nU

are definable retracts of U .

And as an immediate consequence of Lemma 5.5.3 we get:

Lemma 5.5.4. Suppose the SPCF∞-type U is universal. If for the types σ ∈ {U→U,
Πi∈nU, Σi∈nU} there exists terms eσ, pσ such that

JpσK ◦ JeσK = idJσK (†)

holds, then for all SPCF∞-types σ there exist terms eσ, pσ such that (†) holds.

Lemma 5.5.5. For any closed SPCF∞-type σ and any n ∈ ω + 1 we have

Πi∈nσ � n→σ and Σi∈nσ � n×σ .

Proof. The retractions are given by the following terms

eΠi∈nσ,n→σ := λp : Πi∈nσ.λk : n. case k of (i⇒ pri p)i∈n

pΠi∈nσ,n→σ := λf : n→σ.〈fi〉i∈n

and

eΣi∈nσ,n×σ := λs : Σi∈nσ. case sof (ini x⇒ 〈i, x〉)i∈n

pΣi∈nσ,n×σ := λp : n×σ. casepr0 pof (i⇒ ini(pr1 p))i∈n

Lemma 5.5.6. The SPCF∞-type U := N→N is universal.

Proof. If we can show that the types

U→U, Πi∈nU, Σi∈nU

are retracts of U we get the proposition using Lemma 5.5.3. We will only give the term
for the respective embedding and projection and leave it to the reader, to check that
JpK ◦ JeK is equal to the identity of the appropriate type.

94



5.5 Universality of SPCF∞

ad Πi∈nU � U : The idea for the definition of this retraction is to encode an n-tupel
of functions of type U as one single function by encoding the type n×N in the type N.
Unfortunately, the type n×N is in general not a retract of the type N. Nevertheless,
we can define closed SPCF∞-terms ιn : (n×N)→N and πn : N→(n×N) such that
Jπn(ιn〈i, m〉)K = J〈i, m〉K for all i ∈ n and m ∈ ω.2 Hence, we have to take special care
of those functions, that return a value without evaluating their argument. This can be
done using the control operator catch. We take the terms

eΠi∈nU := λf : Πi∈nU.λn : N. casepr0(π2(n))of

(
in0 x⇒ catchU(pri(f))

in1 x⇒ T

)

with

T := casepr0(πn(pr1(π2(n))))of (j ⇒ prj(f)(pr1(πn(pr1(π2(n))))))j∈n

and

pΠi∈nU := λf : U.〈case f(ι2〈0, i〉)of

(
in0 x⇒ λn : N.f(ι2〈1, ιn〈i, n〉〉)

inj+1 x⇒ λn : N.j

)
j∈ω

〉i∈n

which form a retraction pair.

ad Σi∈nU�U : We have already shown that U×U�U holds. Further, by Lemma 5.5.5
it follows that

Σi∈nU � n×U � U×U � U

holds.

ad U→U � U : By currying we have U→U ∼= (U×N)→N. As U×N � U×U � U
it suffices to construct a retraction U→N � U for showing that U→U � U holds. For
this purpose we adapt an analogous result given by J. Longley in [Lon02] for ordinary
sequential algorithms without error elements. The function p interprets elements of U as
sequential algorithms for functionals of type U→N as described in [Lon02]. For a given
F : U→N the element JeK(F ) : N→N is a strategy / sequential algorithm for computing
F . This is achieved by computing sequentiality indices iteratively using catch.

Suppose, we have given a functional F : U→N and a function f : U such that F (f)
evaluates to some value. Then f has been evaluated at only finitely many terms. As the
set of all finite subgraphs of f is countable, this gives us the possibility of coding F as
term of type N→N.

For this purpose, we assume that we have given functions3 α : (1+N+N)→N and
α∗ : N→(1+N+N) satisfying Jα∗(α(in0〈〉))K = Jin0〈〉K and Jα∗(α(ini n))K = Jini nK for

2Those terms can already be given as primitive recursive functions, i.e. the terms ιn and πn can be
coded without the use of coding functions on the integers as an infinite case-construction. Addi-
tionally, for all those ιn, πn we have Jπn(ιn〈⊥,m〉)K = Jπn(ιn〈i,⊥〉)K = ⊥ (resp. Jπn(ιn〈>,m〉)K =
Jπn(ιn〈i,>〉)K = >).

3All those codings can be given in terms of primitive recursion.

95



5 A universal model for the language SPCF∞ in LBD

i = 1, 2 and n ∈ ω, and the following auxiliary list-handling functions in Haskell-style
where γ encodes lists of pairs of natural numbers as natural numbers: nil represents the
encoded empty list. The function cons : (N×(N×N))→N decodes a given (encoded)
list, appends a pair of natural numbers and encodes the result. Finally, the function
find : (N×N)→(N+1) applied to a pair (g, x) returns in0 y if the encoded list g contains
the pair (x, y) and otherwise it returns in1〈〉. (Notice that find will be applied only to
such (g, x) where γ−1(g) is a finite subset of the graph of a function f : N→N.)

nil := γ([])

cons(g, (x, y)) := γ((x, y) : γ−1(g))

find(g, x) := case γ−1(g) of

[] -> in1〈〉
((x, y) : r) -> in0 y
( : r) -> find(γ(r), x)

The embedding e : (U→N)→(N→N) is given by the following term:

e := λF : U→N.λn : N. caseα∗(n)of
in0 t⇒ case catchU→N(F )of

(
in0 x⇒ α(in0〈〉)

ini+1 x⇒ α(in1 i)

)
i∈ω

in1 t⇒ α(in1(F (λx : N.t)))

in2 t⇒ caseR of

(
in2i x⇒ α(in1 i)

in2i+1 x⇒ α(in2 i)

)
i∈ω


with

R := catch(λx : 0ω. caseF (λn : N. case find(t, n)of(
in0 s⇒ s

in1 s⇒ case0,N(casenof (inj u⇒ pr2j+1 x)j∈ω)of ()

)
)of (ini s⇒ pr2i x)i∈ω)

The projection p : (N→N)→(U→N) is given by the following term:

p := λr : N→N.λf : N→N. caseα∗(r(α(in0〈〉)))of

 in0 t⇒ S

in1 t⇒ t

in2 t⇒ ⊥


with

S := case catchN→N(f)of


in0 t⇒ T (nil)

ini+1 t⇒ caseα∗(r(α(in1 i)))of

 in0 t⇒ ⊥
in1 t⇒ t

in2 t⇒ ⊥




i∈ω

96



5.5 Universality of SPCF∞

and

T := YN→N(λh : N→N.λg : N. caseα∗(r(α(in2 g)))of in0 t⇒ ⊥
in1 t⇒ t

in2 t⇒ h(cons(g, (t, f(t))))

)

Lemma 5.5.7. All elements in the locally boolean domain JUK are SPCF∞-definable,
i.e. if f ∈ JUK then there exists a closed SPCF∞-term t : U with Jt : UK = f .

Proof. Suppose f : JNK→ JNK is a sequential map. If f(⊥) = m (resp. f(⊥) = >) then
we take the term t := λn : N.m (resp. t := λn : N.>) and it follows that JtK = f . We
proceed analogously if f(>) = m (resp. f(>) = ⊥). In all other cases we have f(⊥) = ⊥,
f(>) = > and f(n) = mn. Hence, we can take the term t := λn : N. casenof (ini x⇒
im)i∈ω and get JtK = f .

Thus it follows that SPCF∞ is universal for its LBD model.

Theorem 5.5.8. The language SPCF∞ is universal for its LBD model, i.e. for all
closed SPCF∞-types σ and elements d ∈ JσK there exists a closed SPCF∞-term t : σ with
JtK = d.

Proof. Suppose σ is a closed SPCF∞-type and d ∈ JσK, then from Lemma 5.5.7 it follows
that there exists a term t : U with JeσK(d) = JtK. Thus, we get

Jpσ(t)K = JpσK(JtK) = JpσK(JeσK(d)) = d

as desired.

97



5 A universal model for the language SPCF∞ in LBD

98



6 CPS∞: An infinitary CPS target language

The interpretation of the SPCF∞ type δ := µα.(αω→0) is the minimal solution of the
domain equation D ∼= [Dω→O]. Obviously, we have D ∼= [D→D]. Moreover, it has
been shown in [RS98] that D is isomorphic to O∞, i.e. what one obtains by performing
D. Scott’s D∞ construction in LBD when instantiating D by O.

We now describe an untyped infinitary language CPS∞ canonically associated with
the domain equation D ∼= [Dω→O].

6.1 The untyped language CPS∞

The language CPS∞is untyped call-by-name λ-calculus with abstraction (resp. applica-
tion) extended to countably-infinite lists of variables (resp. terms). In addition CPS∞
contains an non-recuperable error-element >.

The terms of the language CPS∞ are given by the following grammar:

M ::= x | λ~x.t ~x ≡ (xi)i∈ω

t ::= > | M〈 ~M〉 ~M ≡ (Mi)i∈ω

The operational semantics of CPS∞ is given by the following big step reduction rules:

> ⇓ >

t[Mi/xi]i∈ω ⇓ >

(λ~x.t)〈 ~M〉 ⇓ >

The language CPS∞ is an extension of pure untyped λ-calculus since applications MN
can be expressed by λ~y.M〈N, ~y〉 and abstraction λx.M by λx~y.M〈~y〉 where ~y are fresh
variables. Thus, CPS∞ allows for recursion and we can define recursion combinators in
the usual way.

To allow a more compact representation of CPS∞-terms, we will write

λy1 . . . yn~x for λ(zi)i∈ω with zi ≡

{
yi+1 if i < n,

xi−n otherwise

and

〈N1, . . . , Nn, ~M〉 for 〈Zi〉i∈ω with Zi ≡

{
Ni+1 if i < n,

Mi−n otherwise

99



6 CPS∞: An infinitary CPS target language

Notice that we will use the above abbreviations mostly in the form λ~x and 〈 ~M〉, i.e.
with n = 0. Additionally, we define the term

⊥ :≡ λy~x.W 〈W,~x〉 with W :≡ λy~x.y〈y, ~x〉

which has an infinite reduction-tree and denotes ⊥.
Finally, we introduce the following abbreviation

R0 :≡ λ~x.x0〈~⊥〉

6.2 Universality of CPS∞

In this section we show that the language CPS∞ is universal w.r.t. the lbd D. Universality
of CPS∞ will be shown in two steps. First we argue why all finite elements of D are
CPS∞ definable. Then adapting a trick from [Lai98] we show that suprema of chains
increasing w.r.t. ≤s are CPS∞definable, too.

Lemma 6.2.1. The lbd O is a CPS∞ definable retract of the lbd D.

Proof. The CPS∞ term R0 retracts D to O as it sends >D to >D and all other elements
of D to ⊥D.

Notice that the language CPS∞ is more expressive than pure untyped λ-calculus as it
does not contain a term semantically equivalent to R0.

1

Lemma 6.2.2. The lbds N and U are both CPS∞ definable retract of the lbd D.

Proof. Since we can retract the lbd D to the lbd O (by Lemma 6.2.1) and [Oω→O] ∼= N
it follows that N is a CPS∞ definable retract of D. As D ∼= [D→D] is a CPS∞ definable
retract of D it follows that U = [N→N] is a CPS∞ definable retract of D.

Thus, we can do arithmetic within CPS∞. Natural numbers are encoded by n ≡
λ~x.xn〈~⊥〉 and a function f :N→N by its graph, i.e. f ≡ λx~y.x〈λ~z.f(i)〈~y〉〉i∈ω. Notice
that CPS∞ allows for the implementation of an infinite case construct.

Lemma 6.2.3. All finite elements of the lbd D are CPS∞ definable.

Proof. In [Lai05a] Jim Laird has shown that the language Λ>⊥, i.e. simply typed λ-
calculus over the base type {⊥,>} is universal for its model in LBD. Thus, since all
retractions of D to its finitary approximations Dn are CPS∞ definable and all compact
elements use only finitely many arguments it follows that all finite elements of D are
CPS∞ definable.

1Since Jλ~x.x0〈~⊥〉K is certainly “computable” pure λ-calculus with constant > cannot denote all “com-
putable” elements.

100



6.2 Universality of CPS∞

Definition 6.2.4. Let f : A→ O be a LBD morphism then we define the map f̃ : A→
[O→O] with

f̃(a)(u) :=

{
u if f(a>) = ⊥O and

f(a) otherwise. �

Informally, the map f̃ can be described as the function where

“in the strategy of f all occurrences of ⊥ are replaced by u”.

Next we show that for all f : A → O in LBD the map f̃ : A → [O→O] is an LBD
morphism as well.

Lemma 6.2.5. If f : A→ O is a sequential map between lbds then the function f̃ : A→
[O→O] given by Def. 6.2.4 is sequential.

Proof. For showing monotonicity suppose a1, a2 ∈ A with a1 v a2 and u ∈ O. We
proceed by case analysis on f(a>1 ).

Suppose f(a>1 ) = ⊥O. Thus, f̃(a1)(u) = u. If f(a>2 ) = ⊥O then f̃(a2)(u) = u,

and we get f̃(a1)(u) = u = f̃(a2)(u). If f(a>2 ) = >O then f̃(a2)(u) = f(a2). As
f(a>1 ) = ⊥O it follows that f(¬a1) = ⊥O and f(¬a2) = ⊥O (because ¬a2 v ¬a1). As
>O = f(a>2 ) = f(a2) t f(¬a2) it follows that f(a2) = >O as desired.

If f(a>1 ) = >O then f̃(a1)(u) = f(a1). W.l.o.g. assume f(a1) = >O. Then >O =

f(a1) v f(a2) v f(a>2 ). Hence, f(a2) = >O = f(a>2 ) and we get f̃(a2)(u) = f(a2) = >O.

Next we show that f̃ is bistable. Let a1 l a2, thus (†) a>1 = a>2 = (a1 u a2)
>.

If f(a>1 ) = f(a>2 ) = ⊥O then f̃(a1) = idO = f̃(a2). If f(a>1 ) = f(a>2 ) = >O then

f̃(ai) = λx:O. f(ai) for i ∈ {1, 2}. Since λx:O.⊥O l λx:O.>O it follows that f̃ preserves
bistable coherence.

Finally we show that f̃ preserves bistably coherent suprema and infima. If f((a1 u
a2)

>) = ⊥O then f̃(a1ua2)(u) = u = f̃(a1)(u)u f̃(a2)(u) (since f(a>1 ) = f(a>2 ) = ⊥O by

(†)). Otherwise, if f((a1ua2)
>) = >O then f̃(a1ua2)(u) = f(a1ua2) = f(a1)uf(a2) =

f̃(a1)(u) u f̃(a2)(u) (since f is bistable and f(a>1 ) = f(a>2 ) = >O by (†)).
Analogously, one shows that f̃ preserves bistably coherent suprema.

The following observation is useful when computing with functions of the form f̃ .

Lemma 6.2.6. If f : A→ O is a LBD morphism then f̃(a)(⊥O) = f(a).

Proof. If f(a) = ⊥O then f̃(a)(⊥O) = ⊥O = f(a) since ⊥ and f(a) are the only possible

values of f̃(a)(⊥O). If f(a) = >O then f(a>) = >O and thus f̃(a)(⊥O) = f(a) as
desired.

Lemma 6.2.7. For f, g : A → O with f ≤s g it holds that g̃(x) = f̃(x) ◦ g̃(x) for all
x ∈ A.

101



6 CPS∞: An infinitary CPS target language

Proof. Suppose f ≤s g. Let x ∈ A and u ∈ O. We have to show that g̃(x)(u) =

f̃(x)(g̃(x)(u)).

If g(x>) = ⊥O then f(x>) = ⊥O (since f ≤s g) and thus g̃(x)(u) = u = f̃(x)(g̃(x)(u)).
Thus, w.l.o.g. suppose g(x>) = >O. Then g̃(x)(u) = g(x).

If f(x) = >O then f(x>) = >O = g(x) and, therefore, we have f̃(x)(g̃(x)(u)) =
f(x) = >O = g(x) = g̃(x)(u).

Suppose f(x) = ⊥O.

If g(x) = ⊥O then we have f̃(x)(g̃(x)(u)) = f̃(x)(g(x)) = f̃(x)(⊥O) = ⊥O where the
last equality holds by Lemma 6.2.6.

Now suppose g(x) = >O. We proceed by case analysis on the value of f(x>).

If f(x>) = ⊥O then f̃(x)(g̃(x)(u)) = g̃(x)(u) and we are finished.
We show that the case f(x>) = >O cannot happen. Suppose f(x>) = >O. Then by

bistability we have >O = f(x>) = f(x) t f(¬x) = ⊥O t f(¬x) = f(¬x) and thus also
¬f(¬x) = ⊥O. Since f ≤s g we have g v f>. Moreover, by Cor. 3.5.12(2) we have
(¬f)(x) v ¬f(¬x). Thus, we have >O = g(x) v f>(x) = f(x) t (¬f)(x) = (¬f)(x) v
¬f(¬x) = ⊥O which clearly is impossible.

In the following we denote by i : O → D and p : D → O the embedding of O into D
(resp. projection from D to O) given by

i(x) :=

{
>D if x = >O,

⊥D otherwise
p(x) :=

{
>O if x = >D,

⊥O otherwise.

Definition 6.2.8. Let f ∈ D ∼= [Dω→O]. Then we write f̂ for that element of D with

f̂(d0, ~d) := f̃n(~d)(p(d0)) �

Lemma 6.2.9. For every finite f in D the element f̂ is also finite and thus CPS∞
definable.

Proof. If A is a finite lbd then for every f : A → O the LBD map f̃ : A → [O→O] is
also finite. This holds in particular for f in the finite type hierarchy over O.

Since embeddings of lbds preserves finiteness of elements we conclude that for every
finite f in D the element f̂ is finite as well. Thus, by Lemma 6.2.3 the element f̂ is
CPS∞ definable.

Now we are ready to prove our universality result for CPS∞.

Theorem 6.2.10. All elements of the lbd D are CPS∞ definable.

Proof. Suppose f ∈ D. Then f =
⊔

fn for some increasing (w.r.t. ≤s) chain (fn)n∈ω of

finite elements. Since by Lemma 6.2.9 all f̂n are CPS∞ definable there exists a CPS∞
term F with JFnK = f̂n for all n ∈ ω.

102



6.3 Lack of faithfulness of the interpretation

Since recursion is available in CPS∞ one can exhibit a CPS∞ term Ψ such that

Ψg = λx. g(0)(Ψ(λn. g(n+1))x) =
⊔
n∈ω

(g(0) ◦ · · · ◦ g(n))(⊥)

holds. (Using computational adequacy of the model one can show that Ψg denotes the
least fixpoint of the sequence ((g(0) ◦ · · · ◦ g(n))(⊥))n∈ω.)

Thus, the term Mf ≡ λ~x. Ψ(λy.λz.F 〈y, i(z), ~x〉) denotes f since

Mf (~d) = Ψ(λy.λz.F (y, i(z), ~d))

=
⊔
n∈ω

(λz.F0(i(z), ~d)) ◦ · · · ◦ (λz.Fn(i(z), ~d))(⊥)

=
⊔
n∈ω

(λz.f̂0(i(z), ~d)) ◦ · · · ◦ (λz.f̂n(i(z), ~d))(⊥)

=
⊔
n∈ω

((λz.f̃0(~d)(p(i(z)))) ◦ · · · ◦ (λz.f̃n(~d)(p(i(z)))))(⊥)

=
⊔
n∈ω

((λz.f̃0(~d)(z)) ◦ · · · ◦ (λz.f̃n(~d)(z)))(⊥)

=
⊔
n∈ω

(f̃0(~d) ◦ · · · ◦ f̃n(~d))(⊥)

=
⊔
n∈ω

(f̃n(~d))(⊥) (by Lemma 6.2.7)

=
⊔
n∈ω

fn(~d) (by Lemma 6.2.6)

= f(~d)

for all ~d ∈ Dω.

6.3 Lack of faithfulness of the interpretation

In the previous section we have shown that the interpretation of closed CPS∞ terms in
the lbd D is surjective. Recall that infinite normal forms for CPS∞ are given by the
grammar

N ::= x | λ~x.> | λ~x.x〈 ~N〉
understood in a coinductive sense.

Definition 6.3.1. We call a model faithful iff for all normal forms N1, N2 if JN1K =
JN2K then N1 = N2. �

We will show that the LBD model of CPS∞ is not faithful.2 For a closed CPS∞ term
M consider

M∗ ≡ λ~x.x0〈 λ~y.x0〈⊥, M, ~⊥〉, ~⊥ 〉
2For an affine version of CPS∞ on can show that the LBD model is faithful.

103



6 CPS∞: An infinitary CPS target language

Lemma 6.3.2. For closed CPS∞ terms M1, M2 it holds that JM∗
1 K = JM∗

2 K.

Proof. We will show that for all terms M the term M∗ is semantically equivalent to the
term R0, i.e. for all ~d ∈ Dω we have JM∗K(~d) = > iff d0 = >.

If d0 = ⊥ or d0 = > then we are finished.
Otherwise there is an n such that d0 evaluates the n-th argument first. If n = 0 then

d0〈⊥, M, ~⊥〉 = ⊥, thus

d0〈λ~y.d0〈⊥, M, ~⊥〉, ~⊥〉 = d0〈~⊥〉 = ⊥ .

which is also the case if n 6= 0.

Suppose N1 and N2 are different infinite normal forms. Then N∗
1 and N∗

2 have different
infinite normal forms and we get JN∗

1 K = JN∗
2 K by Lemma 6.3.2. Thus, the LBD model

of CPS∞ is not faithful.

Lemma 6.3.3. There exist infinite normal forms N1, N2 in CPS∞ that can not be sep-
arated by CPS∞ terms.

Proof. We have different normal forms N1, N2 with JN1K = JN2K. Since all CPS∞ terms
preserve model equality the terms N1 and N2 cannot be separated by CPS∞ terms.

Notice that in pure untyped λ-calculus different normal forms can always be separated
(cf. [Bar84]).

104



7 Conclusion and possible extensions

We think that the defect that interpretation of CPS∞ in the locally boolean domain D
is not faithful (cf. section 6.3) can be overcome by extending the language by a parallel

construct and refining the observation type O to O′ ∼= List(O′). The language CPS
‖
∞

associated with the domain equation D ' Dω → O′ is given by

M ::= x | λ~x.t

t ::= > |M〈 ~M〉 | L t ‖ . . . ‖ t M

The syntactic values are given by the grammar V ::= > | L V ‖ . . . ‖V M. The operational

semantics of CPS
‖
∞ is the operational semantics of CPS∞ extended by the rule

(λ~x.ti)〈 ~M〉 ⇓ Vi for all i ∈ {1, . . . , n}

(λ~x.L t1‖ . . . ‖tn M)〈 ~M〉 ⇓ L V1‖ . . . ‖Vn M

and the normal forms of CPS
‖
∞ are given by the grammar

N ::= x | λ~x.t

t ::= > | x〈 ~N〉 | L t‖ . . . ‖t M

understood in a coinductive sense.
Separability of normal forms can be shown for an affine version of CPS∞ by substitut-

ing the respective projections for head variables. Using the parallel construct L . . . ‖ . . . M
of CPS

‖
∞ we can substitute for a head variable quasi simultaneously both the respective

projection and the head variable itself. Since the interpretation of CPS
‖
∞ is faithful

w.r.t. the parallel construct L . . . ‖ . . . M we get separation for CPS
‖
∞ normal forms as in

the affine case. This kind of argument can be seen as a “qualitative” reformulation of a
related “quantitative” method introduced by F. Maurel in his Thesis [Mau04] albeit in
the somewhat more complex context of J.-Y. Girard’s Ludics [Gir01].

In a sense this is not surprising since our parallel construct introduced above allows
one to make the same observations as with parallel-or. The only difference is that our
parallel construct keeps track of all possibilities simultaneously whereas the traditional
semantics of parallel-or takes their supremum thus leading out of the realm of sequen-
tiality. This is avoided by our parallel construct at the price of a more complicated
domain of observations. For an approach in a similar spirit see [HM99].

Another prospect is the development of a theory of computability for locally boolean
domains. In [Asp90] A. Asperti has successfully developed a notion of computability

105



7 Conclusion and possible extensions

for the stable model of PCF. We are convinced that this approach can be extended to
locally boolean domains. Curien-Lamarche games A arising as interpretation of a type
expressions are effective (i.e. PA ⊆ Rsp>(A) is decidable). An element s ∈ Strat(A) is
computable iff s is an r.e. subset of Rsp>(A). Obviously, an element f ∈ U = [N→N] is
computable in this sense iff it can be denoted by an r.e. term. Since all eσ : σ � U : pσ

can be denoted by r.e. terms it follows that all computable elements of type JσK can be
denoted by r.e. terms. Obviously, denotations of r.e. terms of type σ denote computable
elements of JσK. Thus elements of JσK are computable iff they can be denoted by r.e.
terms.

106



Bibliography

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi.
Cambridge University Press, New York, NY, USA, 1998.

[AHM98] Samson Abramsky, Kohei Honda and Guy McCusker. A fully abstract game
semantics for general references. In Vaughan Pratt, editor, Proceedings of the
Thirteenth Annual IEEE Symp. on Logic in Computer Science, LICS 1998,
pages 334–344. IEEE Computer Society Press, June 1998.

[AJM00] Samson Abramsky, Radha Jagadeesan and Pasquale Malacaria. Full abstrac-
tion for PCF. Inf. Comput., 163(2):409–470, 2000.

[AM97] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for idealized algol with active expressions, 1997.

[Asp90] Andrea Asperti. Stability and computability in coherent domains. Inf. Com-
put., 86(2):115–139, 1990.

[Bar84] H. P. Barendregt. The Lambda Calculus - its syntax and semantics. North
Holland, 1981, 1984.

[BC82] G. Berry and P. L. Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20(3):265–321, July 1982.

[BE91] A. Bucciarelli and T. Ehrhard. Sequentiality and strong stability. In Proc.
of the Sixth Annual IEEE Symposium on Logic in Computer Science, pages
138–145, Amsterdam, The Netherlands, 1991.

[Ber78] G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th Interna-
tional Colloquium on Automata, Languages and Programming, volume 62 of
Lecture Notes in Computer Science, pages 72–89. Springer Verlag, 1978.

[Ber79] G. Berry. Modèles Complètement Adéquats et Stables des lambda–calcul typés.
PhD thesis, Université Paris VII, 1979.

[CCF94] R. Cartwright, P.-L. Curien and M. Felleisen. Fully abstract models of ob-
servably sequential languages. Information and Computation, 111(2):297–401,
1994.

107



Bibliography

[CF92] Robert Cartwright and Matthias Felleisen. Observable sequentiality and full
abstraction. In Conference Record of the Nineteenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 328–
342, Albuquerque, New Mexico, January 1992.

[Cur94] P.-L. Curien. On the symmetry of sequentiality. Lecture Notes in Computer
Science, 802:29–71, 1994.

[Cur05] Pierre-Louis Curien. Sequential algorithms as bistable maps. Un-
published notes, available from http://www.pps.jussieu.fr/~curien/

laird-sa.ps.gz, 2005.

[Ehr96] Thomas Ehrhard. Projecting sequential algorithms on strongly stable func-
tions. Annals of Pure and Applied Logic, 77(3):201–244, 1996.

[Fre91] P.J. Freyd. Algebraically complete categories. In Category Theory, Como
1990, volume 1488 of Lecture Notes in Mathematics, pages 95–104. Springer-
Verlag, 1991.

[Fre92] P.J. Freyd. Remarks on algebraically compact categories. In Applications of
categories in Computer Science, volume 77 of London Math. Society Lecture
Notes Series, pages 95–106. Cambridge University Press, 1992.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the
logic of rules. Math. Struct. in Comp. Science, 11(3):301–506, 2001.
http://iml.univ-mrs.fr/~girard/Articles.html.

[HM99] Russell Harmer and Guy McCusker. A fully abstract game semantics for finite
nondeterminism. In LICS, pages 422–430, 1999.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I. models,
observables and the full abstraction problem, ii. dialogue games and innocent
strategies, iii. a fully abstract and universal game model. Information and
Computation, 163:285–408, 2000.

[Ho06] Weng Kin Ho. An operational domain-theoretic treatment of recursive types.
Electr. Notes Theor. Comput. Sci., 158:237–259, 2006.

[KP93] G. Kahn and Gordon D. Plotkin. Concrete domains. Theoretical Computer
Science, 121:187–277, 1993.

[Lai98] J. Laird. A semantic analysis of control. PhD thesis, University of Edin-
burgh, 1998. Available from http://www.cogs.susx.ac.uk/users/jiml/

thesis.ps.gz.

[Lai03a] J. Laird. Bistability: an extensional characterization of sequentiality. In
Proceedings of CSL ’03, number 2803 in LNCS. Springer, 2003.

108



Bibliography

[Lai03b] J. Laird. A fully abstract bidomain model of unary FPC. In 5th International
Conference on Typed Lambda-Calculi and Applications. Springer LNCS, 2003.

[Lai05a] J. Laird. Bistable biorders: a sequential domain theory. Submitted, 2005,
Available from http://www.cogs.susx.ac.uk/users/jiml/bb.pdf, 2005.

[Lai05b] J. Laird. Locally boolean domains. Theoretical Computer Science, 342:132 –
148, 2005.

[Lam92] F. Lamarche. Sequentiality, games and linear logic. In Workshop on Cat-
egorical Logic in Computer Science. Publications of the Computer Science
Department of Aarhus University, DAIMI PB-397-II, 1992.

[Loa01] Ralph Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-
2):341–364, 2001.

[Lon02] John Longley. The sequentially realizable functionals. Ann. Pure Appl. Logic,
117(1-3):1–93, 2002.

[Mau04] F. Maurel. Un cadre quantitatif pour la Ludique. PhD thesis, Université Paris
7, Paris, 2004.

[McC96] Guy McCusker. Games and full abstraction for FPC. In Logic in Computer
Science, pages 174–183, 1996.

[Mil77] Robin Milner. Fully abstract models of typed λ-calculi. Theoretical Computer
Science, 4:1–22, 1977.

[Nic94] H. Nickau. Hereditarily sequential functionals. In Proceedings of the Sympo-
sium on Logical Foundations of Computer Science: Logic at St. Petersburg.
Springer, 1994.

[Pit96] Andrew M. Pitts. Relational properties of domains. Information and Com-
putation, 127(2):66–90, 1996.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5:223–255, 1977.

[Plo85] G. D. Plotkin. Lectures on predomains and partial functions. Course notes,
Center for the Study of Language and Information, Stanford, 1985.

[Roh02] Alexander Rohr. A Universal Realizability Model for Sequential Functional
Computation. PhD thesis, TU Darmstadt, Fachbereich Mathematik, 2002.

[RS98] B. Reus and T. Streicher. Classical logic, continuation semantics and abstract
machines. J. Funct. Prog., 8(6):543–572, 1998.

[Sco93] D.S. Scott. A type theoretical alternative to iswim, cuch, owhy. Theoretical
Computer Science, 121:411–440, 1993.

109



Bibliography

[Str04] Th. Streicher. Locally boolean domains (working notes). Unpublished notes,
available from http://www.mathematik.tu-darmstadt.de/~streicher/

LAIRD/lbdWN.ps.gz, 2004.

[Vui74] J. Vuillemin. Syntaxe, Sémantique et Axiomatique d’un Langage de Program-
mation Simple. PhD thesis, Université Paris VII, 1974.

110



Curriculum Vitae

Tobias Löw

geboren am 5. Dezember 1973 in Offenbach am Main

1993 Allgemeine Hochschulreife,
Oberstufengymnasium Claus-von-Stauffenberg Schule, Rodgau

1994 - 2000 Studium der Mathematik mit Wahlpflichtfach Informatik,
Technische Universität Darmstadt

2000 Hochschulabschluss als Diplom-Mathematiker,
Diplomarbeit “Element-Realizability-Topos”

2001 - 2006 Doktorand am Fachbereich Mathematik der TU Darmstadt,
Forschungsbereich Logik


	Introduction
	Sequentiality and Full Abstraction
	Locally boolean domains
	Overview of this thesis

	Locally Boolean Domains
	Locally Boolean Orders
	Locally Boolean Domains
	Bistable maps

	Locally boolean domains and Curien-Lamarche games
	Curien-Lamarche games as locally boolean domains
	Locally boolean domains as Curien-Lamarche games
	Observable sequentiality vs. bistability
	Equivalence of the categories LBD and OSA
	Exponentials in the categories LBD and OSA
	Exponentials as function spaces

	Properties of the category LBD
	Products, biliftings and sums
	Embedding/Projection Pairs in LBD
	Inverse Limits of Projections in LBD
	Countably based Locally Boolean Domains

	A universal model for the language SPCF in LBD
	Definition of SPCF
	Operational semantics
	Interpretation of types
	Denotational semantics of SPCF
	Universality of SPCF

	CPS: An infinitary CPS target language
	The untyped language CPS
	Universality of CPS
	Lack of faithfulness of the interpretation

	Conclusion and possible extensions
	Bibliography

