
Program Verification
in

Synthetic Domain Theory

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften
an der Fakultät für Mathematik

der Ludwig-Maximilians-Universität München

von

Bernhard Reus

München
November 1995

Tag der Einreichung : 16. November 1995
Tag der mündlichen Prüfung : 20. Dezember 1995

Berichterstatter : Prof. Dr. Martin Wirsing
Prof. Dr. Thomas Streicher

Abstract

Synthetic Domain Theory provides a setting to consider domains as sets with certain
closure properties for computing suprema of ascending chains. As a consequence the
notion of domain can be internalized which allows one to construct and reason about
solutions of recursive domain equations. Moreover, one can derive that all functions
are continuous.

In this thesis such a synthetic theory of domains (Σ-domains) is developed based on
a few axioms formulated in an adequate intuitionistic higher-order logic. This leads to
an elegant theory of domains. It integrates the positive features of several approaches
in the literature. In contrast to those, however, it is model independent and can
therefore be formalized. A complete formalization of the whole theory of Σ-domains
has been coded into a proof-checker (Lego) for impredicative type theory. There
one can exploit dependent types in order to express program modules and modular
specifications.

As an application of this theory an entirely formal correctness proof of the Sieve of
Eratosthenes, a recursive function on recursively defined streams, is presented. This
demonstrates that Synthetic Domain Theory is amenable to formal program verifica-
tion.

A realizability model is defined which ensures that the theory is consistent. Sug-
gestions for the formalization of two other approaches for Synthetic Domain Theory
(Σ-replete objects and well-completes) are presented.

Putting all this together, one gets a new Logic of Computable Functions more
expressive, more comfortable, and more powerful than the LCF-language.

Acknowledgments

I wish to acknowledge all the people who pushed me to finish this thesis. First of all,
I want to thank my advisor Martin Wirsing, who gave me “bread and shelter” in his
group (and the opportunity to write this thesis) and my second supervisor Thomas
Streicher, “the living library”, who not only sowed the seeds of a fascinating subject,
Synthetic Domain Theory, in my mind but also taught me about semantics, type
theory and logic. This thesis is the fruit of several pleasant years of collaboration with
him.

For discussions and remarks I am grateful to the SDT-community, and in particular
to Samson Abramsky, Marcelo Fiore, Martin Hyland, John Longley, Alex Simpson
and Paul Taylor. Most of all, I wish to thank Pino Rosolini and Eugenio Moggi from
Genoa, our partners in the common project Vigoni sponsored by the DAAD (German
Academic Exchange Office). Warm words of thanks go also to Thomas Grünler, Radu
Grosu, Victor Pollara, and Franz Regensburger for several refreshing discussions.

My supervisors provided many useful comments on a draft of this thesis. Several
other people also read parts of an earlier manuscript, among them Victor Pollara,
Jaap von Oosten, and Martin Wehr. Thanks to all of them and to Randy Pollack for
hints on the Lego code. The diagrams have been typeset using Paul Taylor’s macro
package.

I don’t want to forget my colleagues at the institute who supported me in many
ways, especially Andy Mück, Robert Stabl, Stefan Gastinger, and Heidrun Walker.

I exceedingly enjoyed the numerous electronic discussions on scientific as well as
personal matters with Maura Cerioli and Alfonso Pierantonio. I thank them for their
patience. Maura is a brilliant teacher; her pedagogical talents were very beneficial to
both my Italian and my persistence.

I couldn’t have finished this work without the moral support of my parents, my
sister’s family, and last but not least my brother Wolfgang (who taught me how to
write my very first computer program on a Sinclair ZX80 with 8kB main memory a
long time ago).

to the memory of my father Alfred

Was Gegenstände betrifft, sofern sie bloß durch Vernunft und zwar
notwendig gedacht, die aber (so wenigstens wie die Vernunft sie
denkt) gar nicht in der Erfahrung gegeben werden können, so wer-
den die Versuche sie zu denken (denn denken müssen sie sich doch
lassen) hernach einen herrlichen Probierstein desjenigen abgeben,
was wir als die veränderte Methode der Denkungsart annehmen,
daß wir nämlich von den Dingen nur das a priori erkennen, was wir
selbst in sie legen.
Immanuel Kant, “Kritik der reinen Vernunft”,
Vorrede zur Zweiten Auflage, 1789

Contents

1 Introduction 1
1.1 Drawbacks of classical domain theory 2
1.2 Synthetic versus Analytic . 2

1.2.1 Synthetic Differential Geometry 3
1.2.2 Synthetic Domain Theory . 3

1.3 Stone Duality . 4
1.4 Synthetic Domain Theory . 5
1.5 Synthetic versus Axiomatic . 6
1.6 A synthetic domain theory in the sense of LCF 7
1.7 Type Theory . 8
1.8 The formal development . 9
1.9 Summary . 10

2 The Σ-posets, Σ-cpo-s, and Σ-domains 15
2.1 The Logic . 15

2.1.1 Categorical description . 16
2.1.2 The non-logical axioms . 17
2.1.3 A short story about ¬¬-closed propositions 18
2.1.4 Subobjects and Subset Types 19

2.2 The SDT axioms . 21
2.2.1 Properties of Σ . 21
2.2.2 Phoa’s Axioms . 22
2.2.3 Continuity Axiom . 22
2.2.4 Markov’s Principle . 23

2.3 About Σ . 23
2.4 Preorders . 24
2.5 Chains and suprema . 26
2.6 Σ-posets and Σ-cpo-s . 27

2.6.1 Σ-posets . 28
2.6.2 Σ-cpo-s . 31

2.7 Characterization of Σ-cpo-s by Orthogonality 36
2.8 Admissibility . 37
2.9 Closure properties of Σ-posets and Σ-cpo-s 42

2.9.1 Closure properties of Σ-posets 42
2.9.2 Closure properties of Σ-cpo-s 46

vii

viii Contents

2.10 Σ-domains . 48
2.10.1 Internalization of Σ-domains . 49
2.10.2 Closure properties of Σ-domains 50
2.10.3 Some admissible predicates on Σ-domains 50

2.11 Fixpoints . 51

3 Domain constructors for Σ-domains 53
3.1 Lifting . 54

3.1.1 Definition of lifting . 56
3.1.2 Some isomorphisms . 59
3.1.3 Internalization of categories . 59
3.1.4 The category of Σ-domains . 60
3.1.5 Lifting as partial map classifier 60

3.2 Smash product . 66
3.2.1 Freyd’s Adjoint Functor Theorem for beginners 67
3.2.2 Definition of the smash product 69
3.2.3 Uniqueness of elimination . 71
3.2.4 Disadvantages of the second-order encoding 73

3.3 Coalesced sum . 74
3.3.1 Definition of the coalesced sum 74
3.3.2 Uniqueness of elimination . 76
3.3.3 Disadvantages of the second-order encoding 78

3.4 The separated sum . 78

4 Recursive Domains in SDT 81
4.1 Basic categorical definitions . 83

4.1.1 Definition of mixed-variant functors 84
4.1.2 Extending some constructors to functors 85
4.1.3 Miscellaneous . 86

4.2 Solving recursive domain equations . 86
4.3 The inverse limit in the category of Σ-domains and strict maps 89

4.3.1 Solution of recursive domain equations in Dom 89
4.3.2 Structural induction . 90
4.3.3 Inductive and co-inductive definitions 91

5 Program Verification in SDT — an example 93
5.1 Streams over N . 93

5.1.1 The basic stream operations . 94
5.1.2 Proof principles for Stream . 96
5.1.3 Induction on the length of streams 97
5.1.4 Elementhood . 99

5.2 The Sieve of Eratosthenes . 100
5.3 Correctness of the Sieve . 102
5.4 Admissibility in the synthetic approach 108

5.4.1 Σ-predicates . 109

Contents ix

5.4.2 The admissibility proofs . 110
5.4.3 Discussion . 112

6 Axiomatizing other approaches 113
6.1 Theory of Σ-replete objects . 113

6.1.1 The axioms . 115
6.1.2 About Factorization Systems 115
6.1.3 The Σ-replete objects . 120
6.1.4 The repletion w.r.t. Set . 120
6.1.5 Closure properties of Σ-replete objects 127
6.1.6 Reviewing the axioms – chain completeness 130

6.2 Well complete objects . 132
6.2.1 The logic . 132
6.2.2 Definition of well-completes . 134
6.2.3 Closure properties of well complete objects 136
6.2.4 Axiomatizing the initial lift algebra 139

7 Implementing Σ-cpo-s in Lego 141
7.1 About Type Theories . 141

7.1.1 Advantages of Type Theory for SDT 143
7.1.2 Extended Calculus of Constructions (ECC) 143
7.1.3 Adding new universes to ECC 144

7.2 The Lego system . 150
7.3 Implementing the logic . 152

7.3.1 Higher-order intuitionistic logic 152
7.3.2 Identity types vs. Leibniz equality 154
7.3.3 Non-logical axioms . 156
7.3.4 The SDT-Axioms . 159

7.4 Developing the theory . 160
7.4.1 Overview . 161
7.4.2 Universes and subset types . 161
7.4.3 Applications of the Axiom of Unique Choice 165
7.4.4 Substitutions with Identity types 165
7.4.5 Defining recursive domains . 169
7.4.6 Use of the Dominance Axiom 170

7.5 Comments on the implementation . 171
7.5.1 Shortcomings of the type theoretic approach 172
7.5.2 Shortcomings of Lego . 172

7.6 Related work on formal theories of domains 174

8 A realizability model for Σ-cpo-s 177
8.1 Basic preliminaries . 177

8.1.1 Assemblies . 179
8.1.2 Modest sets . 180
8.1.3 PER objects . 181

x Contents

8.1.4 Another universe Pω . 182
8.2 A realizability model for the ECC∗ . 183
8.3 A realizability model for the theory of Σ-cpo-s 188

8.3.1 Non-logical axioms . 188
8.3.2 The SDT-Axioms . 190

8.4 Comparing Σ-cpo-s with other approaches 193

9 A short guide through Synthetic Domain Theory 195
9.1 Scott and the beginnings . 195
9.2 Rosolini’s σ-sets . 196

9.2.1 The dominance Σ of r.e. propositions 197
9.2.2 σ-sets . 198

9.3 Extensional PERs . 199
9.4 Complete Σ-spaces . 203

9.4.1 The r.e. subobject classifier . 204
9.4.2 Σ-spaces . 204
9.4.3 Linkedness . 205
9.4.4 Complete Σ-spaces . 206
9.4.5 Domains and Lifting . 209
9.4.6 Other realizability toposes . 212

9.5 Repletion . 214
9.5.1 Hyland’s replete objects . 214
9.5.2 Taylors approach . 219

9.6 Σ-cpo-s and Σ-domains . 223
9.7 Well-complete objects . 223
9.8 Axiomatic Domain Theory . 226

9.8.1 Axiomatizing S-replete objects 228
9.9 Survey . 229

10 Conclusions and further research 231
10.1 Σ-cpo-s for modular software development 231
10.2 Implementation issues . 234
10.3 More research about SDT and ADT . 235

A The theory as Lego-code 237
A.1 logic.l . 237
A.2 nat.l . 241
A.3 cats.l . 245
A.4 axioms.l . 246
A.5 sig.l . 247
A.6 preorders.l . 248
A.7 posets.l . 249
A.8 cpos.l . 251
A.9 cpo def.l . 252
A.10 admissible.l . 252

Contents xi

A.11 closure.l . 254
A.12 domains.l . 257
A.13 fix.l . 259
A.14 dom constr.l . 259
A.15 inverse.l . 261
A.16 recdom.l . 263
A.17 lift.l . 264
A.18 smash.l . 269
A.19 functors.l . 271
A.20 orthogonal.l . 273
A.21 binary sums.l . 273
A.22 sums.l . 274
A.23 reflect.l . 277
A.24 stream.l . 279
A.25 sieve.l . 282

xii Contents

11 1 “Im analytischen Urteile bleibe ich bei dem
gegebenen Begriffe, um etwas von ihm

auszumachen. Im synthetischen Urteile aber
soll ich aus dem gegebenen Begriff

hinausgehen, um etwas ganz anderes, als in
ihm gedacht war mit demselben im Verhältnis

zu betrachten.” Immanuel Kant,
“Kritik der reinen Vernunft” (1789), [Kan56]

Introduction

Program verification is one of the most ambitious challenges of theoretical computer
science. Since the pioneering work of Dana Scott in the seventies, domain theory
[GS90, AJ95, SHLG94, Plo83] has provided the mathematical foundations for func-
tional programming languages [Gun92, Win93, Sch86, LS84]. Since then many variants
of domain theory emerged for different kinds of computation, e.g. stable or nondeter-
ministic computation (cf. e.g. [Gun92]).

The main advantages of Scott’s Domain Theory is that it gives meaning to recursive
functions of arbitrary higher-type and also to recursive types. So it allows one to solve
recursive domain equations like the famous D ∼= D → D which gives a model for the
type-free λ-calculus. In November 1969, just after Scott has laid out a logic for domains
under a type regime [Sco93], he found the method to solve the above domain equation.
This is the reason why loc.cit. was published only 25 years later. The paper, however,
circulated privately and Robin Milner began to implement Scott’s logic, starting with
Stanford LCF (Logic of Computable Functions) in ‘72 [Mil72]. After a redesign (from
which ML [MTH90, Pau91, Sok91] was a spin-off) Edinburgh LCF [GMW79] followed
in ‘79. Cambridge LCF is a more efficient and slightly extended version of LCF [Pau87].
These systems, however, offer only a restricted first-order logic. Whereas some defects
can be remedied, there are some more intrinsic reasons why LCF is not as comfortable
as the user would like it to be; it is because LCF is too “classical”, for example.

1

2 Chapter 1. Introduction

1.1 Drawbacks of classical domain theory

Classical domain theory has some drawbacks. Several of these are e.g. mentioned in
the introduction of Phoa’s thesis [Pho90]: polymorphism is tricky to model, effectivity
is difficult to treat using enumerations of bases, and, most evidently, there is no simple
category of domains, in the sense that one always has to restrict morphisms to con-
tinuous functions. Paul Taylor’s pointed synthesis of all this is “the study of domain
theory by bit-picking should be brought to a close” [Tay91].

Dana Scott’s original intention in the end of the seventies was to teach domain
theory to beginners. His slogan “domains are sets and all functions are continuous”
was restated by Hyland as “More exactly but less memorably, ‘domains are certain
kinds of sets’ ” [Hyl91]. To pursue this goal several mathematicians searched for a
good category of domains and this led to a new discipline “Synthetic Domain Theory”
or shortly SDT.

1.2 Synthetic versus Analytic

Consulting a dictionary [Web88] we find the principal meanings:

I analysis “separation of a whole into its component parts” and moreover we find
“a method in philosophy of resolving complex expressions into simpler or more
basic ones”.

I synthesis “the composition or combination of parts or elements so as to form a
whole”.

Analytic and Synthetic are two well known concepts from philosophy. Following ideas
of Kant one distinguishes analytic and synthetic statements or judgements (Urteile)
[Kan56]. This corresponds to the two possible ways of “verifying” statements: by lin-
guistic analysis or by empiric observations. The first idea gave rise to the development
of formal calculi (e.g. Russell, Moore). A sentence can be analyzed by analyzing its
components, i.e. subject and predicate etc. The name synthetic was chosen to em-
phasize the contrast to the analytical approach. It is difficult to express it positively
(synthetic = “relating to or involving synthesis: not analytic” [Web88]). It always
depends on a certain view of the world; sentences are verified by observation taking
this view into account. Kant also used the terminology “a priori/a posteriori” in
connection with analytic/synthetic. Philosophers later criticized this terminology and
claimed that the analytical method coincides with logical truth (Quine).

Generalizing these notions, an analytical approach can be viewed as a method to
explain something with the help of some simpler concepts. Synthetic means somewhat
the opposite. It is so called to distinguish it from the analytical approach. Synthetic
Differential Geometry (SDG) might provide some insight; it has got its name to em-
phasize that it does not follow the analytical approach describing differential quotients
by “ε’s and δ’s”.

1.2. Synthetic versus Analytic 3

1.2.1 Synthetic Differential Geometry

In SDG one deals with differential quotients not by analyzing them via limits but simply
by postulating an axiom that describes the differential quotient sufficiently. The ideas
can roughly be outlined as follows. For more information see [Koc81]. Let R be the real
line, not considered a field but solely a commutative ring, define D = {x ∈ R | x2 = 0},
and call D an infinitesimal object. If R would be a field then D would just be {0} and
that is just what one does not want. Then one postulates

(Axiom) ∀g:D −→ R. ∃!b ∈ R. ∀d ∈ D. g(d) = g(0) + d · b.

The axiom corresponds to the existence of an isomorphism R× R ∼= RD.

From that it follows immediately that D is not just the set {0}, but contains some
more elements. In a sense, any g : D −→ R describes a (tangential) line passing
through (0, g(0)) with a slope b. For any continuous f : R −→ R, one can define
g(d) , f(x+ d) and thus f(x+ d) = f(x) + d · b for a unique b, or written differently,

b = f(x+d)−f(x)

d
which is a constant independently from the value of d, hence b = f ′(x).

In this context Kock cites Sophus Lie, to whom the notion of “synthetic” in SDG
is due to: “I found these theories originally by synthetic considerations. But soon
I realized that, as expedient [zweckmäßig] the synthetic method is for discovery, as
difficult it is to give a clear exposition on synthetic investigations, which deal with
objects that till now have almost exclusively been considered analytically.” [Lie76],
translation by [Koc81]. We hope that the exposition of Synthetic Domain Theory will
not suffer from inexplicableness.

1.2.2 Synthetic Domain Theory

The analytical method in domain theory is most well-known. It describes how domains
are constructed in terms of “simpler” domains, i.e. the product A×B or the total func-
tion space A −→ B in terms of A and B. This is usually done by constructions on
cpo-s [GS90, Pau87] or also using Scott’s neighbourhood systems ([Sco81], special ver-
sions are information systems [Sco82, Sch90]). The synthetic approach treats domains
as sets with special properties. Domains can be simply composed as sets, i.e. the
constructions are easy. Of course, one must prove that the “special properties” are
preserved by the constructions. To express these properties one has to axiomatize the
idea of “Scott-open sets”. This axiomatic setting is analogous to SDG. We will soon
meet some distinguished set Σ, that plays the role similar to the D of SDG. There
are other analogies, but one should be aware of the fact that these are only formal
analogies.

To summarize, the name “synthetic” emphasizes the contrast to the classical an-
alytical approach to domain theory in analogy to SDG. Some people tried to make a
pun out of that and called the analytical approach “surgery on domains” to emphasize
in fact its analytical spirit.

4 Chapter 1. Introduction

1.3 Stone Duality

One of the characteristic properties of Synthetic Domain Theory is the existence of a
distinguished object Σ such that any ΣX is (almost) a topology on X , representing
the open subsets of X . From this point of view any p ∈ ΣX can be regarded as a
property of X . But this idea already originates from locale theory [Joh82] or pointless
topology, where one considers topological spaces that are equivalent to the lattice
of their open subsets. Such spaces are called sober. A contravariant equivalence
between “a kind of topological space” and a “kind of lattice” is called Stone-Duality
in honour of M.H. Stone who discovered this duality for Boolean algebras and the
topological spaces that bear his name (and are also called totally disconnected compact
Hausdorff spaces) [Sto36]. Sober spaces (in a slightly weaker sense) were the first
investigated as completely internally defined “synthetic” domains by Rosolini [Ros86b].
The lattices are to be understood as lattices of open sets of the given space. His
choice for Σ was the subobject of recursively enumerable (r.e.) propositions, already
appeared in Mulry’s work [Mul80]. Now in a topos (for the definition of a topos see
e.g. [Joh77, LS80, BW90, Pho92]) it is well-known that Ω, the type of propositions,

(or more exactly 1
>−→ Ω) is the subobject classifier in the sense that for any A ⊆ B

there is a unique classifying map of A, called χA : B −→ Ω, such that the following
diagram is a pullback square:

A > 1

B
∨

∨

χA
> Ω
∨
>

A subobject of Ω like the Σ above, through which predicates on N factor whenever they
are r.e. predicates on N, is sometimes also called r.e. subobject classifier. Obviously
there are elements > and ⊥ classifying the subobjects 1� 1 and ∅� 1. So Σ is the
right choice to make the elements of ΣX the computational properties of X , because
these are properties which can be observed by termination (>) or non-termination
(⊥).

Abramsky has proposed a domain theory in logical form [Abr91] which is based on
the theory of Stone-Duality for bifinite domains. (A nice overview of all the known
Stone-dualities in subcategories of topological spaces appears in [AJ95, Chapter 7.2].)
Abramsky presents a functional language with a denotational semantics where objects
are interpreted as points of a sober space. Hence, by switching to the “locale” view
via the equivalence one gets a logical interpretation. The latter gives an adequate
programming logic. But this is a logic of observations, and it is not possible to express
Π0

1-sentences like ∀x:X. f(x) = g(x), which are important for program verification.
Note that the idea of considering the properties of elements is already inherent in

the representation of Scott-domains (= bounded complete algebraic cpo-s) via neigh-
bourhood systems. These can be viewed as a pure set-theoretic “implementation” of
Scott-domains where elements of a domain are those sub-families of the neighbourhood

1.4. Synthetic Domain Theory 5

system that correspond to filters [Sco81, Sco82]. Another variant are information sys-
tems [Sco82, Sch90] that describe domains via bases of compact elements which corre-
spond to finitely generated theories. Special versions for SFP domains and dI-domains
are developed in [Zha89]. Within these approaches, by providing a countable base, one
can represent open subsets syntactically (inductively). This is what Abramsky (and
Zhang) needed to make a logic of domains.

1.4 Synthetic Domain Theory

It is certainly a very strong requirement that points should correspond uniquely to the
set of computational properties they fulfill (or equivalently to the Scott-open sets they
are elements of), but it can be weakened if we only require that two points are equal if
they fulfill the same properties. Due to Taylor, those sets are said to fulfill the Weak
Leibniz Principle (in topology they are called T0 spaces). It is well known that a T0

topology gives rise to a partial order. For all “synthetic (pre-)domains” we will there-
fore require (at least) the “Weak Leibniz Principle”. So we do not have the ordering as
a part of the definition of a (pre-)domain, but as a derived (or “synthesized”) notion
from the definition of Σ. Indeed one can define for x, y ∈ X that

x v y iff ∀P :X → Σ. P (x)⇒ P (y).

If we regard elements of ΣX as open sets, then by definition of v any open set is
upward closed. But we can be more ambitious. It would be even better if the open
sets would be Scott-open, i.e. for a given U in ΣX one could additionally assure that
for any ascending chain a in X

sup a ∈ U ⇒ ∃n:N. an ∈ U.

The easiest way to accomplish that is to define the predicate “x is supremum of a” as
follows:

∀P :ΣX . P (x)⇔ ∃n:N. P (a n).

Assuming that X has the Weak Leibniz Property this predicate describes in fact the
supremum. It remains to ensure that a set is closed under this supremum operation,
to get a good notion of cpo. Moreover, from these definitions we get monotonicity of
functions and even Scott-continuity for free. But one must not be overenthusiastic and
think that everything is for free. It still remains to prove that this supremum operation
“does the right job”.

Now there are two main approaches when to define a set X to be a predomain (i.e.
a chain complete set that does not necessarily have a bottom element), namely:

1. The cpo-inspired approaches (following the above discussion)

(a) X fulfills the Weak Leibniz Principle and it is closed under (order theoretic)
suprema of ascending chains. This has been investigated for objects of the
effective topos [Hyl82] by Phoa who calls them complete Σ-spaces [Pho90].

6 Chapter 1. Introduction

(b) X fulfills the Weak Leibniz Principle and is closed under suprema like de-
fined above. In [FMRS92] such a category of cpo-s was defined as a subcate-
gory of the category of partial equivalence relations on natural numbers, the
so-called “complete extensional PERs” or shortly complete ExPERs. We
will present a model-free version of these concepts under the name Σ-cpo-s
in the next chapter.

2. The replete approach
In Taylor’s terminology, X is said to fulfill the Strong Leibniz Principle if the
following holds: for any Y satisfying the Weak Leibniz Principle any map from
X to Y that induces an isomorphism Σf between ΣY and ΣX is already an
isomorphism. These objects were independently introduced by Hyland under
the name replete objects, where replete alludes to the fact that replete objects
are already closed under any kind of “generalized” limit operation, including the
ordinary limits of ascending chains. Hyland characterizes the replete objects as
the sets that are “(in some sense) determined by their Σ-subsets” [Hyl91]. His
definition was inspired by the search for a class of domains or predomains that
contains Σ and has good closure properties. Although the replete objects enjoy
nice categorical properties and contain less objects than all the other categories
of domains, they are still very abstract and not so intuitive as the Σ-spaces or
ExPERs. The suprema are defined differently here. By universal properties
one always gets an extension from ascending chains in X , coded as a function
f ∈ ω −→ X where ω denotes the finite ordinals, to a map f ∈ ω −→ X , where
ω denotes ω with a maximal element ∞. The supremum of f can then be easily
computed as f(∞). As the extension is unique, any function is Scott-continuous
quite automatically since f(sup a) = f ◦ a(∞) = f ◦ a(∞) = sup(f ◦ a).

As Phoa emphasized, his approach (1a) is in a certain sense orthogonal to computabil-
ity. It does not make sense to talk about approximations and bases and so on as in the
effective topos computability is built-in. For a general (synthetic) theory of domains
this is a bit more delicate. If that theory admits the canonical PER-model for some
notion of realizability, then computability is a property of the model. Computability is
thus, so to speak, shifted to the level of models. Now if we turn to the question “what
do we need the notion of algebraic domains for and do not simply use cpo-s?” the
answer is “to have a notion of computability”. But since we think of computability as
a property of the model, we can more or less forget about algebraicity. We discovered,
however, that induction on the length of streams is necessary for the correctness proof
of the Sieve of Eratosthenes which filters the prime numbers out of a given stream. To
prove this induction rule, one has to use the fact that any stream is the supremum of its
approximations of finite length, i.e. the compact elements (Section 5.1.3). Therefore,
algebraicity can be necessary in some indirect way.

1.5 Synthetic versus Axiomatic

The above definitions of predomains all make reference to an arbitrary category of sets.
This is in fact a distinguishing feature of Synthetic Domain Theory, which also aims at

1.6. A synthetic domain theory in the sense of LCF 7

finding a best approximating (pre-)domain for any given “set”, i.e. a reflection map.
The related field of Axiomatic Domain Theory (ADT), however, is searching for a set
of axioms such that any concrete category satisfying these axioms can be seen as a
“good” category of predomains (or domains) without referring to an ambient category.

Referring to an ambient category of sets – i.e. a topos or something similar – means
that SDT comes automatically equipped with a logic as it is well-known how to code
intuitionistic higher-order logic inside a topos (or a model of type theory). In ADT this
is not the case. So the SDT approach is clearly preferable for developing programming
logics.

Fiore axiomatized categories of domains that give a computationally sound and
adequate model for a typed functional language with sums, products, exponentials
and recursive types [Fio94a, FP94]. He merges Freyd’s category theoretic analysis of
recursive types [Fre90, Fre92] with the theory of partial maps [RR88]. It must be said
that Freyd’s work is seminal for axiomatic domain theory, even if some of the results
were already known before. But from his formulation, the axiom for recursive domains
emerged, namely algebraic compactness.

1.6 A synthetic domain theory in the sense of LCF

In this thesis we want to develop a completely formal, machine-checked, synthetic
theory of domains that contains all the features important for denotational semantics
of functional programming languages. This means e.g. recursive types, polymorphism,
structural induction, fixpoint induction and so on. The existing approaches do not
give any formal development of such a theory because they all possess one or more of
the following defects:

I they only work in a special model (e.g. the effective topos) and do not give a real
model-free axiomatization.

I they give some axioms but not a logical development of the theory.

I they stop at the level of fixpoints.

I they require heavy knowledge of category theory and do not give a logical treat-
ment of the subject. In other words, they prefer external reasoning and do not
use the internal language of the given ambient topos. The internal language of
a topos is a logical formalism “to replace arguments about arrows and diagrams
by the familiar set theoretic reasoning” [LS80, p. 245].

The last point is of particular interest even if it might not seem so. In order to
convey the ideas of Synthetic Domain Theory to a computer scientist without much
knowledge1 of category theory or topology, the logical approach seems to be most
promising. It has been observed by many people that translations into the internal
language are sometimes clumsy, tiresome, and error-prone because of the danger of

1We don’t deny, however, that it is very useful to have such knowledge.

8 Chapter 1. Introduction

confusing levels. However, we think that machine support for the internal language
eliminates these inconveniences, at least it abolishes incorrect arguments.

The difficulty is to find the right logic. We do not need the whole power of topos
logic for doing SDT, e.g. we don’t need that equivalent propositions are equal. The
internal language of a topos is a type theory [LS80], so for formalizing SDT it is natural
to look at type theory.

1.7 Type Theory

Type theory offers “a coherent treatment of two related but different fundamental no-
tions in computer science: computation and logical inference” [Luo94, page 1]. So it
can be considered as an adequate framework for dealing with program verification as
it unifies functional programming and logic. The logic of a type system comes for free
from the Curry-Howard isomorphism, in accordance with the slogan “propositions-
as-types”. Proving a theorem then means constructing an object that inhabits the
type which represents the theorem. Proofs are programmed as functions in functional
programming languages with the difference that all the “correctness requirements” are
already coded into the type. One simply has to write some program/proof of the given
type/proposition. In contrast to standard programming tasks, we are not interested
in how the proof looks like because we assume proof irrelevance.

Sticking to Luo’s point of view it seems natural to consider type theories in order
to find an adequate framework for SDT.

If one wants to quantify over all types, the set of all types must be a type again. This
is expressed in the slogan “type is a type”. Circular or impredicative definitions make
things a bit delicate here. Note that a universe is impredicative if it allows definitions
of elements by quantifying over all elements including the one to be defined! Due to
Girard we know that in presence of arbitrary dependent products “type is a type”
implies that every type is inhabited such that the internal logic of the type system
becomes inconsistent [Coq86]. As Luo pointed out in his book, there are two ways to
remedy that. Either one drops the concept of impredicative definitions or one gives up
the principle of identifying all types with propositions. The former idea was adopted by
Martin-Löf (see e.g. [ML84, NPS90]) who developed predicative type theory, the latter
is represented by the various impredicative theories like the most prominent Calculus
of Constructions (see e.g. [Coq85, CH88, Str89]) and its derivatives.

Since impredicative universes are good for modeling polymorphism we have cho-
sen an impredicative system, namely the Extended Calculus of Constructions (ECC)
[Luo90, Luo94] for our purposes. ECC is an extension of the Calculus of Constructions
with predicative universes allowing for (predicative) sums and products and inductive
definitions. Thus ECC somewhat comprises both, a predicative (Martin-Löf) type the-
ory and an impredicative one. The impredicative universe of propositions allows one to
code higher-order intuitionistic logic. The predicative ones are used to define structure
types. Sums can only defined for predicative universes and are needed e.g. for coding
subset types but also for development “in-the-large” in order to express (specifica-
tion/program) modules. ECC is therefore a good candidate for an SDT logic. We had

1.8. The formal development 9

to do one minor extension adding a second impredicative universe (cf. Section 7.1.3)
which serves as the “ambient notion of sets” (see above).

Another most convenient advantage of the Extended Calculus of Constructions is
that it also possesses an implementation by the Lego-system [LP92].

1.8 The formal development

In fact, we have used Lego for doing a complete development of SDT following the
ExPER approach cited above. In doing so we aimed at three main goals:

1. to give a treatment of Synthetic Domain Theory based on nothing more than a
few simple axioms which are also easy to verify in the intended model.

2. to do this formally with machine support. This is not just pure formalism since
working in intuitionistic logic is not always intuitive and any kind of “control
authority” is useful there.

3. to provide a theory which allows for dealing with functional programs as e.g. LCF
does, but uses a stronger logic (namely higher-order intuitionistic logic which
allows us e.g. to express admissibility inside the logic). This profits from the fact
that we are relieved of continuity conditions and benefit from the power of the
type theory which permits the expression of modules and polymorphism. In fact,
the ideas of deliverables [BM92, McK92] can be used to express specification and
programming modules and their relationships. From a type theorist’s point of
view, we have added fixed-point objects to ECC (compare this to [Aud91]).

It was quite an ambitious project to start with just a few axioms and to implement a
synthetic theory of domains with all its major highlights, i.e. the well-known domain
constructors, solution of mixed-variance domain equations, polymorphism, fixpoint
and structural induction, etc. Interestingly enough, it turned out that the intuitionistic
approach differs significantly from the classical one. We will come back to this in detail
in Chapter 3 but one example is appropriate here. The strict domain constructors,
coalesced sum and smash product, cannot be imitated in the old-fashioned style since
non-termination is certainly not r.e. Thus we cannot test for undefinedness as it
is usually done for defining the projections for the smash product or the injections
for the strict sum. One can get around these problems by defining them with their
characterizing universal properties. As a consequence, however, it is no longer possible
to prove that for the coalesced sum every defined element can be obtained via a left
or right injection.

Another inconvenience is the need for identity types and a “strong” substitution
rule when working in ECC. This was already discussed in [RS93b] in a quite dif-
ferent context. In a few words, the problem is that in intensional type theory the
type checking only uses the “built-in” equality by normalization. If one substitutes
propositionally equal objects in the same family of types the resulting types are not
convertible any more. When doing the inverse limit construction dependent families

10 Chapter 1. Introduction

of types arise quite automatically and a strong substitution rule in the above sense be-
comes unavoidable. The solution is to deal with identity types in the Martin Löf style
[NPS90, Str94, Hof95]. Despite these defects we loyally stick to the intensional system
since in extensional type theory (where propositional equality is reflected to judgemen-
tal equality) type checking becomes undecidable which prohibits machine-assistance
under the “propositions-as-types-regime”.

Even if one might not be convinced that formalization is really a bargain for pro-
gram verification and development, the author’s experience has shown that the formal-
ization process reveals subtle problems often buried in the details. This is particularly
the case with “internal vs. external argumentations” that are fundamental when trans-
lating external statements into an internal language.

1.9 Summary

The goal of this thesis is to present Synthetic Domain Theory in a logical and com-
pletely formal way, starting with some axioms and developing the theory up to con-
crete domain constructors and solutions of recursive domain equations in intuitionistic
higher-order logic, such that program verification can be done in an LCF-like manner.

We consider the axiomatization of the ExPER approach and the resulting full
development of a Synthetic Domain Theory in a complete formal and logical way
as the original contribution of this thesis. To our knowledge it is the first complete
formal development of a domain theory based on a couple of axioms and it is one
of the largest case studies ever done in Lego (see Sect. 7.4). This has been done
with the goal of formal program verification as the final test. A concrete verification
example (the Sieve of Eratosthenes in Chapter 5) using the recursive domain of streams
over natural numbers exemplifies in which aspects we differ from classical LCF and
underlines possible difficulties and advantages of the synthetic approach. This seems
to be the first time that formal program verification has been done in a synthetic
theory of domains. We also included suggestions for the axiomatization of other SDT-
approaches like the replete and the well-complete objects.

Moreover, the thesis is supposed to contain a comprehensive survey of the work
researchers have done so far in the fascinating field of Synthetic Domain Theory.

It is organized in the following chapters:

Σ-posets, Σ-cpo-s and Σ-domains

Chapter 2 is devoted to the theory of Extensional PERs in the logical setting of higher-
order intuitionistic logic with subtyping and an impredicative universe of sets. The
basic axioms and the development of basic domain theory is presented. The concepts
of Σ-posets, Σ-cpo-s and Σ-domains are explained. In contrast to the original work of
[FMRS92] here one is liberated from reasoning with Turing machines. This axiomatic
theory will be implemented in Chapter 7 using the Lego-system. The Σ-cpo approach
differs also from Phoa’s definition of complete Σ-space. But we are able to compare
the approaches on the model level and this will be treated later in Chapter 8.

1.9. Summary 11

Domain constructors for Σ-domains

The more complicated domain constructors like ()⊥,⊗,⊕,+ are defined and their
most basic properties are derived (Chapter 3). For verifying that the lifting is the
Σ-partial map classifier one needs Rosolini’s Dominance Axiom. The strict domain
constructors ⊗ and ⊕ must be defined as left adjoints using Freyd’s Adjoint Functor
Theorem (FAFT) [Mac71], because in intuitionistic logic we cannot do case analysis
on “being ⊥”. The FAFT will be also explained there.

Recursive Domains in SDT

In Chapter 4 we present the inverse limit construction in a parameterized form. Defin-
ing a notion of internal category and functor, it is proved that fixed-points of (internal)
mixed-variance functors exist in (internal) categories with special properties. For the
category of Σ-domains with strict maps it is verified that it satisfies these requirements.
Structural induction for admissible “classical” predicates over recursive domains is then
derived generically.

An example: the Sieve of Eratosthenes

In order to demonstrate what LCF-like program verification looks like in our setting, we
apply our derived theorems and define recursively the Σ-domain of streams over natural
numbers (Chapter 5). The Sieve of Eratosthenes is then programmed using the stream
domain and its correctness is verified. This example emphasizes the particularities of
our approach w.r.t. classical LCF. Admissibility must be treated differently.

Axiomatizing other approaches

In the axiomatic setting of Chapter 2 – with minor changes – a formalization of
Σ-replete objects and of the well-completes is suggested (Chapter 6). For Σ-replete
objects both approaches, Hyland’s and Taylor’s [Hyl91, Tay91] are explained in a log-
ical manner. It is also proved internally that both approaches are equivalent. The
well-completes [Lon94, LS95] can also be treated nicely using the internal language
rather than computing with realizers.

Implementing Σ-cpo-s in a type theory

This chapter is devoted to the formalization of the Σ-cpo approach outlined already
in the Chapters 2 – 4 from the definition of predomains and domains up to the so-
lutions of recursive domain equations, the definition of the domain constructors, and
several induction principles. Even the program verification example of Chapter 5 is
implemented. All this can be done in the Extended Calculus of Constructions [Luo90]
with an additional impredicative universe in order to model polymorphic domains,
called ECC∗. In fact, we have even more, namely that (pre-)domains are closed under
arbitrary indexed products.

12 Chapter 1. Introduction

A realizability model for Σ-cpo-s

To show that the theory we presented is consistent, we have to provide a model for
ECC∗ and the axioms. This is the content of Chapter 8. A PER-model for ECC
was already outlined in [Luo90, Luo94], whereas [Str89, Str91] described a categorical
model of the Calculus of Constructions and proved its correctness. The problem with
models for dependently typed calculi is that well-formedness cannot be separated from
validity of sequents. Thus it is quite complicated to give a correct interpretation
function. Luo argues by induction on the derivation of sequents, which is rather
questionable as derivations are not unique in general. Streicher defines an a priori
partial interpretation function by induction on the syntax. We somewhat combine
both attempts trying to give an (relatively) easy but convincing presentation of the
model.

A short guide through Synthetic Domain Theory

Chapter 9 gives a survey of previous work done up to now in the relatively new subject
of Synthetic Domain Theory. It shortly presents the σ-approach of Rosolini [Ros86b]
and the replete objects introduced in two different styles by Hyland [Hyl91] and Taylor
[Tay91]. It gives a review of the approaches that use the realizability models as the
ExPER approach of Freyd et al. [FMRS92] and of course the thesis of Phoa [Pho90],
who developed a (synthetic) domain theory inside the effective topos. Some comments
on Axiomatic Domain Theory [Fio94a, Fio94b, FP94] and SDT in general realizability
toposes [Pho90, Lon94] will conclude this chapter.

Conclusions and further research

In the last chapter we shall indicate some loose ends. There is still work to be done.
Logical axiomatizations of other SDT-approach should be developed in the style advo-
cated in this thesis. More research is needed about admissibility in intuitionistic logic.
Also the order-free approaches have to be developed further. The implementation in a
type theory with sums allows one to express specification and program modules. To-
gether with recursive domains and functions the SDT-axiomatization provides a nice
playground for experimenting with modular program development and verification in
a formal way.

Hints to the reader

The reader is supposed to have some knowledge of intuitionistic higher-order logic and
λ-calculus e.g. [LS80] and in some parts of Chapters 3 and 4 also of basic category
theory. We recommend the first chapters of [Mac71, BW90]. Chapter 2 should be
readable, however, also without any knowledge of category theory. Some familiarity
with classical domain theory is helpful but not necessary. One can find more or less
detailed introductions in [GS90, AJ95, SHLG94, Gun92]. In Chapter 7 we make heav-
ily use of type theory. Although there will be a short introduction, we recommend

1.9. Summary 13

[NPS90], [Luo94] or [Str91] for a good reading. In Chapter 8 some basic knowledge of
recursion theory might be helpful, a good textbook is [Cut80].

This thesis is written with the purpose of conveying the beauty and elegance of
Synthetic Domain Theory, its strength and its limitations. Another aspect is the
usability of SDT for program verification in an LCF-manner.

The theory is chiefly presented in an internal style. Now some people might object
that the internal language is inelegant. But first of all, only a consequent use of this
internal language can give rise to a formalization. (To improve readability I tried to
gather the material about concrete – type-theoretical – formalization in Chapter 8
anyway.) Secondly, some examples in the literature verify that a rather sloppy use of
internal arguments can lead to wrong conclusions. Finally, this work is also intended
to address people in the computer science community that do not yet know anything
about Synthetic Domain Theory; a “naive” logical approach might be a good starting
point for them. Because of these reasons also some basic material is explained in detail
(e.g. reasoning principles for intuitionistic logic or the Adjoint Functor Theorem). I
hope that the experienced reader will forgive me and skim these parts rather quickly.

14 Chapter 1. Introduction

11 2
The Σ-posets, Σ-cpo-s, and
Σ-domains

In this chapter we present a completely model independent development of a theory
of Σ-cpo-s in the spirit of extensional PERs [FMRS92]. This is done by choosing –
sloppily speaking – an adequate internal language for transferring the ExPERs from
the realizability topos to the resulting internal logic. Then, consequently using this
language, we can develop a logic-based and completely formal synthetic theory of do-
mains. Formality gives us another bonus point. In Chapter 7 we will see that the
theory can be put into a proof-checker, Lego, that itself implements a type theory.
The internal language of this type theory will fulfill our requirements mentioned in the
next section.

So first we will explain the logic in use, then the non-logical axioms and finally the
theory shall be developed by providing the necessary definitions and theorems with
proofs. The ExPERs will then later turn out to be (cf. Section 8.4) the standard model
for the (Σ−)cpo-s axiomatized in our theory. This will also stress the connection to
Phoa’s definition of Σ-space.

The material of this chapter is based on joint work with Thomas Streicher [RS93a].

2.1 The Logic

The underlying logic of our theory will be extensional, intuitionistic, higher-order logic
with subset formation and natural numbers with arithmetic. Such a logic is proposed
e.g. in the Appendix of [Pho92]. Readers familiar with topos theory might notice that

15

16 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

this is very near to the internal language of a topos (cf. [LS80]). Yet, we won’t need
that equivalent propositions are equal, instead we will need some additional features.

We will allow ourselves, however, to be a little bit sloppy here. By an “abus de
langage” we use a set-theory-like language as topos theorists often do. In Section 2.1.4
we will explain in more detail, how we deal with subsets. Besides, we will chase any
doubts in Chapter 7 by giving a translation into a type theory and in Chapter 8 proving
that there is a model for this type theory.

We would like to refer to the type of all domains (or cpo-s) since operations on
domains should be part of the language. Additionally, the type of domains (cpo-s)
should be closed under arbitrary products, if one wants to admit general polymorphic
definitions. Pure constructivists refuse impredicativity, as “cyclic” definitions are in a
certain sense non constructive. Therefore, the question arises if it is possible to develop
Synthetic Domain Theory without making reference to any impredicative universe.
First of all, as Rosolini pointed out, there are only impredicative models known, namely
the realizability models. Second, we will use impredicativity for defining the strict
domain constructors ⊗ and ⊕. We do not know how to define them in general without
the use of impredicativity. Impredicativity of Set is also enforced by the requirement
that for any set there is a best approximating domain, i.e. there is a reflection. So it is
still an open question how far one could get with SDT just using predicative universes.

Once we have decided to make use of impredicativity, the first approach would be
to define a impredicative universe for posets, cpo-s, domains etc. a priori. However, it
seems to be more elegant just to claim the existence of one type closed under arbitrary
products, let us call it Set, from which we can carve out the needed universes afterwards
by providing adequate predicates on Set. And note that if we use impredicativity then
why should Prop, the type of propositions, not be impredicative. It is well-known
that one can then define the standard logical connectives by second order encoding of
their elimination rules (cf. Section 7.3.1). As one has arbitrary products the logic is
immediately higher-order.

This is all the additional structure we need. Set and Prop belong to the ambient
universe Type. We can slice this into a hierarchy of predicative universes Type(i),
i ∈ N, (as in ECC). Dependent sum- and product-types exist for every universe. We
will be sloppy here and simply use Type. When coding this in the Lego system, by
the way, it will still be possible just to write Type, because the system will compute
the correct universe by itself.

Expressing all the above requirements by means of category theory provides a much
more compact form of description.

2.1.1 Categorical description

Summing up in terms of category theory, what we need is the internal language of an
“almost” topos (i.e. all but one – that is extensionality of propositions– of the axioms
of a topos hold) that contains a small internally complete subcategory containing N,
which we have baptized Set.

Note that from the Adjoint Functor Theorem we know that a small, full subcategory
is internally complete if and only if it is reflective. So one could also require that Set is

2.1. The Logic 17

a reflective subcategory which then allows one to define the products as in the ambient
category. Approaching from the other side, however, one needs to deal with reflection
maps to define products.

2.1.2 The non-logical axioms

When we start from simple higher-order intuitionistic logic we first have to ensure that
we have all the necessary properties of a topos just by axiomatizing them. So we need
extensionality and the Axiom of Unique Choice as additional properties.

Extensionality

(EXT) ∀A:Type. ∀B:A −→ Type. ∀f, g : Πx:A.B(x). (∀a:A.fa = ga)⇒ f = g.

Some words are in order here about the general product Π, the dependent product.
Behind this name there hides a concept which we frequently use in everyday mathe-
matics: consider an I-indexed sequence (ai)i∈I of objects, where every element ai is of
type Bi, and those Bi may all be different for different i ∈ I . The type of a is then
Πi:I. Bi. If any Bi equals a unique B, then this product simply describes the function
space I −→ B. We can use the dependent product because we are working in the
internal language of (almost) a topos which is a type theory [LS80].

Note that a non-dependent version of EXT for functions of type A −→ C can be
deduced easily.

Axiom of Unique Choice

(AC!w) ∀A:Type. ∀B:A→ Type. ∀P :Πx:A.PropB(x).
(∀x:A. ∃!y:B(x). P x y)⇒ ∃f : Πx:A.B(x). ∀a:A. P a (f a).

This axiom states that a left total and right unique predicate P can be represented
as a function f of corresponding type. The Axiom of Unique Choice permits the shift
from functional relations to functions which is quite reasonable and holds in all models
we will consider (it holds in any topos; also for assemblies in realizability models with
proof-irrelevance).

Implementing this theory in a proof checker we noticed very soon that it is much
more convenient to have the functions as objects rather than in existentially quantified
form like above. The advantages are abundant. Functions are objects that can be
named always and anywhere, you can really “take them in your hands”. Working
with existentially quantified variables means always eliminating the quantifier when
necessary. Assume there exists an f ∈ X −→ Y such that P (f). If we only knew
that ∃f :X −→ Y. P (f) then we would have to change any theorem C we want to
prove into ∀f :X −→ Y.(P f) ⇒ C. This can get very clumsy, as sometimes these
quantifiers get in the way. And particularly in intuitionistic logic their occurrence can
become problematic. Our experience showed that it is better to use a strong existential
quantifier in the conclusion of (AC!), that means to use a sum type, so AC! looks like
follows:

18 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

(AC!) ∀A:Type. ∀B:A→ Type. ∀P :Πx:A.PropB(x).
(∀x:A. ∃!y:B(x). P x y)⇒∑

f : Πx:A.B(x). ∀a:A. P a (f a).

2.1.3 A short story about ¬¬-closed propositions

In intuitionistic logic q ∨ ¬q is not generally valid, but only ¬¬(q ∨ ¬q) and thus the
principle of case analysis on validity of q is not (automatically) available. This is one
of the most strange and inconvenient phenomenon when working in an intuitionistic
setting, especially for beginners. For special propositions, however, case analysis is
still a valid proof principle.

Definition 2.1.1 A proposition p ∈ Prop is called ¬¬-closed (or ¬¬-stable) iff ¬¬p⇒
p. A predicate P on X is called ¬¬-closed if ∀x:X. ¬¬P (x)⇒ P (x). �

As this kind of reasoning will occur in abundance afterwards, we want to derive prop-
erties of ¬¬-closed propositions in this section.

Lemma 2.1.1 For any proposition A and ¬¬-closed proposition P if ¬¬A then (A⇒
P)⇒ P .

Proof: If P is ¬¬-closed then it’s sufficient to prove ¬¬P , but by assumption we
have that ¬¬A and ¬¬A⇒ ¬¬P . �
This is case analysis. If we take for A the proposition q∨ (¬q) then we know that ¬¬A
holds. Thus proving P for a ¬¬-closed P reduces to show (q ∨ ¬q) ⇒ P , i.e. q ⇒ P
and ¬q ⇒ P .

As explained above ¬¬-closed propositions allow the use of “classical reasoning”
inside intuitionistic logic. In the course of the development of our theory we will con-
sequently need the definition of ¬¬-closed monos or ¬¬-closed subsets, respectively.
As in this axiomatization classical reasoning is important at many places, one has to
embed classical logic into intuitionistic logic by using ¬¬-closed predicates or propo-
sitions. These permit case analysis.

Notation: For an easier reading of logical formulas we use the convention that ¬
binds stronger than any other operator, and that ⇒ has the lowest precedence.

Lemma 2.1.2 Assume p, q, r∈Prop, where q, r are ¬¬-closed; let X be any type,
P ∈ X −→ Prop, where P is ¬¬-closed, then the following propositions hold:

(i) ¬¬∀x:X.P (x)⇒ (∀x:X.P (x))

(ii) ¬¬(p⇒ q)⇒ (p⇒ q)

(iii) ¬¬(¬p)⇒ ¬p

(iv) ¬¬(q ∧ r)⇒ q ∧ r

2.1. The Logic 19

Proof: (i) Assume ¬¬∀x:X.P (x). Then for an arbitrary y we must show P (y). But
we can show (∀x:X. P (x)) ⇒ P (y), therefore (¬¬∀x:X. P (x)) ⇒ ¬¬P (y) and since
P is ¬¬-closed (¬¬∀x:X. P (x))⇒ P (y) the premiss of which holds by assumption.
(ii) Show ¬¬(p ⇒ q) ⇒ (p ⇒ ¬¬q) using p ∧ ¬q ⇒ ¬(p ⇒ q). From that and the
fact that q is ¬¬-closed follows the proposition.
(iii) By contraposition of p⇒ ¬¬p.
(iv) ¬¬(q ∧ r)⇒ (¬¬q ∧ ¬¬r) and q, r ¬¬-closed. �
Even more can be proved.

Lemma 2.1.3 Assume p, q∈Prop, where q is ¬¬-closed; letX be any type, Q ∈ X −→
Prop, then the following propositions hold:

(i) (p⇒ q)⇒ (¬¬p⇒ q)

(ii) If the equality on X is ¬¬-closed then ∃x:X. Q(x) ¬¬-closed implies ∃!x:X. Q(x)
¬¬-closed.

Proof: (i) By Lemma 2.1.1.
(ii) Let M , ∀x, y:X.Q(x) ∧ Q(y) ⇒ x =X y, then ∃!x:X.Q(x) can be coded as
(∃x:X.Q(x))∧M . Now M is ¬¬-closed due to (i), (ii) of the previous lemma, and the
fact that the equality on X is ¬¬-closed. So (∃x:X. Q(x)) ∧M is ¬¬-closed because
of (iv) of the previous lemma and we are done. �

2.1.4 Subobjects and Subset Types

As we are mimicking the internal language of a model of type theory, we need subset
types which allow us “naive” set theoretic reasoning. The idea of a “naive” style of
presentation stems from Kock and is mirrored also in the title of [RS93a]. Kock writes
“. . . several of the papers . . . are written in a naive style. By this we mean that all
notions, constructions, and proofs involved are presented as if the base category were
the category of sets” [Koc81]. Such a set theoretic presentation will be used in the
following chapters.

For “naive (bounded) set theory” we need three concepts:

I the ⊆-relation, A ⊆ B, where A,B are arbitrary types (that are interpreted as
ω-sets in the model, so they are sets indeed).

I the ∈-relation, where x∈A is only a valid statement if x∈B and A ⊆ B. This
must not be confused with the notation a ∈ A used to state that a is assumed
to be (a variable) of type A.

I subset types (set comprehension), i.e. {x ∈ X |P (x)} is a type if X is a type and
P ∈ PropX . That is P is the classifying map of the subset {x ∈ X |P (x)}.

“Bounded” means that quantifiers always range over certain types, as we are working
in a typed language. One is not allowed to write something like “∀U. ∃V. (∀x.((px)∧
x∈U) ⇔ x∈V)”. Note that if P (x) holds then we do not distinguish between x as
an element of B and of {x ∈ B |P (x)}.

20 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

In the following non-formal presentation of the theory, we shall often identify a
mono A� B, which represents a subobject, with a subset A ⊆ B by reasoning up to
isomorphism. The property of being a mono can of course be expressed logically by
∀x, y:A.m(x) = m(y) ⇒ x = y for Set (in general it is m ◦ f = m ◦ g ⇒ f = g for
arbitrary f, g with codomain B). In this case one can ask whether some x ∈ B lies in
A, i.e. if ∃a:A. m(a) = x.

When formalizing subsets and comprehension, we will have to use Σ-types and
there one needs embedding (or coercion) maps again to make everything well-typed.
If there are m:A� B and x∈B, then one has to translate x∈A into ∃a:A. m(a) = x.
Those readers who feel uncomfortable now, because of the sloppiness of notation, are
referred to Chapter 7, where the implementation of subtypes will be done formally
by sums. We believe that for sake of clarity embedding maps and coding of subtypes
should be hidden when getting familiar with the theory. They only distract from the
important issues.

Classical – ¬¬-closed – subset types

There is a “special” kind of subsets.

Definition 2.1.2 If A ⊆ B and ∀b:B. (¬¬b∈A) ⇒ (b∈A) is valid then we write

A ⊆¬¬ B and call A a ¬¬-closed or classic subset of B. A mono A
m� B is called

¬¬-closed iff ∀b:B. (∃a:A. m(a) = b) is ¬¬-closed. �

Again, we will often identify (by reasoning up to isomorphism) a ¬¬-closed mono
m:A� B with the ¬¬-closed subset A of B. The ¬¬-closed subsets are those subsets,
for which elementhood can be proved by some case analysis (see 2.1.1).

Note that in the ω-set model ¬¬-closed subobjects are isomorphic to “real subsets”
which reflects that a ¬¬-closed mono has non computational meaning (the double
negation “kills” such information [Pho92]).

If one defines a set using set comprehension with a ¬¬-closed predicate, then {a ∈
X |P (x)} will be a ¬¬-closed subset of X , i.e. {a ∈ X |P (x)} ⊆¬¬ X . Note that the
corresponding mono is then ¬¬-closed.

The following proposition that uses ¬¬-closed subsets has very nice applications
in the sequel, although at first sight it might seem a bit specialized. It deals with the
problem of proving ¬¬P (x) ⇒ ∃y:Y .Rx y, where P ∈ PropX and R ∈ X −→ Y −→
Prop are predicates, in cases where only P (x) ⇒ ∃y:Y.Rx y can be shown directly.
The double contraposition of the last statement gives ¬¬P (x) ⇒ ¬¬∃y:Y Rx y, but
unfortunately we cannot deduce ∃y:Y .Rx y as this proposition does not have to be
¬¬-closed even if R is ¬¬-closed. The lemma below solves the problem if Y ⊆¬¬ Z
and if there is a t∈X −→ Z that is a Skolem function for the existential quantifier:

Lemma 2.1.4 Let X, Y, Z be types, P ∈ X −→ Prop be a predicate, R ∈ X −→
Y −→ Prop be a ¬¬-closed predicate and Y ⊆¬¬ Z. If there exists a t ∈ X −→ Z
such that

∀x:X.P (x)⇒ t(x)∈Y ∧R x (t x)

2.2. The SDT axioms 21

then
(¬¬P (x))⇒ ∃y:Y.R x y.

Proof: By double negation from the hypothesis we get for any x ∈ X that

¬¬P (x)⇒ ¬¬(t(x)∈Y ∧R x (t x)).

Now the right hand side is ¬¬-closed (see 2.1.3) as by assumption t(x)∈Y and R x (t x)
are ¬¬-closed. Hence we have that (¬¬P (x))⇒ (t(x)∈Y ∧R x (t x)). Putting all the
pieces together we get (¬¬P (x))⇒ ∃y:Y .R x y. �

2.2 The SDT axioms

Like in the approaches that will be presented in Chapter 9 we have to distinguish a
special set which classifies the r.e. subobjects, called Σ. Moreover, we have to assume
some axioms guaranteeing monotonicity and continuity. That is not quite true in
fact. Monotonicity and continuity follow directly by the definitions accordingly to the
motivation in Section 1.4. We need an axiom that ensures that in the type ω (of
natural numbers with ascending order and ∞ as greatest element) the archetypical
chain 0, 1, 2, 3, . . . has the supremum ∞. This expresses continuity on the model level
as there it turns out to correspond to the Rice-Shapiro Theorem.

2.2.1 Properties of Σ

A special Set Σ is axiomatized in a way that ΣN are the r.e. subsets of N in the standard
PER-model. To ensure that, first we require it to be a subset of Prop with the usual
closure properties.

Definition 2.2.1 Let Σ ∈ Set be a distinguished set with the following properties:

(a) >,⊥ ∈ Σ with ¬(⊥ = >)

(b) If p, q ∈ Σ then p ∧ q, p ∨ q ∈ Σ

(c) If f ∈ N −→ Σ then ∃n:N.fn ∈ Σ

(d) For any x, y ∈ Σ it holds that ((x = >) ⇔ (y = >))⇒ x = y. �

Remark: Note that in the premiss of the Axiom (d) we use equivalence rather than
equality, since we do not require that equivalent propositions are equal. An easy
consequence is that the map λx:Σ. x = > is a mono, i.e. Σ ⊆ Prop. Simply assume
[x = >] = [y = >] then certainly [x = >]⇔ [y = >] and thus by (d) x = y.

So there is a rather subtle difference between type theory and the internal language
of a topos: in type theory we do not require that equivalent propositions are equal,
therefore the subobject classifier is not strong; it is called weak subobject classifier
instead. This is the reason why we write Prop instead of Ω (thanks to T. Streicher
for pointing out the misleading use of Ω in an earlier draft.)

22 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Furthermore, note that p∨ q in (b) is a special case of (c) but it is more convenient
to have ∨ explicitly. The logical connectives used in this definition are those of Prop. Σ
should most certainly be an element of Set, since we want it to belong to the universe
of “domains” afterwards. Every other “domain” shall be constructed in some way
from Σ.

2.2.2 Phoa’s Axioms

Phoa’s Axioms are necessary to ensure that Σ is indeed the set of r.e. propositions and
are an equivalent formulation of the “Phoa Principle” as presented in [Tay91] which
states that ΣΣ ∼= {(p, q) ∈ Σ × Σ | p ⇒ q}. (There is again a formal analogy to
SDG, where the axiom said that R×R ∼= RD.) This means that all functions of type
Σ −→ Σ are monotone.

(PHOA1) ∀f :Σ −→ Σ. f⊥ ⇒ f>

(PHOA2) ∀f, g:Σ −→ Σ. (f⊥ = g⊥) ∧ (f> = g>)⇒ f = g

(PHOA3) ∀p, q:Σ. (p⇒ q)⇒ ∃f :Σ −→ Σ. f⊥ = p ∧ f> = q

This coding of Phoa Principle occured for the first time in [RS93a]. Observe that the
negation on Σ, which clearly is a non-computable function, cannot be defined.

2.2.3 Continuity Axiom

The next axiom in its concrete formulation is also taken from [Tay91] where it is
called Scott’s Axiom. It is sort of an internal version of the Rice-Shapiro(-Rosolini)
Theorem [Pho90, p.76]. But whereas the latter states that the Σ-subsets in the PER-
model are Scott-open, Scott’s Axiom states that the archetypical ascending chain of
natural numbers (1, 2, 3, . . .) in the archetypical domain ω has a supremum and is,
consequently, important for characterizing suprema. We will see in Section 2.6.2 how
ω, the corresponding chain of natural numbers, and suprema are defined.

The function step : N −→ ΣN below forms an embedding of the natural numbers
into ω. Scott-continuity in our approach will directly follow from the definition of
supremum which is inspired by the ExPERs rather than Phoa’s Σ-spaces.

(SCOTT) ∀P : ΣN −→ Σ. P (λx:N.>)⇒ ∃n:N.P (step n) ,

where step n ∈ N −→ Σ is defined as follows:

Definition 2.2.2 step nm ,
{
> if m < n
⊥ otherwise

. �

2.3. About Σ 23

2.2.4 Markov’s Principle

For the axiomatization of ExPERs we need another axiom. This axiom will have the
effect that the equality between “domains” is classical (in fact it is equivalent to that),
such that case analysis is possible.

(MP) ∀p:Σ.¬¬p⇒ p

Semantically this corresponds to Markov’s Principle as Σ corresponds to the Σ0
1-

propositions. Markov’s principle makes sure that Σ-predicates are ¬¬-closed and thus
allows us to use “classical case analysis” for proving Σ-propositions. In other axiom-
atizations, however, where Σ does not correspond to the Σ0

1-propositions, it might be
better to call this axiom “Σ is ¬¬-closed”.

These few axioms are all we need but for one more. We need an axiom to show
that lifting is the Σ-partial map classifier and that certain predicates on lifted domains
are Σ-predicates (cf. Sections 3.1.5 and Lemma 5.4.1). The most relevant theorems of
(pragmatic) domain theory will be developed successively on top of these axioms in
the logic we mentioned before. Note that we cannot use classical logic since this would
contradict the fact that all functions are continuous. In fact, classical logic contradicts
already PHOA1, since then negation on Σ would become definable : using classical
logic we could for any p∈Σ derive p = ⊥∨ p = > and thus we could prove

∀x:Σ. ∃!y:Σ.(x = ⊥ ⇒ y = >) ∧ (x = > ⇒ y = ⊥).

With AC! we get a function f : Σ −→ Σ with f(⊥) = > and f(>) = ⊥ contradicting
PHOA1. We can even contradict SCOTT, since we can prove classically

∀f :ΣN. ∃!p:Σ. ((f = λx:N.>)∧ (p = >)) ∨ (¬(f = λx:N.>)∧ (p = ⊥)).

That means that SDT is intrinsically non-classical.

Remark: Note that this is also analogous to SDG, Synthetic Differential Geometry,
where the SDG-Axiom (cf. Section 1.2.1) is inconsistent with the law of the excluded
middle. Assume that this law holds; then one can define a function g : D −→ R such
that

g(d) =

{
0 if d = 0
1 if d 6= 0

.

Note that there must be an element d′ ∈ D such that d′ 6= 0. But for this d′ then there
would exist a unique b such that

1 = 12 = g(d′)2 = (g(0) + b · d′)2 = b2 · d′2 = b2 · 0 = 0 ,

a contradiction. This is not surprising since the map g is not differentiable at 0.

2.3 About Σ

Before we go into the subject let us prove some general results about Σ which turn
out to be useful afterwards. Due to Markov’s Principle (MP) we already know that
all elements in Σ are ¬¬-closed. But there are some more useful properties.

24 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Lemma 2.3.1 The following trivial facts hold for any s ∈ Σ.

(i) ¬(s = ⊥) iff ¬¬(s = >)

(ii) s = > iff ¬(s = ⊥)

(iii) ¬¬((s = >) ∨ (s = ⊥)).

Proof: By definition of Σ we get (i) (cf. Definition 2.2.1(d)). (ii) follows then from
(i) and Markov’s Principle. (iii) follows from (ii) using the tautology ¬¬(¬X ∨X). �
From the above Lemma and 2.1.1 we can e.g. define case analysis for Σ:

Corollary 2.3.2 For any ¬¬-closed predicate p ∈ PropΣ we have that

(p(⊥) ∧ p(>))⇒ ∀s:Σ. p(s).

Proof: Because of Lemma 2.1.1 and (iii) from the lemma above we have for any x
that

[((x = ⊥) ∨ (x = >))⇒ p(x)]⇒ p(x).

Using the assumtion p(⊥) ∧ p(>) we are done. �
There is of course an inclusion σ from the inductively defined type Bool to Σ by
defining σ(false) = ⊥ and σ(true) = >. Therefore, any decidable predicate on X is of
course expressible as a function of type X −→ Σ. Or in other words, decidable sets
are recursively enumerable.

2.4 Preorders

In this section we define an observational preorder and observational equality where
observations are only allowed to have values in Σ. We prove that on ΣX the pointwise
preorder is equivalent to the observational one and that all functions are monotone
w.r.t. the observational preorder.

Definition 2.4.1 (Phoa) Let X ∈ Type be any type and x, y∈X .

(i) x v y iff ∀P :X −→ Σ. (P x⇒ P y)

(ii) x =obs y iff x v y ∧ y v x

(iii) x vlink y iff ∃h:Σ −→ X. h⊥ = x ∧ h> = y

(iv) If the relations vlink and v coincide, i.e. ∀x, y:X. x vlink y ⇔ x v y then X is
called linked.

The linkage property serves as an auxiliary notion in the proof that the observational
preorder is pointwise on powers of Σ. �

The next Lemma characterizes the observational preorder on Σ.

2.4. Preorders 25

Lemma 2.4.1 The following two propositions hold.

(i) ∀p, q:Σ. p⇒ q iff p v q.

(ii) Σ is linked.

Proof: (i) “⇒”: Assume p ⇒ q. Let f be the function we get from PHOA3
and P ∈ Σ −→ Σ be arbitrary. Then P ◦ f ∈ Σ −→ Σ and by PHOA1 we get
(P ◦ f)(⊥)⇒ (P ◦ f)(>) and thus Pp⇒ Pq. “⇐”: Take for P the identity on Σ.
(ii) is a corollary of (i). We must show that p vlink y iff p ⇒ q but this is a direct
consequence of Axiom PHOA1 and PHOA3. �
The vlink relation is also pointwise for any ΣX .

Lemma 2.4.2 For all p, q∈ΣX it holds that p vlink q iff ∀x:Σ. p x vlink q x.

Proof: “⇒”: Let p, q ∈ ΣX with p vlink q, so there exists an f :Σ −→ ΣX with
f(⊥) = p and f(>) = q. Now for an x ∈ X simply choose λs:Σ. f s x which witnesses
p x vlink q x.
“⇐”: Let f x vlink g x for all x ∈ X , then by 2.4.1 f x⇒ g x for all x ∈ X . According
to PHOA3 for all x ∈ X there must exist a px∈Σ −→ Σ with px⊥ = f x and px> = g x.
Due to PHOA2 this px is unique. By AC! we get a function p∈X −→ ΣΣ with
p x⊥ = f x and p x> = g x. But then h = λs:Σ. λx:X. p x s : Σ −→ ΣX with h⊥ = f
and h> = g. �
Now we prove that all the defined preorders are equal on powers of Σ. First, we need
another auxiliary lemma.

Lemma 2.4.3 For any x, y ∈ X we have x vlink y implies x v y.

Proof: Suppose x vlink y, then there exists an h ∈ Σ −→ X such that h⊥ = x and
h> = y. Let P∈X −→ Σ be arbitrary, then P ◦ h ∈ Σ −→ Σ. Therefore by PHOA1
we have P x = (P ◦ h)⊥ ⇒ (P ◦ h)> = P y. �

Theorem 2.4.4 For an arbitrary type X and f, g ∈ ΣX the following conditions are
equivalent:

(i) f vlink g

(ii) f v g

(iii) ∀x:X. (f x⇒ g x)

Proof: (i) ⇒ (ii): Lemma 2.4.3.
(ii)⇒ (iii): Define evalx , λh:ΣX . h x which is in ΣX −→ Σ. Thus f(x) = evalx(f)⇒
evalx(g) = g(x).
(iii)⇒ (i): By linkedness of Σ (Lemma 2.4.1) and Lemma 2.4.2, i.e. the fact that vlink
is pointwise. �
An astonishing fact is that all functions are already monotone w.r.t. the observational
preorder by definition.

26 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Theorem 2.4.5 (monotonicity) Let X, Y ∈ Type and f∈X −→ Y . If x v x′ then
f(x) v f(x′).

Proof: If x v x′ then ∀P :X −→ Σ. P (x)⇒ P (x′). Thus, ∀R:Y −→ Σ. (R◦f)(x)⇒
(R ◦ f)(x′) i.e. f(x) v f(x′). �
Using MP we can prove that observational order and equality on powers of Σ are
¬¬-closed.

Lemma 2.4.6 For any X the observational order (v) and the equality (=obs) on X
are ¬¬-closed.

Proof: The ¬¬-closed predicates are closed under negation, conjunction and im-
plication, and universal quantification over an arbitrary set (cf. Lemma 2.1.2, 2.1.3).
With MP and the closure properties one can easily prove that the equality on X is
¬¬-closed. �
Remark: This is a quite important observation, as it follows immediately that obser-
vational equality is ¬¬-closed if, and only if, MP holds. Since in the objects of interest
(Leibniz) equality will coincide with observational equality, the above statement holds
even for Leibniz equality.

2.5 Chains and suprema

We have not yet specified what suprema should be. We won’t take order theoretic
suprema as Phoa [Pho90] does. In fact, this is a distinguishing feature w.r.t. Phoa’s
complete Σ-spaces. Instead, we follow the lines of the ExPER definitions. By definition
of Σ we know that ΣX is a topology (closed under N-indexed joins only) for any X , the
natural topology. If we can ensure that the natural topology on a predomain satisfies
the conditions required in the definition of Scott topology, i.e. for any open set P

x ∈ P ∧ x v y ⇒ y ∈ P
and for any ascending chain (xn)n∈N

⊔

n

xn ∈ P ⇒ ∃n:N. (xn ∈ P)

then we know by definition that any function between predomains is Scott-continuous.
The definition of v was already made in the spirit of fulfilling the first requirement

(cf. Definition 2.4.1). To satisfy the second condition we simply define the supremum
implicitly by

∀P :ΣX .
⊔

n

xn ∈ P⇐⇒∃n:N. (xn ∈ P)

(cf. Definition 2.5.1). Without further requirements this supremum is not necessarily
unique. It will be unique if every object in X is determined by the results of all possible
experiments applied to it (i.e. its observational behaviour). This will be ensured by
the Definition 2.6.1 of Σ-posets and follows the old ideas that T0-spaces induce a poset
(cf. [Joh82]).

So the considerations above lead to the following definitions:

2.6. Σ-posets and Σ-cpo-s 27

Definition 2.5.1 Let X be any type and

AC(X) , {f :N −→ X | ∀n:N.f(n) v f(n + 1)}

be the type of ascending chains. By
⊔
X we denote an binary relation on AC(X)×X

where
⊔
X(a, x) holds iff ∀P :ΣX . P x ⇔ ∃n:N. P (a n). X is called chain complete if

for any a ∈ AC(X) there exists an x ∈ X such that
⊔
X(a, x). �

Note that the definition of ascending chains is the “natural” one. This is the content
of the following proposition.

Corollary 2.5.1 Let X be any type and a ∈ AC(X). If
⊔
X(a, x) for an x ∈ X then

x is the least upper bound of a.

Proof: That x is an upper bound is immediate by definition of x. Assume P∈ΣX

and P (a n) for some n which implies ∃n:N. P (a n) which in turn implies P x by as-
sumption. To show that it is the least upper bound suppose there is a y ∈ X such
that ∀n:N. a n v y. We have to show that x v y. Let P∈ΣX and assume P x. Since⊔
X(a, x) holds, there is an n ∈ N such that P (a n). Hence by assumption we get P y,

thus x v y. �
From the definition of suprema it follows immediately that all functions preserve exist-
ing suprema. The theorem will look more familiar when we have shown that suprema
are unique such that the predicate

⊔
(,) can be substituted by a function (by applying

(AC!)).

Theorem 2.5.2 (Scott-continuity) Let A,B ∈ Type. Any function f :A −→ B is Scott
continuous, in the sense that it preserves existing suprema, i.e.

∀a:AC(A). ∀x:A.
⊔
A(a, x)⇒ ⊔

B(f ◦ a, f(x)) .

Proof: Suppose x∈A and that for any P∈ΣA it holds that P (x) ⇔ ∃n:N. P (a n).
So if we assume a Q∈ΣB and let P , Q ◦ f then we can conclude that Q(f(x)) ⇔
∃n:N. Q(f(a n)), i.e.

⊔
B(f ◦a, f(x)). Implicitly we have used monotonicity of f (2.4.5)

to guarantee f ◦ a ∈ AC(B). �

So this is really what we looked for. Just by definition of the preorder and the
supremum every map is monotone and preserves suprema. Of course, we still have to
prove in the rest of this chapter that these definitions make sense. One might complain
that non continuous functions are not expressible. But still one can represent them by
relations that correspond to functions classically, i.e. ∀x:X.¬¬∃y:Y.P (x, y).

2.6 Σ-posets and Σ-cpo-s

In this section (extensional) Σ-posets and Σ-cpo-s are defined. Posets and cpo-s are
constructed along the lines of the well-known cpo theory but of course in a different
“synthetic” style. This concrete view of Σ-posets and Σ-cpo-s might be an advantage
with respect to Σ-replete objects that use categorical machinery.

28 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

2.6.1 Σ-posets

Definition 2.6.1 A set X ∈ Set is called a Σ-poset iff ηX :X −→ ΣΣX with ηX(x) =
λp:ΣX .p x is a ¬¬-closed mono. �

This defines a predicate that tells us whether a set X is a Σ-poset. Note that in
opposite to [Pho90] the mono is required to be ¬¬-closed. This has the advantage
that any Σ-poset is linked automatically (cf. Lemma 2.6.4). Such a definition has
been already mentioned in [Pho90, p.196]: “we could call a Σ-space X extensional if
X � ΣΣX were ¬¬-closed; . . . The idea doesn’t seem to have been further developed in
print.” and is tributed to Hyland1. The name “extensional” indicates the relationship
with ExPERs. In a sense we have taken up this idea and investigate it in this chapter.

The condition that ηX is a mono ensures that the observational equality coincides
with the given equality on X .

Corollary 2.6.1 If ηX is a mono (particularly ifX is a Σ-poset), then for any x, y ∈ X
it holds that x =obs y iff x = y.

Proof: Observe that x =obs y means ∀p:ΣX . p(x) ⇔ p(y) which implies by exten-
sionality that ηX(x) = ηX(y), whence the proposition follows as ηX is a mono. �
As a consequence the observational preorder is indeed an order. Moreover, for Σ-posets
the supremum is unique:

Corollary 2.6.2 For any Σ-poset A, any a ∈ AC(A) and any x, y ∈ A, if
⊔

(a, x) and⊔
(a, y) then x = y.

Proof: By Corollary 2.6.1 it remains to show that x =obs y, i.e. ∀P :ΣA. P (x)⇔ P (y).
But from the assumption we get P (x) ⇔ ∃n:N. P (a n) ⇔ P (y), and so we are done.
�
The following lemma turns out to be useful at several places:

Lemma 2.6.3 For any X the function ηX reflects v.

Proof: Suppose ηX(x) v ηX(x′). We have to show x v x′.
Let p∈X −→ Σ then define p̂ : ΣΣX −→ Σ , λF :ΣΣX . Fp. Then p x = p̂(ηXx) for
all x∈X which by assumption implies p̂(ηXx

′) which equals p x′. Thus p x⇒ p x′ and
therefore x v x′. �
Next we show that v and vlink are equivalent for Σ-posets. So we get that Σ-posets
are linked automatically, whereas in [Pho90] this was an additional requirement.

Theorem 2.6.4 Any Σ-poset is linked.

Proof: Let X be a Σ-poset. We have to show for all x, y∈X that x v y iff x vlink y.
“⇒”: Lemma 2.4.3.
“⇐”: Assume x v y. Then η(x) v η(y) and by Lemma 2.4.4 η(x) vlink η(y). Thus

1There is also a short remark in [Hyl91].

2.6. Σ-posets and Σ-cpo-s 29

there exists an h ∈ Σ −→ ΣΣX with h(⊥) = η(x) and h(>) = η(y) (∗). Since the
proposition ∃x:X. η(x) = h(s) is ¬¬-closed we can prove ∀s:Σ. ∃x:X. η(x) = h(s) by
case analysis on s by (∗). Thus we have that ∀s:Σ. ∃!x:X. η(x) = h(s) as η is a mono.
By AC! we get a k ∈ Σ −→ X with ∀s:Σ. η(k(s)) = h(s), hence η(x) = η(k(⊥)) and
η(y) = η(k(>)). Because η is a mono we have x = k(⊥) and y = k(>) and thus
x vlink y. �

The Representation Theorem for Σ-posets

From the definition we know that every Σ-poset Y is a ¬¬-closed subobject of ΣΣY ,
i.e. a ¬¬-closed subobject of ΣX for X = ΣY . Now we also want to prove the other
direction, i.e. that any ¬¬-closed subset of ΣX for some X is a Σ-poset. This is the
content of the following Representation Theorem from which follows that Σ-posets are
the ExPERs in the standard PER-model. An immediate consequence of this is that
Σ-posets are closed under ¬¬-closed subobjects as ¬¬-closed monos compose. Note
that we require subobjects to be ¬¬-closed as we intend to have (as in the ExPER-
approach) classical subobjects, i.e. subsets.

For proving the Representation Theorem we first consider the following lemma:

Lemma 2.6.5 Let Y ∈Type be a type with ¬¬-closed equality. Then a map n ∈
X −→ Y is a ¬¬-closed mono if there is an inclusion X ⊆ Z such that there exists a
map t:Y −→ Z with t(n(x)) = x for all x ∈ X .

Y
t

> Z

X

n

∧

>

>

Proof: With the given assumptions we can instantiate the Theorem 2.1.4 in the
following way:

P (y) , ∃x:X. n(x) = y and Ry x , n(x) = y.

It remains to prove that (∃x:X. n(x) = y) ⇒ t(y) ∈ X ∧ n(t(y)) = y. So assume
(∃x:X. n(x) = y). Then t(y) = t(n(x)) = x ∈ X . Additionally, we get that n(t(y)) =
n(t(n(x))) = n(x) = y. �

Theorem 2.6.6 (Σ-poset Representation Theorem) Any set A ∈ Set is a Σ-poset iff
A ⊆¬¬ ΣX for some X .

Proof: “⇒”: Let A be a Σ-poset. Define X , ΣA and then ηA is a ¬¬-closed mono
which defines a ¬¬-closed subobject of ΣΣA .
“⇐”: Let A ⊆¬¬ ΣX . We have to show that ηA is a ¬¬-closed mono. Simply apply the
Lemma 2.6.5 above. We define t : ΣΣA −→ ΣX via t , λP :ΣΣA . λx:X.P (λa:A. a x)
and conclude that t (ηA a) x = a x, thus t(ηA a) = a by extensionality. �
As an immediate consequence of the Representation Theorem one gets the simplest
Σ-posets:

30 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Corollary 2.6.7 Any power of Σ, i.e. ΣX , is a Σ-poset.

Note that by virtue of the Representation Theorem it can bee seen that it would not
make any difference in the definition of Σ-poset if one would define Σ-poset on elements
of Type instead of Set because powers of Σ are always in Set.

The next question is how to compute the observational order for a Σ-poset A. The
following proposition states that it is as canonical as possible, namely the pointwise
order with respect to to the “representation” ΣX of A.

Corollary 2.6.8 For any Σ-poset A if A ⊆¬¬ ΣX then for a1, a2∈A it holds that
a1 v a2 iff ∀x:X. a1 x⇒ a2 x.

Proof: “⇒”: obvious. “⇐”: If ∀x:X. a1 x v a2 x then by linkedness of Σ there exists
an h∈Σ −→ ΣX with h⊥ = a1 and h> = a2. Again by linkedness (Theorem 2.6.4) it
remains to show that the image of this linkage map is in A, i.e. ∀s:Σ. h(s) ∈ A. But as
A is ¬¬-closed by Lemma 2.3.2 it is sufficient to check h(⊥) ∈ A and h(>) ∈ A which
holds by assumption. �

¬¬-closedness and Σ-posets

Corollary 2.6.9 The equality on a Σ-poset X is ¬¬-closed.

Proof: By Lemma 2.4.6 and the definition of Σ-posets. �
For the following two corollaries we need an auxiliary observation:

Lemma 2.6.10 The ¬¬-closed monos are closed under composition.

Proof: Because ⊆¬¬ is transitive. �
Now by the Representation Theorem we immediately get the following corollary.

Corollary 2.6.11 Σ-posets are closed under ¬¬-closed subobjects.

The next lemma tells us that if A ⊆¬¬ B then vA is the restriction of vB to A, i.e.
for all x, y ∈ A we have that x vA y iff x vB y. Note that vA and vB are a priori
different ! This result is very important for characterizing the observational order of
some composite posets when dealing with closure properties.

Corollary 2.6.12 Any ¬¬-closed mono between Σ-posets reflects v.

Proof: Let A,B be Σ-posets and A ⊆¬¬ B then by the Representation Theorem
2.6.6 there is an X such that A ⊆¬¬ B ⊆¬¬ ΣX and thus A ⊆¬¬ ΣX . Therefore, due
to 2.6.8 we are done. �
Now that Σ-posets have been discussed in detail it is appropriate to explain another
very frequently used “trick”. As we have already seen (Lemma 2.1.1) case analysis
is always a delicate matter in intuitionistic logic. Another prominent example are
functions defined by case analysis with the Axiom of Unique Choice. For defining a

2.6. Σ-posets and Σ-cpo-s 31

function of type X −→ Y from given functions h, k : X −→ Y by case analysis, the
general recipe is to prove something like

∀x:X. ∃!y:Y. (Q(x) ⇒ y = h(x))∧ (¬Q(x) ⇒ y = k(x))

where Q∈PropX and h, k∈X −→ Y . But to prove this proposition one has to do a case
analysis on P (x)∨¬P (x) for any x ∈ X . In intuitionistic logic only ¬¬(P (x)∨¬P (x))
holds generally, and therefore case analysis would only work if ∃!y:Y. (P (x) ⇒ y =
h(x)) ∧ ((¬P (x))⇒ y = k(x)) would be ¬¬-closed. But it is not the case in general.
A solution can be provided under certain circumstances. This is condensed in the
following theorem:

Theorem 2.6.13 Let X be a type and Y be a Σ-poset, Q ∈ PropX and h, k ∈ X −→
Y . Then

∀x:X. ∃!p:ΣΣY . (Q(x)⇒ p = ηY (h(x)))∧ (¬Q(x) ⇒ y = ηY (k(x)))

implies

∀x:X. ∃!y:Y. (Q(x)⇒ y = h(x))∧ (¬P (x) ⇒ y = k(x)).

Proof: Uniqueness is easy to prove as it forms a ¬¬-closed proposition. Therefore,
one can do case analysis to prove uniqueness. It remains to prove existence. But we
can once more apply Lemma 2.1.4 that has been provided exactly for such a case. We
choose for the unary predicate P (x) , (Q(x) ∨ ¬Q(x)) and for the binary relation
Rx y , (Q(x) ⇒ y = h(x)) ∧ (¬Q(x) ⇒ y = k(x)). As Y is a Σ-poset we have
Y ⊆¬¬ ΣΣY . By AC! and the assumption we get a t ∈ X −→ ΣΣY such that (Q(x)⇒
t(x) = ηY h(x)) ∧ (¬Q(x)⇒ t(x) = ηY k(x)). Now it is an easy task (by tedious case
analysis) to verify the other premisses of Lemma 2.1.4 for this t. �

Internalization of Σ-posets

The Σ-posets can be represented by a type in our logic. We define the property to be
a Σ-poset by a predicate

poset , λX :Set. mono(ηX) ∧ ∀p:ΣΣX . (¬¬∃x:X. ηX x = p)⇒ (∃x:X. ηX x = p).

Therefore, we can define the type of Σ-posets as follows.

Definition 2.6.2 The type {X :Set | poset(X)} of all X ∈ Set that are Σ-posets, is
called Pos. �
Remark: Note that Pos itself does not belong to Set but is an element of Type.

2.6.2 Σ-cpo-s

The definition of Σ-cpo-s is based in the usual way on the definition of Σ-posets and
will be no surprise at all. A Σ-cpo is defined as a Σ-poset that is closed under suprema
of ascending chains.

Definition 2.6.3 A set X is a Σ-cpo (or an extensional predomain) iff X is a chain
complete Σ-poset or, more formally, iff X is a Σ-poset and ∀a:AC(X). ∃x:X.

⊔
(a, x).

�

32 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Internalization of Σ-cpo

The Σ-cpo-s, which will turn out to be a good class of predomains, can be represented
by a type in our logic. We can define the property to be a Σ-cpo by a predicate

cpo , λX :Set. poset(X) ∧ ∀a:AC(X). ∃x:X.
⊔

(a, x).

Therefore, we can define the type of Σ-cpo-s.

Definition 2.6.4 The type of all X ∈ Set that are Σ-cpo-s, i.e. {X :Set | cpo(X)}, is
called Cpo. �

Remark: Note that Cpo does not belong to Set but is an element of Type. Once
we have the type of all Σ-cpo-s, we can define suprema as a function by applying the
Axiom of Unique Choice. First observe that

Corollary 2.6.14 For any X ∈ Cpo and any a ∈ AC(X) the supremum is unique,
i.e. if

⊔
X(a, x1) and

⊔
X(a, x2) then x1 = x2.

Proof: Just by Lemma 2.6.2 since any Σ-cpo is a Σ-poset. �
Now applying the Lemma 2.6.14 we get a function, that computes the suprema for all
Σ-cpo-s.

Lemma 2.6.15 There is a dependently typed function sup : ΠA:Cpo. AC(X) −→ X
such that for any A ∈ Cpo and a ∈ AC(A) it holds that

⊔
A(a, supAa).

Proof: As any Σ-cpo has a supremum for ascending chains by definition and since
the supremum must be unique, we get by virtue of (AC!) an object of type

ΠA:Cpo.
∑

sup:AC(A) −→ A.
⊔

(a, sup a).

Projecting to the first component yields the required function. �
Henceforth, we will use

⊔
A for both, the predicate and the function, as it is always clear

from the context which one is meant. Moreover, we usually omit the type argument
when it is evident from the context. The procedure of turning a predicate into a
function will occur repeatedly in the sequel – e.g. for the least element of a Σ-cpo and
for least fixpoint on Σ-cpo-s with a least element which are obviously both unique (cf.
Sections 2.10 and 2.11).

Remark: Scott continuity can now be expressed in a more familiar way, i.e. for any
f ∈ A −→ C where A,C ∈ Cpo we have that

∀a:AC(A). f(
⊔

a) =
⊔

(f ◦ a)

2.6. Σ-posets and Σ-cpo-s 33

The chain poset

The next task is to define the archetypical Σ-cpo ω, that is ω (the finite ordinals with
the natural ordering) together with a top element∞. This will be done by proving first
a Representation Theorem (2.6.21) for Σ-cpo-s which will be useful also when it comes
to prove closure properties. This Representation Theorem states that a Σ-poset A,
such that A ⊆¬¬ ΣX (which holds by the Σ-poset Representation Theorem) is a Σ-cpo
iff for any a∈AC(A) the supremum

⊔
A a in ΣX (where it always exists) is already in

A.
Now what is a good definition of ω and ω ? Remember that ω should be the

archetypical domain of natural numbers with ascending order.

Definition 2.6.5 Let us define:

ω , {p ∈ ΣN | ∀n,m:N. (p n∧m < n)⇒ pm}

ω , {p ∈ ω | ¬¬∃n:N. p = step n}

Moreover let ι : ω −→ ω denote the obvious inclusion. �

Note that there are also other possible definitions of ω and that it’s not quite clear a
priori which is the right or the best one. Other possible definitions are

ω′ , {p ∈ ω | ∃n:N. p = step n}

and
ω′′ , {p ∈ ω | ∃n:N. p(n) = ⊥}

and even more
ω′′′ , {p ∈ ω | ¬¬∃n:N. p(n) = ⊥}.

First of all it is easy to see that ω ′′′ is isomorphic to ω, so only three definitions remain.
Alex Simpson [Sim95] was the first who criticized the definitions of ω in the existing
literature. He noticed that people were confusing ω and ω ′′; only the first is the initial
lift-algebra. When Hyland and Phoa are speaking about “ω” then they mean ω ′′.
In Section 2.7 this will be explained more carefully when we characterize Σ-cpo-s by
orthogonality.

Important properties of these “ω”’s are the following:

Lemma 2.6.16 The objects ω, ω, ω ′, and ω′′ are all in Set. Only ω and ω are Σ-
posets; ω′′ is still linked. Moreover, for all n∈N the map step n is in ω, and thus also
in ω′, ω′′, and ω .

Proof: The first part of the proposition is obvious, since any power of Σ is in Set.
The objects ω and ω are Σ-posets by Lemma 2.6.11. By straightforward computation
one gets that step ∈ ω and thus also in all the other ω-s.
The more difficult part is to prove that ω ′′ is linked. We only have to show that for
x, y ∈ ω′′, if x v y then there exists an h ∈ Σ −→ ω ′′ that is a linkage map. If x v y
then by monotonicity ι(x) v ι(y). As ω is linked (as it is a Σ-poset) there is a map

34 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

h′ ∈ Σ −→ ω such that h′(⊥) = ι(x) and h′(>) = ι(y). So h′ is the desired map if
one can prove that ∀s:Σ. h′(s)∈ω′′, i.e. ∀s:Σ. ∃n:N. h′(s)(n) = ⊥. But for arbitrary s
one can uniformly take the m such that x(m) = ⊥ (this m exists by assumption) as
witness for n. �
Note that it is not possible to prove that ω ′ and ω′′ are Σ-posets. In fact in the
standard model they are not extensional PERs. But still ω ′′ is linked. We will soon
give evidence that in our approach it makes no difference whether to take ω or ω ′′.

We can derive proof-principles for ω and ω that express the fact that step is dense
in ω and that for ω we can do a case analysis (for classical predicates only) that
corresponds to the test for being the constant->-function ∞.

Lemma 2.6.17 If P ∈ ω −→ Prop is ¬¬-closed then ∀f :ω. P (f) iff ∀n:N. P (stepn).

Proof: Since P is ¬¬-closed it suffices to prove ∀f :ω. ¬¬(∃n:N.f = step n). But
this follows from the definition of ω. �
This does also hold for ω′′; for ω′ it holds even for arbitrary P .

Note that the constant->-function ∞ = λx:N.> is an element of ω. For ω we
therefore get the following derived proof principle:

Lemma 2.6.18 If P ∈ ω −→ Prop is ¬¬-closed then

∀f :ω. P (f)

iff

(∀n:N.P (step n)) ∧ P (∞).

Proof: Follows immediately from ∀f :ω. ¬¬((f ∈ ω)∨ (∀n:N.f n)), where one needs
the fact that ¬(f ∈ ω)⇒ ∀n:N.f n, and the Lemma 2.6.17. �
Note that the above propositions also hold for the other definitions of ω.

The Representation Theorem for Σ-cpo-s

The following Representation Theorem states that Σ-cpo-s are complete ExPERs (but
in a “model-free” way, i.e. in an axiomatic setting not in the PER-model). In Sec-
tion 8.4 we will give evidence that in the PER-model the Σ-cpo-s are in fact equivalent
to the ExPERs. The Representation Theorem is a useful characterization which can
be applied later for proving closure properties.

For structuring the proof of the Representation Theorem we will first show the
following lemmas (the introduction of which was suggested by Jaap van Oosten to
improve the presentation):

Lemma 2.6.19 For any a∈AC(ΣX) there is an Ha : ω −→ ΣX such that Ha(step n) =
a n and Ha(λx:N.>) = λx:X. ∃n:N. a n x.

Proof: Define Ha := λp:ω. λx:X.(∃n:N. (p n ∧ a (n + 1) x)) ∨ a 0 x and the rest of
the proof is straightforward by case analysis n = 0 ∨ ∃k:N. n = succ(k). For example,
for the first part one must show that (∃n:N. (n < m) ∧ a (n+ 1) x)∨ a 0 x iff amx. �

2.6. Σ-posets and Σ-cpo-s 35

Lemma 2.6.20 For any H ∈ ω −→ Σ we have that H(∞)⇒ ∃m:N. H(step m).

Proof: The problem here is that Axiom SCOTT cannot be applied immediately
because H is of wrong type. So consider the map mω :ΣN −→ ω defined as follows

mω(f) , λk:N. ∃m:N. k ≤ m ∧ f(m).

This turns f into an antitone function, i.e. mω(f)∈ω. So we can apply SCOTT on
H ◦mω . It remains to prove that mω(step n) = step n and mω(∞) =∞, which is done
by straightforward computation. �
Remark: The map mω in the proof above shows that ω is a retract of ΣN.

Now we can complete our task. The following proposition states that the Σ-cpo-s are
the axiomatization of complete ExPERs.

Theorem 2.6.21 (Σ-cpo Representation Theorem)
A set A ∈ Set is a Σ-cpo if, and only if, there exists an X ∈ Type such that A ⊆¬¬ ΣX

and (λx:X. ∃n:N. a n x)∈A for all a∈AC(A).

Proof: Let a∈AC(A) and ã , (λx:X. ∃n:N. a n x)∈ΣX .
“⇒”: If A is a Σ-cpo then for X , ΣA we know by the Representation Theorem
for Σ-posets (2.6.6) that A ⊆¬¬ ΣX and we have for any P ∈ ΣA that (

⊔
a)P ⇔

P (
⊔
a) ⇔ ∃n:N. P (a n) ⇔ ∃n:N. (a n)(P)⇔ ã(P), thus ã =

⊔
a ∈ A. Note that we

have not distinguished between the two disguises of a, living in A and also in ΣΣA .
“⇐”: Suppose A ⊆¬¬ ΣX and ã∈A whenever a ∈ AC(A). By the Representation
Theorem 2.6.6 A is a Σ-poset. By pointwise inequality (Cor. 2.6.8) a n v ã for all
n∈N. It remains to show that if P (ã) then ∃n:N. P (a n) for all P∈ΣA.
Consider the function Ha of Lemma 2.6.19. First we show that for any p∈ω we have
that Ha p∈A. Since A is ¬¬-closed it is sufficient to prove Ha(step n)∈A for all n∈N
and Ha(λk:N.>)∈A (using 2.6.18 and 2.6.17). But Ha(step n) = a n ∈ A for all n∈N
and Ha(λk:N.>) = ã∈A. Now suppose P∈ΣA with P (ã) = >. Then P ◦Ha ∈ ω −→ Σ
and (P ◦Ha)(λk:N.>) = P (Ha(λk:N.>)) = P (ã) = >. By 2.6.20 there exists an n∈N
such that (P ◦Ha)(step n) = >. But then for this n we have P (a n) = P (Ha(step n)) =
>. �
Now one can immediately benefit from this theorem:

Corollary 2.6.22 The following are consequences from the Representation Theorem.

1. For any Σ-cpo A ⊆¬¬ ΣX and any a∈AC(A) we have
⊔
a = λx:X. ∃n:N. a n x.

2. ω is a Σ-cpo.

3. Any power of Σ is a Σ-cpo.

Remark: The proof that ω is a Σ-cpo can already be done by 2.6.19 without making
any (implicit) use of Markov’s Principle (MP) since Σ-cpo-s are closed under ¬¬-closed
retracts.2

2Retracts behave nicely with respect to suprema. If Y
e� X

p−→ Y such that p ◦ e = id, X is a
cpo, and a ∈ AC(Y), check that p(supX (e ◦ a)) is the supremum of a in Y .

36 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

2.7 Characterization of Σ-cpo-s by Orthogonality

In this section we will show that X is a Σ-cpo iff X is a Σ-poset and any f : ω −→ X
uniquely extends to an f : ω −→ X , i.e. X is orthogonal to the inclusion ι : ω −→ ω,
pictorially:

ω
ι

> ω

X
<

∃!f

>

As usual the diagrams exhibits the external version. We will state this in an internal
form. Let us first deduce a rule that facilitates the proof that two maps from ω and ω
to some X are equal.

Lemma 2.7.1 For any X ∈ Type with a ¬¬-closed equality, and F,G : ω −→ X , we
have that

F ◦ step = G ◦ step iff F = G.

The same holds for any F,G : ω −→ X .

Proof: “⇐”: obvious. “⇒”: By assumption F (p) = G(p) is ¬¬-closed so in order to
show ∀p:ω. F (p) = G(p) by 2.6.18 it is sufficient to show ∀n:N. F (stepn) = G(step n)
and F (∞) = G(∞). The first condition is guaranteed by assumption. For the second
consider that

∞ = λn:N.> =
⊔

step

by virtue of SCOTT (prove by yourself that step is an ascending chain) and therefore
F (∞) = F (

⊔
step) =

⊔
(F ◦ step) =

⊔
(G ◦ step) = G(

⊔
step) = G(∞).

The proof for F,G : ω −→ X is analogue but uses Lemma 2.6.17 instead of 2.6.18. �
The above proposition does again hold for the other choices of ω.

Lemma 2.7.2 Let X be a Σ-poset.

(i) For any a ∈ AC(X) there exists a unique a ∈ ω −→ X with a ◦ step = a.

(ii) Let X be a Σ-cpo. For any a ∈ AC(X) there exists a unique a ∈ ω −→ X with
a ◦ step = a.

(iii) Let X be a Σ-cpo. X ι : Xω −→ Xω is an iso.

Proof: (i) Consider the function HηX◦a of 2.6.19. First we prove that the image of

HηX◦a lies in X ⊆¬¬ ΣΣX . By Lemma 2.6.17 it suffices to show HηX◦a(step n) ∈ X for
any n∈N. But due to 2.6.19 we have that HηX◦a(step n) = ηX(a n) and omitting the
inclusion map ηX we get a n∈X . So let a = HηX◦a|ω. We have that a(step n) = a n
and uniqueness follows from Lemma 2.7.1.

2.8. Admissibility 37

(ii) The same as (i) only that we don’t have to restrict HηX◦a to ω.
(iii) We have to prove that for any f∈ω −→ X there exists a unique f ∈ ω −→ X
with f ◦ ι = f . Let a , f ◦ step. To prove that a is monotone one has to show
that step n vω step (n + 1) where step n ∈ ω ! As ω is a Σ-poset this is the case if
step n v step (n+ 1) in ΣN but this is trivial. By 2.7.2(ii) there exists a unique a such
that a(step n) = f(step n), i.e. by 2.7.1 we get a|ω = f , which is equivalent to a◦ ι = f .
So f is a. �
Remark: Here the choice of ω is important. Note that w.r.t. Phoa (see also Theo-
rem 9.4.15) we have a different ω; Phoa takes what we call ω ′′. This was observed by
Alex Simpson. But in our approach this makes no difference, we can verify the above
lemma also for ω′′. The only problematic point is in 2.7.2 when we have to prove that
step n vω′′ step (n+ 1) as now ω′′ is not a Σ-poset anymore. But it is sufficient that ω ′′

is linked – which we have already shown in Lem. 2.6.16 – because then we only have
to find a linkage map in ω′′ which we get from the fact that step n vΣN step (n+ 1) as
ΣN is linked.

So we get a Characterization Theorem for Σ-cpo-s similar to Phoa’s (cf. Theo-
rem 9.4.15):

Theorem 2.7.3 X is a Σ-cpo iff X is a Σ-poset and X ι : Xω −→ Xω is an isomor-
phism.

Proof: “⇒”: 2.7.2(iii).
“⇐”: By the Representation Theorem (2.6.21) we only have to show that

⊔
a ∈ X

for any a∈AC(X). Define

⊔
a , ((X ι)−1 ◦ a) (λn:N.>)

where a is the function we get by Lem. 2.7.2(i). Let us verify that
⊔
a really is the

supremum: Assume P∈ΣX . ∃n:N. P (a n)⇐⇒ ∃n:N. P (a(step n))⇐⇒ ∃n:N. P ((X ι−1◦
a)(stepn)) ⇐⇒ P (((X ι)−1 ◦ a)(λn:N.>)) since “⇐” is proved by 2.6.20 and “⇒” is
trivial. �

2.8 Admissibility

Closure properties of Σ-posets and Σ-cpo-s are discussed in the following sections. One
of the properties of Σ-posets that we expect to hold is closure under subsets formed
by ¬¬-closed predicates. Of course, this does not hold for Σ-cpo-s in general. As in
common cpo theory, we need admissibility of P to ensure that {a∈A |P (a)} is a Σ-cpo
if A is a Σ-cpo.

In LCF [Pau87] admissibility is only proved syntactically by propagating admis-
sibility accordingly to the construction of a formula and applying the appropriate
closure properties. Admissibility is not expressible internally and therefore remains an
external concept. Contrary to LCF, the notion of admissibility is easily expressible in
higher-order logic, thus it appears in [Reg94] and in our logic. The closure properties
can be proved as theorems. However, working in an intuitionistic logic, things get

38 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

more clumsy with respect to disjunction and implication. This problem will also be
addressed in this section.

Definition 2.8.1 For any Σ-cpo C a predicate P ∈ C −→ Prop is called admissible
iff for any ascending chain a∈AC(C) the implication (∀n:N. P (a n))⇒ P (

⊔
a) holds.

�
The reason why this does not work in LCF is, that admissible is a second-order predi-
cate which is not definable in LCF’s first-order (in Edinburgh LCF: horn-clause) logic.

Let us derive some simple rules for admissible predicates. Note that those rules are
used (but not proved, see above) also in LCF.

Theorem 2.8.1 Let C be a Σ-cpo and X any type. Then the following propositions
hold.

(i) If P,R ∈ PropC are admissible predicates, then λx:C. P (x)∧R(x) is admissible,
too.

(ii) If P ∈ X → C → Prop such that P (x) is admissible for any x∈X , then
λc:C. ∀x:X.P x c is admissible, too.

(iii) If B is also a Σ-cpo and f ∈ B −→ C and P ∈ PropB is admissible, then P ◦ f
is admissible, too.

(iv) The predicates λx:C. f(x) v g(x) and λx:C. f(x) = g(x) are admissible for
arbitrary maps f, g ∈ C −→ D where D is a Σ-cpo.

(v) The predicate λp:ΣΣC . p∈C is admissible.

Proof: (i) and (ii) are trivial by definition of admissibility. (iii) is a simple conse-
quence of Scott-continuity (Theorem 2.5.2). The first part of (iv) comes by the defini-
tion of supremum. For the second one assume f ◦a = g ◦a; so

⊔
(f ◦a) =

⊔
(g ◦a) and

by continuity f(
⊔
a) = g(

⊔
a). (v) If ∀n:N. (a n)∈C and C is a Σ-cpo, the supremum,⊔

C a, exists by the Representation Theorem and equals
⊔

ΣΣC a. �
Note that (iii) implies that any constant predicate is admissible.

For the admissibility of propositions with negative occurrences of the argument (im-
plications), we need an additional notion. Classically, one uses the following sufficient
condition to prove admissibility of implication:

if ¬P and Q are admissible, then ¬P ∨Q, that is P ⇒ Q is admissible, too.

This is indeed true in classical logic as admissible predicates are closed under dis-
junction. It is unknown to the author if in the standard PER-model of our intuitionistic
setting ¬¬(P ∨ Q) is an admissible predicate if P and Q are admissible, ¬¬-closed
predicates. At least, it seems not to be derivable in our axiomatization. This prevents
us from mimicking the classical way of proving admissibility for implication. Although
we can (and we will) show that Σ-predicates are admissible and even the implication
of Σ-predicates is admissible again, this is not sufficient. Unfortunately, sometimes
(see e.g. the predicate λx:X. p x = ⊥ where p ∈ ΣX) one has to cope with predicates
that are not Σ (see also Section 5.4) This motivates the following, slightly mysterious
definition:

2.8. Admissibility 39

Definition 2.8.2 For any Σ-cpo C a predicate P ∈ C −→ Prop is called suffi-
ciently co-admissible iff for any ascending chain a ∈ AC(C) the implication P (

⊔
a)⇒

∃m:N. ∀n ≥ m.P (a n) holds. If only P (
⊔
a) ⇒ ¬¬∃m:N. ∀n ≥ m.P (a n) holds we

call it weakly sufficiently co-admissible. �

So P sufficiently co-admissible means that if P holds for the supremum of an ascending
chain a, then if you take a and cut off an initial segment, P still holds for all the
elements of the truncated infinite chain. In more abstract terms we have defined
“sufficiently co-admissible” in a way such that if P is sufficiently co-admissible then
¬P is admissible. But of course the inverse direction is not valid anymore. We will
see soon, however, that this choice is pragmatically reasonable.

Note that equality is not co-admissible. Furthermore sufficiently co-admissible
predicates are in general not closed under universal quantification.

For co-admissibility we have the following closure properties:

Theorem 2.8.2 Let C be a Σ-cpo, X any type. Then the following propositions hold:

(i) If P,R ∈ PropC are sufficiently co-admissible predicates, then λx:C. P (x)∧R(x)
is sufficiently co-admissible, too.

(ii) If P,R ∈ PropC are sufficiently co-admissible predicates, then λx:C. P (x)∨R(x)
is sufficiently co-admissible, too.

(iii) If P ∈ X → C → Prop such that P (x) is sufficiently co-admissible for any x∈X ,
then the predicate λc:C. ∃x:X.P x c is sufficiently co-admissible, too.

(iv) If B is also a Σ-cpo and f ∈ B −→ C and P ∈ PropB is sufficiently co-admissible
then P ◦ f is sufficiently co-admissible, too.

(v) The predicates λx:Σ. x = > and λx:Σ. x = ⊥ are sufficiently co-admissible.

Proof: Most of the proofs are left as an exercise. They are easy and somehow dual
to the proof of the previous theorem. We sketch the properties (iii) and (v).
(iii) If there is an x∈X such that P x (

⊔
a) holds, then by co-admissibility of P we get

an n ∈ N such that P x (a n) holds. Therefore, we have proved ∃n:N. ∃x:X.P x (a n).
(v) Only the first case is interesting, the second case is trivial. Assume (

⊔
a)(x) = >

for some a ∈ AC(ΣX). By the Representation Theorem for Σ-cpo-s we know that this
is equivalent to ∃n:N. a n x = > which in turn implies that there is an n ∈ N such that
a n x = > holds. Since a is ascending, also for any m ≥ n we have that amx = > is
true. �
Remark: Note that again by (iv) any constant predicate is sufficiently co-admissible.
Property (v) tells us that sufficiently co-admissible predicates contain the Σ-predicates
and the Π-predicates (which are the universally quantified decidable predicates) which
is useful e.g. for the lifting. It is easy to show, that also the predicate λx:C. x v y is
sufficiently co-admissible for any y ∈ C.

Now here comes the theorem which a posteriori gives the motivation for the defi-
nition of sufficiently co-admissible. It’s about a sufficient condition to ensure that ¬P
and P ⇒ R are admissible.

40 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Theorem 2.8.3 Let C be a Σ-cpo and P,R ∈ PropC . Then the following propositions
hold:

(i) If P is sufficiently co-admissible then λx:X.¬P (x) is admissible.

(ii) If P is sufficiently co-admissible and R is admissible then λx:C. P (x)⇒ R(x) is
admissible.

Proof: (i) Assume that for any n∈N it holds ¬P (a n). By contraposition of co-
admissibility of P it remains to show that ¬∃k:N. ∀m ≥ k. P (am). But this follows
from the assumption.
(ii) Assume ∀n:N. P (a n) ⇒ R(a n) and P (

⊔
a). By the first assumption we know

that there is an m ∈ N such that ∀n ≥ m.P (a n). Let us abbreviate this proposition
(*). Now R(

⊔
a) is equivalent to R(

⊔
λn:N. a(n + m)); so by admissibility and the

second assumption, it is sufficient to show ∀n:N. P (a(n+ m)). But this follows from
(*). �
For weakly sufficiently co-admissible predicates we get the following variant of the
above theorem:

Theorem 2.8.4 Let C be a Σ-cpo and P,R∈PropC .

(i) If P is weakly sufficiently co-admissible then λx:X.¬P (x) is admissible, too.

(ii) If P is weakly sufficiently co-admissible and R is admissible and ¬¬-closed then
the predicate λx:C. P (x)⇒ R(x) is admissible and ¬¬-closed.

Proof: Let a ∈ AC(C) be some arbitrary ascending chain in the Σ-cpo C.
(i) Assume ∀n:N. ¬P (a n) and P (

⊔
a). We have to deduce absurdity.

As P (
⊔
a) ⇒ ¬¬∃m:N. ∀n ≥ m.P (a n), it remains to show ¬∃m:N. ∀n ≥ m.P (a n).

Therefore, assume ∃m:N. ∀n ≥ m.P (a n). This implies P (am) in contradiction to the
assumption.
(ii) Assume ∀n:N. P (a n) ⇒ R(a n) and P (

⊔
a). We have to show R(

⊔
a). Since

R is ¬¬-closed and P is weakly sufficiently co-admissible by the second assumption
it suffices to prove ∃m:N. ∀n ≥ m.P (a n) ⇒ R(

⊔
a). But this implication holds by

the first assumption since R is admissible. It is clear that the investigated predicate
is ¬¬-closed by the closure properties of ¬¬-closed predicates. �
Remark: The second part provides admissibility for implication only when the con-
clusion is ¬¬-closed. So, if we consider only “classical logic”, then – of course –
it is sufficient Since we have chosen to define P sufficiently co-admissible implying
¬P admissible, we encounter difficulties for proving closure under implication for co-
admissibility. But at least we get the following result:

Theorem 2.8.5 Let C be a Σ-cpo and P,R ∈ PropC . If ¬P and R are sufficiently
co-admissible and R is ¬¬-closed then λx:C. P (x)⇒ R(x) is sufficiently co-admissible.

2.8. Admissibility 41

Proof: As R is ¬¬-closed we can do a case analysis whether
⊔
a ∈ R.

1. “
⊔

a ∈ R”: As R is sufficiently co-admissible one gets an n ∈ N such that
∀m ≥ n.R(am) such that ∀m ≥ n. P (am)⇒ R(am).
2. “

⊔
a 6∈ R”: Then

⊔
a 6∈ P and as ¬P is sufficiently co-admissible we get an n ∈ N

such that ∀m ≥ n.¬P (am) such that ∀m ≥ n. P (am)⇒ R(am). �
Next we show that Σ-predicates have the very nice property that they are both, ad-
missible and sufficiently co-admissible.

Note that the Scott-open sets are trivially sufficiently co-admissible. But of course,
a sufficiently co-admissible set does not necessarily have to be an upper set (take e.g.
the set {n ∈ ω |n ≥ k} ∪ {0} where k > 1).

Definition 2.8.3 We call a predicate P ∈ PropX a Σ-predicate if it is logically equiv-
alent to a predicate P ′ ∈ ΣX . Sometimes we shortly say that P is Σ. �

Now we show that any Σ-predicate is admissible and Scott-open and therefore admis-
sible and sufficiently co-admissible.

Theorem 2.8.6 Any Σ-predicate is

(i) admissible

(ii) Scott-open

(iii) sufficiently co-admissible.

Proof: Let P be the predicate under investigation. (i) This follows simply from
definition of the supremum and the fact that P is Σ. (ii) P is an upper set as P is Σ
and by definition of v. P (

⊔
a)⇒ ∃n:N. P (a n) follows from the definition of

⊔
, since

P is Σ. (iii) is an immediate consequence of (ii). �
Contemplating the proof one could say sloppily that the fundamental idea of SDT is
to put the definitions in such a way that the proof of (ii) works, in order to make ω
behave well w.r.t. suprema. All the axioms are thus needed to define a Σ that be-
haves properly, i.e. ΣN are the r.e. subsets of N, such that Rice-Shapiro holds. On the
model level [Pho90] this is mirrored by the proof that all functions are continuous (cf.
Thm. 9.4.11) which requires also (ii).

Remark: The treatment of admissibility is not completely satisfactory. A more con-
structive version of admissibility was suggested recently by T. Streicher. The details
may appear elsewhere. It would be particularly nice if there would be a subclass of
admissible monos having a classifier with enough closure properties for verification
purposes. The Σ-regular monos (corresponding to equalizers of maps with codomain
Σ in the category of predomains) can be classified, but they don’t have enough closure
properties, unfortunately.

42 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

2.9 Closure properties of Σ-posets and Σ-cpo-s

This chapter discusses the most important closure properties of Σ-posets and Σ-cpo-s
from which also the closure properties of domains will be derived later. There are five
main closure properties that we are interested in:

I closure under ¬¬-closed (Σ-cpo-s: admissible) subsets

I closure under equalizers (as a corollary from above)

I closure under arbitrary (!) products

I closure under isomorphisms

I N and B are contained in the Σ-cpo-s (Σ-posets).

I closure under binary sums.

Note that we don’t have in general closure under arbitrary sums (cf. [Str92a]). In
any of these cases one is not just interested in the closure property itself. We’d like
to get also a characterization of the ordering of the composite Σ-poset (Σ-cpo) in
terms of the orderings on the components. In the case of compound Σ-cpo-s also a
characterization of suprema in terms of suprema of a chain in the components might
be derived from the characterization of the ordering. As the closure property is always
proved by providing an appropriate ¬¬-closed mono, all these items are connected. So
it makes sense to put them always inside one theorem that has access to the crucial
¬¬-closed mono that has to be constructed.

2.9.1 Closure properties of Σ-posets

We will prove in this subsection the closure properties mentioned above for Σ-posets.

Subset types

Lemma 2.9.1 Let A be a Σ-poset and P be a ¬¬-closed predicate on A. Then it
holds that {d:A |P (d)} ⊆¬¬ A.

Proof: It is obvious that {d:A |P (d)} ⊆ A. For any a∈A the proposition

¬¬(a∈{d:A |P (d)})⇒ (a∈{d:A |P (d)})

is equivalent to ¬¬P (a)⇒ P (a). �
Therefore we can conclude:

Theorem 2.9.2 Let A be a Σ-poset and P a ¬¬-closed predicate on A. Then the
{d:A |P (d)} is a Σ-poset. Moreover, the observational order on {d:A |P (d)} coincides
with that on A.

2.9. Closure properties of Σ-posets and Σ-cpo-s 43

Proof: (1) By Lemma 2.9.1 we have that {d:A |P (d)} ⊆¬¬ A ⊆¬¬ ΣX (by as-
sumption). By the Representation Theorem we are done. (2) By Lemma 2.6.12 any
¬¬-closed mono reflects the ordering, hence the proposition follows from (1). �
From the above theorem we can easily draw the following conclusion:

Corollary 2.9.3 Let A,B ∈ Set be Σ-posets and f, g ∈ A −→ B. Then the set

Eq(f, g) , {d:A | f(a) = g(a)}

is a Σ-poset. The order on Eq(f, g) is the order on A.

Proof: By the above Theorem 2.9.2 and the fact that the equality on Σ-posets is
¬¬-closed (2.6.9). �
This means (in category theory terms) that Σ-posets are closed under equalizers.

Products

Theorem 2.9.4 Let X be a type and A ∈ X −→ Set such that for any x∈X we have
that A(x) is a Σ-poset. Then the product Πx:X.A(x) is a Σ-poset, too. Moreover, the
observational order is pointwise, i.e. ∀f, g : Πx:X.A(x). f v g iff (∀x:X. f(x) v g(x)).

Proof: (1) We have that Πx:X.A(x) ⊆¬¬ Πx:X.ΣΣA(x) ⊆¬¬ Σ
∑
x:X.ΣA(x)

. By the
Representation Theorem we are done.
(2) The “⇒” part of the characterization of v is follows simply by monotonicity. For
the inverse direction assume ∀x:X. f(x) v g(x). To show f v g, use Lemma 2.6.12.
As the observational order on maps with codomain Σ is pointwise (Theorem 2.4.4;
note that here we use implicitly linkedness.) we get for any u∈∑ x:X.ΣA(x) that
π2(u)(f(π1(u))) v π2(u)(g(π1(u))) which implies for any P∈ΣA(x) that P (f(x)) ⇒
P (g(x)) by choosing (x, P) for u. Thus f(x) v g(x). �
Binary products are a special instance:

Corollary 2.9.5 If X and Y are Σ-posets, then also X × Y is a Σ-poset with the
componentwise order.

Proof: Just by Theorem 2.9.4 defining A ∈ B −→ Set asA(true) , X and A(false) ,
Y . Projections and the pair constructor can then be defined as usual. �
Therefore also the equality on binary products is componentwise. Another important
property – which is not true by the way for the original definition of ExPERs – is
closure under isomorphisms.

Closure under isomorphisms

Theorem 2.9.6 If A is a Σ-poset and A ∼= B, then B is a Σ-poset.

Proof: By the Representation Theorem we have B ∼= A ⊆¬¬ ΣX , so B ⊆¬¬ ΣX ,
since reasoning with subsets is up to isomorphism. So by applying the Representation
Theorem once more we are done. �

44 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

A sufficient condition for flat Σ-posets

Obviously, we want that N and B are flat Σ-posets. In this subsection we will prove a
more general result. A sufficient condition for being a flat Σ-poset is given.

Theorem 2.9.7 Let A ∈ Set such that the proposition ∃a:A. P (a) is ¬¬-closed and
the equality on A is a Σ-predicate. Then A is Σ-poset with the flat ordering, i.e.
∀x, y:A. x v y iff x = y.

Proof: A is isomorphic to Sgl , {p∈ΣA | ∀x, y:A. (p x∧p y⇒ x = y)∧ (∃x:A. p x)},
that is the singleton sets on A. By Lemma 2.9.6 it is sufficient to show that Sgl is a Σ-
poset. But this is the case due to closure under subsets (Thm. 2.9.2) as ∀x, y:A. (p x∧
p y ⇒ x = y)∧ (∃x:A. p x) is ¬¬-closed since ∃a:A. P (a) is ¬¬-closed by assumption.
Since the predicate λa:A. a = x is Σ and x v y holds, we get x = x ⇒ y = x.
Therefore, the ordering is obviously flat. �
We can benefit from the above theorem immediately:

Corollary 2.9.8 The inductive types B and N are flat Σ-posets.

Proof: Apply Theorem 2.9.7 twice:
B : There is of course an equality map eqB : B −→ B −→ B definable by induction
that can be embedded into Σ. Second, (∃x:B. p x) is equivalent to p(true) ∨ p(false)
which is by Markov’s Principle ¬¬-closed.
N: There is also an equality map eqN : N −→ N −→ B definable by induction that can
be embedded into Σ. Moreover, ∃x:N. p x is in Σ and therefore ¬¬-closed by Markov’s
Principle. �

Binary sums

Since we do not want to add additional inductively defined types, we will have to code
the binary sums like the binary products by means of the Booleans B. Note that for
the following proof it must be known that the Booleans B form a Σ-poset.

The reasoning would be somewhat easier if one would code binary sums by an
inductive datatype, since no dependent sum types occur then. But we follow a very
restrictive policy and try to use as few axioms (and inductive objects) as possible. If
we first introduce lifting then there is still a third possibility. One can code a binary
sum A+B as an equalizer on A⊥×B⊥ (like for Σ-replete objects, see Lemma 6.1.25).

Definition 2.9.1 As with binary products we define A : B −→ Set as A(true) , X
and A(false) , Y and define A + B ,

∑
b:B. A(b). It is easy to define inl(a) ,

(true, a), inr(b) , (false, b). �

Since true 6= false, one immediately gets ∀a:A. ∀b:B. inl(a) 6= inr(b).

Theorem 2.9.9 There is an eliminator for sums, S elim, of type

ΠX, Y :Set.ΠC:X + Y → Type. (Πx:X.C(inlx))→ (Πy:Y. C(inr y))⇒ Πs:X + Y. C(s)

such that S elim f g (inl(x)) = f(x) and S elim f g (inr(y)) = g(y) hold for arbitrary
f ∈ Πx:X.C(inlx), g ∈ Πy:Y. C(inr y), x∈X , and y∈Y .

2.9. Closure properties of Σ-posets and Σ-cpo-s 45

Proof: One can define this function by boolean case analysis on π1(x). �
To be exact, the defintion using induction on Booleans yields

Πs:X + Y. C(〈π1(s), π2(s)〉)

in the codomain of S elim. But Surjective Pairing is valid so this does not matter.
An induction principle (an elimination rule for propositions) for sums, called S ind,

of type

ΠX :Set.ΠP :PropX+Y . (∀x:X.C(inlx))→ (∀y:Y. C(inr y))⇒ ∀s:X + Y. C(s)

is derivable therefrom. Moreover, observe that the so-called exhaustion axiom (cf.
[Pau87]) is valid:

Lemma 2.9.10 Let A,B ∈ Set then for any x∈A + B we have (∃a:A. x = inl(a)) ∨
(∃b:B. x = inr(b)).

Proof: This is an immediate consequence of S ind. �

Theorem 2.9.11 Let X and Y be Σ-posets, then X + Y is also a Σ-poset.

Proof: We must show that
∑
b:B. A(b) is a Σ-poset. This is a quite lengthy task.

We apply the Representation Theorem once again and show that there is a ¬¬-closed
mono n ∈ A+B� D with D , {d ∈ ΣΣA×ΣΣB |S(d)} where we define the predicate
S as follows: S(p) iff

∀d : ΣΣX×ΣΣY .¬¬
(
(π1(d)∈A ∧ π2(d) = λq:ΣB.>) ∨ (π2(d)∈B ∧ π1(p) = λq:ΣA.>)

)

First, we must show that D is a Σ-poset, but this follows from the previous closure
properties of Σ-posets. Now we define

n , S elimD (λa:A. (ηAa, λy:ΣB.⊥)) (λb:B. (λy:ΣA.⊥, ηB b)).

We want to apply our “trick” Lem. 2.6.5 and therefore we consider X + Y ⊆¬¬ ΣΣX +
ΣΣY (via the ¬¬-closed mono ηX + ηY). It remains to define the map t : D −→
(ΣΣX +ΣΣY). In order to do this, we first construct an auxiliary function ch : D −→ B
to check whether a d ∈ D is of the form (ηXx, λy:Y.⊥) or (λx:X.⊥, ηY y). Now
ch(u) is computed by checking whether π1(u)(λx:X.>) = >. This is only the case
if π1(u) 6= λx:X.⊥. Defining a function by case analysis and (AC!) is, however, a
non-trivial task in intuitionistic logic. But we have already proved Lemma 2.6.13 for
that purpose. This lemma is applicable because we know that B is a Σ-poset. It is
therefore sufficient to verify that for any d∈D it holds that

∃!p:ΣΣB . (π1(d)(λx:X.>)⇒ p = ηB(true))∧ (¬π1(d)(λx:X.>)⇒ p = ηB(false)).

Now this can be defined uniformly without case analysis (that’s the trick in fact). The
witness p is

λh:ΣB. (π1(d)(λx:X.>) ∧ h(true)) ∨ (π2(d)(λx:X.>) ∧ h(false)).

46 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

From the fact that S(d) holds, it can be easily verified that p has the required prop-
erties.
Now t , λd:D. if ch(u) then π1(u) else π2(u). By case analysis one obtains quite
straightforwardly t(n(x)) = x. �
For characterizing the observational order on sums, we need one result from the pre-
vious subsection, namely that the order on B is flat, i.e. x vB y iff x = y.

Theorem 2.9.12 Let X, Y be Σ-posets. For any a, b ∈ X + Y we have that

a v b

iff

(∃x, x′:X. a = inl(x)∧ b = inl(x′)∧ x v x′)∨ (∃y, y′:Y. a = inr(y)∧ b = inr(y′)∧ y v y′).

Proof: The “⇐” direction is trivial. The inverse direction goes by case analysis
whether a and b are left or right injections. The case inl(x) v inr(y) yields that
true v false and by flatness of B this means true = false, thus the proposition follows
by ex falsum quodlibet. W.l.o.g. if inl(x) v inl(x′) then one gets x v x′ as inl is a mono.
�

2.9.2 Closure properties of Σ-cpo-s

The closure properties for Σ-cpo-s are quite similar to those for Σ-posets. Note that a
characterization of the supremum of a chain is added to every closure theorem.

Admissible subsets

First we show that Σ-cpo-s are closed under subsets that are admissible. We can
benefit here from the efforts we made in Section 2.8 about admissible predicates.

Theorem 2.9.13 Let C be a Σ-cpo and P a ¬¬-closed admissible predicate on A.
Then the set {x:C |P (x)} is a Σ-cpo. For the supremum we have that

⊔
{x:C |P (x)} =⊔

C .

Proof: By the closure properties of Σ-posets we already know that it is a Σ-poset
(Theorem 2.9.2) and it must be chain complete because C is a Σ-cpo and since P
is admissible. The second part follows directly from the Representation Theorem for
Σ-cpo-s. �
From the above theorem we can easily draw the following conclusion:

Corollary 2.9.14 Let C be a Σ-cpo, D a Σ-poset and f, g ∈ C −→ D. Then
Eq(f, g) , {c:C | f(c) = g(c)} is a Σ-cpo.

Proof: By Theorem 2.8.1(iv) and Theorem 2.9.13 it follows that Eq(f, g) is a Σ-cpo.
�
This implies (in category theory speech) that Σ-cpo-s are closed under equalizers.

2.9. Closure properties of Σ-posets and Σ-cpo-s 47

Products

Also Σ-cpo-s are closed under arbitrary products where the supremum in the product
Σ-cpo is computed componentwise.

Theorem 2.9.15 Let X be a type and A ∈ X −→ Set such that for any x∈X we
have that A(x) is a Σ-cpo. Then the product Πx:X.A(x) is a Σ-cpo, too. Moreover,
the supremum of an ascending chain is pointwise, i.e. given an a ∈ AC(Πx:X.A(x))
we have ⊔

a = λx:X.
⊔

(λn:N. a n x)

where it is obvious that (λn:N. a n x) is an ascending chain in A(x) for any x ∈ X .

Proof: Assume X is a type and A(x) is a Σ-cpo for any x∈X . Due to Theorem 2.9.4

we know that (Πx:X.A(x)) ⊆¬¬ Σ
∑
x:X.ΣA(x)

. By the Representation Theorem 2.6.21
we only must prove that

⊔
Σ
∑
x:X.ΣAx (a)∈Πx:X.A(x) for any a∈AC(Πx:X.A(x)). In

the following we use the fact that A ⊆¬¬ ΣΣA . For powers of Σ we already know (from
the Σ-cpo-Representation Theorem) how suprema look like, so

⊔
Σ
∑
x:X.ΣA(x) (a) = λp:(

∑
x:X.ΣA(x)). ∃n:N. (a n p)

omitting the corresponding embeddings (for a n). This equals (again omitting embed-
ding maps):

λx:X. λy:ΣA(x). ∃n:N. a n x y = λx:X.
⊔
A(x)(λn:N. a n x) ∈ Πx:X.A(x).

The last equation holds by the Representation Theorem applied to each A(x) which is
a Σ-cpo by assumption. The last line also demonstrates that the supremum is point-
wise. �
Now one gets binary products as a special instance:

Corollary 2.9.16 If C and D are Σ-cpo-s then also C×D is a Σ-cpo where suprema
are computed componentwise.

Proof: Just by taking the definition introduced for binary products in Σ-poset and
the above theorem. �

Closure under isomorphisms

Theorem 2.9.17 If C is a Σ-cpo and C ∼= D, then D is a Σ-cpo.

Proof: By the Σ-cpo-Representation Theorem (2.6.21) we already know that D ∼=
C ⊆¬¬ ΣX and λx:X. ∃n:N. a n x∈C is the supremum for any a∈AC(C). Analogously
to the Σ-poset-case one gets that D ⊆¬¬ ΣX . So λx:X. ∃n:N. a n x∈D since we are
reasoning with subsets up to isomorphism. So by applying the Representation Theorem
once more, we are done. �

48 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

A sufficient condition for flat Σ-cpo-s

Obviously, the sufficient condition for being a flat Σ-poset carries over to Σ-cpo-s since
for flat Σ-posets chains are always finite.

Theorem 2.9.18 Let A ∈ Set such that the proposition ∃a:A. P (a) is ¬¬-closed and
the equality on A is a Σ-predicate. Then A with flat ordering is a Σ-cpo.

Proof: We have already shown in the Σ-poset-case (2.9.7) that A is isomorphic to

Sgl , {p∈ΣA | ∀x, y:A. (p x∧ p y ⇒ x = y) ∧ (∃x:A. p x)},

the singleton sets on A, and that Sgl is a Σ-poset. But it is even a Σ-cpo due to
the corresponding closure property, since ∀x, y:A. (p x ∧ p y ⇒ x = y) ∧ (∃x:A. p x) is
admissible as any ascending chain in ΣA must be constant (use induction and the fact
that λx:A. x = a n is a Σ-predicate). �
The same argumentation as for Σ-poset gives us the following result:

Corollary 2.9.19 The inductive types B and N are flat Σ-cpo-s.

Binary sums

We already know how to code binary sums and that the sum of two Σ-posets X and
Y is again a Σ-poset (Lemma 2.9.11). It remains to prove that this construction yields
a Σ-cpo if both arguments are Σ-cpo-s.

Theorem 2.9.20 Let X and Y be Σ-cpo-s, then X + Y is also a Σ-cpo.

Proof: We know by 2.9.11 that X + Y is already a Σ-poset. Consider an ascending
chain a∈AC(X + Y). By the characterization of v for the sum we know that a lies
completely in X or Y . W.l.o.g. assume that it is in X , then there exists a chain
a′ ∈ AC(X) such that a = inl ◦ a′ and therefore

⊔
a =

⊔
(inl ◦ a′) = inl(

⊔
a′) where

the
⊔
a′ exists by assumption. �

If we knew that ¬¬(P ∨Q) is admissible if P,Q are ¬¬-closed admissible predicates,
then by definition of X + Y and the closure of Σ-cpo-s under admissible subsets,
we would get the desired result immediately. However, we have not been able to
prove this. It is an open question whether it holds in the standard ExPER-model
or not. The problem is that one cannot construct from a given chain a new one
remaining completely in one of the components of the sum with the same supremum.
Unfortunately, the occurring existential quantifiers are all classical, so one cannot apply
any choice principle. (cf. Section 5.4).

2.10 Σ-domains

In this section we finally define our notion of “semantic domains”, the Σ-domains.

2.10. Σ-domains 49

Definition 2.10.1 A Σ-domain is a Σ-cpo with a least element w.r.t. the v order.
For any Σ-domain D we denote the least element ⊥D. �

Remark: Σ is obviously a Σ-domain.

Definition 2.10.2 A function f between two domains D and E is called strict iff
f(⊥D) = ⊥E . �

Immediately we get some more trivial Σ-domains:

Lemma 2.10.1 Any power of Σ is a Σ-domain. Consequently the singleton type U
is a Σ-domain.

Proof: Any power of Σ is a Σ-cpo and has the function that always returns ⊥
as least element. The type U is isomorphic to Σ∅ where ∅ is the empty proposition
∀X :Prop. X , so U is also a Σ-domain. �

2.10.1 Internalization of Σ-domains

One can proceed with Σ-domains as with the internalization of Σ-cpo-s.

Definition 2.10.3 Define the predicate dom , λX :Set. cpo(X) ∧ ∃x:X. ∀y:X. x v y.
�

So we can define the type of Σ-domains.

Definition 2.10.4 The type of all X ∈ Set that are Σ-domains, i.e. the subset type
{X :Set | dom(X)}, is called Dom. �

Remark: Dom does not belong to Set but to Type.

Having the type of all Σ-domains and knowing that the least element of a Σ-domain
is inevitably unique, we can define the least elements as a function simply by applying
the Axiom of Unique Choice.

Theorem 2.10.2 There is a dependently typed function ⊥ : ΠD:Dom. D such that
(⊥D) v y for any D ∈ Dom and any y ∈ D.

Proof: As any Σ-domain has a least element by assumption and the least element
must be unique, by (AC!) we get an object of type

∑
⊥:(ΠD:Dom. D). ∀y:D. (⊥D) v y.

Projecting to the first component yields the required function. �
In the following we will often write the first argument of the function ⊥ as an index
or even omit it completely when it is evident from the context.

50 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

2.10.2 Closure properties of Σ-domains

The closure properties of Σ-domains build upon those of Σ-cpo-s. We add character-
izations of the ⊥-element for compound Σ-domains and collect them in the following
theorem.

Theorem 2.10.3 Let D be a Σ-domain.

(i) If P is a ¬¬-closed admissible predicate such that P (⊥D), then {d ∈ D |P (d)}
is a Σ-domain too. ⊥D is the least element.

(ii) If X is a Σ-cpo and f, g ∈ D −→ X are such that f(⊥) = g(⊥) then Eq(f, g) is
a Σ-domain. ⊥D is the least element.

(iii) Let X be a type and A : X −→ Set such that for any x∈X we have that A(x) is
a Σ-domain. Then Πx:X.A(x) is a Σ-domain, too.
Moreover, the least element is defined pointwise, i.e. ⊥Πx:X.A(x) = λx:X.⊥A(x).

(iv) If E is a Σ-domain then D ×E is a Σ-domain where ⊥ is computed componen-
twise.

(v) If E is a Σ-domain then D −→ E is a Σ-domain where ⊥ is computed pointwise.

(vi) If E is a Σ-domain then the strict functions from D to E, short D −→⊥ E, form
a Σ-domain where ⊥ is computed pointwise.

(vii) Σ-domains are closed under isomorphism.

Proof: Basically, use the closure properties of Σ-cpo-s: (i) by 2.9.13. (ii) is a
corollary of (i). (iii) by 2.9.15. As v is pointwise, also the least element must be.
(iv) and (v) are corollaries of (iii). (vi) is a corollary of (v) and (ii). Strict maps of
D −→ E can be defined as an equalizer between maps from (D −→ E) −→ E, namely
λf :D −→ E. f(⊥D) and λf :D −→ E.⊥E. (vii) by 2.9.17. �
Note that Σ-domains with strict maps form an internal category. We will need this
soon. Of course, binary sums are not a Σ-domain because the ⊥ is missing. One must
add an extra element. In domain theory the separated sum is the construction that
works. We come back to this in Section 3.4 because it’s easy to define the separated
sum via the lifting.

2.10.3 Some admissible predicates on Σ-domains

For Σ-domains we’ll need also some additional admissibility results (cf. Section 2.8).

Theorem 2.10.4 For any Σ-domain D it holds that

(i) the predicate λx:D. x = ⊥D is sufficiently co-admissible and

(ii) λx:D. x 6= ⊥D is admissible.

2.11. Fixpoints 51

Proof: (i) is trivial as a supremum is always an upper bound, and (i) implies (ii).
�

Definition 2.10.5 A Σ-domain D is called flat if the proposition x v y iff x = ⊥D
or x = y holds. �

For flat Σ-domains one gets admissibility for free:

Theorem 2.10.5 Any ¬¬-closed predicate on a flat Σ-domain is admissible and
weakly sufficiently co-admissible.

Proof: As any chain in a flat Σ-domain can be turned into a constant one by shifting
the index. Note that this argument requires to distinguish two cases. Either the chain
a is constantly ⊥ or there is an n ∈ N such that a n 6= ⊥. Therefore the predicate P
must be ¬¬-closed and also one can only prove the weak version of co-admissibility.
�
Remark: Note that one can drop the requirement that the predicate is ¬¬-closed
if for the Σ-domain in question the elements different from ⊥D form a Σ-subset. Of
course, this is not necessarily the case: consider D , ΣX such that ∃x:X. f(x) is not
a Σ-proposition (cf. Σ-open sets in [Pho90]).

On the other hand it is not clear how useful the concept of admissibility for predi-
cates that are not ¬¬-closed (or not classical) is. For program verification we do not
need the constructive content of a proof, as we don’t extract programs from proofs.

In [Reg94] there is a more elegant proof that also works for finite (not necessarily
flat) datatypes. It is possible to adapt it to our setting but we don’t go into this here.

2.11 Fixpoints

For any Σ-domain A one certainly expects to have fixpoints of arbitrary (continuous)
endofunctions D −→ D. By the properties we have proved so far about Σ-domains,
we are in the position to do the “classical” Kleene-construction to get fixpoints. First
let us define as usual the concept of a least fixpoint:

Definition 2.11.1 Let D be a Σ-domain, f∈D −→ D. Then an object x∈D is called
least fixpoint of f if f(x) = x and ∀y:D. f(y) = y ⇒ x v y. �

Next we show that any endofunction on Σ-domains has indeed a least fixpoint. For
that purpose we define inductively the Kleene chain.

Definition 2.11.2 Let D be a Σ-domain, Then we define the Kleene chain kleene(f)
∈ N −→ D inductively by kleene(f)(n) , fn(⊥D). �

Remark: It can be easily shown by induction that kleene ∈ AC(D). Therefore we
can prove the following Lemma:

52 Chapter 2. The Σ-posets, Σ-cpo-s, and Σ-domains

Lemma 2.11.1 For any Σ-domain D and f∈D −→ D the supremum
⊔
kleene(f) is

the least fixpoint of f .

Proof: One can use the “classic” proof, as
⊔

is the least upper bound. So let
x ,

⊔
kleene(f), then x =

⊔
n f

n(⊥D) =
⊔
n f

n+1(⊥D) = f(
⊔
n f

n(⊥D)) = f(x).
Only Scott-continuity and shifting of indices of chains is needed for these equalities.
For proving that it is the least upper bound, assume that there is a y ∈ D such that
f(y) = y. From that we can deduce that ∀n:N. f n(⊥D) v y because f(fn(⊥D)) v
f(y) = y since f is monotone. Now

⊔
kleene(f) is the least upper bound and thus

below y. �

Corollary 2.11.2 Let D be a Σ-domain. Any endofunction f ∈ D −→ D has a least
fixpoint.

Proof: By the preceding lemma we know that the supremum of the Kleene-chain is
the least fixpoint. But the supremum must exist because D is a Σ-cpo. �
In analogy to the least element and to the supremum we define a function that yields
the least fixpoint of any endomap on a Σ-domain.

Lemma 2.11.3 There is a dependently typed function fix : ΠD:Dom. (D −→ D) −→
D such that (fixD f) is the least fixpoint of f for any D ∈ Dom and any f∈D −→ D.

Proof: As the least fixpoint exists by the previous proposition and it is automatically
unique, by virtue of (AC!) we get an object of type ΠD:Dom.

∑
fix:D −→ D. f(fix f) =

f ∧ ∀y:D. f(y) = y ⇒ (fix f) v y. Projecting to the first component yields the required
function. �
In domain theory one of the important proof principles for recursively defined functions
– i.e. functions defined via the fix construct – is fixpoint induction. It states that the
least fixpoint of a functional fulfills a predicate P , if ⊥ is in P and P is preserved by
unfolding the fixpoint once.

Theorem 2.11.4 (Fixpoint Induction) Let D be a Σ-domain, P∈PropD an admissible
predicate on D, and f ∈ D −→ D an endofunction on D. If P (⊥D) and ∀d:D.P (d)⇒
P (f(d)) then also P (fix f).

Proof: The proof is along usual lines, i.e. the synthetic approach is of no meaning
here. Expand the definition of fix and make use of the admissibility of P , then it
suffices to prove that for any n ∈ N we have P (f n(⊥D)) which can be easily shown by
induction. �
Note that by definition of fix also Park induction is valid.

11 3 “In classical domain theory how do you tell what
is uniformly there from what is accidental??”

Martin Hyland

Domain constructors for Σ-domains

In this chapter we will explain how to implement the common domain constructors as
functions on Dom. In Section 2.10.2 we have already seen how ×,−→, and −→⊥ are
described as functions mapping Σ-domains to Σ-domains. But what about the other
constructors like ()⊥ i.e. the lifting, or the strict constructors as smash product ⊗ and
coalesced sum ⊕ ? The latter ones are a little bit more difficult to define because of
the difference between SDT and classical domain theory. The problem is to define the
strict variants of product and sum in a way that the pairing and the injection functions
are also definable. This is not so easy as one might think at first, however, because
these functions must test their arguments for being ⊥.

Following the classical approach, the functions have to be defined by case analysis
using the Axiom of Unique Choice. We have already presented a trick how to to cope
with such definitions but it doesn’t work in that case. The reason is that for a Σ-
domain the set D 6=⊥ , {x ∈ D | x 6= ⊥D} does not necessarily have to be a Σ-subset.
For the smash product D⊗E this means that projections are not definable in general,
but only if D 6=⊥ and E 6=⊥ are Σ-subsets.

Martin Hyland’s comment on this observation is that this is not a drawback of
SDT. He pointed out that the projections can’t be programmed (in general) in any
programming language: “So what I claim is that SDT, by its stress on defining oper-
ations in terms of universal properties, makes clear what operations are there for free
in our semantics. The smash product is there, but the projections are not in general -
they just are not part of the universal structure. . . . In classical domain theory how do
you tell what is uniformly there from what is accidental??”[SDT-mailing-list, Wed, 13
Jul 1994].

Even ignoring the projections it is quite unusual – compared to classical domain

53

54 Chapter 3. Domain constructors for Σ-domains

theory – to construct the smash product in a way that the pairing function is definable.
One has to find an encoding such that for the pairing one doesn’t have to test for ⊥
and similarly for the elimination function for coalesced sum. To overcome this problem
define ⊗ and ⊕ as left adjoints to the strict function space and the diagonal functor,
respectively (there is a hint in [Pho90, p. 114]). The adjoint functor theorem guarantees
their existence because Dom is small internally complete. In fact, we will show that
Dom is an internal category and we have already proved that Σ-domains are closed
under arbitrary products and equalizers. The definition in the internal language will be
direct, without the machinery of adjunctions, which might be inelegant for a category
theorist, but we wanted to avoid the extra effort of formalizing category theory in this
generality.

Note that the definition of ⊗ and ⊕ is easy for domains that are “lifted”, as one
knows that A⊥ ⊗B⊥ ∼= (A×B)⊥ and A⊥ ⊕B⊥ ∼= (A+B)⊥. So if one only considers
“lifted” domains then everything is like in classical domain theory.

This chapter is divided into four sections that explain the definition and the most
important properties of the lifting, the smash product, the coalesced sum, and the
separated sum.

3.1 Lifting

The lifting operation ()⊥ is important for several reasons. First, it allows the embed-
ding of cpo-s (in our case Σ-cpo-s) into domains (Σ-domains). Secondly, it is necessary
for the definition of lazy datatypes or in other words for datatypes with infinite objects.
The finite strict lists L over some domain A e.g. are determined by the domain equa-
tion L ∼= 1⊥ ⊕ (A⊗ L). If we lift L, then we get the lazy lists LL ∼= 1⊥ ⊕ (A⊗ LL⊥),
which means that the function append : A × LL −→ LL for lazy lists can take an
undefined value ⊥LL as a second argument and still yields a defined result because of
the lifting in the domain euqation (that’s why it is called lazy).

If A is a lifted cpo D⊥ then the equation for lazy lists can be simplified to LL ∼=
(1 + (D × LL))⊥ which is a domain equation in cpo-s. Obviously sometimes it is
easier to solve domain equations in the category of cpo-s rather than in the category
of domains. Similar considerations about disadvantages of expressing non-termination
via ⊥ lead Plotkin [Plo85] to use categories of partial maps [RR88], which he also
regards as computationally more natural. Given a category C the category of partial
maps pC consists of the following data:

I objects of pC are the objects of C

I a morphism f ∈ pC(A,B), called a partial map A ⇀ B, is a pair (A
m� A′

g−→ B)
where m is a subobject and g is a (total) map in C. The object A′ represents
the domain of definition of f .

A partial function fromA toB is not uniquely represented by a partial map in the above
sense. There can be various representations (with isomorphic domains of definition).
Therefore, one has to define that two partial maps (m, g) and (m′, g′) are equivalent

3.1. Lifting 55

if there is an iso i such that the following diagram commutes:

A
<

m

<

B

g

>

g
′

>
<

m ′

<∨

i

If there are enough pullbacks then two partial maps (A
m� A′

f→ B) and (B
n� B′

g→
C) can be composed by the following pullback construction:

A

A′
∧

∧

m

f
> B

∧

∧..........
> B′
∧

∧

n

g
> C

It is an easy but tedious exercise to verify that composition of partial maps is repre-
sentation independent. One has to verify that composition of equivalent partial maps
yield equivalent partial maps.

Now one can proceed and restrict the class of monos that are considered to be
the domain of definition of the partial maps. They are sometimes called “admissible”
monos (do not confuse with Definition 2.8.1). If one can distinguish a class of monos
M which is a full-on-objects subcategory of C and has enough closure properties such
that partial maps with domains restricted toM are closed under composition, thenM
is is called a dominion [Ros86b] (Fiore calls such (C,M) a domain structure [Fio94a]).
Rosolini observed that within a topos one can give internal definitions of partial map
categories. If there is a subobject Σ of Prop (assume for the moment that Σ was arbi-
trary) that classifies exactly the monos inM then Σ is called a dominance. Remember
that a mono is classified by Σ if its characteristic map factors through Σ. That’s the
right setting for us.

The key point is that lifting should be the partial map classifier for partial maps
with the right domains of definition. To be precise, a map upA : A −→ A⊥ is a partial

map classifier for M if for any partial map (A
m� A′

f−→ B) with m ∈ M there is a

56 Chapter 3. Domain constructors for Σ-domains

unique total map χ(m,f) : A −→ B⊥ such that the following diagram is a pullback:

A′
f

> B

A

m

∨

∨

∃!χ(m,f)

> B⊥
∨

∨

upB

One also says that lifting, i.e. ()⊥ in this case, is the M-partial map classifier. If
one defines morphisms in pC as equivalence classes of partial maps then this means
pCM(A,B) ∼= C(A,B⊥).

The right domains of definition for partial maps in our setting are of course Σ-
subsets (and now we really mean Σ as the r.e. subobject classifier). That means
that domains of partial maps are always r.e. Accordingly, Σ must be a dominance.
Rosolini proved that in a topos a subobject Σ� Prop is a dominance iff [> ∈ Σ and
p ∈ Σ ∧ ((p = >) ⇒ q ∈ Σ)] ⇒ (p ∧ q) ∈ Σ. During the proof that lifting is the
corresponding partial map classifier, one encounters quite automatically the need for
such a statement. Therefore, we will have to add the Dominance Axiom to our small
list of axioms. Note that working in the internal language one must be more precise
when formalizing the Dominance Axiom (cf. Section 7.3.4).

In the third subsection we are going to prove that our explicit definition of lifting
will be indeed the partial map classifier for Σ-subsets (in the internal sense). Note that
the Dominance Axiom is also necessary to show that partial maps, with Σ-subsets as
domains of definition, compose. Finally, it is needed to prove that certain predicates
are Σ-predicates which sometimes seems to be the easiest way to prove that a predicate
is admissible (or sufficiently co-admissible cf. Lemma 2.8.6).

Some other properties that lifting enjoys – U⊥ ∼= Σ and Σ⊥ ∼= ΣΣ – are shown in
the second subsection. But beforehand, one has to define the lifting A⊥ for any Σ-cpo
and deduce all the necessary properties about the order on A⊥.

3.1.1 Definition of lifting

The idea behind the lifting operation is to add a minimal point to the Σ-cpo such that
it becomes a Σ-domain. Switching to the “localic” representation, we already know
that any Σ-cpo (in fact any Σ-poset) A is isomorphic to {p ∈ ΣΣA | ∃a:A. ηA(a) = p}.
Thus any point a corresponds to ηA(a); thus ηA(a) can never be the empty set and so
one can simply add it:

Definition 3.1.1 For any C ∈ Set define the set

C⊥ , {p ∈ ΣΣC | ∀f :ΣC . (p(f) = >)⇒ ∃a:C. ηC(a) = p}

and call it the lifting of C. �

3.1. Lifting 57

Compare this definition to the definition of D̂ in [Ros86b, p. 60]. In our setting,
however, the lifting must be defined such that it is not only a set as in loc. cit. but
a Σ-domain if C already was a Σ-cpo. That is the reason for using the r.e. subobject
classifier Σ instead of the subobject classifier Ω. Thus, one can prove the desired
results:

Theorem 3.1.1 For any C ∈ Set we have

I C⊥ is a Σ-poset if C is a Σ-poset.

I C⊥ is a Σ-domain if C is a Σ-cpo.

Proof: (i) If C is a Σ-poset then ∃a:C. ηC(a) = p is ¬¬-closed so by the closure
properties of Σ-posets we have that C⊥ is also a Σ-poset. (ii) Let us first show that
C⊥ is a Σ-cpo. By the closure properties of Σ-cpo-s it is sufficient to show that
λp:ΣΣC . ∀f :ΣC . (p(f) = >)⇒ ∃a:C. ηC(a) = p is a ¬¬-closed and admissible predicate.
But all this follows from the closure properties of ¬¬-closed (Theorem 2.1.2) and
admissible predicates (Theorems 2.8.1,2.8.2). It is clear that C⊥ has a least element,
i.e. λp:ΣC .⊥. �
Observe that by definition any a ∈ C⊥ that is not λx.⊥ must already belong to C, i.e.
a∈C. Moreover, if we would put a double negation in front of the existential quantifier
in the definition of C⊥

C⊥ , {p ∈ ΣΣC | ∀f :ΣC . (p(f) = >)⇒ ¬¬∃a:C. ηC(a) = p}

then C⊥ would be a Σ-poset for any C ∈ Type ! But on the other hand, it is not nice
to work with classical existential quantifiers, if one wants to extract the witness.

Definition 3.1.2 Let up : ΠA:Pos. A → A⊥ be defined as up , λA:Pos. λa:A. ηA a.
�

We could also define a map up on Cpo. In fact we want to use it for Σ-posets and
Σ-cpo-s. In our informal language we can apply up also to Σ-cpo-s as Cpo ⊆ Pos. This
is a good demonstration that subtyping should also be available in the theorem prover
or proof checker that supports the formalization. Unfortunately, the system we used
doesn’t provide such a feature (cf. Section 7.2), so one has to work with coercion maps.
A system that supports subset types could increase readability quite enormously.

Now up enjoys the following properties:

Lemma 3.1.2 Let A be a Σ-cpo. Then the following propositions are valid:

1. ∀a:A.⊥A⊥ 6= upAa

2. ∀a:A.¬(⊥A⊥ v upAa)

3. ∀x:A.¬¬((∃a:A. x = upAa) ∨ (x = ⊥A⊥))

4. ∀x, y:A. x v y iff (upAx) v (upAy)

58 Chapter 3. Domain constructors for Σ-domains

5. ∀x, y:A. x = y iff (upAx) = (upAy)

Proof: 1. Assume ⊥A⊥ = upAa then ⊥A⊥(λx:ΣA.>) = (upAa)(λx:ΣA.>) iff ⊥ =
>. As we have an axiom ¬(⊥ = >) we can deduce logical absurdity (⊥) so we are
done.
2. Because of 1. since (upAa v ⊥A⊥)⇒ (upAa = ⊥A⊥)⇒ ⊥.
3. We know that ¬¬(P ∨¬P) is a tautology. Therefore it suffices to prove ¬(∃a:A. x =
upAa) ⇒ (x = ⊥A⊥). So assume ¬(∃a:A. x = upAa); by inverting the defining
property of A⊥ we get ∀f :ΣA.¬(x(f) = >), so ∀f :ΣA. (x(f) = ⊥) and hence x = ⊥A⊥ .
4. “⇒” is by monotonicity. “⇐” Since A is a Σ-poset, ηA reflects v (Proposition 2.6.3).
5. Because of 4. and Corollary 2.6.1. �
The type parameter of up is sometimes written as an index or even omitted when it is
clear from the context.

As up is a mono, we can define the partial inverse:

Lemma 3.1.3 Let A ∈ Pos. There is a function downA : {x ∈ A⊥ | x 6= ⊥A⊥} −→ A
such that up(down(x)) = x.

Proof: By (AC!) and definition of up it suffices to prove that ∀x:A⊥. ∃!a:A. ηA a = x.
Uniqueness follows from the fact that ηA is a mono and existence is by case analysis
a consequence of the previous theorem (3). Case analysis is possible as η is ¬¬-closed
by assumption. �
Another important operation is the lifting of a function f : A −→ B denoted by
lift f : A⊥ −→ B. The map lift f behaves like f , only for ⊥A⊥ it yields ⊥B. That
means that the codomain of f must have a least element. Note that implicitly a case
analysis on the argument (to be ⊥ or not to be ⊥, that is the question) is needed, but
we can use Lemma 2.6.13 for handling this problem:

Lemma 3.1.4 Let A ∈ Pos, D ∈ Dom, f : A −→ D then there is a function

lift : ΠA:Pos.ΠD:Dom. (A −→ D) −→ (A⊥ −→ D) such that

∀a:A⊥. ((a = ⊥A⊥)⇒ liftAD f a = ⊥D) ∧ ((a 6= ⊥A⊥)⇒ liftADf a = f(downA(a)).

Proof: By (AC!) we only need to show

∀a:A⊥. ∃!y:D. ((a = ⊥A⊥)⇒ y = ⊥D) ∧ ((a 6= ⊥A⊥)⇒ y = f(downA(a)).

By virtue of Theorem 2.6.13 it simply remains to prove

∀a:A⊥. ∃!p:ΣΣD . ((a = ⊥A⊥)⇒ p = ηD ⊥D) ∧ ((a 6= ⊥A⊥)⇒ p = ηD f(downA(a))).

The map satisfying the above specification is

g , λa:A⊥. λp:Σ
D. (ΣΣf a p) ∨ p(⊥D) = λa:A⊥. λp:Σ

D. a(λx:A. p(f(x)))∨ p(⊥D).

If a = ⊥A⊥ = λp:ΣA.⊥ then obviously g(a) = ηD ⊥D and if a = up(x) for some x ∈ A
then g(a) = λp:ΣD. p(f(x)) ∨ p(⊥D) = λp:ΣD. p(f(x)) as p(⊥D) ⇒ p(f(x)). Thus
g(a) = ηD (f x) = ηD f(down a). �
Remark: A trivial corollary is then that (liftADf)(up(a)) = f(a).

3.1. Lifting 59

3.1.2 Some isomorphisms

We shall prove that Σ is the lifting of the unit type and that ΣΣ is the lifting of Σ.
This gives us a hint that one could also define Σ from lifting, if one considers lifting
as a more basic construct.

Theorem 3.1.5 U⊥ ∼= Σ.

Proof: Define the map β : Σ −→ ΣΣU like follows:

β , λs:Σ. λp:ΣU. s ∧ p(⊥U).

It is easy to prove that this really goes into U⊥ and that β(⊥) = ⊥U⊥ and β(>) =
up(⊥U). The inverse of β is then defined via

β−1 , liftUΣ (λx:U.>).

The proof that β and β−1 form an iso pair is straightforward by case analysis on Σ
and U⊥, respectively. �
In the same spirit we are now going to show that Σ⊥ ∼= ΣΣ.

Theorem 3.1.6 Σ⊥ ∼= ΣΣ.

Proof: Define the map β : ΣΣ −→ ΣΣΣ
like follows:

β , λf :ΣΣ. λp:ΣΣ. p(f(⊥))∧ f(>).

By an easy but tedious nested case analysis about the values of f(⊥) and f(>) one
can prove that this really goes into Σ⊥ and that β(λx.⊥) = ⊥, β(λx. x) = up(⊥), and
β(λx.>) = up(>). The inverse of β is then defined via

β−1 , lift Σ ΣΣ (λs:Σ. λx:Σ. s ∨ x).

The proof that β and β−1 form an iso pair is straightforward – but tedious – by case
analysis about the values of f(⊥) and f(>). Here we need Phoa’s Principle to ensure
that there are only the three maps of type ΣΣ considered above. �

3.1.3 Internalization of categories

We are now forced to introduce an internal notion of category in order to be able to
express the property of being a partial map classifier. Note that in a non dependently
typed language categories are not definable as syntactic objects (see also [Reg94, page
248] for this problem).

It is quite clear what the internal version of a category should be:

Definition 3.1.3 We define the structure of categories as follows:

Cat Struct ,
∑

Ob:Type.
∑

Hom:X → X → Set.∑ ◦ : ΠA,B,C:Ob. (HomAB)→ (HomBC)→ (HomAC).
ΠA:Ob.A→ A

60 Chapter 3. Domain constructors for Σ-domains

and from that we define the type of locally small categories:

Cat , { (Ob,Hom, ◦, id) ∈ Cat Struct |
∀A,B:Ob. ∀f :(HomAB). (idB) ◦ f = f ∧ f ◦ (idA) = f ∧
∀A,B,C,D:Ob. ∀f :(HomAB). ∀g:(HomBC). ∀h:(HomC D).

(f ◦ g) ◦ h = f ◦ (g ◦ h) }

If C ∈ Cat we denote the projections ObC , HomC , ◦C and idC . We will omit the
subscripts if the category in question is evident from the context. �

Notation: Calligraphic letters (like C) always stand for (internal) categories.

The objects of a (internal) category are of arbitrary type but the homsets are indeed
sets (Set), so we are only dealing with locally small categories. The other components
are identity and composition which are polymorphic functions as they range over the
type of objects. The category laws say that the identity is neutral with respect to
composition and that the composition is associative. The type Cat is a deliverable in
the sense of [BM92, Luo93, RS93b] if we replace the subset type by a sum type as we
will have to do for the formalization in Lego.

3.1.4 The category of Σ-domains

The Σ-domains with strict maps as morphisms form an internal category, called Dom.

Definition 3.1.4 Let Dom , (Dom, mor, idd, ◦◦), where
mor , (λD,E:Dom. D −→⊥ E)

idd , λD:Dom. λx:D. x

◦◦ , λD,E, F :Dom. λg:E −→⊥ F. λf :D −→⊥ E. λd:D. g(f(x)).

Dom is the internal category of Σ-domains with strict maps. �

Lemma 3.1.7 Dom is an internal category i.e. Dom ∈ Cat.

Proof: It is obvious that λx:D. x and λd:D. g(f(x)) are strict functions if f and g
are strict, so Dom ∈ Cat Struct. It is straightforward to verify that it is also in Cat. �

Definition 3.1.5 It is similarly easy to verify that Set, Pos, and Cpo with arbitrary
maps as morphisms form internal categories, too. We will refer to the the corresponding
categories as Set, Pos, Cpo. �

3.1.5 Lifting as partial map classifier

In this section we shall prove what we have claimed in the introduction of the lifting
operator, i.e. that lifting is the Σ-partial map classifier, or more exactly, the classifier
for maps with Σ-subsets as domains of definition. Due to the definition of lifting, by
contrast to [Ros86b], we need the Dominance Axiom already for this proof, not only
for verifying that Σ-subsets compose.

3.1. Lifting 61

When formalizing the dominance axiom we have to be more careful since we
are working in an propositions-as-types-paradigm where proof objects are sometimes
needed for computing values – consider the case of type coercions. Therefore the Dom-
inance Axiom must be stated in a way that respects the dependency between proof
objects. In 7.4.6 we will come back to this and explain how the Dominance Axiom is
expressed in our type theoretic setting. For our (sloppy) naive set-theoretic language
let us stick to the original notation:

Definition 3.1.6 We assume henceforth that also the following axiom holds.

(Do) ∀p, q:Prop. p ∈ Σ ∧ ((p = >)⇒ q ∈ Σ)⇒ (p ∧ q) ∈ Σ. �

This additional axiom is needed to show that

1. lifting is the partial map classifier

2. Σ-monos (and therefore Σ-partial maps) compose (which in our setting could be
derived already from 1., as it is sufficient (cf. [Ros86b, Prop. 3.1.5]) to prove that
the mono up ◦> is classified by Σ. But this is the case as (lift Σ Σ (id Σ)) ◦ (upΣ ◦
>) = >.

3. certain predicates are admissible (because they are Σ-predicates).

The rest of this section can be easily skipped if one is not interested in the abstract
properties of lifting. We won’t use the fact that lifting is the Σ-partial map classifier
in the Σ-cpo approach anyway. Yet, it proves that we have defined the “right” lifting,
and if we would use our theory for doing denotational semantics then this property
of lifting would become important. For the Σ-replete objects, however, the situation
is quite different. There one needs the classifying property in order to show closure
under lifting !

The property of being a partial map classifier is of course a categorical notion.
Therefore, we will have to enrich our “library” of category theory definitions a little
bit. First we can define internally what a pullback is:

Definition 3.1.7 We define the predicate

is pullback , λC:Cat. λA,B, C,D : ObC .
λf :(HomAB). λg:(HomBD). λf ′:(HomAC). λg′:(HomC D).
(g ◦ f = g′ ◦ f ′) ∧
∀X :ObC . ∀k:(HomX C). ∀h:(HomX B). (h ◦ g = k ◦ g ′)⇒

∃!m:(HomX A). k = f ′ ◦m ∧ h = f ◦m

that states whether a given square is a pullback. �

Following the explanations about partial maps in the introduction for the lifting con-
structor we define:

62 Chapter 3. Domain constructors for Σ-domains

Definition 3.1.8 The partial maps depending on a category C and a domain classifier

cl ∈ ΠX, Y :ObC . (HomX Y) −→ Prop

are described by the following type :

part map , λC:Cat. λcl:(ΠX, Y :ObC . (HomX Y) −→ Prop).
λA,B:ObC . {(D, f,m) ∈∑D:ObC .

∑
f :(HomDB). (HomDA) | clDAm } .

�
Notation For a given category C and a domain classifier cl we stick to the com-

mon notation of partial maps, i.e. (A
m� D

f−→ B) denotes the triple (D, f,m) ∈
(part mapC cl AB).

As mentioned already at the beginning of Section 3.1 the equality on partial maps is
defined via an isomorphism between the domains of definition that make the corre-
sponding triangles commute.

Definition 3.1.9 Let C ∈ Cat, A,B ∈ ObC and p = (A
m� D

f−→ B) and p′ = (A
m′�

D′
f ′−→ B) be partial maps from A to B. Then we define a relation

p $ p′ iff ∃i:(HomD′D). (iso i) ∧ (m′ = m ◦ i) ∧ (f ′ = f ◦ i)
that checks whether two partial maps are “isomorphic”. �
Now we describe a good candidate for the domain classifier for a Σ-partial map.

Definition 3.1.10 Let subΣ define the following domain classifier:

subΣ , λC:Cat. λX, Y :ObC . λm:(HomX Y). (mono m) ∧
∃p:ΣY . (∀y:Y. (y∈X) iff (p y = >)). �

Here mono denotes the predicate that checks whether m is a mono in C.
The Σ-partial maps between Σ-cpo-s A and B are therefore internally represented

by the type
part map Cpo (subΣ Cpo)AB ,

those between sets A and B by

part map Set (subΣ Set)AB.
First we show that if we have two pullback squares

D
f

> B

A

m

∨

∨

g
>

g′
>
B⊥
∨
upB

then the maps g and g′ are equal. In other words, the map g that makes the above
diagram a pullback square is uniquely determined.

3.1. Lifting 63

Lemma 3.1.8 Assume some arbitrary A,B ∈ Pos = ObPos and a Σ-partial map

(A
m� D

f−→ B). Then any g, g′ ∈ A −→ B⊥ that make the above diagram commute
are equal.

Proof: By extensionality we must show g(a) = g ′(a) for any a∈A. There are two
cases. If a∈D then the claim holds as the pullback squares commute. The more
difficult case is when ¬a∈D: Then do a case analysis whether g(a) = up(b) for some
b ∈ B or not. If the first case holds, then construct another commuting square:

D

D
f

>

∃i
>

B

k
b

>

A

m

∨ g
>

g′
>

k
a

>

B⊥
∨
up

Here ka and kb denote the functions with yield always a and b, respectively. It is
clear that the outer square commutes, hence a mediating arrow i exists, thus a∈D, a
contradiction. The case g′(a) = up(b) is similar and if both g ′(a) and g(a) are ⊥, then
we have nothing to show. �
Note that we use proof by contradiction and case analysis in the above argument, so
the equality on A −→ B⊥ has to be ¬¬-closed. Therefore, we have to assume that B
is at least a Σ-poset, such that A −→ B⊥ is a Σ-poset. The equality is then ¬¬-closed
due to Lemma 2.6.9. This lemma holds also for A,B ∈ Cpo, therefore we can consider
Σ-partial map classifiers in Pos and Cpo. The following proposition can thus w.l.o.g.
be formulated for Pos. The next step is to define a function that maps any Σ-partial

map (A
m� D

f−→ B) into a map g : A −→ B⊥ such that f, up, m, g form a pullback
square.

Theorem 3.1.9 Given A,B ∈ Pos = ObPos and a Σ-partial map (A
m� D

f−→ B),
then there exists a unique morphism g ∈ (HomAB⊥) such that we get a pullback-
square, i.e. (is pullbackPosDB AB⊥ f upmg) is true.

Proof: Define g , λa:A. λh:ΣB. (a∈D) ∧ h(f a), which by virtue of (Do) lives in
A −→ ΣΣB , and indeed even in A −→ B⊥.
First show that g makes a commuting square, i.e. g ◦ m = up ◦ f . For any d ∈ D
obviously m(d)∈D, so g(m(d)) = ηB(f d) = up(f d).
Now assume a D′ ∈ ObPos and morphism h ∈ (HomD′B) and k ∈ (HomD′A) such
that up ◦ h = g ◦ k (∗). We have to construct a mediating arrow in (HomD ′D).
For any d ∈ D′ we have that g(k(d)) = up(k(d)), by unwinding up we get that

64 Chapter 3. Domain constructors for Σ-domains

g(k(d))(λb:B.>) = > and therefore k(d)∈D by definition of g. In other words k =
m ◦ k, thus k is already a good candidate for the mediating arrow. By (∗) one gets
g ◦m ◦ k = up ◦ h, so up ◦ f ◦ k = up ◦ h, hence f ◦ k = h as up is a mono. So we have
shown that k is indeed mediating. Uniqueness of the mediating arrow follows from the
fact that m is a mono.
Finally, the g with the desired property is unique by the previous Lemma 3.1.8. �
Consequently, by (AC!) there is a map from Σ-partial maps between Σ-posets A and
B to maps A −→ B⊥.

Definition 3.1.11 The map that by (AC!) arises from the previous theorem is called
γ. �

It remains to show that there is an inverse to γ, that sends any A −→ B⊥ (A,B ∈ Pos)
to a Σ-partial map that is unique up to equivalence. First we observe that:

Theorem 3.1.10 For any A,B ∈ Pos = ObPos and any map g ∈ A −→ B⊥ there are

appropriate D,m, f such that pg , (A
m� D

f−→ B) ∈ part map Pos (subΣPos)AB,
with γ(pg) = g.

Proof: Let D , {a ∈ A |(g a)(λx:B.>) = >}, which is obviously a Σ-subset of A
and therefore even a sub-Σ-cpo of A. Define m to be the embedding from D into A
and let f be g|D i.e. g with its domain restricted to D. It is easy to see that γ(pg) = g
as the given data form a pullback. �
Finally, one must show that the map pg is unique, i.e. that γ is one-to-one. We will
use the fact that any map in the image of γ is characterized by a pullback square.

Theorem 3.1.11 Assume an arbitrary (internal) category C ∈ Cat and assume ob-
jectsA,B,C,D,A′ ∈ObC , morphisms f ∈ (HomAB), g ∈ (HomBD), h ∈ (HomAC),
k ∈ (HomC D), f ′ ∈ (HomA′B), and h′ ∈ (HomA′ C) such that

p , (C
h� A

f−→ B) and p′ , (C
h′� A′

f ′−→ B)

are partial maps with domains classified by cl. If (ispullback C f g h k) holds as well
as (ispullback C f ′ g h′ k) then p $ p′. This is independent from the domain classifier

cl∈ΠX, Y :ObC .Prop(HomX Y) that is used for the partial maps.

Proof: One uses the fact that both squares g ◦ f = k ◦ h and g ◦ f ′ = k ◦ h′ are
pullbacks to construct both morphisms i : (HomAA′) and j : (HomA′A), respectively.

3.1. Lifting 65

For the construction of i consider the following diagram

A′

A
f

>

∃i
>

B

f ′

>

C

h

∨
k

>

h ′

>

D
∨
g

Then a candidate i : (HomA′A) does exist because of the assumption that the square
is a pullback. Analogously one gets j. By construction h◦ i = h′ and f ◦ i = f ′ hold, so
it remains to prove that i is an isomorphism. To prove that i ◦ j = idA use uniqueness
of the mediating arrow. Consider the following situation:

A

A
f

>

id
Ai ◦

j
>

B

f

>

C

h

∨
k

>

h

>

D
∨
g

If we can show that i ◦ j and idA make the above triangles commute, i.e. that they
are both mediating arrows, then by uniqueness they must be equal. Trivially idA is
mediating. Also from the corresponding pullbacks one can deduce h◦(i◦j) = (h◦i)◦j =
h′ ◦ j = h. And f ◦ (i ◦ j) = (f ◦ i) ◦ j = f ′ ◦ j = f . So i ◦ j is also mediating.
The other direction is proved analogously. �

Corollary 3.1.12 For A,B ∈ ObPos the map γ is an iso between Pos(A,B⊥) and the
partial maps pPosΣ(A,B).
For A,B ∈ ObCpo the map γ is an iso between Cpo(A,B⊥) and pCpoΣ(A,B).

Proof: Follows from the previous two theorems. �
To complete our internal variant of the partial map approach we still have to show
that pC is a category if C is, i.e. that Σ-partial maps compose. For this we use again
the Dominance Axiom.

Lemma 3.1.13 Σ-subsets compose.

66 Chapter 3. Domain constructors for Σ-domains

Proof: Let C ∈ Cat. Assume A,B,C ∈ Cpo and m : A � B, n : B � C. We
already know that monos compose, so it remains to show that n ◦ m is classified by
Σ. By assumption there are p ∈ ΣB and q ∈ ΣC , that classify m and n, respectively.
Let us construct an r ∈ ΣC that classifies n ◦ m. Let c ∈ C be arbitrary. We know
that q(c) ⇒ c∈B and so q(c) ⇒ p(c) ∈ Σ. By the Dominance Axiom we get that
q(c)∧ p(c)∈ Σ. Therefore we can define r , λc:C. q(c)∧ p(c). It is easily checked that
r classifies n ◦m. �

Corollary 3.1.14 Σ-partial maps compose.

Proof: Let C ∈ Cat. Assume A,A′, B,B′, C ∈ ObC and Σ-partial maps

p , (A
m� A′

f→ B) and p′ , (B
m′� B′

f ′→ C).

We do the pullback construction mentioned at the beginning of this section :

A

A′
∧

∧

m

f
> B

D
∧

∧........
n′

f ′
> B′
∧

∧

n

g
> C

First convince yourself that pullbacks preserve Σ-monos. But this is fairly trivial:
Consider the pullback in the diagram above. If n is a Σ-mono with classifying map q
then also n′ is a Σ-mono with classifying map q ◦ f .

Now simply define p′ ◦ p , (A
m◦n′� D

g◦f ′→ C). By the previous Lemma we know that
m ◦ n′ is again a Σ-subset. �
So we have completed our proof that lifting is indeed the Σ-partial map classifier in
an internal sense.

3.2 Smash product

As already mentioned in the beginning of this chapter the smash product is not
that easy to define in a satisfying manner. As we can’t test “for being ⊥” for the
smash product D⊗E this means that projections are not definable in general, only if
D 6=⊥ = {x ∈ D | x 6= ⊥} and E 6=⊥ are Σ-subsets. But even ignoring the problem with
projections – which is no real loss – it is quite difficult to construct the smash product
in a way that the pairing function is programmable. The innocuous looking definition
A ⊗ B , {x ∈ A × B | π1(x) = ⊥A ⇔ π2(x) = ⊥D} does not work even though it’s

3.2. Smash product 67

obviously a Σ-domain. The reason is the pairing function that cannot be defined for
such a smash product. Obviously ⊗〈a, b〉 = (⊥A,⊥B) if a = ⊥A or b = ⊥B . So we
have to test whether a and b are bottom and that cannot be done in general as it is
undecidable. Hyland pointed out that this is possible in classical domain theory only
“by accident”. Therefore one has to remember the very definition of the tensor prod-
uct by its universal property, i.e. there is a 1-1-correspondence between strict maps
A ⊗ B −→ C and bistrict (i.e. strict in both arguments) A × B −→ C. In terms of
category theory this means that there is an adjunction

A⊗ B > C

A > (B −→⊥ C)

where the morphisms live in Dom, so the lower type is internally isomorphic to A ×
B −→bistrict C.

This suggestion for the smash product can already be found in [Pho90, p. 114].
The existence of this left adjoint is guaranteed by the adjoint functor theorem as
Dom is internally complete. So we will proceed to code this universal definition in
our “internal language”. We follow the proof of the Adjoint Functor Theorem for the
special instance of the functors and categories. If there would already have been a
theory package available for dealing with adjoints in arbitrary categories then it might
have been more appealing to prove Freyd’s Adjoint Functor Theorem in general and
then instantiate it for the various cases with the corresponding categories and functors.
The other cases are the coalesced sum (cf. 3.3) and the reflection from Σ-posets and
Σ-cpo-s into Set which is not treated in this thesis. However, it was not our primary
goal to develop category theory, so we will go the more direct, but less abstract and
modular way. Yet, this exemplifies that category theory is useful also in formal theories
for yielding abstract (and therefore more reusable, better structured and eventually
shorter) proofs.

Before we present the details, for sake of clarity, let us recapitulate the categorical
principle that lies behind the construction and the proofs of the smash product. Read-
ers who are familiar with Freyd’s Adjoint Functor Theorem might want to to skip the
next subsection.

3.2.1 Freyd’s Adjoint Functor Theorem for beginners

We shortly explain Freyd’s Adjoint Functor Theorem (FAFT) in an external style.
Assume that we have a functor G : C −→ D. First let us explain the connection of two
problems: the existence of a left adjoint to G and of the existence of initial objects in
special categories, namely for any A ∈ ObD the comma category A ↓ G, which has as
objects morphisms A −→ G(I) in D for some I ∈ ObC . A morphism from A

g−→ G(I)

68 Chapter 3. Domain constructors for Σ-domains

to A
h−→ G(J) is a C-morphism I

f−→ J such that h = G(f) ◦ g, pictorially

A
g
> G(I)

G(J)
∨
G(f)h

>

Theorem 3.2.1 Let G : C −→ D be a functor. Then G has a left adjoint iff A ↓ G
has an initial object for any A ∈ ObD.

Proof: The proof is well known (cf. [Mac71]). The idea is roughly sketched: Functor
G has a left adjoint F : D −→ C iff for any D-object A there is a representation
object FA and a family of maps ηA:A −→ G(FA) such that for any C-object J and
any morphism f :A −→ G(J) there exists a C-morphism f ∗:FA −→ J such that the
following diagram commutes.

FA A
ηA
> G(FA)

J
∨
f ∗

G(J)
∨
G(f ∗)f

>

The left adjoint F can be defined via F (A) , FA and F (h) = (ηB ◦ h)∗ for any
morphism h from A to B. Additionally it can be shown that η is natural then, so
obviously F is the left adjoint to G. But accordingly to the above definitions the
commuting diagram says exactly that A

ηA−→ G(FA) is initial in A ↓ G. �
Initial objects exist in C if the category under investigation C is locally small and
complete and if there is a set of objects of C, say {Ax | x ∈ X} such that for any
C-object B there is a morphism jx : Ax −→ B (cf. e.g. [Cro93]). But it gets even more
simple if C is internally complete. Then C possesses products indexed by the objects of
C itself and the X above indeed becomes ObC . This is the content of the next theorem:

Theorem 3.2.2 Let C be an internally complete category, then C has an initial object.

Proof: We define a weakly initial object W , ΠX :ObC . (HomXX) −→ X . In
fact for any B ∈ ObC the map jB , λw:W.wB idB is in (HomW B) as C is internally
complete. Now define the initial object I , {p ∈ W | ∀h:(HomW W). h(p) = p}. As W
is weakly initial it remains to prove uniqueness, i.e. for two morphism f, g ∈ (Hom I B)
we must verify that f = g. Consider the following diagram, where e is the equalizer

3.2. Smash product 69

of f and g and l is the embedding of I into W .

E

W <
l

<

jE

>

I
∨

∨

e

B

f

∨∨
g

If e splits, i.e. if there is an r such that e ◦ r = idI then we can prove that I ∼= E and
thus we are done. Now l ◦ e ◦ jE ∈ (HomW W) and therefore by definition of I we
know that l ◦ e ◦ jE ◦ l = l and as l is monic we get e ◦ (jE ◦ l) = idI which completes
the proof. �
This principle will be used frequently in this chapter for the smash product and the
coalesced sum (and is also needed for reflectivity proofs).

Note that the resulting definitions are “second-order-encodings” in analogy to the
definition of the logical connectives e.g. ∧ and ∨ which code their elimination rules
by quantification over the type of propositions, i.e. A ∧ B = ∀C:Prop. (A −→ B −→
C) −→ C or A ∨B = ∀C:Prop. (A −→ C) −→ (B −→ C) −→ C. Instead of Prop one
uses the category Dom and −→ will be replaced by some appropriate morphism type.
This analogy is well known and can be “abused” in system F and upwards compatible
systems to code free datatypes by polymorphic coding of their elimination scheme in
type Prop. [Luo90] strongly advocates that this is a philosophically unsound mixing of
datatypes and propositions (although it has a mathematically sound semantics). We
are not mixing things as our datatypes live in the universe Set.

3.2.2 Definition of the smash product

As already mentioned we define the smash product as a left adjoint constructed by
FAFT, substituting the category Dom for C.

A function of type A× B −→ C that is strict in both arguments is called Bistrict.
This can be expressed as an equalizer:

Definition 3.2.1 Let F,G : ΠA,B,C:Dom. (A × B −→ C) −→ (A× B) −→ C × C
be defined as follows: F AB C f x , (f(π1(x),⊥B), f(⊥A, π2(x))) and GABC f x ,
(⊥C ,⊥C). Then we define Bistrict , ΠA,B,C:Dom. {f ∈ A × B −→ C |F ABC f =
GABC f}. �

The idea for the smash product is to define it in a way that for any Bistrict map
A × B −→ C there is a unique strict map A ⊗ B −→ C such that the following

70 Chapter 3. Domain constructors for Σ-domains

diagram commutes:

A ×B p
> A ⊗B

C
∨
∃!f

>

where p denotes the pairing function for the smash product. This is not the “categorical
point of view” as we have different types of morphisms in our diagram. To put it
in category theory terms we make use of the isomorphism A −→⊥ B −→⊥ C ∼=
BistrictABC. So A × B

p−→⊥A ⊗ B shall be initial in A ↓ GB where GB(C) ,
B −→⊥ C. The underlying category is of course Dom.

Now the weakly initial object is ΠC:Dom. (BistrictABC) −→⊥ C. This leads us
to the definitions:

Definition 3.2.2 Define W , ΠA,B:Dom. (ΠC:Dom. (BistrictABC)) −→⊥ C. Let

p , λA,B:Dom. λu:A ×B. λC:Dom. λf :BistrictABC. f u.

By obvious calculation we see that p ∈ ΠA,B:Dom.BistrictAB (W AB). �

Definition 3.2.3 The smash product on Σ-domains is defined as follows:

⊗ , ΠA,B:Dom. {x ∈ W AB | ∀D:Dom. ∀u, v: (W AB) −→⊥ D.
(u ◦ p = v ◦ p)⇒ u(x) = v(x) }. �

First of all A⊗ B is a Σ-domain if A and B are:

Lemma 3.2.3 Let A,B ∈ Dom. Then A ⊗B is a Σ-domain too.

Proof: Let A,B ∈ Dom. First note that W AB is a Σ-domain as (BistrictABC) is
by virtue of the closure properties (Lemma 2.10.3). The condition

∀D:Dom. ∀u, v:W AB −→⊥ D. (u ◦ p = v ◦ p)⇒ u(x) = v(x)}
can be expressed as an equalizer of strict maps on Σ-domains, thus again by 2.10.3,
A⊗ B is a Σ-domain, too. �
Remark: Note that the least element of A⊗ B is necessarily

λC:Dom. λh:BistrictABC.⊥D.
Lemma 3.2.4 The pairing map p is in ΠA,B:Dom.BistrictAB (A⊗ B).

Proof: Let A,B∈Dom. As for all x ∈ A× B the condition

∀D:Dom. ∀u, v:(W AB) −→⊥ D. (u ◦ p = v ◦ p)⇒ u(p x) = v(p x)

trivially holds, the image of p is contained in A⊗B. The strictness in both arguments
stems from the fact that p is Bistrict. �
So we see that for the smash product pairing is easily definable. But also elimination
is no problem:

3.2. Smash product 71

Definition 3.2.4 Let A,B ∈ Dom. Then define the eliminator

elim⊗ , λA,B,C:Dom. λf :BistrictABC. λu:A⊗ B. uC f.

Obviously elim⊗ ∈ ΠA,B.C:Dom. (BistrictABC) −→ (A⊗ B) −→ C. �

It is an easy observation that by definition of elim⊗ the following elimination property
holds.

Corollary 3.2.5 For any A,B,C ∈ Dom, any f ∈ BistrictABC and any a∈A and
b∈B we have elim⊗ABC f (p a b) = f(a, b).

So elim⊗ is a map that fulfills the requirements of our diagram above, but still unique-
ness is missing. Therefore, the rest of this section is devoted to the proof of uniqueness
of elimination.

3.2.3 Uniqueness of elimination

We have already seen how uniqueness can be proved in Section 3.2.1 in the general
case. Therefore, we have to show that the smash product A ⊗ B is initial in the
category A ↓ GB mentioned above. This will be done in two steps. First, one shows
that the smash product is isomorphic to the initial object as constructed by the FAFT
3.2.2. Secondly, one has to prove FAFT for this special instance of the smash product.

Definition 3.2.5 Let C∈Dom and f, g : A⊗ B −→⊥ C. Then let

E f g , {x ∈ A⊗B | f(x) = g(x)}.

be the equalizer of f and g. �

As Σ-domains are closed under equalizers, E is a Σ-domain too.

Definition 3.2.6 We define some auxiliary maps:

I ism ∈ ΠA,B:Dom. A⊗B −→ W AB is the obvious embedding.

I psm ∈ ΠA,B:Dom.W AB −→ A⊗B is defined via the weak initiality of W AB,
i.e. psm , λA,B:Dom. λx:W AB. x (A⊗ B) p.

I for all A,B,C ∈ Dom and f, g ∈ A ⊗ B −→⊥ C let ixm denote the obvious
embedding E f g −→ A ⊗B.

I for all A,B,C ∈ Dom, f, g ∈ A ⊗ B −→⊥ C such that f ◦ (psm AB) ◦ p =
g ◦ (psm AB) ◦ p we define pxm , psm ◦ ism ∈ A⊗B −→ E f g. Attention: pxm
with codomain E f g is definable by definition of smash product if the mentioned
requirement is fulfilled. �

72 Chapter 3. Domain constructors for Σ-domains

In the following, for sake of readability we will omit the type parameters when they
are evident from the context. Pictorially we have the following situation:

E f g

W AB
psm

>
<
ism
<
A ⊗B

ixm

∨

∨∧
pxm

A ×B

p

∧

p sm
◦ p
>

C

f

∨∨

g

Remark: It is easy to see that psm and ism are strict.

Lemma 3.2.6 Let A,B ∈ Dom, x ∈ W AB. If ∀h:W AB −→⊥ W AB. (h◦p = p)⇒
h(x) = x then (ism ◦ psm)(x) = x.

Proof: ism ◦ psm is strict as both components are. Moreover, ism ◦ psm ◦ p = p is
trivial. �
Next we prove that A ⊗ B is indeed the initial object in the sense of the FAFT
construction 3.2.2.

Theorem 3.2.7 Let A,B ∈ Dom and x ∈ W AB, then

x∈A⊗ B iff ∀h : W AB −→⊥ W AB. (h ◦ p = p)⇒ h(x) = x .

Proof: Let us abbreviate W AB by W .
“⇒”: Assume h ∈ W −→⊥ W and (h ◦ p = p). Then simply instantiate in the
condition ∀D:Dom. ∀u, v : W −→⊥ W. (u ◦ p = v ◦ p) ⇒ u(x) = v(x) (which holds as
x ∈ A ⊗B) A ⊗B for C, h for u, and id for v.
“⇐”: Assume x ∈ W and ∀h:W −→⊥ W. (h ◦ p = p) ⇒ h(x) = x (∗). Let D ∈ Dom
and u, v ∈ W −→⊥ W and assume (u ◦ p = v ◦ p). We must prove that u(x) = v(x).
We trivially get u(ism(psm(x))) = v(ism(psm(x))) as psm(x) is itself in A⊗B, so by the
previous Lemma 3.2.6 and the assumption (∗) we are done. �

Corollary 3.2.8 psm ◦ ism = idA⊗B.

Proof: As ism is a mono we only have to prove ism ◦ psm ◦ ism = ism but this holds
because of the previous Theorem 3.2.7 setting h , psm ◦ ism. �
Now we prove that E f g and A⊗B are isomorphic, which tells us that f and g must
be equal.

3.2. Smash product 73

Lemma 3.2.9 Let A,B,C ∈ Dom. Let f, g ∈ A ⊗ B −→⊥ C. Further, assume
f ◦ (psm AB) ◦ p = g ◦ (psm AB) ◦ p. Then we have ixm ◦ pxm = idA⊗B.

Proof: Assume f and g satisfying the given requirements. By Corollary 3.2.8 and
the fact that ism is a mono, it suffices to prove for any x ∈ A ⊗ B that ism ◦ ixm ◦
pxm ◦ psm ◦ ism(x) = ism(x). But as ism ◦ ixm ◦ pxm ◦ psm is in W AB −→⊥ W AB and
ism(x)∈A⊗B 3.2.7 is applicable and it remains to show ism ◦ ixm ◦ pxm ◦ psm ◦ p = p
which holds by definition of the maps in use. �
Now the uniqueness Theorem:

Theorem 3.2.10 Let A,B,C ∈ Dom, f ∈ BistrictABC, then there exists a unique
map h ∈ A⊗ B −→⊥ C such that ∀x:A× B. h(p x) = f x.

Proof: Existence: Take elim⊗ABC f which is easily seen to be strict.
Uniqueness: Assume there are h and h′ that fulfill the requirement i.e. h(p x) = f x
and h′(p x) = f x for any x∈A × B. We must show h(x) = h′(x). One can apply
Lemma 3.2.9 for the maps h and h′ if one can prove that h ◦ p = h′ ◦ p. But by using
the assumptions this reduces to f x = f x which holds trivially. �
One can immediately deduce a principle for proving equality of two functions A ⊗
B −→⊥ C.

Corollary 3.2.11 Let A,B,C ∈ Dom and g, g ′ : A⊗B −→⊥ C. If ∀x:A×B. g(p x) =
g′(p x) then g = g′.

Proof: Apply the previous Theorem 3.2.10 with f instantiated by g ◦ p, which is
bistrict as p is bistrict and g is strict, to g and g ′. The premiss of Thm. 3.2.10 holds
since g ◦ p = g ◦ p holds trivially and g ′ ◦ p = g ◦ p by assumption. �

3.2.4 Disadvantages of the second-order encoding

We have seen how to prove equality of functions with a smash product as domain.
However, there is a price that we have to pay for the higher-order encoding of the
smash product. In general we cannot prove any more what in [Pau87] is called the
“exhaustion axiom”, i.e.

∀x:A ⊗B.¬¬((x = ⊥A⊗B) ∨ (∃u:A ×B. x = p u)).

Compare this to the result of [Str92b] where it is shown that polymorphic representa-
tions of free data structures contain (infinitely many) nonstandard (i.e. syntactically
not representable) elements. So e.g. for the Church numerals the induction principle
does not hold in the calculus of constructions (see loc.cit.).

Case analysis whether an element of a smash product is ⊥ is therefore impossible.
It is an open question how severe this disadvantage is in practice. For lazy datatypes
we can get round this problem by using the isomorphism A⊥ ⊗ B⊥ ∼= (A × B)⊥ and
A⊥⊕B⊥ ∼= (A+B)⊥, respectively. It could be a problem for strict datatypes like finite
lists. As long as the propositions that we wish to prove can be expressed as equalizers

74 Chapter 3. Domain constructors for Σ-domains

we can use the previous unique elimination theorem. Anyway, some further research
is necessary here.

There is another difference to the classical approach. One cannot prove

a 6= ⊥A ∧ b 6= ⊥D ∧ p(a, b) v p(x, y)⇒ a v x ∧ b v y

like axiomatized in LCF [Pau87]. This is only possible if the projections are definable
as bistrict functions which in turn requires that the test for being different from ⊥
must be r.e. The opposite direction, however, is provable:

Theorem 3.2.12 Let A,B ∈ Dom, x, x′ ∈ A and y, y′ ∈ B. If x v x′ and y v y′ then
p(x, y) v p(x′, y′).

Proof: Just by monotonicity as the ordering on binary products has been proved to
be pointwise. �

3.3 Coalesced sum

The coalesced sum of two domains is the sum where the two bottom elements are glued.
Dually to the smash product, the problems here are connected with the injection
functions. A naive definition of the coalesced sum A ⊗ B , {x ∈ A + B | (x 6=
inl(⊥A)) ∧ (x 6= inr(⊥B))}⊥ does not work, as it is not clear how the strict injections
inl′ and inr′ shall be defined. A case analysis would be necessary: if x = ⊥ then
inl′(x) , ⊥A⊕B else inl′(x) , up(inl(x)). But, for the same reasons as for smash
product, this is impossible. Fortunately, we can play the FAFT-trick again. Define
the coalesced sum as the left adjoint to the diagonal functor ∆ : Dom −→ Dom×Dom
that sends an object X to (X,X).

A ⊕B > C

(A,B) > ∆C

That means that any morphism from HomDom(A⊕B,C) corresponds 1-1 to a pair of
morphisms (HomDom(A,C),HomDom(B,C)) in the product category Dom ×Dom.

In the following, we present the development of the coalesced sum. As it will be
analogous to the smash product along the lines of the previous section, we will only
sketch the relevant parts and let the reader fill in the details (or inspect the Lego-code
of the implementation).

3.3.1 Definition of the coalesced sum

The idea is to define the coalesced sum in a way that for any pair of strict maps (f, g)
of type (A −→⊥ C,B −→⊥ C) there is a unique strict map h ∈ A ⊕ B −→⊥ C such

3.3. Coalesced sum 75

that the following diagram commutes:

(A,B)
(inl′, inr′)

> ∆(A⊕ B)

∆C
∨
∆h(f, g)

>

where inl′, inr′ denote the injections for the strict (or coalesced) sum. So

(inl′, inr′) : (A,B)−→⊥ ∆(A ⊕B)

shall be initial in (A,B) ↓ ∆.
Consequently, the weakly initial object is ΠC:Dom. (A −→⊥ C)×(B −→⊥ C) −→⊥

C. This leads us to the following definitions:

Definition 3.3.1 Let W⊕ , ΠA,B:Dom.ΠC:Dom. (A −→⊥ C) × (B −→⊥ C) → C
and

inl′ , λA,B:Dom. λa:A. λC:Dom. λh:(A −→⊥ C)× (B −→⊥ C). π1(h)(a),

inr′ , λA,B:Dom. λb:B. λC:Dom. λh:(A −→⊥ C)× (B −→⊥ C). π2(h)(b).

By a simply calculation one can show that inl′ ∈ A −→⊥ W⊕AB and inr′ ∈ B −→⊥
W⊕AB. �

Definition 3.3.2 Define the coalesced (or strict) sum as follows:

⊕ , ΠA,B:Dom. { x ∈ W⊕AB | ∀D:Dom. ∀u, v:(W⊕AB) −→⊥ D.
(u ◦ inl′ = v ◦ inl′)⇒ (u ◦ inr′ = v ◦ inr′)⇒ u(x) = v(x) } .

�

Now are the injections of the right type?

Lemma 3.3.1 The injections are of the following types:
inl′ ∈ ΠA,B:Dom. A −→⊥ A⊕ B and inr′ ∈ ΠA,B:Dom. B −→⊥ A⊕ B.

Proof: Let A,B ∈ Dom. W.l.o.g. consider inl′. For any a ∈ A the condition

∀D:Dom. ∀u, v:(W⊕AB)→⊥ D.
(u ◦ inl′ = v ◦ inl′)⇒ (u ◦ inr′ = v ◦ inr′)⇒ u(inl′(a)) = v(inl′(a))

holds trivially, hence the image of inl′ is contained in A⊕ B. Proceed analogously for
inr′. �
Attention: In the following we simply omit the proofs when they are simply the
analogue of the proofs for the smash product.

76 Chapter 3. Domain constructors for Σ-domains

Lemma 3.3.2 Let A,B ∈ Dom. Then A ⊕B is a Σ-domain, too.

Remark: Note that the least element of A⊕ B is necessarily

λD:Dom. λh:(A −→⊥ D) × (B −→⊥ D).⊥D.

The elimination for the coalesced sum can be defined as follows:

Definition 3.3.3 Let A,B ∈ Dom. Then define

elim⊕ , λA,B,C:Dom. λf :A −→⊥ C. λg:B −→⊥ C. λu:A ⊕B. uC (f, g).

Therefore elim⊕ ∈ ΠA,B,C:Dom. (A −→⊥ C) −→ (B −→⊥ C) −→ (A ⊕ B) −→ C.
�

An easy observation is that by definition of elim⊕ the following elimination properties
hold.

Corollary 3.3.3 For any A,B,C ∈ Dom, any f ∈ A −→⊥ C, any g ∈ B −→⊥ C,
any a∈A and b∈B we have

elim⊕ABC (f, g) (inl′a) = f(a) and elim⊕ABC (f, g) (inr′a) = g(b).

Moreover, elim⊕ABC (f, g) is strict.

So elim⊕ is indeed a map that fulfills the requirements of the commuting diagram
above. Just uniqueness is still missing. The rest of this section is devoted to the proof
of uniqueness of elimination.

3.3.2 Uniqueness of elimination

We have to show that the strict sum A ⊕ B is initial in the category (A,B) ↓ ∆
mentioned above. This will be done in full analogy to the smash product case. First,
one shows that the coalesced sum is isomorphic to the initial object as constructed by
the FAFT 3.2.2. Second, one has to prove FAFT for this special instance. Meanwhile
one should be familiar with the technique, so we simply give a picture and state the
main results. All the (boring) details can then be computed by pure analogy to the
smash product case.

Suppose now that we have two functions f, g : A ⊕ B −→⊥ C, then pictorially we

3.3. Coalesced sum 77

have the following situation:

E f g

W⊕AB
ps
>

<
is
<
A⊕ B

ix

∨

∨∧
px

<
ps

>
is
>
W⊕AB

A

∧
inl′

p s
◦ in

l′
>

B

∧
inr′

<

p
s ◦

inr ′

C

f

∨∨

g

The ix, px, ps, is are defined analogously to the smash product case.
Again one needs a characterization of elements in W⊕ in analogy to Theorem 3.2.7:

Theorem 3.3.4 Let A,B ∈ Dom and x ∈ W⊕AB. Then we have

x ∈ A ⊕B
iff

∀h:(W⊕AB) −→⊥ (W⊕AB). (h ◦ inl′ = inl′)⇒ (h ◦ inr′ = inr′)⇒ h(x) = x.

Now one can proceed like before for the smash product. Finally, one arrives at the
Uniqueness Theorem:

Theorem 3.3.5 Let A,B,C∈Dom, f ∈ A −→⊥ C and g ∈ B −→⊥ C, then there ex-
ists a unique h ∈ A⊕B −→⊥ C such that ∀a:A. h(inl′(a)) = f x and ∀b:B. h(inr′(b)) =
g b.

Proof: Existence: Take elim⊕ABC (f, g) which is strict.
Uniqueness: Assume there are h and h′ that fulfill the requirement i.e. h(inl′(a)) = f a,
h(inr′(b)) = g b and h′(inl′(a)) = f a, h′(inr′(b)) = g b for any a∈A and b∈B. We must
show h(x) = h′(x). One can apply the analogue to Lemma 3.2.9 for the maps h and
h′, provided that h ◦ ps ◦ inl′ = h′ ◦ ps ◦ inl′ and h ◦ ps ◦ inr′ = h′ ◦ ps ◦ inr′ hold. But by
virtue of the assumptions this reduces to f a = f a and g b = g b which hold trivially.
�
One can immediately deduce a principle for proving equality of two functions A ⊕
B −→⊥ C.

Corollary 3.3.6 Let A,B,C ∈ Dom and h, k ∈ A ⊕ B −→⊥ C. If ∀a:A. h(inl′ a) =
k(inl′ a) and ∀b:B. h(inr′ b) = k(inr′ b) then h = k.

Proof: Apply the previous Theorem 3.3.5 with (f, g) instantiated by (h◦ inl ′, h◦ inr′)
to h and k. The premiss of 3.3.5 holds since h ◦ inl′ = k ◦ inl′ and h ◦ inr′ = k ◦ inr′ by
assumption. �

78 Chapter 3. Domain constructors for Σ-domains

3.3.3 Disadvantages of the second-order encoding

Everything that was said in the context of the smash product is analogously true for
the coalesced sum. In general we cannot prove any more what in [Pau87] is called the
“exhaustion axiom”, i.e.

∀x:A⊕B.¬¬((x = ⊥A⊕B) ∨ (∃a:A. x = inl′ a)∨ (∃b:B. x = inr′ b)).

Therefore, the corresponding case analysis is again impossible. So for any A,B ∈ Dom
and any x, y ∈ A ⊕B we cannot prove

x v y iff

¬¬((∃a, a′:A. x = inl′(a) ∧ y = inl′(a′) ∧ a v a′)∨(∃b, b′:B. x = inr′(b) ∧ y = inr′(b′) ∧ b v b′))
like it is axiomatized in LCF [Pau87]. In analogy to the smash product this is only
possible if we can define a function A ⊕ B −→⊥ Σ that tells us whether an x ∈
A ⊕ B is a left or right injection. Consider the left injection: we know that the
map is left:A ⊕ B −→⊥ Σ is uniquely determined by two maps f : A −→⊥ Σ and
g : B −→⊥ Σ where g is constantly ⊥ and f yields > for any defined argument.
To make it strict, we must have f(⊥A) = ⊥, so again we cannot avoid the test for
being different from ⊥A. This test must be r.e. if we want to define f internally. One
direction, however, is provable:

Theorem 3.3.7 Let A,B ∈ Dom, x, x′ ∈ A and y, y′ ∈ B. If x v x′ then inl′(x) v
inl′(x′) and if y v y′ then inr′(y) v inr′(y′).

Proof: Simply by monotonicity. �
The coalesced sum is therefore a weak sum since elimination is only possible for Σ-
domains C and maps A −→⊥ C and B −→⊥ C. An arbitrary proposition does not
live in Dom. This is the usual drawback of second order encoded sums. By contrast,
the binary sum on Σ-cpo-s we have defined in Section 2.9.1 allows large elimination
by contexts of arbitrary type.

We can benefit from our experiences now for defining the separated sum.

3.4 The separated sum

The separated sum is the disjoint union of two domains with a common ⊥-element
pasted at the bottom. Therefore, the injections are not strict as those of the coalesced
sum. So sometimes the separated sum is called lazy sum. The separated sum is a bit
weird as it is not associative in general. This remarkable fact is already mentioned in
[Pau87]. We will soon explain this some more detail. But first let us enumerate the
three possibilities in order to define the separated sum.

1. Define the separated sum (as the strict sum) by a second-order encoding of
the universal property. The difference w.r.t. the strict sum in the definition of
W⊕ is that strictness of the functions is not necessary any more, i.e. W+ ,
ΠA,B:Dom.ΠC:Dom. (A −→ C)× (B −→ C) −→ C. The rest follows then by
analogy.

3.4. The separated sum 79

2. Define the separated sum of A and B via lifting as (A + B)⊥, where + means
the binary sum on Σ-cpo-s.

3. Define the separated sum of A and B as A⊥ ⊕B⊥.

The first idea (1) has the drawbacks we already mentioned before, e.g. there is no
exhaustion axiom. The same holds for (3) as there we use the strict sum which is
second order encoded. Notice that (2) and (3) are isomorphic since we can prove
(A + B)⊥ ∼= A⊥ ⊕ B⊥. Using (2), it can be more easily seen that the separated
sum is not associative in Dom. We would have to establish an isomorphism between
((A+ B)⊥ + C)⊥ and (A + (B + C)⊥)⊥. But the ⊥-s get in the way now. Obviously
up(inl(⊥)) should be sent to up(inr(⊥)) and that’s not possible by a monotone function.
As ⊥(A+B)⊥ v up(inl(a)), there cannot be a monotone h that sends up(inl(⊥(A+B)⊥))
to up(inr(⊥(B+C)⊥)) and up(inl(up(inl(a))) to up(inl(a)).

Thomas Streicher pointed out to me the following non-example: ((U+U)⊥+ (U+
U)⊥)⊥ and (U+ (U+ (U+U)⊥)⊥)⊥ viewed as binary trees are not isomorphic.

To conclude this section we give a proof of the isomorphism between (A+B)⊥ and
A⊥ ⊕B⊥.

Theorem 3.4.1 For any A,B ∈ Dom the Σ-domains (A + B)⊥ and A⊥ ⊕ B⊥ are
(internally) isomorphic in Dom.

Proof: Define β : (A +B)⊥ −→⊥ A⊥ ⊕B⊥ as follows

β , (lift(S elim(inl′ ◦ up)(inr′ ◦ up))).

Its inverse β−1 : A⊥ ⊕ B⊥ −→⊥ (A+ B)⊥ is defined

β−1 , elim⊕(lift(up ◦ inl))(lift(up ◦ inr)).

We have to show that β and β−1 form an iso pair. For the “⇒” direction we prove that
β−1(βx) = x for any x ∈ (A+ B)⊥ by a nested case analysis (x = ⊥) or (x = inl(a))
for some a∈A or (x = inr(b)) for some b∈B. For the inverse “⇐” direction we have to
show that β ◦ β−1 = idA⊥⊕B⊥ . As β ◦ β−1 is easily seen to be strict (and the identity
is strict anyhow) applying Theorem 3.3.6 it remains to prove that β(β−1(inl′(x))) =
inl′(x) and β(β−1(inr′(y))) = inr′(y) for any x∈A⊥ and y∈B⊥. This can be shown by
straightforward computation and case analysis whether x is ⊥A⊥ or up(a) for some
a∈A and similarly for y (case analysis is possible as equality is ¬¬-closed). �

80 Chapter 3. Domain constructors for Σ-domains

11 4 “Domain theory is not one monolithic theory, but
there are several different kinds of

constructions giving classes of domains
appropriate for different mixtures of

constructs. The story is, in fact, far from
finished even today.”

Carl Gunter and Dana Scott,
“Semantic Domains” [GS90]

Recursive Domains in SDT

Semantics of recursive domains was the main motivation for Dana Scott and all his
followers to “invent” domain theory (see e.g. [GS90, AJ95, Gun92, Win93]). The
solution of recursive domain equations like the famous D ∼= D → D and the possibility
to interpret recursively defined functions on such domains is the heart of denotational
semantics for functional languages. With the solution of this equation Scott gave a
model for the untyped λ-calculus against his earlier expectations. For a good historical
survey of this matter the reader is referred to the preface of [Sco93].

Domain equations can be elegantly expressed as functors in the category of the
domains of interest. But why are categories and functors so appropriate? Plotkin
pointed out the similarity between the construction of a recursive function and a re-
cursive domain nicely in [Plo83, p. 44] calling it the “grand analogy”. One simply
generalizes by the analogy between quasi-orders (which is an order less antisymmetry)
and categories (reflexivity corresponds to the identity map and transitivity to compo-
sition). A monotone function becomes now a covariant functor, as it preserves identity
and composition, hence the “(quasi)order”. Covariant means, that if f : X −→ Y then
F (f) : F (X) −→ F (Y). However, this is not sufficient to solve the challenging equa-
tion D ∼= D → D as it is not representable by a covariant functor. Since it contains
positive and negative occurrences of D, one says the functor is mixed-variant. It was
Scott’s ingenious idea to make it covariant by introducing the idea of approximation.
That means that not any map X −→ Y represents the (quasi)order, but only those
maps that really “extend” X in a sense that Y contains more information. Consider
only maps e : X −→ Y for which there is also a map p : Y −→ X such that p◦e = idX ,
i.e. such that e(x) has the same information as x and (e ◦ p)(y) v y for any y ∈ Y , i.e.
there is a best approximation p(y) of any y ∈ Y in X . Such a pair 〈e, p〉 is called an

81

82 Chapter 4. Recursive Domains in SDT

embedding-projection-pair. Given an e : X −→ Y for the example equation, one can
define F (e)(h ∈ X −→ X) , e ◦ h ◦ p ∈ Y −→ Y as a covariant functor. So in the
category of domains with embedding-projection-pairs as morphisms one can maintain
the analogy outlined above. To complete the picture, the ⊥ corresponds to the initial
object 1 of the category and the supremum of an ascending chain can be regarded
in the generalized categorical setting as the limit of the corresponding diagram (in
the category of embedding-projection-pairs). All that remains is just to ensure the
existence of these limits.

Finally to get the solution for a functor F one builds the “generalized Kleene-
chain”, i.e. the diagram ∆ the objects of which, called Dn, are the F n(1) and the
morphisms fnm : Dn −→ Dm are the corresponding compositions of embeddings and
projections, respectively. Then F (lim ∆) = lim ∆ as with the construction of least
fixpoints. This works only when F is locally continuous, i.e. its morphism part is
Scott-continuous. Fortunately, in the synthetic approach we don’t have to bother with
continuity as we have already proved that any function is continuous.

Category theory turned out to be indeed useful for this sort of construction as it
abstracts away from unnecessary details and reveals the essential concepts and condi-
tions that are necessary to make the construction go through. The general category-
theoretic construction of solutions for domain equations by the so-called inverse limit
construction is due to Plotkin&Smyth [SP82]. In fact it doesn’t matter whether to
take limits (of projections) or colimits (of embeddings) as there is the well-known
limit-colimit-coincidence.

In the LCF system, recursive domains are simply introduced by the isomorphism
pair called ABS and REP which represent the solution of the corresponding domain
equation for a functor (that is composed of the predefined domain constructors). Ad-
ditionally, for deriving structural induction from fixpoint induction there is another
axiom that states that the fixpoint of the so-called copy functional is the identity, where
the copy-functional is λh. ABS ◦ F (h) ◦ REP. A simple-minded user who just wants to
use domain theory might not complain, but a sophisticated user wants to know the
reason for equating the fixpoint of the copy functional and the identity. Already Re-
gensburger [Reg94, p. 229] emphasized that the motivation for the copy functional was
missing even in the LCF literature (e.g. [Pau87]). We agree on this and do not follow
LCF because this would contradict our objective to develop a relevant part of domain
theory logically, simply based on a minimal number of low-level axioms.

Some very basic category theory is important for the inverse limit and the domain
equations. It is briefly reviewed in the first section of this chapter.

In the remaining two sections we shall construct the inverse limit and prove the
existence of solutions for domain equations in the category of Σ-domains with strict
maps. In contrast to the work of [Reg94, Age94] this is indeed possible as in a depen-
dently typed language one can express things like functors and diagrams and so on.
Since the constructions and proofs of this chapter are to a large extent well-known in
the literature, we will keep the presentation rather short. Yet, it should be mentioned
that the concrete realization in the internal language is more complicated than the ex-
ternal proofs. This has to do with intensional equality of type theory and is discussed
more carefully in Sect. 7.4.4. The formulation of the conditions for the existence of

4.1. Basic categorical definitions 83

inverse limits might be new; it is taken from a lecture of Thomas Streicher in 1994
(already cited in [Reg94]). The proof is therefore divided into two parts. In the second
section a condition for the existence of solutions is given that abstracts from the real
construction of the inverse limit. The properties of solutions of domain equations are
also discussed. It is already mentioned in [Plo83] that one can abstract the property
of being a prefixed-point for a functor F by the category theoretical notion of an F -
algebra which is an embedding. A pair 〈D,α〉 is called an F -algebra if α : F (D) −→ D.
Because a least fixpoint is the initial prefixed-point, one gets a characterization of the
solution as initial F -algebra. An equivalent characterization is that the copy-functional
λh. α ◦F (h) ◦α−1 is the identity. The latter is quite remarkable as it does not quantify
over all objects of the category of F -algebras. Hence, languages that, unlike ours, are
not rich enough to express the inverse limes construction [Pau87, Reg94], have access
to the formulation of recursive domains via the second characterization.

The work of Peter Freyd on algebraically complete and compact categories [Fre92,
Fre90] gives even more insight. A category is called algebraically complete if initial
F -algebras exist, if also terminal F -coalgebras exist, it is called bicomplete. An alge-
braically bicomplete category is called compact if for any F the initial F -algebra and
the terminal F -coalgebra are isomorphic. The initial/terminal algebra is then referred
to as free F -algebra. From the initial/terminal property one can deduce induction and
coinduction principles. A bifunctor representing a mixed-variance functor is a functor
with two arguments, one represents the contravariant, the other the covariant occur-
rences of the argument. For mixed-variant functors represented as bifunctors there
is the appropriate notion of free F -dialgebras. We will exploit these concepts for our
solution by the inverse limit. Freyd’s ideas seems to be a key point for axiomatic
domain theory (ADT). As ADT is simply interested in axioms that guarantee “good”
behaviours of domains, it seems to be reasonable to require that the category of do-
mains in question is algebraically compact. In fact, most axiomatic approaches use
it.

In the third section finally we complete our program and construct the inverse limit
in the category of Σ-domains with strict maps Dom. Thus we fulfill the (abstract)
sufficient conditions for the existence of solutions stated in the first section for the
concrete category Dom. Moreover, the result does not only guarantee existence it also
constructs the recursive domains.

4.1 Basic categorical definitions

Since we want to present the inverse limit construction in its full generality and not in
the special case of the category Dom, we are forced to add an internal notion of functor
to the internal notion of category of Definition 3.1.3. So the inverse limit construction
and its proofs might be reused for other categories of interest fulfilling the premisses.
The concept of functors is also needed for defining recursive domain equations. As
already mentioned, in a non dependently typed language, categories and functors are
not definable as syntactic objects. It is well known that for a category C a mixed
variant functor F :C −→ C can be expressed as a covariant functor on the product

84 Chapter 4. Recursive Domains in SDT

category Cop × C, i.e. F : Cop × C −→ C. The morphism part of F will therefore act
like exemplified in the diagram below:

A B F (A,B)

F
>

C

∧

f

D
∨
g

F (C,D)
∨
F (f, g)

Freyd calls these bifunctors [Fre90].
This leads us to the definition of internal mixed-variant functors.

4.1.1 Definition of mixed-variant functors

Definition 4.1.1 We define:

Func Struct , λC,D : Cat.
∑

ob part:ObC −→ ObC −→ ObD .
ΠA,B,C,D:ObC. (HomC A)→ (HomBD)
→ (Hom (ob partAB) (ob partC D))

Func , λC,D : Cat. { (ob part,mor part) ∈ Func Struct C D |
∀A,B:ObC . (mor part (idA) (idB)) = id (ob partAB) ∧
∀A,B,C,D,E, F :ObC .

∀f :(HomCA). ∀g:(HomBD). ∀h:(HomEC). ∀k:(HomDF).
(mor part h k) ◦ (mor part f g) = mor part (f ◦ h)(k ◦ g) }

So Func denotes the type of internal functors. �

Notation: If F ∈ Func C D we denote the projections Fo and Fm and we will omit the
subscripts if it is clear from the context whether the object or morphism part of the
functor is meant. In applications of the morphism part we omit the object arguments
as they are uniquely determined by the types of the other arguments.

Covariant functors are a special case where the first argument of the object and
morphism part of F is dummy.

Definition 4.1.2 We define:

coFu Struct , λC,D:Cat.
∑

ob part : ObC −→ ObD .
ΠB,D:ObC . (HomBD) −→ (Hom (ob partB) (ob partD))

CoFunc , λC,D : Cat. { (ob part,mor part) ∈ coFu Struct C D |
∀B:ObC . mor part (idB) = id (ob partB) ∧
∀B,D, F :ObC . ∀g:(HomBD). ∀k:(HomDF).

(mor part k) ◦ (mor part g) = mor part (k ◦ g) } .

So CoFunc denotes the type of internal covariant functors. �

4.1. Basic categorical definitions 85

Notation: If F ∈ CoFunc C D let us again write Fo and Fm for the projections and
omit the subscripts if it is clear from the context whether the object or morphism part
of the covariant functor is meant. Again the object arguments of the morphism part
are usually omitted.

Of course any covariant functor can be turned into a functor:

Definition 4.1.3 Let C,D be categories and F ∈ CoFunc C D a covariant functor.
Then define coFu 2 Fu ∈ CoFunc C D −→ Func Struct C D via coFu 2 Fu(F) ,

(λX, Y :ObC . Fo(Y) , λA,B, C,D:ObC . λf :(HomC A). λg:(HomBD). Fm(g))

It can be easily shown that the target domain of coFu 2 Fu really is Func C D. �

4.1.2 Extending some constructors to functors

If we want to code domain equations by the above notion of functor, then we have to
ensure that all our domain constructors defined so far extend to functors. This is an
easy exercise and left to the reader. We just give the defining parts of those functors
we need in the example of Chapter 5, i.e. lifting, product and forgetful functor.

Definition 4.1.4 The following internal functors can be defined:

I The forgetful functor U ∈ CoFuncDom Cpo with object part U(X) , X and
morphism part U(f) , f where f ∈ A −→⊥ B.

I For any C ∈ Cpo the product functor C × () : CoFunc Cpo Cpo with object part
C×() (A) , C×A and morphism part C×() (f) , λx:C×A. (π1(x), f(π2(x)))
for f ∈ A −→ B.

I The lifting functor Lift ∈ CoFunc CpoDom with object part Lift(A) , A⊥ and
morphism part Lift(f) , upB ◦ liftAB f where f ∈ A −→ B.

�

To put functors together we need that composition of functors yields a functor again:

Definition 4.1.5 Let C,D, E be arbitrary categories and assume covariant functors
F ∈ CoFunc C D and G ∈ CoFuncDE then then object part of the composition
λA:ObC . G(F (A)) extends to a functor with morphism part

λX, Y :ObC . λf :(HomX Y). G(F (f)).

We simply write the composition of the functors G ◦ F . �

86 Chapter 4. Recursive Domains in SDT

4.1.3 Miscellaneous

Some more definitions of internal category theory are necessary. As already mentioned,
for the solution of domain equations the category under investigation has to have some
more structure. We will define what Streicher calls a strict cpo-enriched category.

Definition 4.1.6 A category C is called strict cpo-enriched iff

∀A,B:ObC . dom(HomAB) ∧
∀A,B,C:ObC . ∀f :(HomAB). ∀g:(HomBC). g ◦ ⊥HomAB = ⊥∧

⊥HomBC ◦ f = ⊥.

�

So the homsets of a strict cpo-enriched category are Σ-domains and the composition
map is left and right-strict. This is similar to the definition of a cpo-category in the
literature (cf. [Fre90]) but note that we do not have to claim that the composition is
continuous as we are working in SDT, where any map is continuous !

Also initial and terminal objects of categories C ∈ Cat can be expressed internally:

Definition 4.1.7 Let C ∈ Cat then an object X ∈ ObC is called initial if the condition
∀A:ObC . ∃!f :(HomX A) holds. It is called terminal if ∀A:ObC . ∃!f :(HomAX). It is
called a biterminator (or zero-object) if it is initial and terminal. �

Of course, we will also need to say what an embedding-projection-pair is:

Definition 4.1.8 Let C ∈ Cat. Let A,B ∈ ObC and e∈(HomAB) and p∈(HomBA).
Then (e, p) is called an embedding-projection-pair if (p ◦ e = idA) ∧ (e ◦ p v idB). �

Lemma 4.1.1 For an embedding projection pair the projection is uniquely deter-
mined by the embedding and vice versa.

Proof: Easy and along usual lines. �
This is all of internal category theory we need.

4.2 Solving recursive domain equations

The problem of finding a solution of a recursive domain equation in a category C (e.g.
D ∼= D → D in a certain category of domains) can be reduced to the problem of
finding a fixpoint for the endofunctor F ∈ Func C C, i.e. an object A ∈ C such that
F AA ∼= A. The terms category and functor are always understood in the internal
sense throughout this section. For the untyped λ-calculus example the object part of
F is λX, Y :ObC . X −→ Y . Of course, one has to verify that −→ gives rise to a functor
in the style of Section 4.1.2.

The inverse limit construction is carried out as in [SP82], however, in a parame-
terized way that Thomas Streicher presented in a lecture at the Ludwig-Maximilians-
University in the winter term 1993/1994 (also used in [Reg94]).

The main theorem:

4.2. Solving recursive domain equations 87

Theorem 4.2.1 (Inverse Limit) Let C be a category that has the following properties:

1. C is a strict-cpo-category.

2. C has a biterminator O.

3. For any diagram D:N −→ ObC and for any sequence of embedding-projection
pairs, called embedding-projection-chain,

(en:Dn −→ Dn+1, pn:Dn+1 −→ Dn)n∈N

there is an object D ∈ ObC and an embedding-projection-chain

(in:Dn −→ D, qn:D −→ Dn)n∈N

such that
in+1 ◦ en = in and (

⊔

n

in ◦ qn) = idD.

Then any endofunctor F ∈ Func C C has a fixpoint A ∈ ObC such that there is an
isomorphism α∈(Hom (F AA)A) and fix (λh:(HomAA). α ◦ F hh ◦ α−1) = idA.

Proof: Before we discuss the proof observe that it is easily shown that in+1 ◦en = in
in (3) implies pn◦qn+1 = qn by Lem. 4.1.1. Therefore λn:N. in◦qn is indeed an ascending
chain. The requirements of (3) correspond to the condition that (D, (in)n∈N) forms a
colimit cone of the embeddings en. More exactly, the condition in+1 ◦ en = in ensures
that it is a co-cone, pictorially

Dn
<

pn

en
>
Dn+1

D
<

i n+
1

<

q
n

D′
∨
θ

<

i′ n
+

1

<

q ′n
and (

⊔
λn:N. in ◦ qn) = idD states that the mediating arrow of (D, in) into any other

co-cone is unique. To see this, assume there is another co-cone (D′, i′n) and θ is me-
diating; then θ = θ ◦ id = θ ◦ ⊔ (in ◦ qn) =

⊔
(θ ◦ in) ◦ qn =

⊔
i′n ◦ qn which does not

depend on θ. To show existence, prove that
⊔
n i
′
n ◦ qn is indeed mediating (use the

fmn : Dm −→ Dn, for details see e.g. [Plo83, Pau87]).
For the proof of the theorem construct the diagram and the embedding-projection
chain (en, pn) (mutually) inductively:

D0 , O and Dn+1 , F DnDn

88 Chapter 4. Recursive Domains in SDT

e0 , ⊥HomO(F OO) and en+1 , F pn en
p0 , ⊥Hom(F OO)O and pn+1 , F en pn

By assumption (3) there exists a colimit (D, in) for this diagram. If F is locally contin-
uous then the universal property of (D, (in)n∈N) carries over to (F DD, (F qn in)n∈N),
so D and F DD are isomorphic. Since we have not formalized universal properties and
limits in our internal language we have to define the isomorphism α =

⊔
in+1◦(F in qn)

and its inverse α−1 =
⊔

(F qn in) ◦ qn+1 explicitly and then check that it really is an
iso-pair (for proofs see [Pau87, Reg94] or the Lego-code).
It remains to prove that the fixpoint (alias invariant object) is minimal invariant (in the
terminology of [Fre90]). Therefore consider fix (λh:(HomDD). α◦(F hh)◦α−1) =

⊔
hn

where hn is the corresponding inductively defined Kleene chain. By induction it can
be shown that hn = in ◦ qn and so fix (λh:(HomDD). α ◦ F hh ◦ α−1) = idD. �
Note that we can forget about the usual requirement that the functor F must be locally
continuous as in our setting any map is continuous, and therefore also the morphism
part of F .

In the literature the isomorphism α is often called ABS for abstraction map and
the inverse α−1 is called REP for representation map. That means α corresponds to
the constructors of the recursive domain whereas α−1 corresponds to the destructors.
This will become clearer when working on a concrete example (cf. Chapter 5).

The minimality condition is quite important “for quite two reasons: First such
minimal solutions to domain equations turn out to be unique up to isomorphisms.
. . . Secondly, such minimal solutions are needed to ensure denotational semantics of
programming language expressions are computationally adequate for their operational
behaviour [Pit93a, p. 6]”.

Next we want to show that the solution constructed by the inverse limit is the
free F -dialgebra. Therefore we use Freyd’s proof that an F -invariant object is a free
F -dialgebra if and only if it is minimal [Fre90]. A dialgebra (A, α, α−1) is called free
iff for any other F -dialgebra (B, f, g) there are unique morphisms u : (HomAB) and
v : (HomBA) such that the following diagrams commute.

F AA
α

> A F AA <
α−1

A

F BB

F v u

∨
f

> B
∨
u

F B B

F u v

∧

<
g

B

∧

v

So (A, α) is the initial F -algebra and (A, α−1) is the terminal F -coalgebra. This
Characterization Theorem is expressed in our internal language as follows:

Theorem 4.2.2 Let C be a strict-cpo-category and F ∈ Func C C an endofunctor
which has a fixpoint A with isomorphism α : (Hom (F AA)A). Then

fix (λh:(HomAA). α ◦ (F hh) ◦ α−1) = idA

4.3. The inverse limit in the category of Σ-domains and strict maps89

holds iff for any B∈ObC , any f∈(Hom (F BB)B) and g∈(HomB (F BB)) there exist
unique u ∈ (HomAB) and v ∈ (HomBA) such that u ◦α = f ◦ (F v u) and α−1 ◦ v =
(F u v) ◦ g.

Proof: Along usual lines. We just sketch the construction:
“⇒”: For given dataB, f and g construct u and v as follows. Let h be the Kleene-chain
for λh:(HomAA). α ◦ (F hh) ◦ α−1 and a the Kleene chain for

λh:(HomAB)× (HomBA). (f ◦ (F π2(h) π1(h)) ◦ α−1, α ◦ (F π1(h) π2(h)) ◦ g).

Let x ,
⊔
a, u , π1(x), and v , π2(x). It’s obvious that they make the above

diagrams commute. For uniqueness assume a pair of functions u′ and v′ that make the
diagrams also commute. Then (u′, v′) = (u′ ◦ idA, v′ ◦ idB) = (u′ ◦⊔ hn, v′ ◦

⊔
hn) =

(
⊔
u′ ◦ hn,

⊔
v′ ◦ hn) =

⊔
n (u′ ◦ hn, v′ ◦ hn) =

⊔
n a. The last equation is valid since

one can show by induction that ∀n:N. (u′ ◦ hn, v′ ◦ hn) = an.
The “⇐” direction is easy, since (u, v) with the given properties forms a solution of the
copy functional, which by assumption must be then unique and therefore the identity.
�
Note that there is a variant of this proof in [Pit93a] using Plotkin’s Lemma such that
the induction mentioned for the uniqueness proof can be avoided.

4.3 The inverse limit in the category of Σ-domains

and strict maps

Having set up the general theorems of the previous section one can now proceed to
instantiate the inverse limit construction for functors on the special category Dom of
Σ-domains with strict maps.

4.3.1 Solution of recursive domain equations in Dom
We shall prove the existence of minimal solutions for recursive domain equations in
Dom :

Theorem 4.3.1 Let F ∈ FuncDomDom be an endofunctor in Dom. Then there
exists an object A ∈ Dom = ObDom and an isomorphism α∈(Hom (F AA)A) such
that

fix (λh:(HomAA). α ◦ F hh ◦ α−1) = idA ,

i.e. A is the minimal solution of F .

Proof: By the Inverse Limit Theorem 4.2.1 we only have to prove the required three
conditions on Dom:

1. Let D,E ∈ Dom = ObDom. It is by 2.10.3(vi) that (HomDE) = D −→⊥ E is
again a Σ-domain. It is easy to convince oneself that the composition is left- and
right-strict.

90 Chapter 4. Recursive Domains in SDT

2. The biterminator is U which by 2.10.1 is a Σ-domain. For showing that it is
initial/terminal the usual proof works.

3. This is the difficult part. The proof is very technical and can again be found in
e.g. [Plo83, Pau87]. We roughly sketch the main points: Let D be a diagram in
Dom and (e, p)n an embedding-projection-chain. As usual one defines a mapping
fn,m:D(n) −→ D(m) for n,m ∈ N in the following way:

fn,m ,

em−1 ◦ . . . ◦ en if n < m
idD(n) if n = m
pm ◦ . . . ◦ pn−1 if n > m

Moreover, define A , {x ∈ Πn:N. Dn | ∀n:N. pn(x(n + 1)) = x(n)} which is a
Σ-domain as Σ-domains are closed under arbitrary products and equalizers (cf.
Theorem 2.10.3). Define qn(x) , x(n) and in(x) , λm:N. fn,m(x). Prove that
in is well-defined, i.e. in(x) ∈ A, that in, qn are strict, and that (in, qn) forms
an embedding-projection-pair. Now qn ◦ in = idD(n) is immediate because of the
definition of fn,n. On the other hand, for showing in ◦ qn v idD(n), one proves by
induction on n and m that fn,m ◦ qn v qm (*).
Next in+1 ◦ en = in is verified via case analysis whether n ≤ m. Consequently,
one has to prove that fn,m = fn+1,m ◦en if n ≤ m and fn+1,m = fn,m ◦pn if n 6≤ m.
Finally

⊔
n in ◦ qn = idD is valid if

⊔
n fn,m ◦ qn = qm for all m ∈ N. But on

one hand we have
⊔
n fn,m ◦ qn v qm because of (*) and on the other hand

qm v
⊔
n fn,m ◦ qn holds since qm = fm,m ◦ qm v

⊔
n fn,m ◦ qn.

�
Accordingly to the previous section it can also be shown that the solutions in Dom are
free dialgebras. In order to do that, one simply has to instantiate the characterization
Theorem 4.2.2. The premisses of this theorem are already derivable from the preceding
Theorem 4.3.1.

We have seen how to express and solve single domain equations in Dom inside our
(internal) language. The treatment of simultaneous domain equations is not discussed
here. One has to use Bekic’ Lemma for handling complex systems of domain equations.

4.3.2 Structural induction

Paulson seems to be the first who derived structural induction over inductive (i.e. pos-
itive recursive) types using the fixpoint induction rule [Pau87, page 126 ff.]. However,
one must spend an extra axiom for every recursive type, the so-called reachability rule.
It states that the copy functional on the domain under investigation is the identity.
To prove ∀d:D.P (d) for any domain D and any predicate P over D it suffices then to
show ∀d:D.P ((fix copy functional)(d)) and then fixpoint induction is applicable.

Since the minimal solution of a domain equation F (X,X) ∼= X is the free F -
algebra, we can prove structural induction directly without any more assumptions for
a contravariant functor F .

4.3. The inverse limit in the category of Σ-domains and strict maps91

Theorem 4.3.2 (Structural induction for covariant functors)
Let F ∈ CoFuncDomDom be a covariant endofunctor, P∈D → Prop a ¬¬-closed
admissible predicate on the solution D of F (X) ∼= X . The domain D exists by The-
orem 4.3.1 with isomorphism α∈(HomF (D)D). Further assume that P (⊥D) holds.
Now the set P ′ , {x ∈ D |P (x)} with the embedding ι:P ′ � D is a Σ-domain again
(by 2.10.3).
If there exists a morphism β∈(HomF (P ′)P ′) such that ι ◦ β = α ◦ F (ι), then P is a
tautology, i.e. ∀x:D.P (x).

Proof: By assumption we get the following commuting squares

F (A)
α

> A

F (P ′)

F (u)

∨
β

> P ′
∨
∃!u

F (A)

F (ι)

∨ α
> A
∨
ι

The unique morphism u exists because (A, α) is the initial F -algebra by Theorems 4.2.2
and 4.3.1. To show ∀x:D.P (x) it suffices to prove that ι is an isomorphism. As it is
obviously a mono, it remains to show ι ◦ u = idA. Since the outer square commutes,
α ◦ F (ι ◦ u) = ι ◦ u ◦ α holds. So by initiality of (A, α) it follows that ι ◦ u must
necessarily be idA. �
So we have proved the structural induction principle for inductive Σ-domains uni-
formly. Therefore, one can derive the corresponding structural induction rule (that
mentions the concrete constructors instead of the abstract α) for any concrete do-
main equation simply by expanding the concrete functor. The existence of a β with
the required properties just means that the constructors “preserve” the property P .
In Section 5.1 it is demonstrated how things look like when working with a concrete
functor.

4.3.3 Inductive and co-inductive definitions

Functions on recursive domains can be defined by using general recursion (fix). An
alternative way is to define certain recursive schemes, which can be arbitrarily instanti-
ated. Properties of these schemes need only be proved once, and can then be repeatedly
instantiated. The inductive and co-inductive definition schemes are presented in this
subsection.

Theorem 4.3.3 Let F ∈ CoFuncDomDom be a covariant endofunctor on Dom, let
X be the minimal solution of F with isomorphism α ∈ (HomF (X)X). Then for any
A ∈ Dom and g ∈ (HomF (A)A) there is a unique morphism h ∈ (HomX A) such that
h ◦ α = g ◦ F (h).

92 Chapter 4. Recursive Domains in SDT

Proof: Just use the fact that the minimal solution X is the initial F -algebra.

F (X)
α

> X

F (A)

F (h)

∨
g

> A
∨
h

�
Analogously one gets a co-inductive definition principle:

Theorem 4.3.4 Let F ∈ CoFuncDomDom be a covariant endofunctor on Dom, let
X be the minimal solution of F with isomorphism α : (HomF (X)X). Then for any
A ∈ Dom and g ∈ (HomAF (A)) there is a unique morphism h ∈ (HomAX) such that
α−1 ◦ h = F (h) ◦ g.

Proof: Just use the fact that the minimal solution X is the terminal F -coalgebra.

A
g
> F (A)

X

h

∨
α−1

> F (X)
∨
F (h)

�
Pitts has presented a very appealing general framework for relations on recursive do-
mains [Pit93a, Pit93b] such that a lot of examples fit into it. One useful result is, that
induction and co-induction can be derived from one and the same rule. We are not
going to treat co-induction in this thesis – for the lack of space, yet we don’t see any
problem to express it in our axiomatization. Basically, Pitts transfers Freyd’s work on
mixed initiality/finality to relations on recursive domains.

11 5 “Example is always more efficacious than
precept.” Samuel Johnson,

Rasselas (1759), ch. 29

Program Verification in SDT — an
example

Synthetic Domain Theory is appropriate for formal program verification. This is
demonstrated in this chapter by an example which is carried through on top of the ax-
iomatization developed so far. We define recursively the streams over natural numbers
and derive all necessary induction principles: fixpoint induction, structural induction,
induction on the length of streams. The last one is important for proving that the
Sieve of Eratosthenes, defined as an endofunction on streams, is correct. So we try to
demonstrate that program verification in an LCF [Pau87] or HOLCF [Reg94] style is
possible in SDT.

We have chosen the Sieve of Eratosthenes since it deals with recursive types, the
streams over natural numbers, i.e. an infinite datatype. The correctness proof is not
too difficult but far from being trivial. This example has been implemented in Lego
as the previous chapters, such that to the author’s knowledge this is the first “real”
complete and formal verification of a program in SDT.

At the end of this chapter we are going to stress some problems with admissibility
which occur due to intuitionistic logic and compare this to LCF.

5.1 Streams over N
Let us apply the theorems about recursive Σ-domains proved in the previous chapters
to construct a theory of streams over natural numbers.

The type Stream is the solution of the equation

Stream ∼= (N× Stream)⊥

93

94 Chapter 5. Program Verification in SDT — an example

Note that there is some implicit type conversion going on here: N is a Σ-cpo (cf.
Lem. 2.9.19) so × refers to binary products of Σ-cpo-s and Stream is viewed on the
right side as a Σ-cpo. Of course, lifting yields a Σ-domain again. Therefore, one is
forced to introduce coercion maps for the formalization in a system without subtypes
as Lego.

In Section 4.1.2 we have shown that the forgetful functor U ∈ CoFuncDom Cpo is
covariant, that taking the product with a fixed cpo is a covariant functor Cpo −→ Cpo
and lifting is a covariant functor. Moreover, composition (◦) of covariant functors
yields a covariant functor.

Definition 5.1.1 Let FS , Lift ◦ (N×) ◦ U ∈ CoFuncDomDom. �

The functor FS is covariant by Proposition 4.1.2.

Lemma 5.1.1 There is a Σ-domain, which will be called Stream henceforth, such that

Stream ∼= FS(Stream)

with isomorphisms

dec : (Hom Stream FS(Stream)) and cons : (HomFS(Stream) Stream).

Stream is the minimal solution for FS .

Proof: Apply Theorem 4.3.1 to the functor coFu 2 Fu(FS). �

5.1.1 The basic stream operations

In this subsection the most primitive stream operations shall be defined.

Definition 5.1.2 The operation append : N −→ Stream −→ Stream is defined as

λn:N. λs:Stream. cons(upN×Stream (n, s)).

The tail and head of non-empty streams are computed by the following operations:

hd , Lift(π1) ◦ dec ∈ (Hom StreamN⊥)

and

tl , Lift(π2) ◦ dec ∈ (Hom Stream Stream⊥).

Both operations are morphisms in Dom. �

Lemma 5.1.2 For any n ∈ N and s ∈ Stream it holds that

hd (append n s) = n and tl (append n s) = s.

5.1. Streams over N 95

Proof: Easy by using the definition of append and Lift and the fact that dec and
cons are an iso pair. �
Instead of using general recursion one can also derive inductive and co-inductive defi-
nition principles.

Corollary 5.1.3 There is a function

ind def ∈ ΠA:Dom. (HomFS(A)A) −→ (Hom StreamA)

such that for any A ∈ Dom, g ∈ (HomFS(A)A), n ∈ N, and s ∈ Stream it holds that

ind defA g (append n s) = g (upN×A(n, ind defAg s)).

Proof: Instantiate the general inductive scheme of Theorem 4.3.3 with FS and use
the Axiom of Unique Choice. �

Corollary 5.1.4 There is a function

co ind def ∈ ΠA:Dom. (HomAFS(A)) −→ (HomA Stream)

such that for any A∈Dom, g ∈ (HomAFS(A)), n ∈ N, and s ∈ Stream it holds that

hd(co ind defAg a) = Lift(π1)(g(a))

and
tl(co ind defAg a) = Lift((co ind defAg a) ◦ π2)(g(a)).

Proof: Instantiate the general co-inductive scheme 4.3.4 with FS and use the Axiom
of Unique Choice. �
Next we define the function that returns the n-th element of a stream.

Definition 5.1.3 We define a function nth : N −→ Stream −→ N⊥ by induction over
natural numbers, i.e. for any n∈N and s∈Stream we define

nth 0 s , hd s and nth (n+ 1) s , lift (nth n)(tl s).

We write (s)n for nth n s. �

It is easy to see that for any n ∈ N the function nth n is strict. The first trivial
observation about nth is the following.

Lemma 5.1.5 For any s ∈ Stream we have that

(s)0 = hd s and (s)n+1 = (lift (nth n)) (tl s).

In particular, (append a s)n+1 = (s)n.

Proof: Simply by unwinding the definitions. �
Moreover, one can prove about nth:

96 Chapter 5. Program Verification in SDT — an example

Lemma 5.1.6 For any n ∈ N and s ∈ Stream we have that (s)n+1 6= ⊥ ⇒ (s)n 6= ⊥.

Proof: Proof by induction on n. Do a case analysis whether s = ⊥ or not. The
interesting case is when it is not; here one uses that (append a r)n+1 = (r)n (Lemma
5.1.5). �

Corollary 5.1.7 For any n∈N and s∈Stream

(s)n 6= ⊥ ⇒ ∀k:N. k < n ⇒ (s)k 6= ⊥.

is true.

Proof: By induction on n using the previous Lemma 5.1.6. �

5.1.2 Proof principles for Stream

First we get structural induction for streams immediately from 4.3.2.

Corollary 5.1.8 For any P : Stream −→ Prop such that P is admissible and ¬¬-
closed the following induction rule holds:

(P (⊥Stream) ∧ (∀s:Stream. ∀n:N. (P s) ⇒ P (append n s)))⇒ ∀s:Stream. P (s).

Proof: Instantiate the general scheme of Theorem 4.3.2 with FS and Stream.
Let P ′ , {x ∈ Stream |P (x)} which is a Σ-domain because P (⊥Stream) holds and P
is admissible. It remains to prove that there exists a morphism β ∈ (HomFS(P ′)P ′)
such that ι ◦ β = cons ◦ FS(ι) where ι ∈ P ′ � Stream . But we can take cons for β
which by the induction hypothesis is in (HomFS(P ′)P ′) and fulfills the equation. �
We have also the intuitionistic version of a case analysis for streams, i.e.

Theorem 5.1.9 For any s∈Stream it holds that

¬¬((s = ⊥Stream) ∨ (∃n:N. ∃r:Stream. s = append n r)).

Proof: Just do case analysis for the cases dec s = ⊥ and dec s = up (a, t) for some
a ∈ N and t ∈ Stream (cf. Lemma 3.1.2(3)). �
Some proof rules about the ordering on streams can also be shown.

Theorem 5.1.10 The following propositions hold:

1. ∀s, t:Stream. s v t iff dec s v dec t

2. ∀n:N. ∀s:Stream.¬((append n s) v ⊥Stream)

3. ∀s:Stream. (hd s = hd s′ ∧ tl s = tl s′) iff s = s′.

4. ∀n,m:N. ∀s, t:Stream. (append n s) v (appendmt) iff (n = m ∧ s v t).

5.1. Streams over N 97

5. ∀s, t:Stream. s v t iff
¬¬((s = ⊥) ∨ (∃n:N. ∃s′, t′:Stream. (s = append n s′) ∧ (t = append n t′) ∧ s′ v
t′).

Proof: (1) Simply by monotonicity as dec and cons form an iso-pair.
For the proof of (2) use (1) and Lemma 3.1.2(2).
(3): “⇒”: by nested case analysis s = ⊥ ∨ s = append n r and s′ = ⊥ ∨ s′ =
append n′ r′. The rest of the proof is straightforward and the direction “⇐” is trivial.
(4) “⇒”: To prove n = m it suffices to prove n v m which holds by monotonicity
applying hd to the hypothesis; by applying tl to the hypothesis one gets the rest of the
proposition. “⇐” simply by monotonicity.
(5) “⇒”: Do case analysis using 5.1.9 for s and t and use (2) and (4). “⇐”: Do case
analysis on the premiss and use (4). �
An important property of the function nth is the following:

Lemma 5.1.11 For all n, a ∈ N and s, s′ ∈ Stream it holds that

(s)n = up a ∧ s v s′ ⇒ (s′)n = up a.

Proof: By induction on n: in case n = 0 do case analysis s = ⊥ or s = append x t
for some x, t and the same for s′; then use (4) of the previous theorem. Induction
step: again do case analysis like before and the rest of the proof is straightforward by
definition of nth, 5.1.5, and induction hypothesis. �

5.1.3 Induction on the length of streams

Before we can prove this special induction rule that turns out to be crucial for (our)
correctness proof for the Sieve of Eratosthenes, we have to show that Stream is an
algebraic domain.

First, we define the finite or compact streams inductively.

Definition 5.1.4 Define a map compact : N −→ (Hom Stream Stream) inductively.

compact 0 s , ⊥ and compact (n+1) s , cons ◦ FS(compact n) ◦ dec.

It is easy to check that compactn ∈ AC(Hom Stream Stream) for any n ∈ N. �

Now one can prove that
⊔

compact is the identity.

Lemma 5.1.12
⊔
n compact n = idStream.

Proof: Simply show by induction that compact is the Kleene chain of the functional

λh:(Hom Stream Stream). cons ◦ FS(h) ◦ dec.

Then apply the minimality property of Stream i.e. Theorem 4.3.1 instantiated with
Stream. �

98 Chapter 5. Program Verification in SDT — an example

So Stream is algebraic. However, it is not the case that this gives us a general recipe to
axiomatize algebraic Σ-domains, i.e. it is not the case that a Σ-domain A is algebraic
iff the supremum of the Kleene-chain of the copy-functional is the identity. A counter-
example is easily obtained by taking streams over non-flat and non-finite types.

Now we can proceed with our goal, the induction on the length of streams. Note
that a function length : Stream −→ N⊥ is not definable as a function living in Dom, as
it could not be continuous (what about an infinite stream?). Of course, it would work
if we could define the codomain to be ω, but that is not what we want. Fortunately, it
is not important whether length is a map between domains. It can simply live outside
the domain universes and thus one can define it as a predicate of type Stream −→
N −→ Prop.

Definition 5.1.5 The predicate length ∈ Stream −→ N −→ Prop is defined as follows:

length , λs:Stream. λn:N. ∀P :Stream → N→ Prop.
(P ⊥ 0)⇒ (∀n, a:N. ∀r:Stream. P r n⇒ P (append a r) (n+1))⇒ P s n .

The proposition length s n is true if, and only if, s is a finite stream of length n. �

The following facts are easy to prove and are implicitly needed in (some of) the proofs
in this subsection.

Lemma 5.1.13 The following propositions hold:

(i) length⊥Stream 0

(ii) ∀n, a:N. ∀s:Stream. (length s n)⇒ length(append a s)(n+ 1).

Proof: Immediately from the definition of length. �
Also the other way round it is valid.

Lemma 5.1.14 The following two propositions hold:

(i) length s 0⇒ s = ⊥Stream

(ii) ∀n:N. ∀s:Stream. (length s (n+ 1))⇒
∃a:N. ∃r:Stream. (s = append a r) ∧ (length r n)

Proof: (i) Define the predicate P , λs:Stream. λn:N. (n = 0) ⇒ s = ⊥ and
show that P 0 s holds. Because of length s 0 it is sufficent to derive (P ⊥ 0) and
(∀n, a:N. ∀r:Stream. P r n⇒ P (append a r)(n+ 1)), but both are trivial to show.
(ii) Proceed with the predicate

P , λs:Stream. λn:N. ((n = 0)⇒ s = ⊥)∧
(n 6= 0)⇒ ∃a:N. ∃r:Stream. (s = append a r) ∧ (length r (n−1))

as in (i). �
Next we prove that any compact stream has a length.

5.1. Streams over N 99

Lemma 5.1.15 For all n∈N and s ∈ Stream we have ¬¬∃k:N. length (compactn s) k.

Proof: By induction on n. The base case is trivial, for the induction step do a case
analysis for the cases s = ⊥ and the non-trivial case s = append a r. For the latter
prove the auxiliary lemma that

(∃k:N. length (compactn r) k)⇒ (∃k:N. length (append a (compactn r)) k).
�
Now we are ready to prove the induction principle.

Theorem 5.1.16 (Induction on length) Let P ∈ Stream −→ Prop be an admissible
and ¬¬-closed predicate. Then the following induction principle is valid:

∀n:N. ∀s:Stream. (length s n)⇒ P (s) implies ∀s:Stream. P (s).

Proof: So let P be as required and assume ∀n:N. ∀s:Stream. (length s n) ⇒ P (s);
moreover, let s be any stream. We have to show P (s) which is by algebraicity (Lemma
5.1.12) equivalent to P ((

⊔
n compact n) s) i.e. P (

⊔
n (compactn s)). By admissibility

it remains to show ∀n:N. P (compactn s) which holds by the previous Lemma 5.1.15
and the assumption. Note that it is essential that P is ¬¬-closed as the existential
quantifier in Lemma 5.1.15 is ¬¬-closed. �

5.1.4 Elementhood

For verifying the Sieve we will need a very special predicate on streams, namely the
test of being an element of a stream. This test is allowed not only for natural numbers,
but also for ⊥ as the operation nth sometimes yields an undefined result.

Definition 5.1.6 The predicate ε : N⊥ −→ Stream −→ Prop is defined as follows:

(n ε s) iff (∃k:N. (s)k = n) ∧ (n 6= ⊥N⊥).

It states elementhood in streams. �
Here comes a list of trivial facts about the ε-predicate.

Corollary 5.1.17 For any n,m ∈ N, x ∈ N⊥, and s ∈ Stream the following proposi-
tions hold.

1. (up n) ε append n s

2. ¬(x ε ⊥Stream)

3. ¬(⊥ ε s)

4. x ε s ⇒ x ε (append n s)

5. n 6= m⇒ (up(n) ε (appendms)) ⇔ (upn ε s)

6. x 6= up(n)⇒ (x ε (appendn s)) ⇔ (x ε s)

Proof: The proofs are straightforward just by unwinding the definitions. �
This completes the definition of the most important functions and proof principles on
streams. The phrase “most important” at least holds w.r.t. the envisaged application,
i.e. the Sieve of Eratosthenes.

100 Chapter 5. Program Verification in SDT — an example

5.2 The Sieve of Eratosthenes

Although the Sieve of Eratosthenes is well-known, let us review how it works. Given
the stream of natural numbers in ascending order, starting with 2, one proceeds as
follows. Take the first number, say p, of the stream, it is always a prime. Keep this
number and cancel all multiples of p in the rest of the stream. Then repeat this
procedure for the remaining stream recursively. In that manner all the multiples of
prime numbers are cancelled one by one, thus only the prime numbers remain. We
will have to make this precise in this and the next section.

Before programming the algorithm, we shall define a filter function. Therefore, in
the sequel we assume to have a binary boolean function (i.e. a decidable predicate)
div: N −→ N −→ B without any further requirements. We parameterize the algorithm
w.r.t. this predicate. For the concrete algorithm of the Sieve it will of course be the
predicate stating whether the first argument properly divides the second. But for the
moment let it be any boolean predicate.

Definition 5.2.1 Define filter′ : N −→ FS(Stream) −→ Stream as follows

filter′ , λn:N. lift (λu:N× Stream. if (divn π1(u)) then π2(u) else (append π1(u) π2(u))).

By definition, filter′ n is strict and hence in (HomFS(Stream) Stream). �

The if then else here is the conditional on Stream depending on a boolean b ∈ B
which can be easily defined by case analysis on b. It is easily verified that filter ′ is
strict. Applying the inductive definition scheme 5.1.3 for streams, we get the right
filter function:

Definition 5.2.2 Let filter , λn:N. ind def Stream (filter′ n). As filter′ is strict one
has that filter ∈ N −→ (HomFS(Stream) Stream). �

The filter operation has the following important properties:

Theorem 5.2.1 For all n, a ∈ N and s ∈ Stream the following holds.

(i) (divn a) = true ⇒ filter n (append a s) = filter n s.

(ii) (divn a) = false ⇒ filter n (append a s) = append a (filtern s).

(iii) (length s n) ⇒ ∃k:N. (length (filter a s) k) ∧ k ≤ n.

Proof: (i): filter n (append a s) = (ind def Stream (filter′ n))(up (a, s)) which by virtue
of the initiality of the inductive definition equals

(filter′ n)(FS(filter n)(up (a, s))) = (filter′ n)(up (a, filtern s)) = filter n s.

(ii) is analogue.
(iii): By induction on n using the properties of length i.e. Lemma 5.1.14. For the
induction step we know that length s (n + 1) implies that s = append b r. Do a case
analysis whether div b a holds or not and use (i) or (ii), respectively. In the second
case one needs the induction hypothesis. �
Now we can define the Sieve itself by a co-inductive definition.

5.2. The Sieve of Eratosthenes 101

Definition 5.2.3 Define first an auxiliary function

sieve′ , Lift(λu:N×Stream. (π1(u), filter π1(u) π2(u)))◦dec ∈ Stream −→ FS(Stream).

Then let sieve , co ind def Stream sieve′ ∈ (Hom Stream Stream). �

Before we take a look on the properties of sieve let us define the stream of all natural
numbers in ascending order starting with an arbitrary n.

Definition 5.2.4 Define

enum′ , co ind def N⊥ Lift(λn:N. (n, upn + 1)) ∈ N⊥ −→ Stream.

Then let enum , λn:N. enum′ (up n). �

The enum operation behaves as expected:

Lemma 5.2.2 Let n ∈ N. Then hd (enum n) = upn and tl (enumn) = up (enum (n+
1)).

Proof: The proof uses the general property of co-inductive definitions Lem. 5.1.4,
and the fact that Lift is a functor. �
Let us characterize the sieve-function by a recursive equation, and note that we could
also defined sieve directly (without using the inductive and co-inductive scheme) using
the fixpoint-operator fix.

Lemma 5.2.3 For all n ∈ N and s ∈ Stream it holds that

sieve(append n s) = append n (sieve(filter n s)).

Proof: By virtue of the equality on Streams (Lemma 5.1.10) we only have to show

hd(sieve(append n s)) = n and tl(sieve(append n s)) = sieve(filter n s).

But those equations can be proved via the properties of co-inductive definitions (cf.
Lemma 5.1.4) by which we get

hd(sieve(append n s)) = Lift(π1)(sieve′(append a s))
= Lift(π1)(up (n, filter n s)) = n

tl(sieve(append n s)) = Lift(sieve ◦ π2)(sieve′(append n s))
= Lift(sieve ◦ π2)(up (n, filtern s))
= sieve(filter n s).

�

102 Chapter 5. Program Verification in SDT — an example

5.3 Correctness of the Sieve

Our goal is to verify that the Sieve of Eratosthenes sieve applied to (enum 2) really
yields the stream of all prime numbers. The proof proceeds classically, i.e. in an LCF-
style using admissibility and structural induction. It would be an interesting research
task to check whether this can be done by formalizing and using co-induction without
any reference to admissibility.

Additional operations have to be introduced first, just to be able to express the
correctness condition.

Definition 5.3.1 We define divides , λn,m:N. ∃k:N. k < m ∧ k · n = m as the
predicate of type N −→ N −→ Prop that states whether the first argument properly
divides the second (so it is false if the first argument is 1).
Moreover, we define is prime , λn:N. 1 < n ∧ ∀k:N. 1 < k < n ⇒ ¬(divides k n).
One can also define a boolean valued function that computes whether n divides m,
namely the operation divB , λn,m:N. ∃k < m. k · n =B m, which yields a boolean
value since it only uses bounded quantification. �

Theorem 5.3.1 Obviously B ⊆ Prop, so we omit the embedding map in the sequel.
Let n,m ∈ N. Then it holds that (divBnm) = true iff (dividesnm).

Proof: Just by the fact that the embedding ι : B� Prop is a homomorphism w.r.t.
the logical connectives and the definition of the boolean bounded quantifier ∃k < m.
�

Lemma 5.3.2 The predicate divB is transitive, or equivalently

∀k,m, n:N. (divBkm) ∧ (divBmn) ⇒ (divB k n).

Proof: Compute the new divisor by the product of the two given divisors. �
Let us turn to the formulation of the correctness condition:

(∗) ∀x:N⊥. x ε sieve (enum 2) iff ∃m:N. (x = upm) ∧ is prime(m)

stating that a number occurs in the result-stream of the Sieve if, and only if, it is a
prime number.

We need some auxiliary concepts. First, we shall define a general method to lift a
predicate P : A→ A → Prop, where A is a Σ-cpo, to a predicate Pδ : A⊥ −→ A⊥ −→
Prop.

Definition 5.3.2 Let A be a Σ-cpo and P : A→ A → Prop. Then Pδ : A⊥ → A⊥ →
Prop is defined as follows:

∀x, y : A⊥. Pδ x y iff x∈A ∧ y∈A ∧ P a b.

The predicate Pδ can be read as the strong version of P . �

So for proving (∗) we will prove a more general lemma (**) under the proviso that div
is an arbitrary transitive boolean predicate:

5.3. Correctness of the Sieve 103

∀s:Stream. s 6= ⊥Stream ⇒ repitition free(s)⇒
(∀n:N. ((s)n∈sieve(s))⇔ ∀k < n.¬divδ (s)k (s)n)

where we need a predicate repitition free that states whether a stream has multiple
occurrences of the same element:

Definition 5.3.3 The predicate repitition free : Stream −→ Prop is defined as follows:

repitition free s iff ∀n,m:N. (s)n =δ (s)m ⇒ n = m.

In other words (repitition free s) tests whether the stream s considered as a function
N −→ N is injective. �
To prove (∗∗), we can do structural induction on streams, but there are two problems:

1. We have to show admissibility and stability of the claim.

2. The proof doesn’t go through with simple induction, one needs a lemma to get rid
of applications of the form sieve(filter a s). For applying the induction hypothesis
only the form sieve(s) is welcome. Yet, filter a (append b s) always yields a stream
“shorter” than the original (append b s) w.r.t. length. This is why we need the
induction on the length of a stream.

In the following we will assume for the sake of simplicity that all predicates we run
into for induction are admissible and ¬¬-closed. In the proofs we will refer to the
corresponding lemmas which will be proved altogether in the next section.

In order to prove (∗) we will need a characterization for sieve(filter n s), which will
be shown by induction on the length of streams.

Lemma 5.3.3 Let s ∈ Stream, n, a ∈ N, and div a transitive, binary, boolean relation.

upn ε sieve(filter a s) iff ¬(diva n) ∧ up n ε sieve(s).

Proof: We proceed by induction on the length of s. We shall prove later in
Lemma 5.4.5 that the proposition is ¬¬-closed and admissible. By induction according
to Theorem 5.1.16 one has to show that

∀m:N. lengthms⇒ (upn ε sieve(filter a s) ⇔ ¬(diva n) ∧ upn ε sieve(s)).

Use Noetherian induction on m. Therefore, assume that the proposition holds for
any k < m and prove it for m. We distinguish two cases. If m = 0 then (by
Lemma 5.1.14(i)) we get s = ⊥. As sieve and (filter a) are strict, the proposition
holds since n ε ⊥ is false by Lemma 5.1.17(2).
If m = succ(m′) (by Lemma 5.1.14(ii)) we know that s = append b t for some b ∈ N
and t ∈ Stream. Now one has to do a case analysis whether diva b holds or not.

1. Case div a b = true:

upn ε sieve (filter a (append b t)) ⇔ (Lemma 5.2.1(i))
upn ε sieve(filter a t) ⇔ (Ind.Hyp.)
¬(diva n) ∧ upn ε sieve(t)

We have to do another case analysis for the cases n = b or n 6= b. Note that the
equality on natural numbers is decidable, so the case analysis is allowed.

104 Chapter 5. Program Verification in SDT — an example

1. Subcase n = b: ¬(diva n) ∧ upn ε sieve(t) ⇔ (assumption)
false from which follows everything.

2. Subcase n 6= b:

¬(diva n) ∧ upn ε sieve t ⇔ as div is transitive:
(div a b ∧ ¬div a n)⇒ ¬div b n

¬(diva n) ∧ ¬(div b n) ∧ up n ε sieve t ⇔ (Ind.Hyp)
¬(diva n) ∧ upn ε sieve(filter b t) ⇔ (Lemma 5.1.17(6))
¬(diva n) ∧ upn ε append b (sieve(filter b t)) ⇔ (Lemma 5.2.3)
¬(diva n) ∧ upn ε sieve(append b t)

2. Case div a b = false:

up n ε sieve (filter a (append b t)) ⇔ (Lemma 5.2.1(ii))
up n ε sieve (append b (filter a t)) ⇔ (Lemma 5.2.3)
up n ε append b (sieve (filter b (filter a t))) ⇔ (case analysis n = b, Lem. 5.1.17(6))

(n = b) ∨ (upn ε sieve (filter b (filter a t)))

1. Subcase n = b:

(n = b) ∨ (upn ε sieve (filter b (filter a t))) ⇔
true ⇔ Lem. 5.1.17(4) & assumption
¬(div a n) ∧ upn ε (append b t)

2. Subcase n 6= b:

(n = b) ∨ (upn ε sieve (filter b (filter a t))) ⇔
upn ε sieve(filter b (filter a t)) ⇔ (Ind.Hyp.&Lem. 5.2.1(iii))
¬(div b n) ∧ up n ε sieve(filter a t) ⇔ (Ind.Hyp.)
¬(div b n) ∧ ¬(div a n) ∧ up n ε sieve(t) ⇔ (Ind.Hyp.)
¬(diva n) ∧ upn ε sieve(filter b t)

�
Now we can go on and prove the first lemma (**):

Lemma 5.3.4 Let s∈Stream. Then it holds that

s 6= ⊥Stream ∧ repitition free(s)⇒ (∀n:N. (s)n ∈ sieve(s) ⇔ ∀k < n.¬divδ (s)k (s)n).

Proof: We proceed by induction on the length of s. The proof that the predi-
cate under investigation is ¬¬-closed and admissible is deferred to Lemma 5.4.6. For
s = ⊥ the proposition holds trivially. Now assume that the proposition holds for
s ∈ Stream; we have to prove it for (append a s) for an arbitrary a ∈ N. Assume that
repitition free (append a s) holds and let n∈N. First we do a case analysis whether
n = 0 or not (which is no problem as equality on natural numbers is decidable).

1. Case n = 0:

5.3. Correctness of the Sieve 105

(append a s)0 ε sieve(append a s) ⇔
a ε sieve(append a s) ⇔ (Lemma 5.2.3)
a ε append a (sieve(filter a s)) ⇔ (Lemma 5.1.17(1))
true ⇔
∀k < 0.¬divδ (append a s)k (append a s)0

2. Case n = succ(n′):

(append a s)n′+1 ε sieve(append a s) ⇔ (Lemma 5.1.5)
(s)n′ ε sieve(append a s) ⇔ (Lemma 5.2.3)
(s)n′ ε append a (sieve(filter a s))

Now we have to consider two subcases and need that the equivalence that we are
proving is ¬¬-closed. For the proof of this we refer to Lemma 5.4.7.

1. Subcase (s)n′ = up a:

Then we have (append a s)n′+1 = up a = (append a s)0.
By the assumption repitition free (append a s) it follows that succ(n′) = 0, so by
Peano’s 4th Axiom – which is easily shown to hold – follows ¬true which implies
everything.

2. Subcase (s)n′ 6= up a:

(s)n′ ε append a (sieve(filter a s)) ⇔ (Lemma 5.1.17)(6)
(s)n′ ε sieve(filter a s)

We need one more case analysis. We again refer to Lemma 5.4.7 for the proof
that case analysis is admissible here.

(a) Subsubcase (s)n′ = ⊥N⊥ :

(s)n′ ε sieve(filter a s) ⇔ (Lemma 5.1.17(3))
false ⇔ ((s)n′ = ⊥)
∀k < n.¬divδ (append a s)k (s)n′ ⇔ (Lemma 5.1.5)
∀k < n.¬divδ (append a s)k (append a s)n

(b) Subsubcase (s)n′ = up u for some u ∈ N:

up u ε sieve(filter a s) ⇔ (Lemma 5.3.3)
(¬divδ a u) ∧ (up u ε sieve(s)) ⇔ (Ind.Hyp.(∗))
(¬divδ a u) ∧ (∀k < n′.¬divδ (s)k (s)n′) ⇔ (Lemma 5.1.5)
(¬divδ (append a s)0 (append a s)n′+1) ∧
(∀k < n′.¬divδ (append a s)k+1 (append a s)n′+1) ⇔ (reindexing)
∀k < n′ + 1.¬divδ (append a s)k (append a s)n′+1

(∗) It remains to prove that the preconditions of the induction hypothesis s 6=
⊥Stream and (repitition free s) are fulfilled. They follow directly from the premiss
append a s 6= ⊥Stream and repitition free (append a s).

�

106 Chapter 5. Program Verification in SDT — an example

So we see that the scheme of the Sieve works for arbitrary transitive boolean predicates
div. From now on we work with divB instead of div as we already know that it is
transitive.

Before we can finally prove the correctness of the Sieve (*) we collect the following
observations that will turn out to be useful:

Lemma 5.3.5 For any n,m ∈ N, x ∈ N⊥, and s ∈ Stream the following propositions
hold:

1. (enumm)n = up(m+ n)

2. repitition free(enumn)

3. x ε (filter n s) ⇒ x ε s

4. x ε sieve(s) ⇒ x ε s

Proof: (1) by induction on n: If n = 0 then the proposition follows from Lem. 5.2.2.
Induction step: (enum m)n+1 = (append m (enum (m + 1)))n+1 which again by 5.2.2
equals (enum (m+ 1))n, thus by induction hypothesis we get up(m+ 1 + n).
(2) follows directly from (1) as up(n + k) = up(n + l) ⇒ k = l for any k, l ∈ N since
up is a mono.
(3) By structural induction on streams. The proof that induction is applicable here is
deferred to Lemma 5.4.8. For ⊥Stream the proposition holds by the strictness of filter
and the ε-operation. Now assume that the proposition holds for s and prove it for
append a s. Do a case analysis whether divn a = true or divn a = false.

1. Case div n a = true:
By Lemma 5.2.1 we know that x ε (filter n (append a s)) implies x ε (filter n s)
which holds by induction hypothesis.

2. Case div n a = false:
Obviously, x ε (filtern (append a s)) implies x ε append a (filter n (filter a s)) (cf.
Lem. 5.2.1). We need one more case analysis here for the cases x = up a and
x 6= up a. Case analysis is admissible due to Lemma 5.4.9.

(a) Subcase x = up a:
x ε append a (filter n (filter a s)) and x ε (append a s) hold both due to
5.1.17(1).

(b) Subcase x 6= up a:
Due to Lemma 5.1.17(4) we have that

x ε append a (filtern s) iff x ε (filter n s).

By induction hypothesis we get x ε s, and thus x ε (append a s) again by
5.1.17(4).

5.3. Correctness of the Sieve 107

(4) By induction on the length of streams (for admissibility cf. Lemma 5.4.8). Assume
(lengthn s) and that the proposition is valid for any k < n. For the case n = 0 we know
that s = ⊥Stream and thus by the strictness of sieve we are done. Let the proposition be
valid for any n ∈ N. It remains to prove it for succ(n). So we have s = append a s′ for
some a ∈ N and s′ ∈ Stream. Now x ε sieve(append a s) iff x ε append a (sieve(filter a s))
by Lemma 5.2.3. We do a case analysis for the cases x = up a or x 6= up a, which is
allowed by Lemma 5.4.9.

1. Case x = up a:
x ε append a (sieve(filter a s)) and x ε (append a s) hold both due to 5.1.17(1).

2. Case x 6= up a:
x ε append a (sieve(filter a s)) iff x ε sieve(filter a s)) by 5.1.17(4). As (filter a s)
has a length smaller than s due to Lemma 5.2.1(iii) one can apply the induction
hypothesis and gets x ε filter a s. But by (3) then we have x ε s, so using 5.1.17(4)
again we finally get x ε append a s.

This completes the proof. �
After all that work we are in a position to prove the Correctness Theorem.

Theorem 5.3.6 For all x ∈ N⊥ it holds that

x ε sieve(enum 2) iff ∃m:N. (x = upm) ∧ is prime(m).

Proof: “⇒”: Assume an x ∈ N⊥ such that x ε sieve(enum 2). By Lemma 5.3.5(4)
we get that x ε enum 2, so ∃n:N. (enum 2)n = x, thus (enum 2)n ε sieve(enum 2) and
one can apply Lemma 5.3.4 since obviously (enum 2) 6= ⊥ and repitition free(enum 2)
(Lemma 5.3.5(3)).
Therefore, ∀k < n.¬ divBδ (enum 2)k (enum 2)n holds, which by Lemma 5.3.5(1) is
equivalent to ∀k < n.¬ divBδ (k+2) (n+2) . This implies ∀k < n+2.¬ divBδ k (n+2)
and thus we finally get is prime(n+ 2) ∧ x = (enum 2)n = up (n+ 2).
“⇐”: Assume that there exists an m ∈ N such that x = upm and is prime(m).
By the definition of is prime there is an m′ ∈ N such that m = m′ + 2 and ∀k <
m′+2.¬divB k (m′+2). So there is a k′ ∈ N such that ∀k′ < m′.¬divB (k′+2) (m′+2).
By Lemma 5.3.5(4) this is equivalent to

∀k′ < m′.¬divB (enum 2)k′ (enum 2)m′,

thus by Lemma 5.3.4 it holds that (enum 2)m′ ε sieve(enum 2). The premisses of this
lemma are again satisfied (see above). Therefore, we have up (m′ + 2) ε sieve(enum 2),
and finally get x ε sieve(enum 2) as x = upm = up (m′ + 2). �
This completes the correctness proof of the Sieve. This proof was carried out without
knowledge of the proof in [Abr84] which is similar, but hides the details about imple-
mentation of streams and admissibility. It follows a proof by Kahn and McQueen. Our
proof is slightly different also in the sense that it abstracts over div and that Abram-
sky introduces the notion of subsequence explicitly which leads to a different proof
strucuture. His proof breaks up into several more independent lemmas than ours.

108 Chapter 5. Program Verification in SDT — an example

There exists also a correctness proof of a version of the Sieve programmed in System
F [LPM94] which does not use recursive but co-inductive types. The type of Streams
over A is coded then as ∃X. (X −→ A) ∧ (X −→ X) ∧ X . A stream object is an
abstract process, represented as a quadruple:

(X,H ∈ X −→ A, T ∈ X −→ X, x ∈ X)

Here X denotes any type (of observation). The head of this stream corresponds to
H x, the tail is (X,H, T, T (x)) and the value x is an encoding of the current state
of the process. By providing the appropriate specifications and instantiating A with
different predicates one can give a specification for the Sieve and extract a program.
Note that this approach requires a very complicated coding of streams.

In all the proofs of this section we have ignored the question whether application
of structural induction or case analysis was admissible. The next section shall supply
the corresponding proofs. Moreover, it will discuss differences between the synthetic
and the classical approach.

5.4 Admissibility in the synthetic approach

In Section 2.8 the problem of admissibility in the intuitionistic approach was already
addressed. In fact, for the correctness of the Sieve we will need the concepts defined
there.

First of all we are not limited to the syntactic way admissibility is treated in [Pau87,
p. 200], where admissibility is dealt with externally. Starting from basic admissible
predicates, compound predicates are shown to be admissible simply by some rules,
e.g. if A and B are admissible then also A ∧ B, ∀y. B etc. are admissible. For the
existential quantifier there is only a rule for negative occurrences: if ¬A is admissible
then ¬∃y. A is admissible, since classically ¬∃y. A is equivalent to ∀y.¬A. This is, of
course, not sufficient if we want to prove e.g. that λs:Stream. x ε s is admissible, since
the existential quantifier occurs positively in the definition of ε. Fortunately, in our
logic we can prove admissibility directly, as admissibility is an ordinary (second-order)
predicate (for a direct proof we would need the property of Lemma 5.1.11). But as
we also need that this predicate is ¬¬-closed it is convenient to prove that it is a
Σ-predicate, because then it automatically follows that it is ¬¬-closed (by MP) and
that it is a Σ-predicate (by Theorem 2.8.6).

However, there is a problem with admissibility of Lemma 5.3.4 because it uses
implication. Note that in classical domain theory we can prove that A⇒ B – which is
classically equivalent to ¬A∨B – is admissible if ¬A and B are admissible. This doesn’t
work in intuitionistic logic even if we restrict to a “classical”, i.e. ¬¬-closed variant of
the implication. Although ¬¬(A⇒ B) is intuitionistically equivalent to ¬¬((¬A)∨B),
it doesn’t help. It is not even known whether ¬¬((¬A) ∨ B) is always admissible in
the standard PER model if ¬A and B are. When constructing an appropriate chain
one has difficulties to compute a realizer for it. Unfortunately, it is also difficult to
construct a counterexample, since this seems to require heavy recursion theory.

5.4. Admissibility in the synthetic approach 109

In Definition 2.8.2 we have thus introduced the notion of sufficiently co-admissible,
which is simply defined in a way such that Lemma 2.8.3 holds. In order to verify
that the quantified predicate in Lemma 5.3.4 is admissible we have to prove amongst
other things that repitition free is sufficiently co-admissible. Here we cannot simply
use Theorem 2.8.6 as repitition free is not a Σ-predicate. This is an argument against
a complete “order-free” treatment that would exclude explicit admissibility proofs as
they refer to the observation order v. In the future it will be necessary not only to
develop good theories of SDT, but also an adequate proof methodology that is not
trying to mimic the classical style as we have done in the previous section. Note that
fixpoint-induction instead of structural induction has the advantage that one does not
have to prove that the predicate in question is ¬¬-closed. On the other hand, in
many cases this comes for free if admissibility is shown via the propertyof being a
Σ-predicate. Proving admissibility and ¬¬-closedness at the same time in one and the
same proof is sensible for pragmatic reasons as the structure of the proofs is the same.
So in the Lego-implementation we have merged the proofs of the closure properties
of ¬¬-closedness and admissibility.

In the rest of this section the missing admissibility proofs for the Sieve are laid
out. Before, we prove some general properties of the ε and the repitition free predicate
which will turn out to be useful.

5.4.1 Σ-predicates

It is useful to know that some predicates are Σ-predicates in order to apply Theo-
rem 2.8.6.

Lemma 5.4.1 If P : A −→ A −→ Prop is a Σ-predicate then also the predicte
Pδ : A⊥ −→ A⊥ −→ Prop is Σ.

Proof: Let x, y ∈ A⊥. By definition Pδ x y is equivalent to x∈A ∧ y∈A ∧ P x y.
By applying the Dominance Axiom it suffices to prove that x∈A ∧ y∈A ∈ Σ and
x∈A ∧ y∈A ⇒ (P x y ∈ Σ).
Now the first claim is true since x∈A iff x 6= ⊥ iff x(λh:ΣA.>) = >. The second
follows from the assumption. �
Note that this proof is much more clumsy when formalizing it in type theory (see e.g.
Section 7.4.6) because of the coding of subset types by sums (!).

Lemma 5.4.2 For any f ∈ Stream −→ N⊥ and any g ∈ Stream −→ Stream the
predicate λs:Stream. f(s) ε g(s) is a Σ-predicate.

Proof: By definition f(s) ε g(s) is equivalent to ∃k:N. (f(s))k =δ g(s). By the
closure properties of Σ it suffices to prove that [(f(s))k =δ g(s)] ∈ Σ for any k. But
this follows immediately from Lemma 5.4.1 as the equality on N is decidable and thus
in Σ. �
In order to show that the quantified predicate in Lemma 5.3.4 is admissible, one also
has to verify that λs:Stream. s 6= ⊥Stream is sufficiently co-admissible. In fact, weakly

110 Chapter 5. Program Verification in SDT — an example

sufficiently co-admissible would suffice, because everything is ¬¬-closed. It is not
difficult to show that it is weakly sufficiently co-admissible by contradiction. However,
it is much more difficult to prove that it is sufficiently co-admissible. So it seems
more convenient to prove that λs:Stream. s 6= ⊥Stream is a Σ-predicate, because then
it follows directly that it is admissible and sufficiently co-admissible.

Theorem 5.4.3 The predicate λs:Stream. s 6= ⊥Stream is a Σ-predicate.

Proof: By Lemma 5.1.10(1) s 6= ⊥Stream is equivalent to dec s 6= dec)(3⊥Stream.
Since dec : Stream −→ FS(Stream) is strict this is equivalent to dec s 6= ⊥, which by
definition of lifting is in turn equivalent to (dec s)(λx:ΣN×Stream.>) = >. �
The predicate repitition free is an example of a non-Σ-predicate, which is, however,
weakly sufficiently co-admissible.

Theorem 5.4.4 The predicate repitition free is sufficiently co-admissible.

Proof: Assume a ∈ AC(Stream) and ∀n,m:N. (
⊔
a)n =δ (

⊔
a)m ⇒ n = m. To

prove ∃k:N. ∀l ≥ k. ∀n,m:N. (a l)n =δ (a l)m ⇒ n = m, let k = 0. Let l, n,m ∈ N
and (a l)n =δ (a l)m, which implies that both sides of the equation are defined. By
assumption it suffices to prove (

⊔
a)n =δ (

⊔
a)m. But a l v ⊔ a, so by Lemma 5.1.11

we get that (a l)m = (
⊔
a)m and (a l)n = (

⊔
a)n, and with transitivity we are done.�

5.4.2 The admissibility proofs

Now we close the final gaps of the correctness proof of the Sieve by providing the proofs
that the propositions we do induction (case analysis) on are admissible and ¬¬-closed.

Lemma 5.4.5 Let n, a ∈ N. Then

λs:Stream. upn ε sieve(filter a s) if, and only if, ¬(diva n) ∧ up n ε sieve(s)

is admissible and ¬¬-closed.

Proof: The proof follows the syntactical structure of the formula. By virtue
of the closure properties of admissibility in Lemma 2.8.1, 2.8.3 and ¬¬-closedness
(Lemma 2.1.2), we only have to prove that

λs:Stream. upn ε sieve(filter a s)

and

λs:Stream.¬(diva n) ∧ upn ε sieve(s)

are both admissible and sufficiently co-admissible. But they are Σ-predicates due to
Lemma 5.4.2 and the fact that boolean predicates are trivially Σ-predicates. Applying
Theorem 2.8.6 we get the desired result. �

5.4. Admissibility in the synthetic approach 111

Lemma 5.4.6 The predicate λs:Stream.

s 6= ⊥Stream ∧ repitition free(s)⇒ ∀n:N. (s)n ∈ sieve(s) iff ∀k < n.¬divδ (s)k (s)n

is admissible and ¬¬-closed.

Proof: Following the syntactic structure of the given predicate due to the clo-
sure properties of co/admissibility (Lemma 2.8.1, 2.8.3, 2.8.2), and ¬¬-closedness
(Lemma 2.1.2), we have to show the following two propositions:
1. λs:Stream. s 6= ⊥Stream and repitition free are sufficiently co-admissible, which is true
because of Lemma 5.4.3 and 5.4.4.
2. The predicate

λs:Stream. ∀n:N. (s)n ∈ sieve(s) iff ∀k < n.¬divδ (s)k (s)n

is admissible and ¬¬-closed. But (s)n ∈ sieve(s) is in Σ due to Lemma 5.4.2. If
we can show that ∀k < n.¬divδ (s)k (s)n is Σ then by Lemma 2.8.6 and the above
mentioned closure properties we know that the predicate is admissible and ¬¬-closed.
But bounded quantification is even decidable and ¬◦ div is Σ, so by Lemma 5.4.1 also
¬ ◦ divδ. �

Lemma 5.4.7 The propositions

(s)n′ ε append a (sieve(filter a s)) and (s)n′ ε sieve(filter a s)

are ¬¬-closed.

Proof: This follows directly from 5.4.2, as Σ-propositions are ¬¬-closed by Markov’s
Principle (MP). �

Lemma 5.4.8 The propositions

(i) x ε (filter n s) ⇒ x ε s

(ii) x ε sieve(s) ⇒ x ε s

are admissible and ¬¬-closed.

Proof: Because of 5.4.2 both sides of the implications are always Σ-predicates and
therefore by 2.8.6 admissible and sufficiently co-admissible. The claim follows then
from the closure properties of Lemma 2.8.1, 2.8.3. �

Lemma 5.4.9 The propositions

(i) x ε append a (filter n (filter a s))

(ii) x ε sieve(append a s) iff x ε append a (sieve(filter a s))

are ¬¬-closed.

Proof: (i) by Markov’s Principle since (i) is in Σ by Lemma 5.4.2. (ii) is proved
analogously by the closure properties of Theorem 2.1.2 and Lemma 5.4.2. �

112 Chapter 5. Program Verification in SDT — an example

5.4.3 Discussion

Being not interested in program extraction (“programs out of proofs”), one could in
general use classical logic for the specifications of programs (i.e. the program logic).
Therefore, one would have to embed classical logic into the intuitionistic theory of SDT
by putting double negations around the (positive) connectives. One would be liberated
from the proofs of ¬¬-closedness, though admissibility remains a proof obligation. Of
course, case analysis is then always allowed. Even with classical predicates there
remains the problem of admissibility:

Problem: Given admissible and classical, i.e. ¬¬-closed, predicates P and
Q is then ¬¬(P ∨Q) admissible in in the PER-model?

At least it does not seem to be provable in our axiomatization. Another question
that arises is, is it a severe drawback if the above hypothesis does not hold? Dis-
junctions are not so abundant in program verification, as long as one does not work
with nondeterministic programs, so one might argue that it is not. On the other
hand, if one tries to mimic the classical way of proving admissibility of implications,
then it comes to play a role as ¬P ∨ Q is equivalent to P ⇒ Q. Further research is
needed to find out, whether pragmatically the notion of “sufficiently co-admissible” is
really sufficient. Of course, not every admissible predicate must be provable admissi-
ble, just those which are important for program verification. The Sieve example has
shown that Σ-predicates behave nicely as they are both admissible and sufficiently
co-admissible, but also that they are not rich enough for program verification, since
there are sufficiently co-admissible predicates that are not Σ as e.g. repitition free. Also
λx:X. x = ⊥X is not Σ, but certainly admissible and sufficiently co-admissible. It is
not obvious, whether and which other such predicates occur in verification proofs.

There seems to be another candidate for a “good” class of monos or predicates, the
regular monos, i.e. those monos that are equalizers in the category Set. These are de-
finable inside our logic, but they are not admissible in general, only when the codomain
of the equalized maps is a Σ-poset. If this is the case, then they form a subclass of
the admissible monos by Lemma 2.8.1(iv) and contain the Σ-predicates, since the test
for elementhood x∈P can be done by checking p(x) = > for some p ∈ ΣX . It is easy
to see that regular monos are closed under meets and universal quantification, but for
unions and implication one gets similar problems as for the admissible predicates. It
does not seem to be easy to express e.g. the predicate repitition free as an equalizer in
Pos.

11 6
Axiomatizing other approaches

In the previous chapters we have seen how a theory of Σ-cpo-s can be developed
axiomatically. Here we shall present some suggestions for the axiomatization of other
SDT-approaches translating them into an internal style. We consider the Σ-replete
(cf. also Sect. 9.5) and the well-complete objects (cf. also Sect. 9.7).

The theory of Σ-replete and well-complete objects has not yet been implemented
in Lego unlike the whole theory of Σ-cpo-s in the previous chapters. The implemen-
tation will be a future project and some details might turn out to need some further
adjustment. In fact, the formalization of Σ-cpo-s provided profound criticism and re-
vealed any kind of sloppiness. The same could be expected for other formalizations. So
formalization in general provides a good control authority for delicate internal-external
matters. The formalization in this chapter has not yet been implemented in Lego. It
is a future project to check its correctness in Lego and to compare the effort with the
Σ-cpo-approach.

6.1 Theory of Σ-replete objects

Another way of defining a good category of domains is the more abstract (more cate-
gorical) concept of Σ-replete objects due to ideas of [Hyl91] and [Tay91] (cf. Sect. 9.5).
The Σ-replete objects are defined in a way that they form the least full, reflective,
internal, subcategory of the ambient category of sets Set containing Σ. Let us translate
these categorical requirements into our domain theoretic interests:

I least: the Σ-replete objects shall be the smallest category of predomains with
the properties below. Otherwise one could take the category of sets itself, which
trivially satisfies all the following requirements.

113

114 Chapter 6. Axiomatizing other approaches

I full: any map between sets (that are Σ-replete) is a map between Σ-replete
objects. If we regard Σ-replete objects as predomains, then any map must be
continuous supposed the Σ-replete objects are defined appropriately.

I reflective: any set has a best approximating Σ-replete object. This means that
products for Σ-replete objects are computed as in set, i.e. Σ-replete objects
(predomains) are closed under arbitrary products.

I internal subcategory: the Σ-replete objects can be represented as a subtype of
Set inside our axiomatization.

I contains Σ: the archetypical domain Σ has to be contained in the Σ-replete
objects. Note that this is important to define the observational ordering as in
the previous approaches.

The two definitions of Σ-replete objects of Hyland and Taylor both fulfill the above
criteria and must hence be equivalent. The idea of the original definition of Hyland is
to define the Σ-replete objects in a way such that any relevant property of Σ carries
over to a Σ-replete object. The relevant properties are simply existence of unique
extensions along set-morphisms: let A be a set. So if there is a map e : X −→ Y
between sets, such that for any map f : X −→ A there is a unique map f : Y −→ A
then e is called an A-iso, pictorially

X
e

> Y

A

f

∨ <

A is called Σ-replete if for any map e : X −→ Y the object A inherits the above
property from Σ, i.e. if e is a Σ-iso (also called Σ-equable map) then it is also an A-iso.
In other terms, A is Σ-replete iff any map X −→ A can be uniquely extended to a
map Y −→ A provided that the open sets of X and Y are isomorphic.

A set A is called a predomain in Taylor’s terminology if it is the case that for any
map e : X −→ Y such that e is Σ-iso and Y fulfills the weak Leibniz property, i.e.
ηY is a mono, e is already an iso. This means that an isomorphism between the open
sets of X and those of a sufficiently well-behaved Y induces already an isomorphism
between X and Y . Again we recognize the idea that the open sets of X determine
already X itself.

Thomas Streicher pointed out to me that any Σ-equable map e : X −→ Y induces a
generalized “limit process”. Consider a Σ-equable inclusion e : X � Y , topologically
we can regard this as a dense inclusion, since ΣX ∼= ΣY and we know that we can
view ΣX as the open sets of X . (One can think of the Σ-equable inclusion ω −→ ω
as a special case of this situation. The set ω contains ω plus one limit point ∞.)
Now consider a “generalized chain” f : X −→ A, where A is Σ-replete. By definition
of Σ-replete object, there exists a unique extension f : Y −→ A, i.e. for any limit

6.1. Theory of Σ-replete objects 115

point y ∈ Y \ X one gets a unique f(y) ∈ A, the limits of the generalized chain. Of
course, it is possible that |Y \ X | > 1, then we have multiple limits. This argument
should convince the reader that Σ-replete objects are closed under generalized limits
represented by Σ-equable inclusions.

The Σ-replete objects are in fact a generalization of the Σ-cpo-s, defined in Chap-
ter 2. As discussed in Section 2.7 Σ-cpo-s are orthogonal to the inclusion ω � ω, so
they are closed under the “classic” limit, the one of ascending chains. We can compare
Σ-cpo-s and Σ-replete objects on the model level (see Chapter 8). By abstract rea-
soning any Σ-replete object is a Σ-cpo; this is a consequence of the fact that Cpo is a
small reflective internal subcategory of Set containing Σ, but the category of Σ-replete
objects is the smallest such category, hence it must be contained in Cpo. The point is
that the inclusion ι : ω� ω is Σ-equable hence any Σ-replete object is orthogonal to
ι and therefore a Σ-cpo. But note that this is only true in the standard PER-model.
Our axiomatization of Σ-replete objects will be slightly more general than that of Σ-
cpo because we drop Markov’s Principle. If we added it than the above argumentation
would become provable in the internal language.

6.1.1 The axioms

We will reuse the logic of Section 2.1, i.e. we can take the same logic with the same
axiomatic setting as for the definition of Σ-cpo-s, with two exceptions that do not play
a role at the moment. So we just mention them and discuss them when appropriate:
We can get rid of Markov’s Principle (MP) as we do not need to work with ¬¬-closed
predicates any more, and we substitute the Continuity Axiom (SCOTT).

6.1.2 About Factorization Systems

Category theory has proved to be a good tool for comparing and structuring the
different approaches of SDT. We have included this section to provide the relevant
part of the theory of factorization systems. The reader who is familiar with this might
want to skip this section the results of which come in handy when we will talk about
reflectivity and when we compare the approaches. For sake of simplicity all the material
in this section is presented “externally”, but holds also in an “internal sense” for
“internal” categories of type Cat that we have already encountered in Definition 3.1.3.
In particular one can quantify over hom-sets (HomAB) which are of type Set. And
one can also quantify over all morphisms as we can quantify over ObC , thus we can
write ∀A:ObC .∀B:ObC .∀h:(HomAB). However, for the sake of a light notation we
will write f : A −→ B instead of f ∈ (HomAB) throughout this subsection.

Definition 6.1.1 Let e : A −→ B and m : C −→ D be morphisms of a category
C. We define e⊥m (e orthogonal to m) iff for all f :A −→ C and g:B −→ D such
that g ◦ e = m ◦ f there exists a unique function h : B −→ C such that the following
diagram commutes

116 Chapter 6. Axiomatizing other approaches

A
e

> B

C

f

∨
m

>
<

D
∨
g

�

Definition 6.1.2 A pair of classes of morphisms (E ,M) of a category C is called a
factorization system iff

1. both M and E are closed under composition and contain all isos (they are so-
called skeins).

2. any map f has a (E ,M)-factorization, i.e. f = m ◦ e for m ∈M and e ∈ E .

3. ∀e:E . ∀m:M. e⊥m (e orthogonal m).

Note that the operator ⊥ is not symmetric. �

The mono part of the factorization system trivially defines the epi part and vice versa
by duality. So there are two possibilities to define a factorization system.

The first is to define the mono part M. For a morphism f let the meet of all
subobjects (monos) in M that contain the image of f be the intermediate object for
the factorization.

X
f

> Y

⋂
{C n� Y |n ∈M ∧ im(n) ⊇ im(f)}

m

>

e

>

Then define e to be f with restricted codomain and m is the obvious inclusion. By
definition e is an epi, one has to show that m ∈ M. Prove that this factorization is
minimal w.r.t. all other (epi,M)-factorizations of f , i.e. the epi-part of the factoriza-
tion is “extremal” w.r.t. the property of factoring f into an M-mono.

Finally, one has to show that these epis are in fact orthogonal w.r.t. M. But this
can be done by routine diagram chasing. One simply has to know that the M monos
are preserved by pullbacks. Note that normally monos are easier to handle than epis,
so this should be the preferable road to go.

The dual idea is to start with the epi part. The intermediate object of the factor-
ization of f is then the union of all subobjects that contain the image of f , such that

6.1. Theory of Σ-replete objects 117

f restricted to the subobject defined by the mono is an E-epi.

X
f

> Y

⋃
{C n� Y | im(n) ⊇ im(f) ∧ f |C ∈ E }

m

>

e

>

This gives the mono m of the factorization, let the epi e be f with the codomain
restricted to the intermediate object. Verify that e ∈ E . Following the recipe above,
just dualized, we must show that this factorization is maximal w.r.t. all other (E-
epi,mono)-factorizations which gives the notion of extremal mono. Again one has to
check that the E-epis are orthogonal to this class of extremal monos. In order to get
this, E-epis have to be preserved by pushouts.

Whereas most of the definitions of good classes of predomains in some category can
be described by a proper class of monos, the Σ-replete objects are defined differently
by a class of epis, that express a certain kind of density-property, the so-called Σ-epis.
We will demonstrate now the epi approach for a special class E of epis, the Σ-epis.

The epi approach

We explain the procedure in detail for the case when starting with the definition of
the epi part. The mono approach can then simply be deduced by dualizing all the
statements and proofs of this subsection. Let us choose the Σ-epis as example. We
shall see soon what a Σ-epi is. For the underlying category we must assume that
it has enough pullbacks or pushouts (depending whether choosing the epi- or mono-
approach). Still in this subsection we are referring to an arbitrary (internal) category
C. As we are mainly interested in the category Set, we can imagine that all occurring
objects are of type Set where pullbacks and pushouts exist. The presentation is still
independent of any particular category (and in an “external” style).

The first step of the epi-approach-recipe was the definition of the epis.

Definition 6.1.3 A map e : A −→ B is called Σ-epi iff Σe is a mono where Af (g) =
g ◦ f , i.e. e is Σ-epi iff ∀f, g:B −→ Σ. f ◦ e = g ◦ e⇒ f = g. �

Definition 6.1.4 A mono m is an extremal mono iff e ⊥ m for all Σ-epis e. �

The next step of the epi-approach is to provide a (E , mono)-factorization that is
maximal with respect to all others.

Lemma 6.1.1 For any f :X −→ Y there exists a Σ-epi e and a mono m such that
f = m ◦ e and that for any other such factorization (e′, m′) there exists a (unique) h

118 Chapter 6. Axiomatizing other approaches

such that the following diagram commutes.

Z

X

e

>

Y

>

m

>

Z ′

∧

∃!h

>

m
′

>

e ′

>

This factorization is obviously unique (up to isomorphism) and is called maximal. The
maximal factorization has the universal property also with respect to factorizations
f = g ◦ e where e is Σ-epi and g is arbitrary.

Proof: Let f : X −→ Y then define Z as the union of all subobjects C of Y that
contain the image of f such that f restricted to C is Σ-epi.

Z ,
⋃
{C n� Y | im(f) ⊆ C ∧ ∀p, q : ΣC . (p ◦ f = q ◦ f)⇒ p = q}

Now let m be the inclusion of Z into Y and define e : X −→ Z to be the codomain
restriction of f to Z. Obviously f = m ◦ e. Prove that e is Σ-epi. Therefore, assume
p, q∈ΣZ and p ◦ e = q ◦ e. We must prove that p(z) = q(z) for an arbitrary z∈Z.
However, by definition of Z there is a C ⊇ Im(f) such that z ∈ C and ∀x:X. p|C(f x) =
q|C(f x) and thus by assumption p|C = q|C and so p(z) = q(z) as z ∈ C.
Furthermore, assume there is a Σ-epi e′ : X −→ Z ′ and a mono m′ : Z ′ � Y
such that f = m′ ◦ e′. Since im(m′) ⊆ Y , im(f) ⊆ im(m′), and e′ Σ-epi we have
Z ′ ∼= im(m′) ⊆ Z and we can take for h the inclusion im(m′) into Z. The map h is
obviously unique since m is a mono.
For the more general case where f = g ◦ e′ and g arbitrary we take the epi-mono
factorization of g = m′′ ◦e′′ and apply the lemma to the factorization f = m′′ ◦ (e′′ ◦e′)
such that we get a unique h with h ◦ e′′ ◦ e′ = e and m ◦ h = m′′. It is then easily
verified that the unique mediating arrow is h ◦ e′′. �
Lastly, the epi-approach-recipe tells us to prove that the maximal mono is indeed
orthogonal to all E-epis, here Σ-epis. To do that we first prove an auxiliary lemma.

Lemma 6.1.2 Let m : A −→ B be mono, then m is extremal iff

∀Y :ObC . ∀e:A→ Y. ∀f :Y → B. f◦e = m ∧ eΣ-epi ⇒ ∃e′:Y → A.m◦e′ = f ∧ e′◦e = id

A
e

> Y

A

m
>

<

e
′

B
∨
f

6.1. Theory of Σ-replete objects 119

Proof: “⇒”: The right hand side condition is a special case of orthogonality.
“⇐”: Let f ′, e′ be the pushout co-cone of f, e in the following diagram. Assume
g ◦ e = m ◦ f .

X
e

> Y

A
∨
f

<
e′′

e′
> C

f ′

∨

B

g

>

u

>

m

>

Since pushouts preserve Σ-epis (easy exercise) and e is a Σ-epi, e′ is a Σ-epi too and
therefore by assumption there exists an e′′:C −→ A such that e′′◦e′ = id and m◦e′′ = u.
Define h , e′′◦f ′. We prove that h is the diagonal fill in: h◦e = e′′◦f ′◦e = e′′◦e′◦f = f
and m ◦ h = m ◦ e′′ ◦ f ′ = u ◦ f ′ = g. The morphism h is unique since m is a mono. �
Now we can prove that the maximal mono is really extremal, i.e. orthogonal to all
Σ-epis.

Theorem 6.1.3 If f = m◦e is the maximal factorization for f then m is an extremal
mono.

Proof: Let (e:X −→ Z,m) be the maximal factorization for f :X −→ Y . By
Lemma 6.1.2 it is sufficient to show that for any g : Y ′ −→ Y and Σ-epi e′ : Z −→ Y ′,
such that m = g ◦ e′, there exists an e′′ : Y −→ Z such that m ◦ e′′ = g.

Z
e′

> Y ′

X
e

>

e

>

Z

m
>

<

e
′′

Y
∨
g

As f = m ◦ e = g ◦ e′ ◦ e = g ◦ (e′ ◦ e) and (e′ ◦ e) is a Σ-epi there exists by Lemma
6.1.1 a unique function e′′ : Y ′ −→ Z, such that e′′ ◦ (e′ ◦ e) = e and m ◦ e′′ = g. �

Corollary 6.1.4 Any map factors as a Σ-epi followed by an extremal mono.

Proof: Theorems 6.1.1 and 6.1.3. �

Theorem 6.1.5 Σ-epis and extremal monos form a factorization system.

120 Chapter 6. Axiomatizing other approaches

Proof: Let us check the conditions of Definition 6.1.2. 1. It is an easy exercise to
prove that extremal monos and Σ-epis are closed under composition and contain all
isos. 2. By Corollary 6.1.4 any map factors as required. 3. By definition of extremal
mono. �
Remark: The Σ-epi-extremal-mono factorization is unique up to isomorphism by
definition of extremal mono.

Factorization systems are interesting because one can build reflective subcategories
out of them. This is demonstrated in the next section with the Σ-replete objects.

6.1.3 The Σ-replete objects

We are now going to define the Σ-replete objects. For proving the equivalence of
Hyland’s and Taylor’s definition we will use the Σ-epi-extremal-mono factorization
system from the previous subsection. Note that this is not the most general way.
Instead of Σ-epis it is possible to define S-epis, where S is an arbitrary object. [HM95]
have defined repleteness for this generalized notions in an external (and fibred) sense.
This is important when trying to axiomatize different “flavours” (as Hyland calls them)
of domain theory (different from Scott domains) like e.g. stable domains. There one
has to permit models that do not have a small internally complete subcategory (like
PER) which represents the ambient “sets”. Consequently, it is not possible to turn
all the external considerations into the internal language [HM95, Ros95]. These ideas
must therefore be treated by external considerations.

In this chapter we always assume to work in an “internal” cartesian closed category
C ∈ Cat. Moreover, this C is assumed to be internally complete and to contain a
distinguished object Σ. The construction of the category of Σ-replete objects can be
carried through referring to an arbitrary category C with the mentioned properties, or
referring to one special category, say Set ∈ Cat, the category of sets (Set is obviously
an internally complete category). We stick to the latter as we don’t see any pragmatic
advantages of the more general approach in our setting.1 This is in line with Kock’s
naive style and with the original idea of Hyland to consider an ambient category of
sets. Before we begin, we briefly discuss the advantage of taking Set.

6.1.4 The repletion w.r.t. Set
The category (or Cat) Set has an important and convenient property, it is (in cate-
gorical terms) small internally complete or (in type theoretic terms) an impredicative
universe and therefore (in categorical terms) it is enriched over itself or (in type the-
oretic terms) the function space of two objects in Set is a Set again and not any old
type. So for any X, Y ∈ Setobj , i.e. X, Y ∈ Set, we have that (HomX Y) = X −→
Y ∈ Set = Setobj . Thus one can forget about the category structure of Set and simply
speak in terms of Set.

Taking Set we get also rid of another subtlety, carefully investigated in [HM95].
Look at the following definition:

1This might be different when aiming at other “flavours of domains” but they won’t work in our
special axiomatization anyway.

6.1. Theory of Σ-replete objects 121

Definition 6.1.5 Let S be an object of a (internally complete) category C ∈ Cat. A
C-morphism e : (HomX Y) is called an S-iso iff Se is an iso. �

Now there are two possibilities to understand the phrase “is an S-iso”. Is S e an iso
between (HomX S) and (HomY S) (weak S-iso in [HM95] terminology) or is it an iso
between the exponential objects (as C is internally complete this makes sense) SX and
SY (strong S-iso) ? We observe that in Set this makes no difference at all, since there
we have (Hom X Y) = XY . Yet, [HM95] pointed out that for an arbitrary category
externally it makes a difference if we want that Σ-replete objects form an exponential
ideal, i.e. if the following should hold: X is (in categorical terms) fibrewise replete or
(in type theoretic terms) replete in any context and Y is an arbitrary set, then X Y is
(fibrewise/contextwise) replete. To make this work one has to take the “strong” S-iso.
This will be explained more accurately after having introduced the notion of Σ-replete.

Definition 6.1.6 Let X, Y ∈ Set. A morphism e : X −→ Y is called Σ-equable (or
Σ-anodyne or a Σ-iso) iff Σe is an iso. �

Of course, we can be more formal with this definition :

Σ-iso , λX, Y :Set. λe:X −→ Y. iso (λg:Y −→ Σ. g ◦ e)

where iso is the predicate that checks if a map is an isomorphism in Set i.e. if it is
bijective.

Remarks:

1. Note that we cannot abstract over “arbitrary” maps, but only locally over maps
from X to Y , so we have to mention domain and target of the map e explicitly.
Note also that we use a “strong” version of Σ-iso in the terminology of [HM95].
Again in loc. cit. one can find a careful treatment of the differences betweem
fibrewise and “global” definitions of S-isos.

2. The property of being a Σ-equable can be seen as an “extension property”, i.e.
for every map (strong sense) or morphism (weak sense) f : X −→ Σ there is a
unique f : Y −→ Σ, that extends f .

X
e

> Y

Σ
∨
f

<

f

As usual the diagram only represents the external statement of being Σ-iso.

Definition 6.1.7 (Hyland) A set A ∈ Set is called Σ-replete iff for any Σ-equable
map f the map f is an A-iso, i.e. Af is an iso, where Af(g) = g ◦ f . �

122 Chapter 6. Axiomatizing other approaches

More formally we can define:

Σ-replete , λA:Set. ∀X, Y :Set. ∀f :X → Y. (iso λg:ΣY . g ◦ f) ⇒ (iso λg:Y → A. g ◦ f).

This is the original definition of Martin Hyland where Σ-equable is meant in the strong
(internal) sense. Here it is immaterial whether f is A-iso in the weak or strong sense
(c.f. [HM95]). The important point is that Σ-equable is meant in the strong sense.
So let us see why this is so important, coming back to the problem of closure under
exponentials. For the (external) proof that X Σ-replete implies XY Σ-replete for
arbitrary Y one needs the following auxiliary lemma:

Lemma 6.1.6 If e : (HomAB) is Σ-equable then Y × e : (Hom (Y × A) (Y × B)) is
Σ-equable.

Using then the adjunction between ()Y and Y × () one gets:

A > XY

Y × A > X

Y ×B > X

B > XY

For the conclusion in the middle we have used the auxiliary lemma. It is a real
restriction for the general approach, which uses weak isos as maps from homsets to
homsets. If one takes the strong definition then the lemma is easily shown to hold
generally (see below) and indeed it is the motivation for the strong definition. In Set
strong and weak make no difference, so it is appropriate to take Set. We could also
work with an internally complete category C containing Σ, but then for taking the
strong version of Σ-equable one has to internalize the functor Σ(). This is a mess and
moreover all the categories we’d like to consider in our approach are subcategories of
Set. Again this might be different when departuring for new shores with respect to
models.

So to complete the argument we sketch the mentioned lemma and its proof:

Lemma 6.1.7 Let A,B,X ∈ Set. If e : A −→ B is Σ-equable then X×e : (X×A) −→
(X × B) is Σ-equable, too.

Proof: Assume a map f : X × A −→ Σ. We must find a function H : (X ×A −→
Σ) −→ X ×B −→ Σ such that H(g) ◦ (X × e) = g and H is bijective. Define

H , λh : X × A −→ Σ. λu:X ×B. (Σe−1(curry(h) π1(u))) π2(u)

and prove by yourself that this H fulfills the requirements. �
So for the rest of this section we are working in Set without, however, mentioning the
category structure of Set. Any reference to the Theorem 6.1.5 is intended w.r.t. to
the special category Set. Note that this is possible as Set has enough pushouts which
can be constructed easily via disjoint sums and equalizers. More about completeness
properties of Σ-replete objects in Section 6.1.5.

Remarks:

6.1. Theory of Σ-replete objects 123

1. ΣX is Σ-replete for any X because for any Σ-equable e:A −→ B we have that
(ΣX)e : (ΣX)B −→ (ΣX)A is an iso iff (Σe)X : (ΣB)X −→ (ΣA)X is an iso if
Σe : ΣB −→ ΣA is an iso if e is Σ-equable.

2. If A is Σ-replete and e : A −→ B is Σ-equable then we have that f ◦e = Ae(f) =
Ae(g) = g ◦ e ⇒ f = g since Ae is an iso. In fact this is already true if ηA is a
mono, since ΣΣA is Σ-replete as f = g iff ηA ◦ f = ηA ◦ g iff ηA ◦ f ◦ e = ηA ◦ g ◦ e.

Equivalence of Hyland and Taylor

We can prove internally that Hyland’s and Taylor’s definition of Σ-replete are equiva-
lent. All the following lemmas are needed to achieve this goal, namely Corollary 6.1.14.

Lemma 6.1.8 A map e:X −→ Y is Σ-equable iff e is a Σ-epi and for some g:Y −→
ΣΣX we have g ◦ e = ηX .

Proof: “⇒”: e Σ-equable implies e Σ-epi. For g choose Σ((Σe)−1) ◦ ηY since Σe is an
iso by assumption.
“⇐”: We must prove that any function p : X −→ Σ can be uniquely extended to a
function p : Y −→ Σ such that p ◦ e = p.
Uniqueness follows from the fact that e is a Σ-epi. Define p(y) , (g y) p. But now
p(e(x)) = g(e(x))(p) = (ηX x) p = p(x). Thus p ◦ e = p. �

Theorem 6.1.9 X is Σ-replete iff ηX is an extremal mono.

Proof: “⇒”: Let X be Σ-replete. According to Theorem 6.1.5 we factor ηX =
mX ◦ eX where eX :X −→ R(X) is Σ-epi and mX :R(X) −→ ΣΣX an extremal mono.

X
eX

> R(X)

ΣΣX
∨
mX

η
X

>

By Lemma 6.1.8 we know that eX is Σ-equable therefore idX:X −→ X extends
uniquely to a function i:R(X) −→ X such that i ◦ eX = idX .

X
eX

> R(X)

X

idX

∨ <

i

Moreover, this implies ηX = mX ◦ eX = mX ◦ eX ◦ i ◦ eX . As ΣΣX is Σ-replete and
since eX is Σ-epi (see Remark 2 above) we get mX = mX ◦ eX ◦ i and since mX is a

124 Chapter 6. Axiomatizing other approaches

mono eX ◦ i = idR(X), Thus eX is an iso and therefore ηX is an extremal mono since
mX is extremal.

“⇐”: Suppose ηX is an extremal mono. Let e ∈ Y −→ Z be Σ-equable and
g ∈ Y −→ X . We must construct a unique extension of g.

Z

Y >

e

>

ΣΣY
∨
h

X

g

∨
ηX

>

<

ΣΣX
∨
ΣΣg

By Lemma 6.1.8 there exists an h ∈ Z −→ ΣΣY such that ηY = h ◦ e. Because e is
Σ-equable and ηX is an extremal mono there exists a unique g ∈ Z −→ X such that
g ◦ e = g and ηX ◦ g = ΣΣg ◦h. To show that Xe is an iso we must only prove that this
g is the unique map with g ◦ e = g. Therefore, suppose that for some g ′ ∈ Z −→ X
we have that g′ ◦ e = g. Then ηX ◦ g′ ◦ e = ηX ◦ g = ΣΣg ◦ ηY = ΣΣg ◦ h ◦ e. Since e is
Σ-equable and ΣΣX is Σ-replete we get ηX ◦ g′ = ΣΣg ◦ h = ηX ◦ g. Since ηX is a mono
we finally get g′ = g. �
Definition 6.1.8 For any set X the set R(X) is defined as the intermediate object in
the Σ-epi-extremal-mono factorization of ηX , i.e. if ηX = e ◦m with e:X −→ Z then
R(X) , Z. �

Lemma 6.1.10 R(X) is Σ-replete for any X .

Proof: Consider the following diagram:

X
eX

> R(X)

ΣΣX

ηX

∨

ΣΣeX ∼>
<

m
X

ΣΣR(X)

∨
ηR(X)

We know that the square and the upper triangle commute and that ΣΣ(eX)
is an iso

since eX is Σ-equable (Lemma 6.1.8). If we can show that the lower triangle commutes
then we know that ηR(X) = ΣΣeX ◦mX and since ΣΣeX is an iso and mX is an extremal
mono ηR(X) is an extremal mono too.

Now ΣΣeX ◦mX ◦ eX = ΣΣeX ◦ ηX = ηR(X) ◦ eX . Since ΣΣR(X)
is Σ-replete and eX is

Σ-equable we get ΣΣeX ◦mX = ηR(X). �

6.1. Theory of Σ-replete objects 125

Theorem 6.1.11 A set A is Σ-replete iff any Σ-equable e ∈ A −→ B is a split mono
and ηA is a mono.

Proof: “⇒”: If A is Σ-replete then ηA is extremal mono by 6.1.9. If f :A −→ B is
Σ-equable then by Lemma 6.1.8 there is a g with ηA = g ◦ e and e is a Σ-epi. But ηA
is extremal so by Lem. 6.1.2 there exists an e′ : B −→ A such that e′ ◦ e = id, so e is
a split mono.
“⇐”: Suppose ηA = g ◦ e with e Σ-epi so by 6.1.8 it is Σ-equable and by assumption
it is a split mono, i.e. e′ ◦ e = id. Therefore η ◦ e′ ◦ e = g ◦ e holds and thus we have
that ηA ◦ e′ = g since e is Σ-epi. By Lemma 6.1.2 we can conclude that ηA is extremal
and thus by Theorem 6.1.9 A is Σ-replete. �

Lemma 6.1.12 If an extremal mono m ∈ A′� A factors into a Σ-epi e ∈ A′ −→ A′′

an arbitrary map f ∈ A′′ −→ A, i.e. m = f ◦ e, then e is an iso if ηA′′ is mono.

Proof: By 6.1.2 we already have that there is a p : A′′ −→ A′ such that p ◦ e = idA′.

This implies e ◦ p ◦ e = e ⇒ ηA′′ ◦ e ◦ p ◦ e = ηA′′ ◦ e. But since e is Σ-epi and ΣΣA
′′

Σ-replete we get ηA′′ ◦ e ◦ p = ηA′′ and since ηA′′ is monic we arrive at e ◦ p = idA′′. �
The following is the characterization of extremal monos used by [Tay91]:

Lemma 6.1.13 (Taylor) A map m ∈ X −→ Z is an extremal mono iff e is an iso
whenever m = m′ ◦ e such that m′ ∈ Y � Z mono and e ∈ X −→ Y Σ-epi.

Proof: “⇒”: By Lemma 6.1.2 we get a p ∈ Y −→ X such that m′ = m ◦ p. This
implies m′ ◦ e ◦ p = m ◦ p = m′. But since m′ is a mono we get e ◦ p = idY . Moreover
m′ ◦ e = m implies m ◦ p ◦ e = m and since m is mono this gives us p ◦ e = idX .
“⇐”: Let m = m′ ◦ e where m′ extremal mono and e Σ-epi. This factorization exists
due to Theorem 6.1.5. But by assumption e is an iso, so m is extremal as m′ is. �
Now we are in the position to prove that Hyland’s and Taylor’s definition are equiva-
lent.

Corollary 6.1.14 (Taylor) X is Σ-replete iff for all Σ-equable f ∈ X −→ Y with ηY
a mono, i.e. Y fulfills the weak Leibniz property, f is an iso.

Proof: “⇒”: By Theorem 6.1.9 we know that ηX is an extremal mono and since f
is Σ-equable there is a g : Y −→ ΣΣX such that ηX = g ◦ f . By 6.1.12 we can conclude
that f is an iso.
“⇐”: Consider the Σ-replete object R(X) in the extremal factorization of ηX , i.e.

X
eX−→ R(X)

mX−→ ΣΣX . Then eX is Σ-equable and by assumption it is an iso. But
then ηX is an extremal mono since mX is one and by 6.1.9 X is Σ-replete. �

Linkage

Define the preorders v and vlink as in Definition 2.4.1. We turn to the question of
linkedness for Σ-replete objects. For the moment let b : B −→ Σ denote the obvious
inclusion.

126 Chapter 6. Axiomatizing other approaches

Theorem 6.1.15 Let X be a set. Then the relations v and vlink coincide on X (i.e.
X is linked) iff b ⊥ ηX .

Proof: “⇒”: Consider the following commuting square.

B
b

> Σ

X

g

∨
ηX

>
<

h

ΣΣX
∨
f

We have to construct an h such that h(⊥) = g(false) and h(>) = g(true). Then by
definition h ◦ b = g. Moreover, ηX(h(⊥)) = ηX(g(false)) = f(b(false)) = f(⊥). An
analogous equation holds for >, so we also get ηX ◦h = f . Uniqueness follows from the
fact that ηX is a mono. Now how to construct h? By the linkedness assumption we
only have to show that g(false) v g(true). As η reflects v by Lemma 2.6.3 (which does
not depend on MP and is therefore still valid) we only have to prove ηX(g(false)) v
ηX(g(true)). But by assumption this is equivalent to f(b(false)) v f(b(true)), i.e.
f(⊥) v f(>) but this follows from monotonicity of f and Lemma 2.4.1 that only
depends on Phoa’s Axioms.
“⇐”: Assume x1 v x2. Then by monotonicity ηX(x1) v ηX(x2) and by Lemma 2.4.4
we get ηX(x1) vlink ηX(x2). So there is an f :Σ −→ ΣΣX such that f(⊥) = ηX(x1) and
f(>) = ηX(x2). Now f ◦ b = ηX ◦ [x1, x2], i.e. the following square commutes

B
b

> Σ

X

[x1, x2]

∨
ηX

> ΣΣX
∨
f

We know by assumption that there exists a unique g ∈ Σ −→ X such that g(⊥) =
g(b(false)) = [x1, x2](false) = x1 and g(>) = g(b(true)) = [x1, x2](true) = x2. Thus
x1 vlink x2 with linkage map g.
The other direction holds by 2.4.3. �
Obviously b is not Σ-equable (extending the map 〈>,⊥〉 along b would contradict
PHOA1). However, it is still a Σ-epi as it is even an epi. Therefore, one gets an
elegant proof of what is stated in [Tay91, Lemma 2.12]:

Corollary 6.1.16 (Taylor) Any Σ-replete object is linked.

Proof: By the previous Theorem 6.1.15 and by Theorem 6.1.9 as b:B −→ Σ is Σ-epi.
�

6.1. Theory of Σ-replete objects 127

6.1.5 Closure properties of Σ-replete objects

In this section we take a short look on the construction under which Σ-replete objects
are closed. By the abstract definition of Σ-replete objects some proofs (e.g. for prod-
ucts) become shorter than in Section 2.9 for Σ-cpo-s, some are somehow analogous.
We will prove that Σ-replete objects are closed under

I extremal subobjects

I arbitrary (Set-indexed) products

I equalizers (between Σ-replete objects, and even a bit more general equalizers)

I isomorphisms

I N and B are Σ-replete

I lifting

I binary sums.

Note that the proofs of this section will be presented in an “external style”. But
as we have seen before, this sort external reasoning on “internal” categories can be
translated into the internal language as we use Set as the ambient category. Recall
that morphisms in Set are simply functions between elements of the universe Set and
that we can quantify over arbitrary objects and morphisms with fixed domain and
codomain.

Corollary 6.1.17 Any extremal subobject X
m� A of a Σ-replete A is Σ-replete.

Proof: Let e : X −→ Y be Σ-equable then there exists a unique g : Y −→ A such
that m = g ◦ e since A is Σ-replete. If we assume that Y fulfills the weak Leibniz
property then by Lemma 6.1.12 e is an iso. Thus by Corollary 6.1.14 X is Σ-replete.
�
The Σ-replete object form not just an exponential ideal as mentioned at the beginning
of the chapter, there are even closed under arbitrary (dependent) products:

Theorem 6.1.18 Let A be any type, B∈A −→ Set such that for all x ∈ A we have
that B(x) is Σ-replete. Then the product Πx:A.B(x) is also Σ-replete.

Proof: Let X, Y ∈ Set, e ∈ X −→ Y be a Σ-equable map. Assume g ∈ X −→
Πx:A.B(x) and gx = πx ◦ g. Since any B(x) is Σ-replete there exist unique hx : Y −→
B(x) such that hx◦f = gx and therefore πx◦g = πx◦(hx◦f) = (πx◦hx)◦f . Uniqueness
of Πx:X. hx follows by the uniqueness of any hx. �
Consequently the Σ-replete objects are closed under function space −→ and binary
products ×. This is in complete analogy to the Σ-cpo-case (cf. Sect. 2.9).

Theorem 6.1.19 Let A ∈ Set Σ-replete and B ∈ Set fulfill the weak Leibniz property
i.e. ηA is mono (it must not necessarily be Σ-replete), g1, g2 ∈ A −→ B, then E ,
{x∈A| g1(x) = g2(x)} is Σ-replete, too.

128 Chapter 6. Axiomatizing other approaches

Proof: Let X, Y ∈ Set, f :X −→ Y be Σ-equable and k:X −→ E. To show that E
is Σ-replete we must find a unique h ∈ Y −→ E such that h ◦ f = k. Now since A is
Σ-replete there exists a k′ ∈ Y −→ A such that k′ ◦ f = e ◦ k.

X
f

> Y

E

k

∨
>

e
>

<

h

A
∨
k′

g1
>

g2

>
B

The map k′ equalizes g1 and g2 since for i = 1, 2 we have that gi ◦k′ ◦ f = gi ◦ e ◦k and
therefore by assumption g1 ◦ k′ = g2 ◦ k′ (cf. Remark 2). Thus, there exists a unique
h ∈ Y −→ E such that e ◦ h = k′. But now we get e ◦ k = k′ ◦ f = e ◦ h ◦ f which
implies k = h ◦ f since e is a mono as it is an equalizer. �
The flatness condition for Σ-cpo-s (Theorem 2.9.18) carries over with a mild strength-
ening. The proposition ∃a:A. p(a) does not simply have to be ¬¬-closed, it must be
in Σ, and the equality on A does not simply have to be Σ, but must be decidable.

Theorem 6.1.20 Let A ∈ Set such that the proposition ∃a:A. p(a) ∈ Σ for any
p ∈ ΣA and the equality on A and its complement are a Σ-predicate (i.e. the equality
is decidable). Then A is Σ-replete with the flat ordering, i.e. ∀x, y:A. x v y iff x = y.

Proof: The proof is like the one of Theorem 2.9.7, i.e. we use the fact that A is
isomorphic to

Sgl , {p∈ΣA | ∀x, y:A. (p x∧ p y ⇒ x = y) ∧ (∃x:A. p x)}
that is the singleton sets on A. But Sgl must now be expressed as an equalizer from
ΣA (which is Σ-replete) to some Σ-replete object Z, then by the previous theorem it
is also Σ-replete. This can be done as in [Hyl91] (where it is done for N) choosing
Σ × Σ for Z and taking maps λp:ΣA. (∃n:A. p n, ∃n:A. ∃m:A. p(n) ∧ p(m) ∧ n 6= m)
and λp:ΣA. (>,⊥). �
Corollary 6.1.21 N and B are flat Σ-replete objects.

Proof: Just by the previous theorem. �
An easy observation is that Σ-replete objects are closed under isomorphism simply by
virtue of the abstract definition of Σ-replete.

Lemma 6.1.22 If A,B ∈ Set, A is Σ-replete and A ∼= B, then B is Σ-replete, too.

Proof: If e : X −→ Y is Σ-equable and i : A −→ B an iso, then for any map
f : X −→ B consider i−1 ◦ f ∈ X −→ A which by repleteness of A gives rise to a
unique map h : Y −→ A, such that (i ◦ h) ◦ e = i ◦ (i−1 ◦ f) = f . Uniqueness of (i ◦ h)
follows from the uniqueness of h. �
Binary sums can be coded as equalizers once we have defined what lifting is. We can
reuse the definition in [Hyl91, p. 135] of lifting and sums.

6.1. Theory of Σ-replete objects 129

Definition 6.1.9 (Hyland) Let A ∈ Set then define A⊥ ,
∑
s:Σ. (s = >) −→ A. �

First one has to check that A⊥ is the Σ-partial-map classifier in Set. Remember that
for the Σ-cpo approach in Corollary 3.1.12 we could only show that the lifting defined
there is the Σ-partial-map classifier for Pos and its subcategories (Cpo,Dom). The
reason was that the map upA : A −→ A⊥ is only a mono if A is a Σ-poset.

Theorem 6.1.23 The lifting as defined above is the Σ-partial-map classifier in Set.
Proof: Note that the definition of the classifying map is easier than in Section

3.1.5: Let p be a partial map (A
m� D

f−→ B) where m : D � A is classified by
the Σ-predicate q. Then we define the classifying map p : A −→ C⊥ like follows:
p , λa:A. (q(a), λz:(q(a) = >). f(a)). Note that f(a) is well-defined because q(a) = >
i.e. a ∈ B (use the Dominance Axiom here).
Define the embedding upA , λa:A. (>, λz:> = >. a) ∈ A −→ A⊥. The rest of the
proof is along the lines of Section 3.1.5. �
Now there is a fundamental difference between the Σ-cpo and the Σ-replete-approach.
The fact that lifting is the Σ-partial-map classifier is crucial to show that Σ-replete
objects are closed under lifting whereas for Σ-cpo-s this followed already from the
definition of lifting. The proof that lifting is the Σ-partial-map classifier is stated there
just for completeness reasons and since it is important for denotational semantics.

So up to now we only have A⊥ ∈ Set, it remains to show that A⊥ is Σ-replete using
the above theorem.

Theorem 6.1.24 ([Hyl91, Theorem 6.3.1]) For any A ∈ Set such that A is Σ-replete,
the lifting A⊥ is also Σ-replete.

Proof: Let A ∈ Set be Σ-replete. Then there is a unique map g ∈ Y −→ Σ that
extends χA ◦ f uniquely (see Figure 6.1). Now we pull the triangle (X, Y,Σ) back
along > : 1 −→ Σ. One gets a map e′ ∈ X ′ −→ Y ′ which is the pullback of e along
the inclusion Y ′ � Y . First note that the pullback of an Σ-equable map along some
Σ-subset is again Σ-equable because if X ′⊆ΣX then any map f : X ′ −→ Σ can be
uniquely extended to a map f ′ ∈ X −→ Σ that coincides with f on X ′.
Hence e′ is Σ-equable and as A is Σ-replete there exists a unique map f ′′ from Y ′ to

A, such that Y � Y ′
f ′′−→ A is a partial map which is classified by a unique f̂ . Now

f̂ ◦ e = f since f ′′ ◦ e′ = f ′ and f(x) = ⊥ iff x 6∈ X ′ iff e(x) 6∈ Y ′ iff f̂(e(x)) = ⊥.
Uniqueness follows from the fact that f̂ always gives rise to a partial map, the total
part of which is a map h such that h ◦ e′ = f ′, but this is unique as A was Σ-replete,
so also f̂ must be unique. �
This admittedly rather external proof can be internalized as Set is an internal category
with the right properties. The reasoning with pullbacks is like in Sect. 3.1.5.

Once we have that lifting preserves repleteness, we can define the binary sum via
the lifting:

Lemma 6.1.25 Let A,B ∈ Set be Σ-replete. Then A + B ∼= {p ∈ A⊥ × B⊥ | f(p) =
g(p)} where f, g ∈ A⊥ ×B⊥ −→ Σ× Σ are defined as follows:

f(p) , (π1(π1(p)) ∧ π1(π2(p)), π1(π1(p))∨ π1(π2(p))) and g(p) , (⊥,>).

130 Chapter 6. Axiomatizing other approaches

X ′
e′

> Y ′

X
e

>

>

>
Y

>

>

A

f ′

∨ <

f
′′

A⊥

f

∨ <

f̂
>

up

>

1
∨

Σ
∨

χA

<

g

>

>
>

Figure 6.1: Lifting preserves Σ-replete objects

Proof: The proof is fairly standard. The maps are chosen in a way that one element
of the pair must always be ⊥. �

Corollary 6.1.26 Let A,B ∈ Set be Σ-replete. Then A +B is Σ-replete.

Proof: Follows directly from the fact that Σ-replete objects are closed under isos
(Lem. 6.1.22), equalizers (Lem. 6.1.19) and the previous lemma. �
So we have shown the most important closure properties for Σ-replete objects. Now
one can proceed as with the Σ-domains, i.e. define Σ-replete objects with least ele-
ments, define the the domain constructors as in Chapter 3 and perform the inverse
limit construction for the category of Σ-replete objects with least elements and strict
functions like in Chapter 4.

6.1.6 Reviewing the axioms – chain completeness

With respect to the axioms for the Σ-cpo-case we are going to have two changes that
shall be discussed now in detail.

1. We can drop Markov’s Principle as it is not necessary. Consequently, no double
negations are floating around any more. So modified realizability models – where
Markov’s principle does not hold – can serve as models for the Σ-replete theory.

6.1. Theory of Σ-replete objects 131

This means also, that the equality on the Σ-replete objects is not automatically
¬¬-closed. For practical reasons, however, it is often quite convenient to have
that the equality is ¬¬-closed for doing case analysis or structural induction. Of
course, fixpoint induction can still be used in this case, but case analysis must
be substituted by uniform universal properties. This deserves further research.

2. We are going to substitute the Continuity Axiom SCOTT – which we have not
used up to now – by the following axiom:

(STEP) step : N −→ ω is a Σ-epi.

This is to prove that the embedding ι : ω� ω is Σ-epi (we could also take this
as an axiom). From (STEP) one can prove that ι is Σ-equable which implies that
any Σ-replete object has suprema of ascending chains. These are automatically
preserved by functions as they are represented as unique extensions. In [Tay91]
one can find a proof that ι is Σ-epi just based on SCOTT. But the proof is very
complicated and it is not easy to check its correctness. As STEP certainly holds
in any model of the Σ-cpo axiomatization, it does not seem to be a bad choice,
and it makes one’s lives easier with proving.

In order to continue in pure analogy to the Σ-domain-case, one still has to prove that
Σ-replete objects are chain complete (in the Σ-cpo sense). Note that we take over the
definitions of ω and ω. It suffices to prove that the inclusion ω� ω is Σ-equable. Note
that this does not follow from Theorem 2.7.3 for Σ-cpo-s since there we used a different
axiomatization: Markov’s Principle does not hold anymore for Σ-replete objects. If
it would, then we could proceed as for the Σ-cpo case. Fortunately, by using axiom
STEP we still can go on as in Section 2.7. And the situation is still simpler as we just
have to consider the case X = Σ.

Theorem 6.1.27 The inclusion ω −→ ω is Σ-equable.

Proof: Given an f : ω −→ Σ we have to construct a unique extension f : ω −→ Σ.
Let us first show that such an extension must be unique: By assumption we have
k, h : ω −→ Σ such that h ◦ ι = f = k ◦ ι. So h ◦ ι ◦ step = k ◦ ι ◦ step hence by STEP
we get that h = k. To show the existence of the extension we define

f , λp:ω. (∃n:N. (p n) ∧ (f ◦ step)(n+ 1)) ∨ (f ◦ step)(0)

as in Lemma 2.6.19. Obviously f(stepm) = (∃n:N. n < m ∧ (f ◦ step)(n+ 1)) ∨ (f ◦
step)(0) which by monotonicity of step is equivalent to f(stepm). �
On the other hand it is very easy to show that e.g. ω ′ −→ ω is Σ-epi as it is even an
epi. The problem is to generate chains of type ω ′ −→ A out of ascending chains of
type N −→ A for arbitrary Σ-replete objects. We can think of two possibilities:

1. For subobjects of some power of Σ this can be done analogously to the Σ-cpo-
case. This is the same for all the other definitions of ω.

132 Chapter 6. Axiomatizing other approaches

2. If ω is the initial lift algebra then one can construct certain chains as in the case
of well-complete objects explained in the next section.

If ι is Σ-epi then the supremum of an f ∈ ω −→ A is obviously f (λx:N.>) where f
denotes the unique extension. Suprema are preserved by any map g because of the
uniqueness of the extension: g ◦ f and g ◦ f both extend g ◦ f and must therefore be
equal.

6.2 Well complete objects

Chapters 4 and 5 of Longley’s thesis [Lon94] give an axiomatization for a Synthetic
Domain Theory in arbitrary realizability toposes (based on joint work with Alex Simp-
son).

The idea of the definition of well-completes hinges on an orthogonality property
like that we have already encountered for Σ-cpo-s (Theorem 2.7.3). The central idea is
to regard chains in X as functions of type f : ω −→ X and any such map is uniquely
extendible to a map f : ω −→ X such that f(λx:N.>) is the supremum of f . For
the Σ-replete objects this followed from the fact that the inclusion ω −→ ω is a Σ-epi
which implies the orthogonality theorem by definition of Σ-replete. The idea of the
well-completes is to give an axiomatization of SDT which admits models in which
axioms like PHOA2, PHOA3, SCOTT or the closure of Σ under N-indexed joins or
even finite unions do not hold. This is interesting when one tries to develop a synthetic
theory of stable domains.

In [Lon94] an “axiomatization” in arbitrary (!) realizability models is elaborated.
All the proofs given there are on the level of realizers (see also Sect. 9.7). This differs
from the “logical approach” we are following. In fact, the computation with realizers
requires training and so we have tried to reduce it to a minimum, just giving a model for
the axiomatization in Chapter 8 and then working entirely in the internal language.
Longley admits that some of his proofs (e.g. closure under exponentials) “involves
some messy calculations with realizers” [Lon94] and that adopting the internal logic
may yield a more natural proof. Of course, we agree on that. Therefore the proofs in
this section are done in the internal language and avoid any reasoning with realizers.
Still, they follow the ideas of the proofs given in [Lon94].

In this section we shall suggest a development of the well-completes in the inter-
nal language, similar to that of the Σ-cpo-s and Σ-replete objects in Chapter 2 and
Section 6.1.

6.2.1 The logic

The basic logic is again intuitionistic higher-order logic with subtyping. We need proof
irrelevance, Axiom of Unique Choice and extensionality as before. We also assume
that equality is ¬¬-stable in general.2 This is convenient for doing case analysis on
equational propositions and seems to be justified by the property that assemblies

2This implies Markov’s Principle for Σ if Σ represents the Σ0
1 propositions.

6.2. Well complete objects 133

always have a ¬¬-closed equality in the model. Again, we assume a universe Set that
is impredicative and interpreted as the small category of PERs (We rather want to
deal with well-complete PERs than assemblies.) The Dominance Axiom turns out to
be crucial this time again and will also be assumed. Therefore, one can define lifting
as the Σ-partial map classifier like for Σ-replete objects. Moreover, we assume to have
a type of natural numbers living in Set (called N as usually). We can then define ω
and ω as in Definition 2.6.5 and also the inclusion ι : ω −→ ω.

The SDT-axioms are the following:

1. There is an object Σ ⊆ Prop with ⊥,> ∈ Σ, and ⊥ 6= >. We only assume an
operation ∧ : Σ −→ Σ −→ Σ as before, but no union.

2. The object ω is (internally) the initial lift algebra. This is a rather strong axiom
and it is not obvious in which models it is valid. At the end of this chapter
we will argue that there is a simpler axiomatization of this (Section 6.2.4). But
for the moment it seems more convenient to think in the familiar terms of the
previous chapters.

3. (N⊥)ι is an isomorphism. We will henceforth refer to this axiom using the short-
hand (AX1).

We will see soon that axiom AX1 implies that the inclusion ι is Σ-equable (note that
1⊥ = Σ).

Lemma 6.2.1 We observe that ω⊥ ∼= ω and ω⊥ ∼= ω.

The isomorphism h : ω⊥ −→ ω is defined as follows:

h , λx:ω⊥. λn:N. if (n = 0) then π1(x) else π1(x) ∧ π2(x)(r>)(n− 1)

where (r>) is a proof for π1(x) = > which holds by the left hand side of the conjunc-
tion. The Dominance Axiom must be used for the definition of this conjunction. The
conditional is allowed as n = 0 is decidable. The inverse map is defined:

h−1 , λp:ω. 〈p(0), λw:(p(0) = >). λn:N. p(n+ 1)〉.

Note that λn:N. p(n+1) is indeed in ω as p already was. It is an easy exercise to check
that this defines an isomorphism and that the h and h−1 restricted to ω, called j and
j−1, yield an isomorphism, too.

Remark: Then map j can be seen as a successor map on ω if we consider j ◦ ηω ∈
ω −→ ω.

By the usual definition of ω we can also define a function step ∈ N −→ ω as done
in Definition 2.2.2.

134 Chapter 6. Axiomatizing other approaches

6.2.2 Definition of well-completes

First note that in a language with a dominance one can define lifting as described in
Definition 6.1.9 as the partial map classifier for maps with domains specified by the
dominance, i.e. in this case the Σ-subsets. It is obvious that lifting can be extended
to a functor. Let f : X −→ Y be a map between sets, then ⊥(f) is defined to be the

classifying map of the partial map X⊥
upX� X

f−→ Y .

Definition 6.2.1 A set X ∈ Set is called complete iff the map X ι : Xω −→ Xω is an
isomorphism. �

This is already sufficient for simple domain theory; compare with Section 2.7 or the
main infinitary axiom in Section 9.5.1 : suprema of chains in a complete object f :
ω −→ X can be computed by means of the unique extension f (∞). Consequently,
any map is continuous. Given a chain ω −→ X , and a function X −→ Y , f ◦ a and
f ◦ a both extend f ◦ a and must therefore be equal.

The complete objects have already very nice closure properties but they are not
closed under lifting, or more exact, it is not possible to prove that they are. Therefore
one defines the well-complete objects:

Definition 6.2.2 An assembly X is called well-complete iff X⊥ is complete. �

So AX1 can be reformulated as “N is well-complete”. In [Lon94] there is only required
that 2 is well-complete, since on the model level this is sufficient to show that N is
well-complete. Yet, the proof is difficult to carry out in the internal language so we
just stipulate it as we do not see a qualitative difference between AX1 and the original
axiom.

The following closure properties are easy consequences of the definitions:

Theorem 6.2.2 The complete and well-complete objects are closed under retracts
and binary products. The complete objects are even closed under arbitrary (set-
indexed) products.

Proof: Easy for completes, just by definition. For well-complete objects retracts are
a bit more difficult. One has to show that a retract X

e−→ Y
p−→ X gives rise to a

retract X⊥
⊥(e)−→ Y⊥

⊥(p)−→ X⊥. We have to show that ⊥(p)(⊥(e)(x)) = x for any x ∈ X⊥.
But as equality is ¬¬-closed we can do a case analysis on π1(x) = ⊥ or π1(x) = >.
The rest is straightforward then. �

Corollary 6.2.3 1, Σ, and B are well-complete.

Proof: It is obvious that 1, Σ, and B are retracts of N and by Theorem 6.2.2 we are
done. �
A direct consequence of the AX1 is the following:

Corollary 6.2.4 Any well-complete object is complete.

6.2. Well complete objects 135

Proof: If f : ω −→ X is given, consider the extension ηX ◦ f ∈ ω −→ X⊥ which
exists as X is well-complete.

ω
ι

> ω

1 <
!

X
∨
f

Σ

>
∨
<

χX
X⊥

ηX

∨ <

η X
◦
f

Now the map χX ◦ ηX ◦ f ∈ ω −→ Σ has a unique extension – as 1 is well-complete
– which must equal χX ◦ ηX ◦ f by uniqueness. But from the above diagram one can
easily derive that χX ◦ ηX ◦ f = >. Thus, the map ηX ◦ f factors through X and this
gives the desired map. Uniqueness follows from the fact that ηX is a mono. �
Note that in this case no dominance axiom or case analysis is necessary for obtaining
the map ω −→ X from ηX ◦ f like in the Σ-cpo-approach. As X⊥ =

∑
s:Σ. (s =

>) −→ X , it holds that χX(x) = π1(x) and in case χX(x) = > one can project on
a term of type X , namely π2(x)(r>) which corresponds to (down x) in the sense of
Σ-cpo-s. Here (r>) stands for a term which proves > = > obtained by reflexivity.

Notation: We denote λx:N.> as ∞.

Lemma 6.2.5 Let a ∈ ω −→ Σ. If ∀p:ω. a(p) = ⊥ then a(∞) = ⊥.

Proof: Obviously the map λp:ω.⊥ extends a, but by 6.2.3 we know that there must
be a unique extension of a, so a(∞) = ⊥. �
In general Phoa’s axioms do not hold anymore with one exception: (PHOA 1) (see
2.2.2) which is commonly viewed as an abstract version of the undecidability of the
halting problem. It is expressed in the following way:

Lemma 6.2.6 There is no map f : Σ −→ Σ such that f(⊥) = > and f(>) = ⊥.

Proof: Assume there is such an f and let µ1 ∈ Σ⊥ −→ Σ be the classifying map
for up(>) : 1 � Σ⊥. Since ω is the initial lift-algebra, the map f ◦ µ1 : Σ⊥ −→ Σ
gives rise to a unique chain a ∈ ω −→ Σ. Then consider chain a′ , a ◦ j ◦ ηω and
obviously a′(step n) = > iff n is odd. Also (f ◦ a)(step n) = > iff n is odd. Prove this
by induction on n. Now by Lemma 2.6.17 – which is still valid – we get that a′ = f ◦a.
So f(a(∞)) = f ◦ a(∞) = a′(∞) = a ◦ j ◦ ηω(∞) = a ◦ h−1 ◦ ηω(∞) = a(∞). So one
can prove ⊥ = > by case analysis on a(∞) = >∨a(∞) = ⊥ since equality is ¬¬-closed
by assumption and we get a contradiction to ¬(⊥ = >). �

136 Chapter 6. Axiomatizing other approaches

Corollary 6.2.7 For any map f : ω −→ Σ if f(∞) = ⊥ then ∀p:ω. f(p) = ⊥.

Proof: Assume f(∞) = ⊥. Since equality is ¬¬-closed we can apply Lemma 2.6.17,
so we only have to prove ∀n:N. f(step n) = ⊥, which is ¬¬-closed so we can do a proof
by contradiction. Since ¬¬∀n:N. f(step n) = ⊥ is equivalent to ¬∃n:N. f(step n) = >
let us assume there is an n such that f(step n) = >. It suffices to define a map
g : Σ −→ ω such that g(⊥) = step n and g(>) = ∞, since then by Lemma 6.2.6 the
map f ◦ g produces the desired contradiction. But g = (h ◦ ηω)n(h ◦ ∞⊥), where h is
the isomorphism ω⊥ ∼= ω and ∞ : 1 −→ ω yields λn:N.>. �
An immediate consequence of the previous theorems is the following:

Corollary 6.2.8 Let a : ω −→ Σ. Then

(a) a(∞) = ⊥ iff ∀p:ω. a(p) = ⊥

(b) a(∞) = > iff ¬¬∃p:ω. a(p) = > .

Proof: The first claim (a) follows from Lemma 6.2.5 and 6.2.7 and (b) can be
derived from (a) since ¬(x = ⊥) iff x = > (It is necessary here that equality on Σ is
¬¬-closed.) �

6.2.3 Closure properties of well complete objects

Following Longley’s work one can show that the well-completes enjoy also the closure
properties listed below. Note that the results about equalizers and Σ-subsets do not
appear in [Lon94], but can be obtained nicely by applying the internal language.

I closure under retracts (already proved)

I closure under isomorphisms (consequence of previous item)

I closure under equalizers

I closure under Σ-subsets (consequence of the previous item)

I closure under lifting

I closure under arbitrary products

I N and B are well-complete (already proved)

I closure under binary sums.

We have already shown in Theorem 6.2.2 that well-completes are closed under re-
tracts, which immediately implies that they are closed under isomorphisms, and in
Corollary 6.2.3 that B is well-complete. N is well-complete by AX1.

We can prove that well-completes are closed under equalizers adopting the tech-
nique of the proof for Σ-replete objects (Theorem 6.1.19).

6.2. Well complete objects 137

Theorem 6.2.9 Assume well-complete sets X and Y , and f, g : X −→ Y . Then

E , {x ∈ X | f(x) = g(x)}

is well-complete, too.

Proof: First we need the following observation3:

If E
e� X ⇒ Y is the equalizer of f and g then E⊥

e⊥� X⊥ ⇒ Y⊥ is the equalizer of
the maps f⊥ and g⊥. Let us briefly sketch the proof: It is obvious that e⊥ equalizes
f⊥ and g⊥. So assume there is another map h : Z −→ X⊥ that equalizes f⊥ and g⊥,
too. As lifting is the partial map classifier we then know that h′ classifies a partial

map Z
m� Z ′

k−→ X such that m defines a Σ-subset and h′(z) = k(z) if z 6= ⊥, thus k
equalizes f and g. So there is a unique map l′ : Z ′ −→ E such that e ◦ l′ = k. Again
by the classifying property of lifting we get a map l : Z −→ E⊥ that can be easily
shown to be the unique map with e⊥ ◦ l = h. One has to do case analysis for being ⊥
or not, but that can be done as equality is ¬¬-closed.

Now the proof proceeds along the lines of Theorem 6.1.19. Let k : ω −→ E⊥,
we have to provide a unique extension k : ω −→ E⊥. The diagram below depicts
the situation which is a special instance of the Σ-replete case, as we consider just one
special Σ-epi, namely ι:

ω
ι

> ω

E⊥

k

∨
>

e⊥
>

<

h

X⊥
∨
k′

f⊥
>

g⊥
>
Y⊥

The map k′ exists as X is well-complete. Now f⊥ ◦ k′ ◦ ι = g⊥ ◦ k′ ◦ ι, so both f⊥ ◦ k′
and g⊥ ◦ k′ extend f⊥ ◦ e⊥ ◦ k. As Y is well-complete, however, this extension must
be unique, whence f⊥ ◦ k′ = g⊥ ◦ k′. Because k′ equalizes f⊥ and g⊥ and e⊥ is their
equalizer, there exists a map k : ω −→ E⊥ which is unique for the property e⊥◦k = k′.
From e⊥ ◦ k = k′ we get e⊥ ◦ k ◦ ι = k′ ◦ ι = e⊥ ◦ k, so k ◦ ι = k as e⊥ is a mono.
Moreover, k is the unique extension of k. To show this, suppose there were another
map l with l ◦ ι = k. Then e⊥ ◦k ◦ ι = e⊥ ◦k = e⊥ ◦ l ◦ ι. But since X is well-complete,
we get e⊥ ◦ k = e⊥ ◦ l as both extend e⊥ ◦ k along ι, thus k = l as e⊥ is a mono. �
From the above proposition we can derive immediately the next closure property.

Corollary 6.2.10 The well-complete objects are closed under Σ-subsets.

Proof: Let Y be well-complete and X⊆ΣY be a Σ-subset with classifier p : Y −→ Σ
such that X can be expressed as the equalizer between the maps p and λy:Y.>. Since
Σ is well-complete, X is also well-complete by the previous Theorem 6.2.9. �
The next proof obligation is closure under lifting.

3In this proof we write e⊥ for ⊥(e).

138 Chapter 6. Axiomatizing other approaches

Lemma 6.2.11 Well-complete objects are closed under lifting.

Proof: One has to prove that for a well-complete X the object X⊥⊥ is complete,
but it can be shown that X⊥⊥ is a retract of X⊥ × Σ, so the result follows from
Theorem 6.2.2. One has to be careful though how to construct the map X⊥⊥ −→ X⊥.
(the map X⊥⊥ −→ Σ is simply π1.) Take the classifying map of the partial map

X⊥⊥
ηX⊥◦ηX� X

id−→ X . Note that we need the Dominance Axiom to show that ηX⊥ ◦ηX
describes a Σ-subset. In fact the map X⊥⊥ −→ X⊥ is µX , the multiplicative for the
lift-monad. �
We prove now that well-complete objects are closed under arbitrary products. (Longley
gives only a proof of closure under exponentials – again using realizers of course.)

Lemma 6.2.12 Well-complete objects are closed under arbitrary products indexed
by inhabited types.

Proof: Let X ∈ Type be non-empty and B ∈ X −→ Set such that B(x) is
well-complete for any x ∈ X . Let f ∈ ω −→ (Πx:X.B(x))⊥. There is a map
g : (Πx:X.B(x))⊥ −→ Πx:X.B(x)⊥ which is the product of the classifying maps
for the partial maps

(Πx:X.B(x))⊥
ηΠx:X.B(x)

� Πx:X.B(x)
evalx−→ B(x).

Since B(x) is well-complete for any x ∈ X , the map πx◦g ◦f ∈ ω −→ B(x) is uniquely
extendible to a map πx ◦ g ◦ f ∈ ω −→ B(x) such that πx ◦ g ◦ f ◦ ι = πx ◦ g ◦ f . Thus
we get a map g ◦ f ∈ ω −→ Πx:X.B(x)⊥, which uniquely extends g ◦ f , pictorially:

ω
ι

> ω

(Πx:X.B(x))⊥

f

∨
<

Πx:X.B(x)⊥

g

∨ <

g
◦ f

Next we show that g ◦ f factors through (Πx:X.B(x))⊥, i.e.

∀p:ω. ∃!z:(Πx:X.B(x))⊥. g ◦ f(p) = g(z) (∗)

This defines by (AC!) a map h : ω −→ (Πx:X.B(x))⊥ for which h ◦ ι = f holds,
because g ◦ f = g ◦ h ◦ ι by definition of h and since g can be shown to be a mono.
Uniqueness is a consequence of the uniqueness of g ◦ f because g is a mono.

6.2. Well complete objects 139

Thus it remains to prove (*). Uniqueness follows again from the fact that g is a mono.
Existence: Since X is inhabited, there is an element x0 ∈ X . Let p ∈ ω, we construct
the witness

t , 〈π1((g ◦ f) p x0), λw:(π1((g ◦ f) p x0) = >). λx:X. π2((g ◦ f) p x)(kp xw)〉

where we have to provide a proof k of

∀p:ω. ∀x:X. (π1((g ◦ f) p x0) = >)⇒ π1((g ◦ f) p x) = >.

Since the proposition in question is ¬¬-closed and Lemma 2.6.18 still holds, we can
do a case analysis whether p = ∞ or p = step n for an n ∈ N. If p = step n then we
know that g ◦ f(p) = (g◦f)(p) so the claim follows by definition of g. If p =∞ then by
Corollary 6.2.8(b) we only have to show for all x ∈ X that ∃p:ω. (π1((g ◦ f) p x0) = >)
implies ∃p:ω. (π1((g ◦ f) p x) = >). But if (π1(g ◦ f) p x0) = >) for some p ∈ ω then
again by definition of g we get (π1((g ◦ f) p x) = >) for all x ∈ X . �
Therefore, well-complete objects are closed under products of inhabited types, and also
the product Πx:∅. B(x) ∼= 1 is trivially well-complete. Alas, one cannot conclude that
the well-completes are closed under arbitrary products because for a corresponding
case analysis we would have to show that “being well-complete” is ¬¬-closed.

Finally, we get our last closure condition:

Theorem 6.2.13 The well-complete objects are closed under finite sums.

Proof: X + Y is a retract of B×X × Y , but B is well-complete and well-completes
are closed under retracts and binary products (Theorem 6.2.2). �
We consider a complete treatment of the well-complete objects in the style of this
section as a promising research task. An axiomatization in the internal language
has the advantage of getting rid of calculations with realizers. Moreover, having the
necessary closure properties, it might be possible to solve domain equations for well-
completes with least elements and to do program verification as in the previous chapters
for Σ-domains. In fact, it is not easy to manage the inverse limit construction on the
level of realizers and besides, there is no machine support for computing with realizers.

6.2.4 Axiomatizing the initial lift algebra

Up to now we have stipulated a very strong axiom, namely, that ω is the initial lift
algebra. It is not even clear that this is valid in the models of the Σ-cpo-axiomatization.
But to show consistency we have to provide some model. Therefore we try to prove the
condition of ω being an initial lift-algebra from some simpler axioms. The following
alternative axiomatization has been developed in collaboration with Thomas Streicher
and Martin Hofmann.

It is relatively easy to check (even inside the internal logic!) that ω is the terminal
lift algebra if we have the natural numbers object N. Now (based on a result of Paré
and Schumacher) one knows that the initial lift algebra must be the least subalgebra
of the terminal lift algebra. This can be constructed in a topos-like logic as ours.

140 Chapter 6. Axiomatizing other approaches

Surprisingly enough, from a result of Jibladze [Jib95] it follows that the initial lift
algebra turns out to be our object ω if we only stipulate that the embedding from
the initial to the terminal lift algebra is ¬¬-closed. This is all ongoing work and the
results may appear elsewhere.

It could be already shown in the Σ-cpo setting that ι is orthogonal to N⊥ (with
same ω and ω) because of the Orthogonality Theorem 2.7.3 and since N⊥ is a Σ-cpo.
We can conclude that the axiomatization of well-complete is consistent if the theory
of Σ-cpo-s was already consistent and this shall be proved in Chapter 8.

11 7
Implementing Σ-cpo-s in Lego

Up to now we have presented a Synthetic Domain Theory using higher-order intu-
itionistic logic with subset types and a universe Set in a mathematical style. This
means that the focus has not been on formalization but on conveying the ideas. A
major criticism about this “naive” or “sloppy” style of presentation has been that it
hides the crucial dangers when working with internal languages, like quantification
over morphisms, handling of subsets, definitions of ω (cf. Section 2.6.2) etc. But these
doubts can be dissipated as we have implemented the theory of Chapters 2, 3, 4, and
5 in Lego.

We shall present in Section 7.3 the implementation of the logic (introduced in
Section 2.1) and of the SDT-Axioms (introduced in Section 2.2). It is demonstrated
how the theory is developed in Section 7.4. The intention is to explain the crucial
points of the implementation, not to repeat all the proofs of the previous sections. For
the formalization of the whole theory we refer to the Appendix A.

Before we start, we should explain why we have used a type theoretic proof system,
and which type theory we are going to use (Section 7.1). A short introduction into
the Lego system is included in Section 7.2. Some comments about our experiences
with the type theory (Section 7.5) and a summary on related work about formalizing
(classic) domain theory (Section 7.6) conclude this chapter.

7.1 About Type Theories

Type theories origin from the wish to view any object relevant for mathematics and
computer science, e.g. proofs and propositions but also programs and specifications,
as objects of some type. Russell (1908) was the first who introduced a type system

141

142 Chapter 7. Implementing Σ-cpo-s in Lego

for a restricted kind of set theory in order to avoid the paradox of the set of all sets
that do not contain themselves. In a sense any strongly typed programming language
defines a type theory, but “normal languages” have much too weak types to give rise
to a useful logic which could also represent propositions and proofs. A short history
about type theories can be found e.g. in [Luo94, Str91]. Roughly speaking, one can
distinguish three mainstreams:

I Martin Löf’s Intuitionistic Theory of Types [ML84]
This line of work started already at 1970 and there are a lot of variations. Mar-
tin Löfs motivation was originally the formalization of predicative constructive
mathematics and the extension of the AUTOMATH project. Martin-Löf type
theory (MLTT) contains dependent sums and products, natural numbers, finite
set types and a type for equality propositions. A hierarchy of universes is intro-
duced which are predicative i.e. there are no circular definitions allowed. Girard
proved that Martin-Löf type theory with an (impredicative) type of all types
is logically inconsistent as one can code Russell’s paradox. There is also an
extensional variant of MLTT but type-checking is not decidable for the latter.
In MLTT types are introduced by inductive definitions, so pattern matching is
available for definitions of functions (and proofs).

I Polymorphically typed λ-calculus (System F) [Gir86, GLT89]
Girard defined System F originally for extending Gödel’s functional interpreta-
tion (System T) to analysis in 1971. It was independently discovered by Reynolds
in 1974. In addition to the simply typed λ-calculus, quantification and abstrac-
tion over types is allowed. Therefore, the system is impredicative as “circular”
definitions as T , ∀t:Type. t −→ t (also written Πt:Type. t −→ t) live again
in Type. This definition is “circular”, because T is defined by quantification
over Type which includes T itself. Pure constructivists refuse impredicativity,
although Girard showed that the system is still strongly normalizing and thus
logically sound.

I Calculus of Constructions (CC) [Coq85, CH88]
Huet and his student Coquand developed around 1985 the Calculus of Construc-
tions synthesizing ideas of Martin Löf’s Type Theory and System F, in order
to get a stronger system inside of which e.g. Leibniz equality can be expressed.
It is impredicative and contains System F, but also dependent types. Coquand
proved that it is still strongly normalizing.

Type theories have a very useful property. They can be viewed as a programming lan-
guage (since they are extensions of the λ-calculus) and at the same time as a logical
system by the Curry-Howard-Isomorphism (propositions-as-types paradigm [How69]).
Proofs of a proposition are objects of the corresponding type and proving means pro-
gramming, with the exception that all the requirements the program should satisfy
are already coded into the type, so it suffices to find any program of the given type.
According to this paradigm, System F implements intuitionistic higher-order proposi-
tional logic and CC and MLTT intuitionistic higher-order (predicate) logic.

7.1. About Type Theories 143

7.1.1 Advantages of Type Theory for SDT

There are several different approaches for the formalization of domain theory that use
non-type-theoretic verification systems (cf. Section 7.6). It would, however, been much
more problematic to implement Σ-cpos in one of those systems. Pure type theorists
argue against type theories that use proof-irrelevance and impredicative universes as
it is the case in our axiomatization. There are, however, some solid arguments why
type theory is most appropriate for implementing an SDT-based LCF-like theory:

I An impredicative universe of sets is the type theoretic pendant to a small inter-
nally complete subcategory which is the core of all SDT approaches.

I From a pragmatic point of view, an elegant treatment of the “domains as sets”-
idea is achieved by an impredicative universe of domains that is a subset of the
impredicative universe of sets. One does not have to introduce new applica-
tions or abstraction operators. A function between sets, that are domains, is
automatically a function between domains.

I For the inverse limit construction dependently typed functions are indispensable.
(That is the reason why in LCF recursive domains are only axiomatized.)

I Type theory provides automatically a higher-order intuitionistic logic which gives
rise to a nice amalgamation of logic, domains, and programs.

I In a type theory with sums one can express specifications, specification modules
(deliverables see Section 10.1), program modules, and their relations.

So type theory seems to be a good candidate for an implementation language. We
have chosen the Extended Calculus of Constructions not only, because it has a good
implementation in the Lego system, but also since it fulfills all the above requirements.

7.1.2 Extended Calculus of Constructions (ECC)

Luo completed the synthesis of System F and Martin Löf Type Theory by adding Σ-
types and (fully cumulative, predicative) universes to CC. In order to avoid Girard’s
paradox the sums can only act on the predicative universes, i.e. propositions are not
impredicatively closed under sums as they are under products. Luo proved that this
extension, called Extended Calculus of Construction (ECC), is strongly normalizing
[Luo90, Luo91, Luo94].

For the type inference rules and conversion rules we refer to [Luo90, Luo94]; a
modified set of rules will be reviewed in the next section. Informally, the hierarchy
of predicative universe Typej is ordered by a subtype relation, that is appropriately
extended on Π and Σ-types. Moreover, any Typej is an element of Typej+1. The
impredicative universe Prop of propositions is an element of Type0 and also a subtype
of Type0. The subtype relation is transitive and closed under conversion, i.e. if A ' B
then A is a subtype of B and vice versa. In the next section this is extended with a
new universe.

144 Chapter 7. Implementing Σ-cpo-s in Lego

Naive set theoretic models exist neither for System F nor for CC because of impred-
icativity. Fortunately, the partial equivalence relations (PERs) provide an adequate
semantics for System F (e.g. [LM91, Gir86]) and CC (e.g. [Ehr88, Str91, CH88]). A
PER-model for the “extended” ECC will be discussed in Chapter 8.

7.1.3 Adding new universes to ECC

The systems CC and ECC provide just one impredicative universe Prop. For SDT,
however, it is convenient to have a second universe that corresponds to the type Set
in the preceding informal presentation. Therefore, we have to extend ECC by a new
impredicative universe Set. One must be careful, since Coquand showed that adding
impredicative universes can lead to inconsistencies [Coq86]. This is, however, only true
for cumulative hierarchies of impredicative universes. Since Prop is not an element of
our new universe Set, in our case there is no danger of inconsistency. This shall be
proved in Chapter 8 by providing a realizability-model. Henceforth the extension of
ECC by Set will be called ECC∗.

The raw terms

First we define the raw or pre-well-formed terms of ECC∗ extended by identity types,
natural numbers and booleans.

Definition 7.1.1 The pre-well-formed object and the pre-well-formed type expres-
sions are defined by mutual induction:

E ::= Prop | Set | Typej | universes
Proof(t) | El(t) | Ti(t) | generic morphisms
Πx:E.E | ∑ x:E.E | dependent product and sum type
IdE t t | identity type
N | B | inductive types: natural numbers and Booleans

t ::= x | variables
λx:E. t | app[x:E]E(t, t) | abstraction and application
∀x:E. t | πx:E. t | πtx:E. t | different kinds of products in universes
σx:E. t | σtx:E. t | different kinds of sums in universes
pairE(t, t) | π1(t) | π2(t) | tuples and projections
nat | 0 | succ | N elim | set of natural numbers with con- and destructors
bool | true | false | B elim | set of Booleans with its con- and destructors
id | r | J | identity type with con- and destructors
prop | set | typej | universes as elements
prf | el | ti type coercions for universes

A pre-context is an expression of the form x1:A1, . . . xn:An, where n ∈ N, the xi are
syntactically different variables and any Ai may contain the free variables x1, . . . , xi−1.
�

7.1. About Type Theories 145

Some explanations are in order here. Every universe appears in two different ways,
left or right of an ∈-symbol. If it is on the left, then it is considered as an object of
some higher universe and is written lowercase (prop, set, typej). If it occurs on the
right, then it is considered as a type and is written uppercase (Prop, Set, Typej). This
distinction is blurred by the presentation in [Luo90, Luo94]. However, it is essential
for understanding type theories with universes and it is important when interpreting
them. The passage from an object to a type is represented by the “generic morphisms”
Proof, El, and Ti, respectively.

The lower case variants prf, el, ti are used for subtype-coercions. In [Luo90] this is
described via a subtyping relation and an coercion rule. Type formation can also be
done by dependent products and sums. Dependent products and sums also exist on
the object level. So we have impredicative π and a small sum σ for Set, impredicative
∀ for Prop (no small sums are necessary for propositions), and predicative σt and πt
for each Typej .

The inductive types B and N live in Set and appear therefore also in lower case
letters (bool and nat). Their constructors (0, succ and true, false) and eliminators
(N elim, B elim) are introduced as constants. The same holds for identity types Id
(id) (constructor r and eliminator J). The meaning of identity types is explained in
Section 7.3.2.

The pairing and the application function must be annotated with a type A explic-
itly. This is necessary since the type of a tuple is not uniquely reconstructible, e.g. for
a tuple (x, y) with x ∈ X and y ∈ Y there may exist several choices B : X −→ Typej
such that Y = B(x). Note that also for the application a type annotation is necessary
(denoted app[x:A]B(s, t)). For a sound interpretation in arbitrary models we have to
provide the type of the result which is not uniquely determined by the types of the
components s and t in general. This was originally observed by [Str89].

The rules of ECC∗

Although the type inference rules of ECC∗ do not differ considerably from those of
ECC, they are presented in detail since we will use explicit type coercions and shall refer
to them when presenting the PER-model in Section 8.2. We translate the presentation
of [Luo90] into the style of [Str89] where only the pure Calculus of Constructions is
treated originally.

There are four different kinds of judgements:

Definition 7.1.2 A pre-judgement is of the form

1. A type (A is a type)

2. t ∈ A (t is an object of type A)

3. A = B (A and B are equal types)

4. s = t ∈ A (s and t are equal objects of type A)

�

146 Chapter 7. Implementing Σ-cpo-s in Lego

So pre-sequents can be defined:

Definition 7.1.3 A pre-sequent is an expression of the form

Γ ok (Γ is a well-formed context)

Γ; J (in context Γ judgement J holds)

where Γ denotes a pre-context and J a pre-judgement. �

The following rules describe inductively those pre-contexts and pre-sequents that are
valid. Valid statements are denoted by a turnstile ` instead of a semicolon ;. Some
of the rules are rule schemes in fact. Whenever a Typej , Tj or tj occurs, the rule is
intended to hold for any j ∈ N.

Context formation

(Empty) ` 〈〉 ok

(Cont)
Γ ` A type

` Γ, x:A ok
x 6∈ FV (Γ)

The empty context is normally omitted, i.e. instead of 〈〉 ` J one writes ` J .

Type formation

(T1-3)
` Γ ok

Γ ` Prop type

` Γ ok

Γ ` Set type

` Γ ok

Γ ` Typej type

(Gen1-3)
Γ ` p ∈ Prop

Γ ` Proof(p) type

Γ ` s ∈ Set

Γ ` El(s) type

Γ ` t ∈ Typej
Γ ` Tj(t) type

(Π)
Γ, x:A ` B type

Γ ` Πx:A.B type

(
∑

)
Γ, x:A ` B type

Γ `∑ x:A.B type

Object formation

(var)
Γ, x : A,Γ′ ok

Γ, x : A,Γ′ ` x : A

(U1-3)
` Γ ok

Γ ` prop ∈ Type0

` Γ ok

Γ ` set ∈ Type0

` Γ ok

Γ ` typej ∈ Typej+1

7.1. About Type Theories 147

(λ)
Γ, x:A ` t ∈ B

Γ ` λx:A. t ∈ Πx:A.B

(App)
Γ, x:A ` B type Γ ` t ∈ Πx:A.B Γ ` s ∈ A

Γ ` app[x:A]B(t, s) ∈ B[s/x]

(Pair)
Γ, x:A ` B type Γ ` s ∈ A Γ ` t ∈ B[s/x]

Γ ` pair∑x:A.B(s, t) ∈∑ x:A.B

(Proj1-2)
Γ ` t ∈∑ x:A.B

Γ ` π1(t) ∈ A
Γ ` t ∈∑ x:A.B

Γ ` π2(t) ∈ B[π1(t)/x]

(π1-2)
Γ, x:A ` p ∈ Prop

Γ ` ∀x:A. p ∈ Prop

Γ, x:A ` s ∈ Set

Γ ` πx:A. s ∈ Set

(π3)
Γ ` A ∈ Typej Γ, x:Tj(A) ` t ∈ Typej

Γ ` πt x:Tj(A). t ∈ Typej

(σ1)
Γ ` A ∈ Set Γ, x:El(A) ` s ∈ Set

Γ ` σx:El(A). s ∈ Set

(σ2)
Γ ` A ∈ Typej Γ, x:Tj(A) ` t ∈ Typej

Γ ` σt x:Tj(A). t ∈ Typej

(Coerc1-2)
` Γ ok

Γ ` prf ∈ Πx:Prop. Set

` Γ ok

Γ ` el ∈ Πx:Set.Type0

(Coerc3)
` Γ ok

Γ ` tj+1 ∈ Πx:Typej .Typej+1

Equality

(β1)
Γ, x:A ` B type Γ, x:A ` t ∈ B Γ ` s ∈ A
Γ ` app[x:A]B(λx:A. t, s) = t[s/x] ∈ B[s/x]

(β2)
Γ, x:A ` B type Γ ` s ∈ A Γ ` t ∈ B[s/x]

Γ ` π1(pair∑x:A.B(s, t)) = s ∈ A

(β3)
Γ, x:A ` B type Γ ` s ∈ A Γ ` t ∈ B[s/x]

Γ ` π2(pair∑x:A.B(s, t)) = t ∈ B[s/x]

148 Chapter 7. Implementing Σ-cpo-s in Lego

(UnivEq1-3)
` Γ ok

Γ ` T0(prop) = Prop

` Γ ok

Γ ` T0(set) = Set

` Γ ok

Γ ` Tj+1(typej) = Typej

(πElim1)
Γ, x:A ` p ∈ Prop

Γ ` Proof(∀x:A. p) = Πx:A.Proof(p)

(πElim2)
Γ, x:A ` s ∈ Set

Γ ` El(π x:A. s) = Πx:A.El(s)

(πElim3)
Γ ` A ∈ Typej Γ, x:Tj(A) ` t ∈ Typej
Γ ` Tj(πt x:Tj(A). t) = Πx:Tj(A).Tj(t)

(σElim1)
Γ ` A ∈ Set Γ, x:El(A) ` s ∈ Set

Γ ` El(σx:El(A). s) =
∑
x:El(A).El(s)

(σElim2)
Γ ` A ∈ Typej Γ, x:Tj(A) ` t ∈ Typej

Γ ` Tj(σt x:Tj(A). t) =
∑
x:Tj(A).Tj(t)

(Coerc4)
Γ ` a ∈ Prop

Γ ` El(app[:Prop]Set(prf, a)) = Proof(a)

(Coerc5)
Γ ` s ∈ Set

Γ ` T0(app[:Set]Type0
(el, s)) = El(s)

(Coerc6)
Γ ` t ∈ Typej

Γ ` Tj+1(app[:Typej]Typej+1
(tj+1, t)) = Tj(t)

The obvious congruence rules for the equality = are omitted.

Inductive Types

Henceforth, we will use some abbreviations for the sake of readability. We writeA→ B
for Π :A.B if B is constant. Moreover we write t(s) or (t s) for app[x:A]B(t, s).

(IndT1-2)
` Γ ok

Γ ` nat ∈ Set

` Γ ok

Γ ` bool ∈ Set

(IndTEq)
` Γ ok

Γ ` El(nat) = N

` Γ ok

Γ ` El(bool) = B

(nat1-2)
` Γ ok

Γ ` 0 ∈ N

` Γ ok

Γ ` succ ∈ Πn:N.N

7.1. About Type Theories 149

(nat3)
` Γ ok

Γ ` N elim ∈ ΠC:(N→ Typei). C(0) → (Πn:N. C(n) → C(succn)) → Πn:N. C(n)

(natElim1)
Γ ` C ∈ N −→ Typei Γ ` z ∈ C(0) Γ ` s ∈ Πn:N. C(n) −→ C(succn)

Γ ` (N elim C z s 0) = z

(natElim2)
Γ ` C∈N→ Typei Γ ` z∈C(0) Γ ` s ∈ Πn:N. C(n) → C(succn) Γ ` n∈N

Γ ` (N elim C z s (succn)) = s n (N elim C z sn)

(bool1-2)
` Γ ok

Γ ` true ∈ B

` Γ ok

Γ ` false ∈ B

(bool3)
` Γ ok

Γ ` B elim ∈ ΠC:B→ Typei. C(true)→ C(false)→ Πb:B. C(b)

(boolElim1)
Γ ` C ∈ B −→ Typei Γ ` t ∈ C(true) Γ ` f ∈ C(false)

Γ ` (B elim C t f true) = t

(boolElim2)
Γ ` C ∈ B −→ Typei Γ ` t ∈ C(true) Γ ` f ∈ C(false)

Γ ` (B elim C t f false) = f

(IdT)
Γ ` A type Γ ` x ∈ A Γ ` y ∈ A

Γ ` Id Ax y type

(idT)
` Γ ok

Γ ` id ∈ ΠA:Typej .Tj(A) −→ Tj(A) −→ Prop

(IdTEq)
Γ ` A ∈ Typej Γ ` x ∈ Tj(A) Γ ` y ∈ Tj(A)

Γ ` Proof(idAx y) = Id Tj(A) x y

(Id1)
Γ ` A ∈ Typej

Γ ` r ∈ ΠA:Typej .Πx:Tj(A). Id Tj(A) x x

(Id2)

` Γ ok

Γ ` J ∈ ΠA:Typei. ΠC:(Πx, y:Ti(A). (Id Ti(A) x y)→ Typej).
Πd:(Πx:Ti(A).Tj(C xx (rAx))).
Πx, y:Ti(A).Πz:(Id Ti(A) x y).Tj(C x y z)

150 Chapter 7. Implementing Σ-cpo-s in Lego

(IdEq)
Γ ` A ∈ Typei Γ ` C ∈ Πx, y:Ti(A). (Id Ti(A) x y)→ Typej
Γ ` x ∈ Tj(A) Γ ` d ∈ Πx:Ti(A).Tj(C xx (rAx))

Γ ` (JAC dxx (rAx)) = d(x)

7.2 The Lego system

Lego, a proof development system, was developed 1989 by Pollack [LP92, Pol94b].
Several enhancements have taken place since then [PJ93, Pol94a], e.g. Lego has re-
cently got a syntax for inductive definitions and a simple module system which we
will gladly make use of. The system is still under development1. Lego implements
various type systems, Edinburgh LF (Logical framework), CC (two versions; one with
type universes and one without), and ECC. The logical framework LF [HHP87] is
a subsystem of CC, its logic is intuitionistic first-order (predicate) logic, and it was
developed to code different logics inside it.

Once we have decided to use ECC∗, for its sum types and impredicative universes,
it is natural to use Lego for the formalization, although there are other type theoretic
systems like ALF [AGN94], NuPRL [CAB+86], and Coq from INRIA. Whereas ALF
is too restrictive, since it does not allow the formulation of axioms nor provide an
impredicative universe, NuPRL does not have impredicative universes and Coq does
not have sum types, so we decided to use Lego.

We shortly review the syntax of Lego as we use it to present the formalization
of our SDT-approach. The terms of ECC∗ can be translated into Lego-syntax like
indicated in Table 7.1. There is also a listing of the most important Lego commands
included. The table is not complete, and contains only the relevant language for
explaining the axiomatization. For example, the proof-mode is not included, since it is
not important for understanding the axiomatization (only to prove the theorems). In
the Lego term syntax the difference between propositions-as-types and propositions-
as-objects is blurred again (and so for the other universes). Moreover, all the type
coercions are invisible, as Lego computes them automatically by itself.

Within terms, the scope of the binding operators extends to the right as far as
possible. Lego – as presented in the table – is explicitly typed.2 There are, however,
mechanisms to avoid type parameters at least for application terms. If one wants to
suppress type arguments for the application, then one has to use vertical bars instead
of colons when defining the function or its type, i.e. if for fixed A,B:Prop, a:A, b:B
a function pair is defined via pair == [C|Prop][h:A->B->C](h a b), then it has
type {C|Prop}(A->B->C)->C and it can be applied directly to a k:A->B->X without
providing the argument X, i.e. pair k is allowed instead of pair X k. If the type
checker is not able to reconstruct the type then one has to insert the type parameter
explicitly including the vertical bar i.e. one has to write pair|X k in such a case.

Another convenient feature of Lego is that it is not necessary to compute the type
levels for Type(i), the system takes charge of that. The user is relieved from any

1cf. the Lego-web-page http://www.dcs.ed.ac.uk/packages/lego/
2An implicitly typed language is SML, where types are synthesized by the type checker.

7.2. The Lego system 151

term syntax command syntax
ECC Lego context modification Lego

Prop Prop define x , N [x=N];

Typej Type(j) x==N;

Πx : A.B {x:A}B assume an M : N [M:N];

A −→ B A->B remove items through M Forget M;

λx : A.M [x:A]M abstract over x Discharge x;

M(N) load LF Init LF;

M N (M N) load CC Init PCC;

N.M load ECC Init XCC;∑
x : A.B <x:A>B load file file.l Load file;

A× B A#B prove M : Prop Goal M;

pairT (M,N) (M,N:T) load h.o.-logic Logic;

π1(M) M.1 show context Ctxt;

π2(M) M.2 show declarations Decl;

ECC∗ Lego∗ inductive type N with Inductive [N:Type]

Set Set constructors c1, . . . , cn Constructors

[c1:T1->N]...[cn:Tn->N];

Table 7.1: Syntax of Lego

indexes and simply writes Type. However, this does not mean, that there is a type of
all types, it is only syntactic sugar.

In Lego one distinguishes between declarations and definitions. Declarations are
assumptions that must be added to the current context, written as [M:N] which means
that M is supposed to be an object of type N. In particular, if N is a proposition, then
the declaration equals an axiom which is assumed to be valid, and M is the hypothetical
proof (term) for it.

Definitions are written [x=N] or x==N which means that x is an abbreviation for the
more complex term N. The command Goal M; changes the state of Lego and switches
into proof mode. Here some more commands are available that ease the construction of
proof terms. We do not go into the details here. We simply refer to the Lego-manual
[LP92]. Definitions can be made local by a preceding $. There is another notational
convention that is used in this text. Arguments can be denoted by underscores [:A]

if they are dummy.

After calling Lego in a shell one can choose one of the implemented type therories
e.g. by typing Init XCC; for the Extended Calculus of Constructions.

We have changed the implementation of Lego – export version; 5 Oct 1993 – ac-
cordingly to the definition in Section 7.1.3 in order to implement the new universe Set.
With Lego (or SDT-Lego) we will refer henceforth to the changed implementation
of Lego, that loads ECC∗ (instead of ECC) when reading the command Init XCC;.

152 Chapter 7. Implementing Σ-cpo-s in Lego

7.3 Implementing the logic

This section is dedicated to the implementation of the “basic” logic that shall be used
to develop the Synthetic Domain Theory of Σ-cpo-s.

7.3.1 Higher-order intuitionistic logic

First of all, we have to execute Logic; such that the second-order defnitions of the log-
ical connectives (and, and3, or, or3, All, Ex, not), the absurdity absurd, and Leibniz
equality Q are loaded. It is folklore how to code the connectives in the Π,−→-fragment
of inuitionistic higher-order logic, so we simply reprint the definitions without com-
ments. Just note that the first two definitions define our special purpose impredicative
universes via the general implemented Univ construct.

[Prop = Univ(0)]

[Set = Univ(1)];

[A,B,C,D|Prop][a:A][b:B][c:C][d:D][T,S,U|Type];

(* cut *)

cut = [a:A][h:A->B]h a : A->(A->B)->B];

(* Some Combinators *)

[I [t:T] = t : T]

[compose [f:S->U][g:T->S] = [x:T]f (g x) : T->U]

[permute [f:T->S->U] = [s:S][t:T]f t s : S->T->U];

DischargeKeep A;

(* Conjunction, Disjunction *)

[and [A,B:Prop] = {C|Prop}(A->B->C)->C : Prop]

[or [A,B:Prop] = {C|Prop}(A->C)->(B->C)->C : Prop]

(* Introduction Rules *)

[pair = [C|Prop][h:A->B->C](h a b) : and A B]

[inl = [C|Prop][h:A->C][_:B->C]h a : or A B]

[inr = [C|Prop][_:A->C][h:B->C]h b : or A B]

(* Elimination Rules - ’and’ & ’or’ are their own elim rules *)

[fst [h:and A B] = h [g:A][_:B]g : A]

[snd [h:and A B] = h [_:A][g:B]g : B]

(* Logical Equivalence *)

[iff [A,B:Prop] = and (A->B) (B->A) : Prop]

(* Negation *)

[absurd = {A:Prop}A]

[not [A:Prop] = A->absurd];

(* Quantification *)

(* a uniform Pi *)

[All [P:T->Prop] = {x:T}P x : Prop]

(* Existential quantifier *)

7.3. Implementing the logic 153

[Ex [P:T->Prop] = {B:Prop}({t:T}(P t)->B)->B : Prop]

[ExIntro [P:T->Prop][wit|T][prf:P wit]

= [B:Prop][gen:{t:T}(P t)->B](gen wit prf) : Ex P]

(* Existential restricted to Prop has a witness *)

[ex [P:A->Prop] = {B:Prop}({a:A}(P a)->B)->B : Prop]

[ex_intro [P:A->Prop][wit|A][prf:P wit]

= [B:Prop][gen:{a:A}(P a)->B](gen wit prf) : ex P]

[witness [P|A->Prop][p:ex P] = p A [x:A][y:P x]x : A];

(* tuples *)

[and3 [A,B,C:Prop] = {X|Prop}(A->B->C->X)->X : Prop]

[pair3 = [X|Prop][h:A->B->C->X]h a b c : and3 A B C]

[and3_out1 [p:and3 A B C] = p [a:A][_:B][_:C]a : A]

[and3_out2 [p:and3 A B C] = p [_:A][b:B][_:C]b : B]

[and3_out3 [p:and3 A B C] = p [_:A][_:B][c:C]c : C]

[iff3 [A,B,C:Prop] = and3 (A->B) (B->C) (C->A) : Prop];

(* finite sums *)

[or3 [A,B,C:Prop] = {X|Prop}(A->X)->(B->X)->(C->X)->X : Prop]

[or3_in1 = [X|Prop][h:A->X][_:B->X][_:C->X](h a) : or3 A B C]

[or3_in2 = [X|Prop][_:A->X][h:B->X][_:C->X](h b) : or3 A B C]

[or3_in3 = [X|Prop][_:A->X][_:B->X][h:C->X](h c) : or3 A B C];

(* Relations *)

[R:T->T->Prop]

[refl = {t:T}R t t : Prop]

[sym = {t,u|T}(R t u)->(R u t) : Prop]

[trans = {t,u,v|T}(R t u)->(R u v)->(R t v) : Prop];

Discharge R;

(* families of relations *)

[respect [f:T->S][R:{X|Type}X->X->Prop]

= {t,u|T}(R t u)->(R (f t) (f u)) : Prop];

DischargeKeep A;

(* Equality *)

[Q [x,y:T] = {P:T->Prop}(P x)->(P y) : Prop]

[Q_refl = [t:T][P:T->Prop][h:P t]h : refl Q]

[Q_sym = [t,u|T][g:Q t u]g ([x:T]Q x t) (Q_refl t) : sym Q]

[Q_trans : trans Q

= [t,u,v|T][p:Q t u][q:Q u v][P:T->Prop]compose (q P) (p P)];

DischargeKeep A;

(* application respects equality; a substitution property *)

[Q_resp [f:T->S] : respect f Q

= [t,u|T][h:Q t u]h ([z:T]Q (f t) (f z)) (Q_refl (f t))];

Discharge A;

154 Chapter 7. Implementing Σ-cpo-s in Lego

Note that in this thesis we do not use the abbreviation All for the universal quantifier;
we usually write x:AP x, as it is shorter.

At this stage a higher-order intuitionistic logic with universe Set is already available.
Before we can translate the SDT-axioms into Lego we have to care about the non-
logical axioms of Section 2.1.2 and the subsets of Section 2.1.4. Even before that,
however, we have to think about the realization of the inductive types and identity
types:

7.3.2 Identity types vs. Leibniz equality

In the empty context the Leibniz equality Q, as defined above, corresponds to the in-
tensional judgmental equality. But in general it is stronger, e.g. the sequence m,n:N `
(n+ m) =Q (m+ n) is true (by induction), although the terms m+ n and n + m are
not convertible. If we add on the propositional level axioms for extensionality and
surjective pairing, then Q is sufficient for most of the theorems we want to prove, but
not for all ! The problem is that the equality Q is too intensional. This has already
been addressed in [RS93b]. A more extensive treatment of intensionality can be found
in [Str94, Hof95]. Roughly speaking, Leibniz equality only provides elimination with
respect to propositions. For defining dependently typed functions this is not sufficient,
because one needs elimination with respect to types (“large elimination”). Unfortu-
nately, when constructing the inverse limit, such functions have to be constructed, and
thus we need another equality (which is logically equivalent to Q) in our setting. The
well-known identity types introduced by Martin-Löf in his type theories can solve this
dilemma. One has to pay a price for that, however, since identity types are somewhat
clumsy to work with.

So first identity types (cf. Sect. 7.1.3), are axiomatized in Lego in the usual way
(see also [NPS90, Str94]).

(* Identity Types *)

[Id : {A | Type} {x , y : A}Prop] ;

[r : {A | Type} {x : A} Id x x] ;

[J : {A | Type} {C : {x , y : A} {z : Id x y} Type}

{d : {x : A} C x x (r x) }{a , b : A} {c : Id a b}

C a b c] ;

[[A : Type] [C : {x , y : A} {z : Id x y} Type]

[d : {x : A} C x x (r x)] [a :A]

J C d a a (r a) ==> d a] ;

How are identity types to be understood? The operator Id stands for the equality
proposition, i.e. Id x y means x = y. One has to axiomatize that it is a congruence.
Operator J is the crucial point here; it expresses that, given two elements a,b:A, a

7.3. Implementing the logic 155

proof c:Id a b, and an appropriate context C, one gets an object of type C a b c if
there is a “method” d for getting an object of type C x x (r x) for any x:A. This
describes the case that a and b are the “same” and not only equal. In an empty context
identity can only be proven if the objects are equal by conversion. Therefore, one needs
an additional conversion rule (see above) which “eliminates J”, i.e. J C d a a (r a)

==> d a. This additional conversion rule does not affect the strong normalization
property, as it is an inductive definition á la Martin Löf [NPS90, Luo94, Alt93].

With the operator J one can show symmetry, transitivity and substitutivity of
identity types. From J one can easily define a substitution operator subst of type

{A|Type}{C|A->Type}{x:A}{d:C x}{y:A}{z:Id x y} C y .
The substitution operator works on contexts of type A->Type, not only on predicates
as Leibniz equality. The operator r proves reflexivity. With substitutivity one can
also show very easily that Leibniz equality and identity-type-equality are logically
equivalent. (All these proofs are good exercises to get familiar with identity types.)
We only state the corresponding theorems below:

[Prf_symmId: {A|Type}{x,y|A}(Id x y)-> Id y x];

[Prf_transId: {A|Type}{x,y,z|A}(Id x y)-> (Id y z) -> Id x z];

subst == [A | Type] [C | A -> Type]

[x : A][d : C x] [y : A] [z : Id x y]

J ([x,y : A] [z : Id x y] (C x) -> (C y))

([x : A][v : C x] v) x y z d ;

[Prf_substId: {A|Type}{a,b|A}(Id a b)->{P:A->Type}(P a)->P b];

[Prf_Id_Q_Equiv: {A|Type}{x,y:A} iff (Id x y) (Q x y)];

Id_Axiom == [A|Type][x,y:A] snd (Prf_Id_Q_Equiv x y)

: {A|Type}{x,y:A} (Q x y)->(Id x y) ;

Note that the operator K in [Str94] is not needed, because proof irrelevance will have
to be axiomatized anyway (see below). In [Hof95] several different but equivalent
formulations of identity types, also without J, are given.

Whereas we have always used one unique equality in our “informal” language, there
are obviously two which are logically equivalent so one can switch between them.
Though they are logically equivalent, identity types are stronger, because of their
elimination rule. Identity types are only needed when dealing with dependently typed
functions. This will be soon explicated in Section 7.4.4. Note that in Lego the Qrepl

tactic is parametric in the equality it uses, as long as the equality is symmetric and
substitutive. By means of the Configure command one can choose the equality that
is supported by Qrepl. As identity types fufill these requirements, one could also
work exclusively with identity types and that would make no difference. Following the
implementation, yet we will always use Leibniz equality Q as long as possible and work

156 Chapter 7. Implementing Σ-cpo-s in Lego

with Id only, when it is absolutely inevitable. This is no problem as we can “jump”
between both equalities (using Prf Id Q Equiv).

7.3.3 Non-logical axioms

There are some more so-called non-logical axioms necessary. Proof-irrelevance might
be mixed up with classical logic. This is wrong, of course, since proof-irrelevance
simply states that two proofs of the same proposition are equal. This can hold for
intuitionistic logic as well. Type theories always provide a proof-relevant logic by the
propositions-as-types paradigm. This is important if programs are to be extracted from
proofs, since in this case proofs should have a computational content. Coding subset
types by sums, however, already implies proof-irrelevance (otherwise the canonical
map {x ∈ A |φ(x)} ⊆ A would not be an embedding). So we are forced to add
proof-irrelevance as an axiom:

Proof-irrelevance

[proof_irrelevance: {P|Prop}{p,q:P} Q p q];

ECC does not have η rules built in, as they would spoil the strong normalization
theorem. But for semantics we certainly need extensionality of functions and tuples,
so we add the corresponding axioms on the propositional level (where they do not
affect the normalization):

Surjective pairing

[surj_pairing : {X|Type}{A|X->Type}{u:<x:X>A x}

Q (u.1, u.2: <x:X>A x) u];

Note that one needs type casting for (u.1,u.2), otherwise Lego’s type checker would
compute the type X#[x=u.1]A x for this term.

The next axiom is extensionality:

Extensionality

[EXT_dep: {A:Type}{D:A->Type}{f,g: {a:A}D a }

({x:A} (Q (f x)(g x))) -> Q f g];

From that by substitution one immediately gets the “non-dependent” version:

[EXT_dep: {A,C:Type}{f,g: A->C} ({x:A} (Q (f x)(g x))) -> Q f g];

To turn functional relations into real functions we need the Axiom of Unique Choice.
First, define the unique existential quantifier ∃!:

ExU == [X|Type] [P : X -> Prop]

and (Ex P) ({x,y : X} (P x) -> (P y) -> Q x y) ;

7.3. Implementing the logic 157

Axiom of Unique Choice

[ACu_dep : {A | Type}{C | A->Set}{P : {a:A}(C a)->Prop}

({x:A}(ExU (P x))) -> < f:{a:A}C a > {a:A} P a (f a)];

Again a “non-dependent” version is derived easily. Note that the conclusion of ACu dep

is formulated with a sum rather than an existential quantifier, i.e. instead of (Ex

[f:{a:A}C a] {a:A} P a (f a)), because of a very pragmatic reason: it is not con-
venient to work with existentially quantified functions. Theorems get cluttered up
because of the additional quantifiers. Moreover, one always has to use elimination
and introduction rules for the quantifier. After some negative experiences we therefore
decided to reformulate the Axiom of Unique Choice using the sum. This is legitimate
since this version is still valid in the PER-model (cf. Sect. 8.2).

Natural numbers and Booleans

Natural numbers and Booleans can be introduced as inductive definitions in Lego via
the following declarations:

[TYPE = Type];

Inductive [B:Set] Constructors [true:B][false:B];

Inductive [N:Set] Constructors [zero:N][succ:N->N];

The first definition tells Lego how “large” elimination should be. The rest defines B
and N as sets, i.e. B,N:Set with the usual constructors. Using command Inductive,
the system generates automatically an induction law (and corresponding conversion
rules) which are called B Elim, and N elim, respectively, and correspond to N elim and
B elim of Section7.1.3. These induction rules are the elimination rules for B,N and
can be used to prove propositions but also to define datatypes inductively. They look
as follows:

[B_elim : {C_B:B->TYPE}(C_B true)->(C_B false)->{z:B}C_B z];

[N_elim : {C_N:N->TYPE}(C_N zero)->({x1:N}(C_N x1)->C_N (succ x1))->

{z:N}C_N z];

Subset types and ¬¬-closedness

Formalizing the theory in type theory one also has to be more careful with subsets
(Section 2.1.4). The type of subsets of a type A can be implemented as A->Prop. The
subset {x ∈ A |P (x)} where P ∈ PropA can be coded by the sum type <x:A>P x with
P:A->Prop. As any proposition in Prop is by definition also in any Type(i) and also
in Set, any of these universe is closed under subset formation. This is important for
Set which we consider to be our universe of “sets”.

Due to this implementation, we cannot identify objects of type A and <x:A>P x

since they are of different type; one has to use a coercion map, the first projection, to

158 Chapter 7. Implementing Σ-cpo-s in Lego

get from <x:A>P x to A. The equality on a subset should, of course, coincide with the
equality on the superset. Therefore, one has to prove the following proposition:

{X | Type}{P : X->Prop}{p,q : <x:X>P x} (Q p.1 q.1)->Q p q ;

The reverse direction of the implication holds trivially. For the proof of this theorem
one needs the Axiom proof irrelevance in order to show:

{A | Type}{B | A->Prop}{a , b : A}{p : B a}{q : B b}

(Q a b)-> Q (a,p:<x:A>B x) (b,q:<x:A>B x);

from which the above claim follows immediately with surjective pairing.
The coding for subsets sometimes gets clumsy so it would be much more convenient

to work with a system that supports subtypes in a nice and easy fashion. Up to now,
unfortunately, there is no such system available.

For the ∈-predicate one has to define the property of being ¬¬-closed:

dnclo == [p: Prop] (not(not(p))) -> p;

The predicate x∈X ⊆ Y is mirrored by mapToPred x m defined below, where the
mono m:X->Y codes the set X as a subset of Y . Consequently, one can define what a
¬¬-closed map (mapDnclo) and a ¬¬-closed mono (dnclo mono) is.

mapToPred == [X,Y|Type][m:X->Y] [y:Y] Ex [x:X] Q (m x) y;

mapDnclo == [X,Y|Type][m:X->Y] {y:Y} dnclo (mapToPred m y);

mono == [X,Y|Type][m:X->Y] {x,y:X} (Q (m x)(m y)) -> Q x y;

dnclo_mono == [X,Y|Type][m:X->Y] and (mono m) (mapDnclo m);

If we take the first projection proj1 as inclusion map from some <x:A>P x to A we
get the following result. If y:A, then (mapToPred proj1 y) equals Ex [z:<x:A>P x]

Q z.1 y which is equivalent to P y.
The results of Lemma 2.1.2 look like follows:

[Prf_DnclForall : {X|Type}{P:X->Prop}({x:X}dnclo(P x)) ->

dnclo({x:X} P x)];

[Prf_DnclImp : {p,q:Prop} (dnclo q) -> dnclo(p->q)];

[Prf_DncloNOT : {P:Prop} dnclo (not P)];

[Prf_DnclAnd : {p,q:Prop} (dnclo p) -> (dnclo q) -> dnclo (and p q)];

A lot of basic theorems turn out to be useful. The complete material can be found in
the Appendix (A).

7.3. Implementing the logic 159

7.3.4 The SDT-Axioms

After having settled the logic, the next step is to translate the SDT-axioms of Sec-
tion 2.2. As the implementation is straightforward following the previously discussed
design decisions, we simply present below the list of axioms in Lego.

(* The SDT Axioms *)

(* Sigma *)

[Sig :Set] ;

[top,bot: Sig] ;

def == [x : Sig] Q x top ;

[Prf_botF : not (def bot)] ;

(* equality on Sig *)

[extSig : {p,q : Sig} iff (iff (def p)(def q)) (Q p q)];

(* the operations on Sig *)

[And : Sig->Sig->Sig] ;

[Or : Sig->Sig->Sig] ;

[Join : (N->Sig) -> Sig] ;

[or_pr : {x,y : Sig} iff (def (Or x y)) (or (def x) (def y))] ;

[and_pr : {x,y : Sig} iff (def (And x y)) (and (def x) (def y))] ;

[join_pr : {p : N->Sig} iff (def (Join p)) (Ex ([n:N] def (p n)))] ;

(* PHOA’s Axioms *)

[PHOA1 : {f : Sig->Sig} (def (f bot)) -> def (f top)];

[PHOA2 : {p : Sig->Sig} {q : Sig->Sig}

(Q (p bot) (q bot)) -> (Q (p top) (q top)) -> (Q p q)];

[PHOA3 : {p : Sig}{q : Sig}((def p)->(def q)) ->

Ex ([f:Sig->Sig] and (Q (f bot) p)(Q (f top) q))))];

(* SCOTT’s Axiom *)

160 Chapter 7. Implementing Σ-cpo-s in Lego

bToSig == B_elim ([_:B]Sig) top bot;

step == [n,m:N] bToSig (lessBool m n);

[SCOTT : {H : (N->Sig)->Sig}

(def (H ([n:N]top))) -> Ex ([n:N] def (H (step n)))];

(* Markov’s Principle *)

[MARKOV : {p : Sig} dnclo (def(p))];

Some comments are appropriate here. The map def is the coercion map from Σ to
Prop, axiom extSig makes sure that def is an embedding, and Prf botF ensures that
Sig is two-valued (i.e. that bot and top are distinguishable). The function bToSig is
the usual embedding from B into Σ; it is defined inductively. Operation lessBool is
the implementation of <B (and its definition can be found in the Appendix A).

The Dominance Axiom (Do) (cf. Sect. 3.1.6) cannot be translated into type theory
straightforwardly. One might think that the following is a good translation of (Do):

{p:Sig}{q:Prop} ((def p)->Ex [r:Sig] iff (def r) q)->

Ex [s:Sig] iff (def s) (and (def p) q)

Yet, this prohobits that q depends on the proof of def p. Since we code subset types
by sums one needs proof objects for type coercions. These proof objects may depend
on the proof of def p. Therefore, the proof of def p might be already necessary to
formulate q. Moreover, it is easier to work with “strong” existential quantifiers, so we
substitute Ex by a sum. We thus get another version of the Dominance Axiom, that
is good enough for our purposes:

[Domina: {p:Sig} {q: (def p)->Sig}

<r:Sig> iff (def r)(Ex ([w:(def p)] def (q w)))];

Note that the conjunction (and (def p) q) becomes Ex ([w:(def p)] def (q w))

because of the dependency.

Section 7.4.6 explains how the Axiom Domina is applied.

7.4 Developing the theory

After having given the axiomatization, the theorems and their proofs follow the pre-
sentation of the theory in the first part of this thesis. So they are not repeated here
in full detail. Instead, we give an overview in the first subsection. Then only the most
interesting, typical, or technically difficult parts of the implementation are laid out.

7.4. Developing the theory 161

7.4.1 Overview

The Lego implementation consists of 25 modules. The code is available via anonymous
ftp from the author’s ftp-directory3.

The dependeny graph of the Lego modules is illustrated in figure 7.1, where the
dependency relation is presented as a tree. The root of the tree (logic.l) is the most
basic module. An arrow from module M to N states that module N depends on M .
Groups of two or more modules that have a linear dependency structure are depicted
as blocks with arrows omitted.

The files called <name>.l contain just definitions and theorems with hypothetic
proofs terms, i.e. the Lego commands for proof construction are omitted, nor do
proof terms occur. Therefore, loading the theory of <name>.l files is relatively fast.
For every <name>.l file there is a <name>IMP.l file which also contains the proofs, e.g.
there is a file posetsIMP.l which contains the Lego-code for the proof construction
of the propositions claimed in posets.l. On a SPARC 10 with 120MB memory it
takes several hours to load the whole theory completely (i.e. the IMP.l-files). Some
proofs take more than half an hour to normalize.

Once a module is proven correct, it is convenient to load its smaller file of hypothet-
ical proofs instead. Note that these files do not correspond to the .o files generated
by Lego after having parsed a module. The .o files contain still proof terms.4 In the
‘93 version of Lego the .o files could not be loaded in a modular way. This has been
changed in the meanwhile.

Our technique with two variants, the .l and IMP.l files, saves time, even w.r.t.
the .o versions where still all proof-terms have to be type-checked. Yet it has an
unconvenient consequence: one has to keep two versions of the theory, and experience
has shown that it is not so easy to keep them consistent.

Each module can be (almost) identified with a certain section of the naive presen-
tation of the theory in the previous chapters. Note that the theory of natural numbers
N, being well-known, does not have a corresponding explanation. The modules and
the sections where their content is treated in this thesis are listed in Table 7.2.

Table 7.3 gives a listing of all the files and its size to give an impression of the
dimensions.

In the following we present some selected pieces of the Lego-code, which should
convey the spirit of the implementation and demonstrate very typical or technically
difficult parts. For the whole theory we refer to the Appendix A. Finally, the proofs
are in the complete Lego-code which is available via ftp.

7.4.2 Universes and subset types

The universe Set contains several subuniverses we are interested in, like Σ-posets, Σ-
cpos and Σ-domains, all ordered by inclusion. Their Lego-definition is a good example

3At the moment ftp.informatik.uni-muenchen.de, directory pub/local/pst/reus/sdt
4Pollack reports in [Pol94a] that they need only 1/3 of the time compared to the files with proof

commands.

162 Chapter 7. Implementing Σ-cpo-s in Lego

lift.l

logic.l

nat.l cats.l

axioms.l

sig.l

preorders.l

posets.l

cpos.l

orthogonal.l cpo_def.l

closure.l

admissible.l

reflect.l binary_sums.l domains.l

smash.l

dom_constr.l

fix.l

inverse.l

recdom.l

functors.l

sieve.l

streams.l
sums.l

Figure 7.1: The dependency graph of the Lego modules.

7.4. Developing the theory 163

Lego module section Lego module section

logic.l 2.1, 2.5 dom constr.l 2.10.2, 3.1.4
nat.l theory of N fix.l 2.11
axioms.l 2.2 cats.l 3.1.3, 4.1
sig.l 2.3 lift.l 3.1 without 3.1.3, 3.1.4
preorders.l 2.4 smash.l 3.2
posets.l 2.6.1 functors.l 4.1.2
cpos.l 2.6.2 sums.l 3.3
cpo def.l 2.6.2 inverse.l 4.2
orthogonal.l 2.7 recdom.l 4.3
admissible.l 2.8 stream.l 5.1
closure.l 2.9 without 2.9.1 sieve.l 5.2
binary sums.l 2.9.1 reflect.l not treated
domains.l 2.10 without 2.10.2

Table 7.2: The contents of the modules.

for explaining how subset types are implemented. We gather some definitions spread
over several files to give a quick introduction below.

The definition of Σ-posets strictly follows Definition 2.6.1. The characteristic pred-
icate poset defines when a Set is a Σ-poset.

eta == [X:Type] [x:X][p:X->Sig] p x;

poset == [X:Set] and (mono (eta X)) (mapDnclo (eta X));

PO == <A:Set>poset A;

The universe of Σ-posets PO is by Definition 2.6.2. It differs from that only in imple-
menting subset types as sums. An element of type PO is therefore a pair, consisting of
a Set, say A, and a proof of poset A. A Σ-poset P:PO is obviously also a Set, as its
first component A.1 is a Set. Thus, PO can be viewed as a subtype of Set where the
first projection acts as coercion map. Although we have omitted coercion maps in our
“set theory style” presentation, we have to use them explicitly in the code.

The game is analoguous for Σ-cpos. Ascending chains and suprema follow Defini-
tion 2.5.1. The type of ascending chains in X, short AC(X), is a subset type of N->X,
and is therefore coded by a sum. The predicate supr tests whether an element is a
supremum of a given ascending chain. Observe how the ascending chain a is used. It
has to be projected on its carrier set N->X before it can be applied to a number, thus
it appears as a.1.

AC == [X:Type] <f:N->X>{n:N} leq (f n)(f (succ n));

supr == [X|Type][a:AC(X)][x:X]

{P:X->Sig} iff (def(P x)) (Ex [n:N] def(P(a.1 n)));

164 Chapter 7. Implementing Σ-cpo-s in Lego

lines words bytes file

751 2311 15537 admissibleIMP.l

60 213 1419 axiomsIMP.l

871 4072 24500 binary_sumsIMP.l

179 838 5366 catsIMP.l

990 3560 23655 closureIMP.l

83 284 2035 cpo_defIMP.l

642 2292 14681 cposIMP.l

647 2348 14943 dom_constrIMP.l

610 1907 12842 domainsIMP.l

161 551 3892 fixIMP.l

262 761 6001 functorsIMP.l

967 5518 31521 inverseIMP.l

2179 7671 52704 liftIMP.l

864 3290 18482 logicIMP.l

1437 6276 34207 natIMP.l

294 1128 7294 orthogonalIMP.l

738 2785 17178 posetsIMP.l

417 1557 9996 preordersIMP.l

1443 7220 41191 recdomIMP.l

211 752 4847 reflectIMP.l

1607 6389 43998 sieveIMP.l

562 1783 11112 sigIMP.l

601 3009 19430 smashIMP.l

1213 4204 29255 streamIMP.l

1111 6015 41712 sumsIMP.l

18900 76734 487798 total

Table 7.3: Listing of the Lego files created on Mon Oct 23 09:44:50 MET 1995

7.4. Developing the theory 165

It remains to translate the Definitions 2.6.3 and 2.6.4.

chain_complete == [X:Type] {a:AC X} Ex [x:X] supr a x;

cpo == [A:Set] and (poset A)(chain_complete A);

CPO == <X:Set> cpo X;

Now CPO is also a subset of PO, just the coercion map is more complicated. The map
cpo 2 po ==[A:CPO] (A.1,fst(A.2)) would do the job.

7.4.3 Applications of the Axiom of Unique Choice

The Axiom of Unique Choice (AC!) is important for creating functions from functional
relations. It is e.g. necessary to construct a linkage map in Proposition 2.4.2 (any
Σ-poset is linked). Another example is the derivation of a suprema operation like
presented in Section 2.6.2. First prove that for any Σ-cpo A there is a supremum for
an ascending chain a ∈ AC(A). Applying (AC!) one can derive from that an operation
that computes suprema. Uniqueness of suprema (Corollary 2.6.2):

[Prf_sup_unique: {A|Set}(poset A) ->

{a:AC A}{x,y:A} (supr a x) -> (supr a y) -> Q x y];

The premiss of (AC!) for the supremum map can be proved, as existence follows from
the definition of Σ-poset (snd D.2) and uniqueness from the Prf sup unique above.

[suplemmC: {D:CPO} {a:AC(D.1)} ExU [x:D.1] supr a x];

Simply instantiate ACu for the predicate ([a:AC(D.1)][x:D.1] supr a x). This is
done in the context of D:CPO. As ACu yields a sum-type and not just an existential
quantified proposition, we can in fact project on the first component to get the suprema
operation and on the second to get the proof that the suprema fulfills the requirements.

fam_supC == [D:CPO]

ACu ([a:AC(D.1)][x:D.1] supr a x) (suplemmC D) ;

sup_C == [D:CPO] (fam_supC D).1 ;

sup_C_prop == [D:CPO] (fam_supC D).2 ;

7.4.4 Substitutions with Identity types

The archetypical example where the identity types come into play is the proof that
Dom fulfills the required properties to have solutions of dmoain equations (Theo-
rem 4.3.1(3)). Let us recall the situation. Given a diagram D in Dom and an
embedding-pojection-chain (e, p)n, one has to construct a map fn,m:D(n) −→ D(m)
for n,m ∈ N with

fn,m ,

em−1 ◦ . . . ◦ en if n < m
idD(n) if n = m
pm ◦ . . . ◦ pn−1 if n > m

.

166 Chapter 7. Implementing Σ-cpo-s in Lego

This is an inductive definition. In the corresponding Lego code below, D represents
the diagram, and e and p families of embeddings and projections, respectively. Some
other notational conventions: C.hom denotes morphisms in the category C and C.o the
composition in C.

[D:N->DomC.ob][ch:embedding_chain DomC D]

[e=ch.1.1][p=ch.1.2][C=DomC];

[e_n_k= [n:N] N_elim ([k:N]C.hom (D n)(D (plus n k)))

(C.id|(D n))

([k:N][ee:C.hom (D n)(D (plus n k))] C.o (e (plus n k)) ee)];

[p_n_k = [n:N] N_elim ([k:N]C.hom (D (plus n k))(D n))

(C.id|(D n))

([k:N][pp:C.hom (D (plus n k))(D n)] C.o pp (p (plus n k)))];

Now the type of e n k is
{n,k:N}C.hom (D n)(D plus n k)

instead of
{n,m:N}C.hom (D n)(D m)

and similar for p n k. If we substitute m-n for k (we use shorthand notation + and - in
the text as it is easier to read), then we would get the desired result as Q (n+(m-n))

m. But since the last equation is only valid for propositional equality, in intensional
type theory this does not imply that D(n+(m-n)) and D(m) are judgementally equal,
so the type checker will refuse a term of type D(n+(m-n)) where it expects one of type
D(m). Therefore one has to “coerce” the types via subst.

The map e aux below does the job for arbitrary k satisfying Q (plus n k) m It is
of type {n,m,k:N}(Q n+k) m)->(D n)->(D m) . Id Axiom converts a proof of Leibniz
equality into identity type equality.

$[e_aux = [n,m,k:N][p:Q (plus n k) m] subst N ([m:N](C.hom (D n)(D m)))

(plus n k) (e_n_k n k) m (Id_Axiom (plus n k) m p)];

$[p_aux = [m,n,k:N][p:Q (plus m k) n] subst N ([n:N](C.hom (D n)(D m)))

(plus m k) (p_n_k m k) n (Id_Axiom (plus m k) n p)];

Lastly, e n m takes a proof of n ≤ m (p:le n m) and instantiates m-n for k, where
(Prf plusMinus m n p) is a proof of Q (n + (m-n)) n.

[e_n_m = [n,m:N][p: le n m]

e_aux n m (minus m n) (Prf_plusMinus m n p)];

[p_n_m = [n,m:N][p: not(le n m)]

p_aux m n (minus n m) (Prf_plusMinusN n m p)];

It is only now, that we can construct the right map of type Πu:N × N. D(π1(u)) −→
D(π2(u)) by (AC!). First, we proof:

[Prf_lemma_fnm: {u:N#N} ExU [f:C.hom (D u.1)(D u.2)]

and ({p: le u.1 u.2} Q f (e_n_m u.1 u.2 p))

({p:not (le u.1 u.2)} Q f (p_n_m u.1 u.2 p))];

7.4. Developing the theory 167

Then by the (AC!) we can define:

[fnm = (ACu_dep|(N#N)|([u:N#N]C.hom (D u.1)(D u.2))|

([u:N#N][f: C.hom (D u.1)(D u.2)]

and ({p:le u.1 u.2}Q f (e_n_m u.1 u.2 p))

({p:not (le u.1 u.2)}Q f (p_n_m u.1 u.2 p))

)

Prf_lemma_fnm)

];

So far this has not been too difficult. The problems arise if one has to prove properties
of fnm because then one has to get rid of the subst. Let us consider one example,
that is part of the proof that fnm is an implementation of the fn,m. We have chosen
the case n = m, as it is the simplest.

[i = fnm.1]

[icond = fnm.2];

Goal {n:N} Q (i(n,n)) (C.id|(D n));

Intros n;

Qrepl fst (icond (n,n))(le_refl n);

Expand e_n_m e_aux;

After this commands we are in the following proof state:

n : N

?10 : Q (subst N ([m:N]hom C (D n) (D m))

(plus n (minus n n))

(e_n_k n (minus n n)) n

(Id_Axiom (plus n (minus n n)) n

(Prf_plusMinus n n (le_refl n)))

)

(id C|(D n))

One would like to substitute minus n n by zero, but that does not work that easily,
because (Prf plusMinus n n (le refl n)) is of type Q (plus n (minus n n)) n,
hence depends on minus n n. After the substitution it should be of type Q (plus n

zero) n.
Therefore, we proved an auxiliary lemma that can be applied also in other similar

situations.

[Prf_LemmId: {X|Type}{Y|Type}{C:Y->Type}{a,b:X->Y}

{P:{x:X}(C (b x))->Prop}

{e:{x:X}C (a x)}

{x,y:X}

(Q x y)->

{pa:Id (a x) (b x)}{pr:Id (a y) (b y)}

(P x (subst Y C (a x) (e x) (b x) pa))->

P y (subst Y C (a y) (e y) (b y) pr)];

168 Chapter 7. Implementing Σ-cpo-s in Lego

This lemma allows one to substitute x by y inside the subterms a and b (depending on
x) of a substitution operator subst. In our goal we want to change the substitution

n + (n − n)︸ ︷︷ ︸
x

7→ n

into a substitution
n+ 0︸︷︷︸

y

7→ n

in order to get rid of the subst. So for the parameters of the lemma we set x , minus

n n, y , zero, a , [x:N]plus n x, b , [x:N]n. The term in which substitution
takes place is e , [x:N] e n k n x of type (D n)->D(plus n x) which is C(a(x)).
Therefore, one gets C , [x:N](D n)->(D x) and P , [x:B][w:(D n)->(D n)] Q w

(id C|(D n)).
We can now apply Prf LemmId as described. The question marks denote arguments

that can be synthesized by the system.

Refine Prf_LemmId

([x :N]hom C (D n) (D x))

([x:N](plus n x))

([x:N]n)

([x:N][w:hom C (D n) (D n)] Q w (C.id|(D n)))

([x:N](e_n_k n x))

zero

(minus n n)

? ?

(Id_Axiom (plus n (minus n n)) n (Prf_plusMinus n n (le_refl n)));

which yields the new goal context:

n : N

?14 : Q zero (minus n n)

?15 : Id (plus n zero) n

?17 : Q (subst N ([x:N]hom C (D n) (D x)) (plus n zero)

(e_n_k n zero) n ?15

)

(id C|(D n))

The first subgoal is readily shown. The second is just proved by r n as plus n zero

converts to n. The last subgoal rewrites two Q (id C|(D n))(id C|(D n)), since
the inductive definition of e n k is applicable after the substitution operator has dis-
appeared by normalization after the refinement of ?15. By reflexivity the proof is
completed.

The lemma is a good strategy for a systematic solution of the most ugly identity
types problems in our case. It has been introduced after having recognized that certain
proofs showed up several times in similar form. Of course, still some other lemmas
are needed for other kinds of problems. Unfortunately, it is cumbersome to identify

7.4. Developing the theory 169

the many arguments of Prf LemmId. The system as it stands cannot synthesize the
arguments as there are too many dependencies. Some special purpose algorithms for
this lemma or similar lemmas could work, however, and could therefore reduce the
disadvantages of identity types. A more fundamental remedy has been proposed by
[Hof95] (see 7.5.1).

7.4.5 Defining recursive domains

In the module recdom.l the following theorem has been shown

[Prf_rec_DomC : {F:Functor DomC DomC}

<D’:Dom>

<alpha :hom DomC (F.1 D’ D’) D’>

<alpha_1:hom DomC D’ (F.1 D’ D’)>

and (isopair alpha alpha_1)

(lfix ([h:hom DomC D’ D’] oo alpha (oo (F.2.1 h h) alpha_1))

(idd|D’))];

which corresponds to Theorem 4.3.1. To derive a type of streams one simply has to
provide an appropriate functor of type Functor DomC DomC. We can follow the lines
of Section 5.1. First, one defines a covariant functor STREAM F of type co Functor

which can be easily mapped to a Functor called STRM. Note that U F, Prod1 F and
Lift F denote, respectively, the forgetful functor from Dom to Cpo (with object part
dom2cpo), the functor N× () and the lifting functor ()⊥. The map comp Fu composes
functors in the usual way.

STREAM_F == comp_Fu U_F (comp_Fu (Prod1_F NN) Lift_F) ;

STRM == (coFunc_2_Func STREAM_F);

recdom == Prf_rec_DomC STRM;

Stream == recdom.1;

app_stream == (recdom.2.1 : DomC.hom (STRM.1 Stream Stream) Stream) ;

dec_stream == (recdom.2.2.1 : DomC.hom Stream (STRM.1 Stream Stream));

The type Stream and its isomorphisms app stream and dec stream can be all pro-
jected from the proof term Prf rec DomC STRM, since in Prf rec DomC we have not
proved existence via a quantifier but via a Σ-type. The advantage is obvious; recur-
sive types can exist in the global context. Otherwise they only would exist locally
in propositions and everything depending on them would also only exist in this weak
sense, i.e. surrounded by existential quantifiers, which obviously would not be very
user-friendly. The function that appends an element in front of a stream can now be
defined by means of app stream.

170 Chapter 7. Implementing Σ-cpo-s in Lego

append == [n:N][s:Stream.c]

app_stream.1 (up (p_c|NN|(dom2cpo Stream) n s));

One has to supply the type arguments for the tuple constructor p c. Type Stream is
changed from a Σ-domain to a Σ-cpo– as required by the paring function p c – using
the coercion map dom2cpo. But from the argument s:Stream it cannot be deduced
that Stream is a Σ-cpo (only that it is a Σ-domain). The system does not “know”
that it should simply project on the second component to get the required proof out
of the proof Stream.2.

The morphism app stream : DomC.hom Stream (STRM.1 Stream Stream) is a
strict function on Stream. Thus, in order to apply app stream, one has to project on
the first component, i.e. the function.

It is only a little more difficult to describe the functions that yield the head and
the tail of a stream following the Definition 5.1.2. One first decomposes the stream via
dec stream and then projects to the first or second component, respectively. Since ⊥
must not be forgotten, one has to lift the projection. This corresponds to the fact that
tail and head are partial operations, which yield ⊥ for the empty stream. So the type
of hd is Hom Stream (LiftCpo NN) and that of tl is Hom Stream (LiftCpo (U F.1

Stream)).

s_to_n == [A:Dom]

hom_part_Lift (pi1C|NN|(U_F.1 A)) : (Hom (STRM.1 A A) (LiftCpo NN));

hd == DomC.o (s_to_n Stream) dec_stream ;

s_to_s == [A:Dom] hom_part_Lift (pi2C|NN|(U_F.1 A)) :

(Hom (STRM.1 A A)(LiftCpo (U_F.1 A)));

tl == DomC.o (s_to_s Stream) dec_stream ;

7.4.6 Use of the Dominance Axiom

It shall be demonstrated in this subsection how the Domina-axiom is used. Originally,
the Dominance Axiom was introduced to show that Σ-monos compose. So first we
define a predicate that states which monos are Σ-monos (or subsets), sigma subset,
and we prove that for a subset (mono) m : A ⊆ B we can uniformly coerce elements of
B that are in the image of m back to A (just by applying the Axiom of Unique Choice).
The crucial point is that one has made an “strong” existential quantifier <a:A>Q (m

a) b out of the existential quantifier in mapToPred via Give El of Subtype.

sigma_subset == [A,B|CPO][m:A.1->B.1] and (mono m)

(Ex [p:B.1->Sig] ({b:B.1} iff (mapToPred m b) (def (p b))));

[Give_El_of_Subtype : {A,B|Type}{m:A->B} (mono m)->

{b:B} (mapToPred m b) -> <a:A>Q (m a) b];

Now we are in the position to state the goal:

7.5. Comments on the implementation 171

Goal {A,B,C|CPO} {m:A.1->B.1}{m’:B.1->C.1}

(sigma_subset m)->(sigma_subset m’)->sigma_subset (compose m’ m);

For proving this, after some steps it remains to solve in context

A | CPO

B1 | CPO

C | CPO

m : A.1->B1.1

m’ : B1.1->C.1

sm : sigma_subset m

sm’ : sigma_subset m’

p : B1.1->Sig

pc : {b:B1.1}iff (mapToPred m b) (def (p b))

p’ : C.1->Sig

pc’ : {b:C.1}iff (mapToPred m’ b) (def (p’ b))

the following subgoals:

?30 : C.1->Sig

?31 : {b:C.1} iff (mapToPred (compose m’ m) b) (def (?30 b))

The solution for the classifying predicate (?30) is [a:C.1](t a).1 where

t == [a:C.1](Domina (p’ a)

([w:def (p’ a)] p (Give_El_of_Subtype

m’ (fst sm’) a (snd (pc’ a) w)).1

));

This predicate is right because applied to a:C.1 it yields true iff (p’ a) is true,
i.e. a∈B, and if (p (Give El of Subtype m’ (fst sm’) a (snd (pc’ a) w)).1) is
true, i.e. a∈A, where (Give El of Subtype1) coerces a ∈ C into an a ∈ B. The
rest of the proof is then straightforward using the second projection of t, i.e. the right
properties of the defined Σ-predicate.

7.5 Comments on the implementation

The theory of Σ-cpos was implemented by the author during a period of more than one
and a half year. After such an intensive use a brief report on the features of the used
system, on its advantages but also on its drawbacks, is legitimate. Quite naturally it
gives rise to a list of wishes of improvements. This is not against Lego (the author is
a Lego-fan, in fact), which is a prototype, and hence cannot be perfectly developed
from a user’s point of view. These comments should be understood as requirements
that might be taken into consideration when the “next” verification system based on
type theory will be implemented. In addition, some inconveniences have nothing to
do with Lego but are inherent in the type theoretic approach.

172 Chapter 7. Implementing Σ-cpo-s in Lego

7.5.1 Shortcomings of the type theoretic approach

The type theoretic approach, as presented, is quite elegant, but there are one or two
flaws. The most striking drawback is the intensional equality. Since we do not want
to give up machine support, type checking must be decidable.5 Consequently, given
X ∈ Type, B ∈ X −→ Type, and x, x′ ∈ X it is not true that x = y implies
B(x) ' B(y), where = denotes the propositional (i.e. Leibniz) equality and ' the
intensional equality by conversion (see also [RS93b]). The type checker will complain
in such a situation, since it cannot take equality proofs into consideration that are
given on the propositional level. This causes problems when constructing dependently
typed objects as they are necessary for the inverse limit construction. This is why
we had to introduce identity types (cf. Section 7.3.2) and a substitution operator that
can be used to bypass this problem for the price of terms blown up by subst’s. In
addition, it is not easy to substitute in such “substitution terms” or to get rid of them.
The J operators plays a crucial role there (cf. 7.4.4).

A more rigorous idea has been followed by Martin Hofmann. He showed that
extensional type theory can be translated into intensional type theory with extension-
ality, uniqueness of identity proofs (both as axioms) and operator J [Hof95]. If an
efficient algorithm for this translation would be known, it could be implemented in
a type checker. The user could then construct a proof in an extensional theory and
the system would translate it into a proof term in intensional type theory, where type
checking is decidable. This would relieve us from a lot of tedious applications of J and
subst in the files inverseIMP.l and recdomIMP.l. Unfortunately, up to now, no such
algorithm is known (although it must exist).

Another disadvantage is the coding of subset types by sums. This is quite awkward
because one always has to play around with coercion maps.

7.5.2 Shortcomings of Lego

The Lego system has very few inconvenient particularities. Some suggestions for new
features are summarized below.

I The module system is not perfect. The “compiled” files (with an .o suffix) can
be read in, but not in a modular way following the dependencies of the .l files.
This has been corrected in the latest Lego release [Pol94a].

Still the .o files contain proof terms. It would be nice if “proof-irrelevant” ver-
sions of the files could be generated automatically such that terms of type Prop
are substituted by constant names (like we have done for our theory by hand).
Moreover, such files should be generated (partially) even if the parser has de-
tected an error, such that one could read in the already settled theory fast and
restart proof construction with the bad proof. This could make modular proof
development more efficient in case of proof-irrelevance.

5That is not quite true; in NuPRL type checking is not necessarily decidable, but it uses derivations
rather than proof terms.

7.5. Comments on the implementation 173

I The use of claims or, more exactly, of their hypothetical proof terms, is too
restricted.6 Working with subset types, proof terms often occur in terms of
non propositional types, where no hypothetical proofs are allowed. Even if every
proof can be rewritten such that those uses can be eliminated, it is pragmatically
much nicer to use the hypothetical proof terms deliberately. To construct a proof
term one has to provide proofs for the claims anyway. The re-engineering of a
(big) proof can sometimes be very awkward.

I After an introduction step (of a variable or a hypothesis) for one goal, the other
goals become invisible (and inaccessible by ?+n references). Hence, they can only
be referred to by their goal number which leads to context-dependent proofs since
goal numbers can differ at different runs (see also previous item).

I The commands during proof construction should be stored. Such a history-
feature would be helpful to save the correct proof construction (checked by the
system). The available emacs lego-mode is good for emacs-users, yet, it just
offers the possibility to call Lego from the editor. It is, however, still possible
(and very likely) to inadvertently change a working proof in the editor and save
this wrong code. This leads to nasty errors, if the file is loaded some day when
the programmer does not remember anymore the details of his proofs.

I Lego’s dependent sums are not satisfactory. Type castings are necessary, but are
not printed by the system, so the output cannot be fed back to the interpreter.

I When working in a kind of set theory, it would be nice to have some built-in
treatment of subset types, to avoid coercion maps and sum types. At least some
syntactic sugar could improve readability.

I Readability could also be refined by providing a possibility to hide terms. Some-
times goals get three, four or even more lines long; then the proof-programmer
loses control. If certain things can be hidden (e.g. proof terms of type A where
A ∈ Prop) then it might be easier to find one’s way through the syntax jungle.

I For equational proofs some automatic tactics would be nice (like LCF’s rewrite-
tac). Adding propositional equations as conversion rules, however, is dangerous
because strong normalization could be lost.

I Some tactics for a nicer treatment of identity types would be extremely helpful.
Applying the subst or J operator, always a large amount of type information
must be provided, that might be calculated by the system. Here a graphic
user interface would be of further help, as one could indicate by mouse clicks
where a substitution is wanted and the system could compute the context of the
substitution by itself. Thereby, a lot of syntax rubbish could be avoided.

I In LCF one can also rewrite propositions if they are equivalent. In our axiomati-
zation equivalent propositions are not equal, hence one cannot apply the Qrepl

6The typical error message is: “question marks are not allowed here”.

174 Chapter 7. Implementing Σ-cpo-s in Lego

tactic of Lego in such a case. If one wants to make use of the equivalence P ⇔ R
in a compound goal G that contains P , then one has to “logically decompose” G
until P becomes the active goal and then apply the equivalence. This is tedious
and could be taken charge of by the system with a tactic similar to Qrepl for
the equivalence iff.

I Lego has only very primitive tactics and no tacticals in the ‘93 version. There
have been recently made some experiments now with basic tacticals.

I This item is an aspect concerning the environment rather than the proof-checker
itself. Special needs arise when implementing a large, modular theory. Working
with more than 20 files, it is difficult to remember all the names of the proof terms
already constructed. Special features for searching could enhance the “context
management”, e.g. search facilities for (names of) theorems that contain a certain
function or type. Context sensitive search, e.g. for theorems that contain a
certain string in its conclusion, would be even better. Search should be performed
in all files of a theory (maybe supported by a graphical user interface). Up to now
one has to use Unix-commands like grep or Perl-scripts like legogrep (which
is available via ftp from the Lego-Web-page).

Putting the proved theorems (and proof terms) into a database could be even
more efficient. More information about theorems and their proof terms could be
stored. This might be advantageous for documentation, statistical purposes, and
dependency analysis. In fact, one advantage of a complete formal theory is that
one can syntactically check whether a certain axiom or theorem is necessary to
prove another proposition.

Of course, a graphic user interface is missing because Lego is just a prototype. But
Lego is very robust, it never core dumped and always behaved like expected. Effi-
ciency of normalization could be better though.

7.6 Related work on formal theories of domains

There exist already several formalizations of classical domain theory. Let us shortly
browse through them.

LCF

The first who implemented a theorem prover for Scott’s logic was Robin Milner, who
implemented Stanford LCF (Logic of Computable Functions) in ‘72 [Mil72]. Then he
decided to give a meta-language for programming such a theorem prover, ML [MTH90,
Pau91, Sok91], which is widely used now not only in the academic world. The result of
this fundamental redesign was the Edinburgh LCF system in ‘79 [GMW79]. Cambridge
LCF is just a more efficient and slightly extended version of LCF. In [Pau87] one can
find a description and a semantics of LCF as well as a short history. LCF offers
only a restricted first-order logic, such that several argumentations have to be carried

7.6. Related work on formal theories of domains 175

out externally (like e.g. admissibility). Whereas these defects can be remedied (cf.
HOLCF), there is still the criticism that classical domain theory is not optimal for
verification purposes (cf. Section 1.1).

HOLCF

The thesis [Reg94] proposes an “alternative” LCF by formalizing domain theory in
HOLC, higher-order-logic with type classes, for which an Isabelle [Nip91, Pau94] im-
plementation exists. Working in a higher-order setting, one can formalize e.g. admis-
sibility in contrast to LCF, and define domains as type classes, e.g. the class of partial
orders or pointed complete partial orders. The justification for the axioms of the class
types (e.g. the axioms that ensure that the relation v is a partial order) is provided by
the (external) method of persistent extensions, whereas we will give a concrete model
to show consistency of our theory. In [Reg94] the axioms of a new introduced type
class have to be proved for a “representation of the class” to show that it is not empty,
i.e. that the theory remains consistent. As the starting theory was already consistent
one can derive that the whole theory must be consistent. The advantage of “lifting”
information to type classes is evident, as one can define a class of domains. This is a
trick for an easier handling of the analytical approach. In our synthetic theory this is
unnecessary since we treat domains as a subtype of the universe of sets which belongs
already to the type system. The HOL-CPO approach below does not provide such an
elegant treatment of domains as types or classes.

There are no dependent types in HOLCF, hence one cannot express the morphism
part of a functor nor limits of diagrams. Therefore, one uses the trick of LCF and
introduces recursive types by declaring an abstraction and a representation function
(the isomorphism) requiring axiomatically that these describe an isomorphism pair.
Moreover, one axiomatizes that this is the minimal solution by stating that the fix-
point of the corresponding copy functional is the identity. In this sense any recursive
datatype must be introduced as a proper theory. We have already seen that in the
Σ-cpo-setting we can get recursive domains just by plugging the appropriate functor
into Theorem 4.3.1.

Regensburger presents a formalization of classical domain theory that uses LCF-
like techniques for defining recursive domains, but which provides a stronger logic than
LCF. An advantage of this work is that it is implemented in a user-friendly prover,
Isabelle [Pau94], which provides a lot of tactics.

HOL-CPO

In [Age94] a different implementation of domain theory in pure HOL [GM93] is pre-
sented. As there are no type classes, posets and domains must be expressed as a tuple
consisting of a set, i.e. an object of type α −→ bool and a binary (order) relation over
α, where α is a type parameter. Therefore, posets/cpo-s are always subsets, coded as
predicates on an existing HOL-type. One cannot take a HOL-type since the continuous
function space does not correspond to a HOL-type, it is just a subtype of the function
space. Consequently, functions must range on α rather than on the intended subsets

176 Chapter 7. Implementing Σ-cpo-s in Lego

and must be type checked manually. Note that the type of continuous functions is a
dependent type the coding of which is somewhat messy.

At least, one can define a predicate that checks whether a tuple of the above form is
indeed a poset/cpo. And by some good tactics it might even be solved automatically.

Domain constructors must be defined explicitly (this is of course still “analytical”).
If domains A and B are given as subsets of α, one has to define a new subset of α and
define the partial order in terms of the orders of A and B. Unfortunately, no recursive
domains can be constructed. There are some ad-hoc implementations for lazy lists and
finite lists just by embedding adequate HOL-types (implementations) into the type of
cpo-s.

The system HOL-CPO does not only consist of an HOL-implementation of domain
theory but contains also some modifications of the ML-code (special-purpose-parser,
pretty-printer) of the system HOL itself, in order to present a nice interface w.r.t.
domains in an LCF-like style. It is an advantage of this system that HOL-types can
be regarded as cpo-s, as working with cpo-s is sometimes easier. The ubiquitous ⊥ that
gives rise to a lot of case analyses, can be delayed. On the other hand, the concept
of recursive domains is missing – it would require to treat cpo-s with ⊥ anyhow.
Again the tactics of HOL are advantageous for proof construction. As a case study,
a correctness proof of the (first-order) unification algorithm has been translated from
LCF into HOL-CPO.

Agerholm is actually working on an implementation of the inverse limit construction
in HOL-ST which supports ZF set theory.

A related approach is the one of Peterson [Pet93]. He formalized in HOL the Pω
graph model which is a universal domain such that recursive domains can be treated
via retracts. However, the HOL-code has not been fully developed. Since posets have
to be coded by a pair consisting of a carrier set and an ordering, one has to cope with
the same disadvantages as in HOL-CPO.

11 8
“When we mean to build,

We first survey the plot, then draw the model;
And when we see the figure of the house,

Then we must rate the cost of the erection;
Which if we find outweighs ability,

What do we then but draw anew the model
In fewer offices, or at last desist

To build at all?”
William Shakespeare, Henry IV, Part2

A realizability model for Σ-cpo-s

Up to now we have given a completely logical (model-free) axiomatization of Synthetic
Domain Theory. To put this on solid ground we still have to argue that our axioma-
tization is consistent, i.e. that is has indeed a model. In this chapter we will therefore
provide a realizability model that fulfills all the axioms of SDT.

The first Section 8.1 will briefly review the basic notions of realizability models
like partial equivalence relations and modest sets. Next we give a PER-model for the
ECC∗ (Sect. 8.2) which is a mild modification of the model of the Extended Calculus
of Constructions [Luo90, Str89]. In contrast to ECC, now we have to interpret two
impredicative universes. In the third subsection it is shown that all the axioms of
our theory of Σ-cpo-s (cf. Sect. 2.1.2 and 2.2) are valid in the given model. Having
now a PER-model of Σ-cpo-s, we are able to compare Σ-cpo-s with other suggested
definitions of domains as the Σ-spaces or Σ-replete objects (see also Chapter 9).

8.1 Basic preliminaries

Realizability started with Kleene (realizability semantics for constructive logic [Kle45]).
Since then many notions of realizability have been introduced. In logic realizability is
used to show consistency of certain principles with intuitionistic logic. Realizability
toposes [Hyl82] give a higher-order version of realizability. Realizability models are
also important for modeling effective computations. In languages with datatypes and
recursive functions the realizers can be seen as “codes” (or machine values) for data
objects. The natural numbers usually serve as representations such that datatypes
are modeled as partial equivalence relations on N. Instead of N one can also take

177

178 Chapter 8. A realizability model for Σ-cpo-s

some other appropriate structure e.g. the untyped λ-calculus. This leads to PERs over
arbitrary partial combinatory algebras which describe the abstract concept of “codes”
that is needed. So realizability semantics forgets about types and uses codes and is
thus adequate for interpreting even languages with polymorphic or dependent types
[LM91, Ros91, Gir86].

We shortly summarize the basic definitions for realizability semantics. A more
detailed introduction can be found e.g. in [Pho92, Lon94]. Readers familiar with
realizability might want to skip this section, at the end of which, however, there will
be some definitions needed for our special proof-irrelevant interpretation. Those cannot
be found in [Luo90, Str89].

First we have to fix the idea of codes, i.e. the partial combinatory algebra.

Definition 8.1.1 A partial combinatory algebra is a set A together with a partial
binary operation · in A (application) and elements k, s ∈ A such that k · x · y = x,
s · x · y · z ' (x · z) · (y · z) and s · x · y is always defined. The symbol = denotes strict
equality, and e ' e′ means either e and e′ are both undefined or both are defined and
equal. �

Remarks:

1. The natural numbers N with Kleene application n · m , {n}m form a PCA
(called Kleene’s first model) where {n} denotes the partial recursive function
with Gödel-number n.

2. As known from untyped λ-calculus one can define a λ-notation such that the
combinators s and k are hidden. In the case of the Kleene PCA we write Λx. e
to indicate the element of A that behaves “like” an abstraction, i.e. for some
defined expression e′ we get (Λx. e) · e′ ' e[e′/x]. One must be careful here as
Λ is a meta-notation. A more careful and detailed treatment can be found in
[Lon94] where Λ is called λ∗. Sloppily one can think of a PCA as a type which
possesses a (partial) application and an abstraction yielding total elements.

3. In [Lon94] it is also demonstrated that in any PCA one can define boolean values,
pairs, curry numerals, and primitive recursion on them.

4. If we consider Kleene’s first model, which is the only case we are interested in, we
have that the elements of the PCA (N) code partial recursive functions. We will
make use of this fact and will not just refer to application and combinators. This
would be too cumbersome. So if f [n] is an expression denoting a partial recursive
function depending on a number n then Λn. f chooses a code of this expression in
some canonical way. For example, Λn. n denotes a code for the identity function.
For constructing partial recursive functions we will use the Kleene predicate
T , the Kleene extraction function U , the search operator for partial recursive
functions µ, the tupling function 〈 , . . . , 〉, the projections π1 and π2, and of
course application (that could also be expressed in terms of U(µx. T (n,m, x))).
Moreover, we use a conditional if then else on natural numbers which is obviously
partial recursive. It would be a (long) exercise to express all this functions in
terms of combinators.

8.1. Basic preliminaries 179

Definition 8.1.2 Let A be a partial combinatory algebra (PCA). A partial equiv-
alence relation (PER) on A is a symmetric and transitive (not necessarily reflexive)
relation R ⊆ A× A. The domain of a PER R, dom R, is {n ∈ A |nRn}. �

Note that if we have aR b then by symmetry and transitivity one immediately gets
that aRa and bR b, so this already implies that a, b ∈ dom R.

8.1.1 Assemblies

Before we consider PERs we introduce the more general concept of assemblies.

Definition 8.1.3 Let A be a partial combinatory algebra (PCA). An A-assembly
(X,∈) consists of a set X together with a nonempty set of realizers for any x ∈ X ,
denoted ‖x ∈ X‖ ⊆ A. If n ∈ ‖x ∈ X‖ one also writes n X x or simply n x.
A morphism between A-assemblies f : (X1,∈1) −→ (X2,∈2) is a function f ′ : X −→ Y
on their underlying sets, such that there exists a code n ∈ A that tracks (or realizes)
f ′, i.e.

∀x:X. ∀m.m X x⇒ (n ·m) Y f ′(x).

The carrier of an assembly X is denoted |X |. If A is N, the PCA of Gödel numbers for
partial recursive functions (Kleene’s first model), N-assemblies are called ω-sets. �

It is a well-known fact that assemblies form a locally cartesian closed category. In the
case of ω-sets we call this category ω-Set. Thus for assemblies we can define dependent
products and sums (relative to contexts). In the following these definitions are stated
for ω-Set as it is the category we are interested in (cf. [Luo90, Def. 7.2.1,7.3.1]).

Definition 8.1.4 If Γ is an ω-set and A : |Γ| −→ ω-Set is a |Γ|-indexed family of
ω-sets.

I Then σ(Γ, A) is the ω-set satisfying the following requirements:

|σ(Γ, A)| , {(γ, a) | γ ∈ |Γ|, a ∈ |A(γ)|}

〈m,n〉 σ(Γ,A) (γ, a) iff m Γ γ ∧ n A(γ) a.

I Moreover, π(Γ, A) is the ω-set satisfying the following requirements:

|π(Γ, A)| , {f ∈ Πγ∈Γ|A(γ)| | ∃n. ∀γ:|Γ|. ∀m.m Γ γ ⇒ {n}m A(γ) f(γ)}

n π(Γ,A) f iff ∀γ:|Γ|. ∀m.m Γ γ ⇒ {n}m A(γ) f(γ). �

One can also define sums and products relative to a given context:

Definition 8.1.5 Let Γ be an ω-Set, A : |Γ| −→ ω-Set a |Γ|-indexed family of ω-Sets,
and B : |σ(Γ, A)| −→ ω-Set a |σ(Γ, A)|-indexed family of ω-Sets.

180 Chapter 8. A realizability model for Σ-cpo-s

I Then define σΓ(A,B) as a |Γ|-indexed family satisfying:

|σΓ(A,B)(γ)| , {(a, b) | a ∈ |A(γ)|, b ∈ |B(γ, a)|}

and realizability relation

〈m,n〉 σΓ(A,B)γ (a, b) iff m A(γ) a ∧ n B(γ,a) b.

I Then define πΓ(A,B) as a |Γ|-indexed family satisfying:

|πΓ(A,B)(γ)|, {f ∈ Πa∈|A(γ)||B(γ, a)| | ∃n. n πΓ(A,B)γ f}

and realizability relation

n πΓ(A,B)γ f iff ∀a ∈ |A(γ)|. ∀m.mA(γ) a⇒ {n}m B(γ,a) f(a). �

Moreover, there is a full embedding ∇ from the category of sets Set into ω-Set where
∇(X) = (X,N × X), i.e. ∇(X) has the trivial realizability relation. ∇ is the right
adjoint of the forgetful functor U : ω-Set −→ Set and gives rise to a reflection.

For interpreting higher universes we need some special kinds of ω-sets:

Definition 8.1.6 For any j ∈ N let ω-Set(j) be the full category of ω-Sets whose
carrier sets are in the set universe Vκj of the cumulative hierarchy of sets [Luo90,
Luo94]. �

An immediate consequence of this definition is:

Lemma 8.1.1 For any j ∈ N the universe ω-Set(j) is closed under ω-Set(j)-indexed
sums and products, i.e. let Γ be an ω-Set, A : |Γ| −→ ω-Set(j) and B : |σ(Γ, A)| −→
ω-Set(j), then σΓ(A,B) : |Γ| −→ ω-Set(j) and πΓ(A,B) : |Γ| −→ ω-Set(j).

Proof: As any Vκj is a model of ZFC set theory [Luo90]. �

8.1.2 Modest sets

One can now identify those assemblies which correspond to a PER.

Definition 8.1.7 An A-assembly (X,∈) is called a modest iff

∀x, x′ ∈ X. n x ∧ n x′ ⇒ x = x′.

This states that the realizability relation is in fact a function. The category of modest
A-assemblies is called Mod(A). That of modest ω-sets is simply called Mod, the
category of modest sets. �

It is well-known that the category of modest sets is locally cartesian closed. An impor-
tant observation is that products and sums of Definition 8.1.5 are closed w.r.t modest
sets.

8.1. Basic preliminaries 181

Lemma 8.1.2 Let Γ be an ω-set, A : |Γ| −→ ω-Set a |Γ|-indexed family of ω-Sets,
and B : |σ(Γ, A)| −→ Mod a |σ(Γ, A)|-indexed family of modest sets. Then πΓ(A,B)
is a modest set again.

Proof: The proof is simple – just use extensionality and the fact that any B(γ, a)
is modest – and can be found e.g. in [LM91]. �
This holds also for arbitrary PCA’s i.e. A-assemblies.

Lemma 8.1.3 Let Γ be an ω-Set, A : |Γ| −→ Mod a |Γ|-indexed family of modest
sets, and B : |σ(Γ, A)| −→ Mod a |σ(Γ, A)|-indexed family of modest sets. Then
σΓ(A,B) is a modest set again.

Proof: Assume (n,m) σΓ(A,B) (a, b) and (n,m) σΓ(A,B) (a′, b′). Then by definition
n A(γ) a and n A(γ) a

′, so a = a′ as A(γ) is modest. Analogously one gets b = b′

since B(γ, a) is also modest. �
Notation: We denote a family B : |Γ| −→ ω-Set as (B[γ])γ∈|Γ|, if the family is
constant, we also write (B)γ∈|Γ|.

The relation between modest sets and PERs is described by the following lemma.

Lemma 8.1.4 Let A be a PCA. An A-assembly X is modest iff it is isomorphic to
(A/RX,∈) for some PER RX on A, where ‖n ∈ [m]RX‖ = [m]RX .

Proof: Let X be an A-assembly.
“⇒”: Define nRX m iff n,m X x for some x ∈ X . Define i(x) , [m]RX where
m X x. It is easy to show that this is an iso.
“⇐”: Assume x, x′ ∈ X such that n x ∧ n x′. By assumption this is equivalent
to n RX [m]RX ∧ n RX [m′]RX where m x and m′ x′. So nRXm and nRXm

′,
by transitivity and symmetry this gives mRXm

′, i.e. [m] = [m′] and by assumption
again this implies x = x′. �
Unfortunately,Mod is not the right choice to interpret our universe Set, as it is not a
small category. Therefore, one introduces a subcategory of modest sets, which is small
(see also [Str89, Luo90]).

8.1.3 PER objects

Definition 8.1.8 The category PERA is the full subcategory of Mod(A) with objects

PERobj
A , {(A/R,∈) |R ⊆ A ×A is a PER }.

So the morphisms are maps f : A/R −→ A/S for which there is a code n ∈ A that
tracks (realizes) f , i.e.

mRm⇒ [n ·m]S = f([m]R).

which is determined by the fact that f is a morphism in Mod(A). �

The name PERA objects is taken from [Str89].

182 Chapter 8. A realizability model for Σ-cpo-s

Definition 8.1.9 From Lemma 8.1.4 we get an equivalence of the categories Mod(A)
and PERA (see also [Luo90]). We call the corresponding functors ΦA : Mod(A) −→
PERA and its inverse is the inclusion inc. �

Thus we have that ΦA(incP) = P but only inc(ΦA(X)) ∼= X for any X ∈Mod(A)obj

and P ∈ PERA
obj . Sometimes we will be sloppy and omit the inclusion functor

simply writing e.g. ΦA(X) ∼= X .
Throughout this chapter we will only consider A-assemblies and PERs for the case

when A is the Kleene model. So when we use A-assemblies and PERs they are always
to be understood w.r.t. N. For the case of ω-Sets we will also simply write Φ for the
above equivalence and PER for PERN.

For computing products in PER one could think of computing products in the
category of modest sets and then reflect them into PER by the above equivalence Φ.
But there is a snag to it. We would only get that the interpretation of Proof(∀x:A. p)
is isomorphic to Πx:A.Proof(p), whereas in the rules of the calculus (πElim1) we have
required that both are equal. Therefore, when building product/sum types we have to
distinguish whether we are in PER or not and take products in the category of PERs
when necessary. Beforehand, however, we have to show that PER is closed under
products and sums. So we proceed as for modest sets:

Definition 8.1.10 Let Γ be an ω-Set, A : |Γ| −→ ω-Set a |Γ|-indexed family of
ω-sets, and B : |σ(Γ, A)| −→ PER a |σ(Γ, A)|-indexed family of PERs.

I Then define π∗Γ(A,B) as a |Γ|-indexed family of PERs satisfying:

n (π∗Γ(A,B) γ)m iff ∀a ∈ A(γ). ∀k a. ({n} k) B(γ, a) ({m} k).

I Now let A also be a family of PERs, i.e. A : |Γ| −→ PER and B : |σ(Γ, A)| −→
PER Then define σ∗Γ(A,B) as a |Γ|-indexed family of PERs satisfying:

〈n1, n2〉 (σ∗Γ(A,B) γ) 〈m1, m2〉 iff n1 A(γ)m1 and n2 B(γ, [n1]A)m2. �

8.1.4 Another universe Pω
A difference to the standard semantics for ECC is, that Prop will not be interpreted
by the category PER as “usual” since we have proof-irrelevance. Propositions will
have to live in Pω. We have to make sure that it has nevertheless the right closure
properties.

Definition 8.1.11 Let PER1 denote the full subcategory of PER with at most one
equivalence class. Mod1 abbreviates then inc(PER1). �

Lemma 8.1.5 The map Ψ satisfying Ψ(N/R,∈) , {n |nRn} is an isomorphism
between PER1 and Pω.

8.2. A realizability model for the ECC∗ 183

Proof: Define Ψ′(X) , (N/R′,∈) where nR′m iff n,m ∈ X . It is easy to see that
Ψ is an iso with inverse Ψ′. �
The above isomorphism simply removes the outermost brackets, i.e. Ψ({M},∈) = M
for M ∈ Pω. Normally, we simply omit the isomorphism and confuse Pω with PER1.

For interpreting the logical connectives by second-order encodings (cf. Sect. 7.3.1)
it is important that Pω is closed under ω-Set-indexed products. It is sufficient that
Mod1 is closed under such products which is the subject of the next proposition.

Lemma 8.1.6 Let Γ be an ω-Set, A : |Γ| −→ ω-Set, and B : |σ(Γ, A)| −→ PER1,
then π∗Γ(A,B) ∈ |Γ| −→ PER1.

Proof: Let γ ∈ |Γ| and let us abbreviate (π∗Γ(A,B) γ) by R. We have to show for
all n,m ∈ domR that nRm holds. So for any a ∈ A(γ) and any k A(γ) a we must
prove that ({n} k) B(γ, a) ({m} k), which follows immediately from the assumption.
�
Since both Pω and PER1 are small, i.e. in ω-Set(0)obj , and isomorphic, it does not
make any difference which one we take to interpret Prop.

8.2 A realizability model for the ECC∗

“There is a known problem about defining a model semantics of rich type theories like
the calculus of constructions; that is, since there may be more than one derivation
of a derivable judgement, a direct inductive definition by induction on derivations is
questionable” [Luo90]. Therefore [Luo91] suggests to do induction on “canonical deriva-
tions”. We prefer the method presented in [Str89], namely to give an a priori partial
interpretation function defined by induction on the syntax of the terms/sequents. Of
course, one has to argue afterwards that the interpretation function is indeed defined
for derivable sequents and that it respects the rules. In this way Streicher gave an
interpretation of the Calculus of Constructions in so-called doctrines of constructions
which provide a categorical notion of models based on contextual categories. As we
want to keep the presentation as simple as possible, we will give a direct interpretation
in ω-Set. In that point we follow [Luo90], from which we also adopt the interpretation
of the predicative universes. We think that this mixture of [Luo90] and [Str89] yields
a very elegant and comprehensible model description.

We present the (a priori) partial interpretation function for ECC∗ extended by
inductive types N and B and identity types. Its definition is by induction on a measure
on the pre-sequents (Definitions 7.1.1, 7.1.3), level, that is defined in terms of the
following function depth.

Definition 8.2.1 The function depth maps pre-well-formed expressions and also pre-
contexts into N. It is defined by structural induction on expressions.

I depth(u) = 1, where u is any constant e.g. prop, set, typej , Prop, Set, Typej , N,
B, nat, bool, 0, succ, true, false, N elim, B elim, id, r, J, prf, el, tj

I depth(x) = 1, whenever x is a variable

184 Chapter 8. A realizability model for Σ-cpo-s

I depth(Proof(A)) = depth(El(A)) = depth(Ti(A)) = depth(A) + 1

I depth(Πx:A.B) = depth(
∑
x:A.B) = depth(A) + depth(B) + 2

I depth(∀x:A. t) = depth(π x:A. t) = depth(πt x:A. t) = depth(σ x:A. t) =
depth(σt x:A. t) = depth(λx:A. t) = depth(A) + depth(t) + 2

I depth(app[x:A]B(t, s)) = depth(A) + depth(B) + depth(t) + depth(s) + 2

I depth(pairA(s, t)) = depth(A) + depth(s) + depth(t) + 2

I depth(π1(s)) = depth(π2(s)) = depth(s) + 2

I depth(IdAs t) = depth(A) + depth(s) + depth(t) + 1;

For a context Γ ≡ x1:A1, . . . , xn:An define depth(Γ) =
∑n

i=1 depth(Ai) + n.
Moreover, we define a function level that maps pre-contexts and pairs of pre-contexts
and expressions, denoted (|), into N.

I level(Γ) = depth(Γ)

I level(Γ|A) = depth(Γ) + depth(A)

I level(Γ|t) = depth(Γ) + depth(t) �

We are adding 2 to the depth of compound terms instead of 1 to make the induction
measure of the right-hands sides in the next definition always smaller than the left-
hand side. The reason for this choice is the interpretation rule for the context below.
Now we have the right induction measure to define the a priori partial interpretation
function inductively.

Definition 8.2.2 We inductively define an a priori partial interpretation function [[]]
associating

I with any pre-context Γ, such that [[Γ]] is defined, an ω-Set;

I with any pre-context Γ and pre-well-formed type expression A, such that [[Γ|A]]
is defined, a family of types, i.e. an element of [[Γ]] −→ ω-Set;

I with any pre-context Γ and pre-well-formed expression t, such that [[Γ|t]] is
defined, a family M : [[Γ]] −→ ω-Set together with a realizable section s ∈
π([[Γ]],M). So for γ ∈ [[Γ]] we have [[s]] γ ∈ M(γ). In this form we describe the
family of types together with its sections in the definition below.

The interpretation of pre-contexts and pairs of pre-contexts and pre-expressions is by
induction on level. First, we interpret the pre-contexts:

I [[〈〉]] , ∇(1)

I [[Γ, x:A]] , σ([[Γ]], [[Γ|A]]).

8.2. A realizability model for the ECC∗ 185

Note that level(Γ, x:A) = level(Γ) + level(A) + 1 > level(Γ) + level(A) = level(Γ|A).
Therefore the above definition is well-defined.

In the following we always assume that γ ∈ [[Γ]].

I [[Γ|Prop]] γ , ∇Pω
I [[Γ|Set]] γ , ∇(PERobj)

I [[Γ|Typej]] γ , ∇(ω-Set(j)obj)

I [[Γ|prop]] γ , Pω ∈ ω-Set(0)obj

I [[Γ|set]] γ , PERobj ∈ ω-Set(0)obj

I [[Γ|typej]] γ , ω-Set(j)obj ∈ ω-Set(j + 1)obj

I [[Γ|nat]] γ , (N,∆N) ∈ PERobj

I [[Γ|N]] γ , inc(N,∆N)
We abbreviate inc(N,∆N) by ∆N.

I [[Γ|bool]] γ , (N/R,∈) ∈ PERobj , where dom R , {0, 1} and ¬(0R 1).

I [[Γ|B]] γ , inc(N/R,∈) where R as above.
We abbreviate inc(N/R,∈) by ∆B.

I [[Γ|0]] γ , 0 ∈ N and [[Γ|succ]] γ , succ ∈ NN, succ is clearly realizable

I [[Γ|true]] γ , [1]R ∈ N/R and [[Γ|false]] γ , [0]R ∈ N/R with R as above

I [[Γ|N elim]] γ , λC:|π(∆N, (∇ω-Set(j)obj)x∈N|. λz:|C(0)|.
λq:|π(∆N, π(C(n), (C(succn))x∈|C(n)|)n∈N)|. fix(τ)

where τ is the following monotone functional

τ , λf :|π(∆N, (C(n))n∈N)|. λn:N.
{
z if n = 0
q n′ (f n′) if n = succ(n′)

The realizer for this map is ΛC.Λz.Λp. n0 where n0 is by the Second recursion
theorem [Cut80] the number with h(n0) = n0 for h a total computable function
such that whenever n f then h(n) τ(f).
Take h(n) , Λm. if m = 0 then z else {{p} (m− 1)} ({n} (m− 1)) where p and
z are the realizers from above.
M , [[Γ|ΠC:(N→ Typei). C(0)→ (Πn:N. C(n)→ C(succ n))→ Πn:N. C(n)]]
can be computed easily, such that it becomes clear that [[Γ|N elim]] γ ∈M γ.

I [[Γ|B elim]] γ , λC:|π(∆B, (∇ω-Set(j)obj))x∈N/R|.
λt:|C([1])|. λf :|C([0])|.λb:N/R.

{
t if b = [1]
f if b = [0]

The realizer for this map is ΛC.Λt.Λf.Λb. if b = 0 then f else t. We leave
it to the reader to compute the corresponding family of types.

186 Chapter 8. A realizability model for Σ-cpo-s

I [[Γ|id]] γ , λA:ω-Set(j)obj . λx, y:|A|.
{
∅ if x 6= y
{n |n x} if x = y

∈ π(∇ω-Set(j)obj , (π(A, (π(A, (∇Pω)a∈|A|))a∈|A|))A∈ω−Setobj).
This function is trivially realizable because ∇Pω has the trivial realizability
structure.

I [[Γ|IdAs t]] γ ,
{

(∅, ∅ × ∅) if [[s]]γ 6= [[t]]γ
({n |n [[Γ|A]]γ [[s]]γ},∈) if [[s]]γ = [[t]]γ

I [[Γ|r]] γ , λA:ω-Set(j)obj . λx:|A|. n (with n A x)
∈ π∗(∇ω-Set(j)obj , (π∗(A, ({n |n A x})x∈|A|))A∈ω−Setobj)
The map is realizable by ΛC.Λn. n.

I [[Γ|J]] γ , λA:ω-Set(j)obj . λC:α. λd:β. λx, y:|A|. λz:ρ. d x where

α ≡ π(A, (π(A, (π(inc{n |n x}, (∇ω-Set(i)obj)m∈{n |nx}))y∈|A|))x∈|A|)
β ≡ π(A, (C xxn)x∈|A|) where n A x

ρ ≡
{
{n |n A x} if x = y
∅ otherwise

The realizer for this function is ΛA.ΛC.Λd.Λx.Λy.Λz. {d} x.
The corresponding family of types can be easily computed and is omitted for the
sake of simplicity. For the case that x 6= y, recall that there is always one unique
map ∅ −→ X for arbitrary X .

I [[Γ|prf]] γ , λX :Pω.X ∈ π(∇Pω, (∇PERobj)x∈Pω)
This function is correctly typed as any X ∈ Pω is an element of PER1 and so
of PER.
This and the following two definitions of maps are indeed realizable as maps into
a ∇X are always realizable by any number.

I [[Γ|el]] γ , λR:PERobj . inc(R) ∈ π(∇PERobj , (∇ω-Set(0)obj)x∈PERobj)

I [[Γ|tj]] γ , λM :ω-Set(j)obj .M ∈ π(∇ω-Set(j)obj , (∇ω-Set(j + 1)obj)x∈ω−Set(j)).
This is correctly typed as ω-Set(j) ⊆ ω-Set(j + 1).

I [[Γ, x:A,Γ′|x]] (γ, a, γ ′) , a ∈ [[Γ|A]](γ), where (γ, a, γ ′) ∈ [[Γ, x:A,Γ′]]

I [[Γ|Proof(t)]] , inc ◦Ψ′ ◦ [[Γ|t]]

I [[Γ|El(t)]] , inc ◦[[Γ|t]]

I [[Γ|Typej(t)]] , [[Γ|t]]

I [[Γ|Πx:A.B]] γ ,
{
π∗[[Γ]]([[Γ|A]], [[Γ, x:A|B]]) if [[Γ|B]] ∈ |Γ| −→ PER
π[[Γ]]([[Γ|A]], [[Γ, x:A|B]]) if [[Γ|B]] ∈ |Γ| −→ ω-Set

I [[Γ|∑ x:A.B]] γ ,
{
σ∗[[Γ]]([[Γ|A]], [[Γ, x:A|B]]) if [[Γ|B]], [[Γ|A]] ∈ |Γ| −→ PER
σ[[Γ]]([[Γ|A]], [[Γ, x:A|B]]) otherwise

8.2. A realizability model for the ECC∗ 187

I [[Γ|λx:A. t]] γ ,
{
{n | ∀a:|[[Γ|A]] γ|. ∀k a. {n} k B(γ,a) [[Γ, x:A|t]](γ, a)}
λa:|[[Γ|A]] γ|. [[Γ, x:A|t]](γ, a)

where [[Γ, x:A|t]] ∈ B. The first case is chosen if [[Γ, x:A|t]] is a family of PERs,
then the result is an element of π∗[[Γ]]([[Γ|A]], B); the second case is chosen if

[[Γ, x:A|t]] is a family of ω-sets, then the family of types is π[[Γ]]([[Γ|A]], B) and
a realizer for the defined map is obtained by the s-m-n theorem from the realizer
of [[Γ, x:A|t]].

I [[Γ|app[x:A]B(s, t)]] γ ,
{
{{d}n | d ∈ [[Γ|t]] γ, n ∈ [[Γ|t]] γ} (1)
[[Γ|s]]([[Γ|t]]) (2)

∈ [[Γ, x:A|B]](γ, [[Γ|t]] γ)

(1): if [[Γ|s]] is a family of PERs.
(2): if [[Γ|s]] is a family of ω-Set.

I [[Γ|pair∑x:A.B(s, t)]] γ ,
{
{〈n1, n2〉 | n1∈[[Γ|s]] γ, n2∈[[Γ, x:A|t]] (γ, [n1])} (1)
([[Γ|s]] γ, [[Γ, x:A|t]] (γ, [[Γ|s]] γ)) (2)

∈ [[Γ|∑ x:A.B]] γ

(1) if [[Γ|A]] and [[Γ, x:A|t]] are families of PERs.
(2) otherwise.

I [[Γ|π1(t)]] γ ,
{
{n|n ∈ π1([[Γ|t]] γ)} if [[Γ|t]], [[Γ, x:A|t]] are fam.s of PERs
π1([[Γ|t]] γ) otherwise

∈ π1(B(γ)) where [[Γ|t]] ∈ B.

I [[Γ|π2(t)]] γ ,
{
{n|n ∈ π2([[Γ, x:A|t]] (γ, π1([[Γ|t]]) γ)} if (*)
π2([[Γ|t]] γ) otherwise

∈ π2(B(γ))

where [[Γ|t]] ∈ B and (∗) abbreviates “[[Γ|A]] and [[Γ, x:A|t]] are families of PERs”.

I [[Γ|∀x:A. p]] , π∗[[Γ]]([[Γ|A]], [[Γ, x:A|p]]) ∈ Pω
Here we are using closure property Lemma 8.1.6.

I [[Γ|πx:A. t]] , π∗[[Γ]]([[Γ|A]], [[Γ, x:A|t]]) ∈ PERobj

I [[Γ|πt x:A. t]] , π[[Γ]]([[Γ|A]], [[Γ, x:A|t]]) ∈ ω-Set(j)obj

By closure property Lemma 8.1.1 this is correct.

I [[Γ|σ x:A. t]] , σ∗[[Γ]]([[Γ|A]], [[Γ, x:A|t]]) ∈ PERobj

I [[Γ|σt x:A. t]] , σ[[Γ]]([[Γ|A]], [[Γ, x:A|t]]) γ ∈ ω-Set(j)obj

By closure property Lemma 8.1.1 this is correct.

�

Theorem 8.2.1 (Correctness of the interpretation).

188 Chapter 8. A realizability model for Σ-cpo-s

1. If ` Γ ok then [[Γ]] defined.

2. If Γ ` A type then [[Γ|A]] defined.

3. If Γ ` t ∈ A then [[Γ|t]] defined.

4. If Γ ` t ∈ A and [[Γ|t]] = s ∈ Πγ∈[[Γ]]B(γ) and [[Γ|A type]] = M then B = M .

5. If Γ ` A = A′ then [[Γ|A type]] = [[Γ|A′ type]].

6. If Γ ` t = s ∈ A then [[Γ|t]] = [[Γ|s]].
Proof: The proof is by induction on the structure of derivations. The proof of the
most interesting cases can be derived by translating the correctness proof for categorical
semantics in [Str89] into the ω-Set case. Some hints for critical rules have already been
given on the way (especially for proof obligations 3 and 4). A more detailed treatment
is out of the scope of this thesis. �

8.3 A realizability model for the theory of Σ-cpo-s

So far we have a semantics for the basic calculus ECC∗ with inductive and identity
types. It remains to give a sound interpretation for the additional (hypothetical)
objects and axioms formulated in Sections 7.3.3 and 7.3.4.

In order to prove that an axiom holds in the model, we adopt the following general
policy: First show that the “classical” interpretation of the proposition is valid and
then prove that it is realizable. One is in a particularly nice situation if it is known
that whenever a proposition is clasically true then it has a “canonical” realizer.

8.3.1 Non-logical axioms

Equality as used in all the axioms means Leibniz equality. If one knows that x equals y
on the model level (or in other words x = y is inhabited) then a realizer for x = y can
always be constructed by Λn.Λm.m since x = y is a shorthand for ∀P :PropX . P (x)⇒
P (y). This is an example of a canonical realizer. We will henceforth refer to this
canonical realizer using the notation eQ.

Note that the connectives ∨, ∧ and ∃ are given by a second order encoding. For
defining realizers, however, for the sake of simplicity we sometimes use the equivalent
“traditional” realizability semantics for the connectives, i.e. 〈n,m〉 A ∧ B if n A
and m B or 〈n,m〉 ∃x:X.P x if n X a and m P (a) for some a ∈ |X |.

Proof-irrelevance

Lemma 8.3.1 Proof-irrelevance holds in the given model of ECC∗.

Proof: As the interpretation of Prop is Pω, i.e. any proposition corresponds to a
PER R with at most one element, two elements of R must trivially be equal. This
axiom is realizable as equality occurs in the conclusion which has a canonical realizer.
�

8.3. A realizability model for the theory of Σ-cpo-s 189

Surjective pairing

Lemma 8.3.2 Surjective pairing holds in the given model of ECC∗.

Proof: Surjective pairing holds simply by definition of
∑

-types as surjective pairing
holds in set theory. Again, the axiom is realizable as the conclusion is an equality
statement which possesses a canonical realizer. �

Extensionality

Lemma 8.3.3 Extensionality holds in the given model of ECC∗.

Proof: Extensionality is inhabited simply by definition of Π-types in the PER-
model. It is realizable as the conclusion is an equality proposition with canonical
realizer. �

Axiom of Unique Choice

A bit more difficult is the verification of the Axiom of Unique Choice with respect to
realizability.

Lemma 8.3.4 The Axiom of Unique Choice

∀A:Type. ∀B:A→ Type. ∀P :Πx:A.PropB(x).
(∀x:A. ∃!y:B(x). P x y)⇒∑

f :Πx:A.B(x). ∀a:A. P a (f a)

holds in the given model of ECC∗.

Proof: Assume appropriate A,B and P and that the premiss ∀x:A. ∃!y:B(x). P x y
holds and is realized by p. Therefore, we can construct a function f such that f(a)
yields the unique b such that P a b. The problem, however, is to find a realizer for this
function. Its construction is basically due to T. Streicher. Let a x for some x ∈ [[A]].
Define an element Dx of Pω as follows:

Dx , {〈n,m〉 | n A x ∧ m B(x) y for some y ∈ B(x)}.

Then define the realizer

ra,p , {{π1(p a)} 0} (Λi.Λj. 〈i, j〉).

The idea is that ra,p should realize Dx. First observe that the code π1(p a) realizes the
proposition ∃y:B(x). P x y. Now by the second order coding of the existential quantifier
this is equal to ∀C:Prop. (∀y:B(x). ((P x y) ⇒ C) ⇒ C). As Prop is interpreted as
∇Pω any code will serve as a realizer of the proposition Dx, so let us choose 0. Finally
Λi.Λj. 〈i, j〉 is a realizer for the proposition ∀y:B(x). (P x y) ⇒ Dx and so ra,p is a
realizer for Dx. The realizer for the Axiom of Unique Choice is then:

rac , ΛA.ΛB.ΛP.Λp. 〈Λa. π1(ra,p),Λa. π2(ra,p)〉.

190 Chapter 8. A realizability model for Σ-cpo-s

It remains to check whether the realizer for the function f is extensional, i.e. assume
that a, a′ x and let p and p′ be realizers for the premiss, then π1(ra,p) and π1(ra′,p′)
must realize the same object. Luckily, this is the case since by uniqueness of the
existential quantifier in the premiss, the element y realized by π1(ra,p) is unique with
the property P x y. Since also π1(ra′,p′) realizes such an element (witnessed by π2(ra′,p′))
both elements must be equal and thus the realizer is extensional. Without uniqueness
this would not be the case and this is the reason why the Axiom of Choice does not
hold in our model. �
Remark: In our model also the N-Axiom of Choice

∀B : N→ Type. P : Πx:N.PropB(x).
∀x : N. ∃y : B(x). P x y)⇒∑

f : Πx:N. B(x). ∀a:N. P a (f a).

holds, since we can reuse the argumentation above. The proof is analogous, the only
difference comes up when showing that the realizer of f is extensional. But this is
trivial for the N-Axiom of Choice – even without uniqueness – as functions from N
into an arbitrary X are extensional since whenever a, a′ ∆N n then a = a′ = n.

8.3.2 The SDT-Axioms

Properties of Σ

First, we have to interpret Σ and its operations.

Definition 8.3.1 We define:

I [[Γ|Σ]] γ , Φ(S) ∈ PERobj , where S , ({⊥,>},S) is a modest set satisfying

n S ⊥ iff ∀m. {n}m ↑
n S > iff ∃m. {n}m ↓.

I [[Γ|⊥]] γ , ⊥ ∈ S,

I [[Γ|>]] γ , > ∈ S,

I [[Γ| ∧]] γ , λx, y:S. if (x = > and y = >) then > else ⊥ ∈ S −→ S −→ S
The map is realized by Λn.Λm.Λz. µ〈k, k ′, x, x′〉. T (n, k, x)∧ T (m, k′, x′).

I [[Γ| ∨]] γ , λx, y:S. if (x = > or y = >) then > else ⊥ ∈ S −→ S −→ S
The map is realized by Λn. Λm.Λz. µ〈k, k ′, x, x′〉. T (n, k, x)∨ T (m, k′, x′).

I [[Γ|∃]] γ , λf :SN. if (∃n:N. f(s) = >) then > else ⊥ ∈ (∆N −→ S) −→ S
A realizer of this map is then Λn.Λz. µ〈m, k, x, y〉. T(n,m,x) ∧ T (U x, k, y).

By the logical connectives ∧,∨, ∃,⊥, and > the operations on Σ are meant here. �

There is an alternative description of Σ, which sometimes is more convenient to work
with.

8.3. A realizability model for the theory of Σ-cpo-s 191

Lemma 8.3.5 S is isomorphic to a modest set S ′ with |S ′| = {⊥,>} and realizability
relation

n S′ ⊥ iff n∈K
n S′ > iff n∈K

where K denotes the halting set.

Proof: We must find an isomorphism in PER (!) between S and S ′. Now α :
|S| −→ |S ′| is the identity and the same for α−1 : |S ′| −→ |S|. It is readily
checked that α is tracked by Λn.Λz. µ〈x, y〉.T (n, x, y). Moreover, α−1 is tracked by
Λn.Λx. µk. T (n, n, k). �
We will tacitly switch between both interpretations when defining realizers for Σ-
objects.

Lemma 8.3.6 The axiom ∀x, y:Σ. def(x)⇔ def(y)⇔ x = y holds in the model.

Proof: Remember that def(x) = (x = >). To show the axiom we only have to prove
“⇒”, since the other direction follows from congruence of Leibniz equality already on
the logical level. If def(x)⇔ def(y) then [[def(x)]] and [[def(y)]] are equi-inhabited. But
that means x = y = > or x = y = ⊥. This direction of the axiom is realizable since
the conclusion is an equality and therefore has a canonical realizer. �
Moreover, the axiomatized properties hold for the connectives defined on Σ.

Lemma 8.3.7 The following axioms hold in the model:

1. ¬(⊥ = >)

2. ∀x, y:Σ. def(x ∧ y)⇔ def(x) ∧ def(y)

3. ∀x, y:Σ. def(x ∨ y)⇔ def(x) ∨ def(y)

4. ∀p:N −→ Σ. def(∃n:N. p n)⇔ ∃n:N. def(p n)

Proof: 1. As ⊥ 6= > in the model, we get that [[⊥ = >]] is empty. A negation is always
realized by any code (negated propositions never have a computational meaning).
2. For the second proposition we have x ∧ y = > iff x = > and y = > by definition of
the map ∧ on Σ. Note that both directions of the implication are realizable as def x
always has a canonical realizer.
3. analogously.
4. Again by definition of ∃ we have that ∃n:N.p n = > iff ∃n:N. (p n = >). Regarding
realizability the last axiom is more difficult in the “⇒” direction. The corresponding
realizer is Λp.Λz. 〈π1(µ〈n, k〉. T ({p}n, {p}n, k)), eQ〉. The “⇐” direction is easy as
equality always has canonical realizers. �

192 Chapter 8. A realizability model for Σ-cpo-s

Phoa’s Axioms

The central point of verifying Phoa’s Axioms is the interpretation of the exponential

type ΣΣ. For denoting a function f ∈ [[Σ −→ Σ]] = S −→ S we write

(
x
y

)
which

means that ⊥ 7→ x and > 7→ y. Now we first prove

Lemma 8.3.8 [[Σ −→ Σ]] =

{(
⊥
>

)(
>
>

)(
⊥
⊥

)}
.

Proof: It is clear that there are only four possible functions and that the given
ones are realizable. It remains to prove that the negation, i.e. the one which maps
⊥ to > and vice versa is not realizable. Now assume it is realizable, then we have a
total recursive function mapping elements of K to elements of K which implies that
K is recursively enumerable, i.e. recursive which contradicts the undecidability of the
halting problem. �

Lemma 8.3.9 Phoa’s Axioms hold in the model.

Proof: The axiom ∀f :Σ −→ Σ. def(f ⊥)⇒ def(f >) holds due to Lemma 8.3.8 and
the interpretation of def. It is canonically realizable as the conclusion is an equation.
∀p, q:Σ −→ Σ. ((p⊥) = (q⊥) ∧ (p>) = (q>)) ⇒ p = q holds by extensionality and
the interpretation of Σ. It is realizable as the identity has a canonical realizer.
Finally ∀p, q:Σ. ((def p) ⇒ (def q)) ⇒ ∃f :Σ −→ Σ. f⊥ = p ∧ f> = q holds again by

Lem. 8.3.8. The function f has to be defined as

(
p
q

)
. So the axiom has the realizer

Λp.Λq.Λr. 〈Λm.Λz. µ〈x, x′, x′′〉. (T (m,m, x) ∧ T (q, q, x′)) ∨ T (p, p, x′′), 〈eQ, eQ〉〉

which does it’s job as p⇒ q. �

Continuity Axiom

Lemma 8.3.10 The Continuity Axiom

∀P :ΣN → Σ. P (λx:N.>)⇒ ∃n:N. def(P (step n))

holds in the given model of ECC∗.

Proof: The conclusion ∃n:N.defP (step n) is by Lemma 8.3.7 equivalent to the propo-
sition def(∃n:N.P (step n)). Moreover, def has canonical realizers so realizability is no
issue here and we simply concentrate on proving validity in the model.
Now assume P ∈ ΣΣN and P (λx:N.>) holds. The maps in P ⊆ ΣN can be regarded as
partial maps in NN and moreover the set P is extensionally r.e. So the Rice-Shapiro
Theorem (cf. [Cut80]) is applicable to P . By assumption the function λx:N.> is in
P and yields infinitely many often a defined result (>), so by Rice-Shapiro there is a
function f in P that yields > only finitely many times. Assume that n is the high-
est number such that f(n) = >. Therefore f v step n and again by Rice-Shapiro

8.4. Comparing Σ-cpo-s with other approaches 193

step n ∈ P , which completes the proof. �
We could also apply the Myhill-Sheperdson-Rosolini-Theorem (cf. Lem. 9.4.9(2)) for
Eff since [[ΣN]] is a poset in Eff which has suprema of N-indexed chains (suprema are
unions that exist by definition of Σ). However, this theorem is another proof of the
Rice-Shapiro-Theorem in a more general way. Inspection of the proof of Lem. 9.4.9(2)
elucidates the necessity of the fact that Σ-propositions are ¬¬-closed. In fact we im-
plicitly have Markov’s Principle, too, so it is time to see that Markov’s Principle is
valid:

Markov’s Principle

Lemma 8.3.11 Markov’s Principle ∀p:Σ. (¬¬(def p)) ⇒ (def p) holds in the given
model.

Proof: The axiom holds since [[def p]] is inhabited whenever [[¬¬(def p)]] is, because
both are inhabited only if p = >. The realizer for the axiom is Λp.Λx. eQ. �

Dominance Axiom

Last, but not least, we have to check the Dominance Axiom.

Lemma 8.3.12 The Dominance Axiom (in its type theoretical correct form)

∀p:Σ. ∀q:(def p) −→ Σ.
∑
r:Σ. (def r)⇔ (∃w:(def p). def (q w))

holds in the given model of ECC∗.

Proof: Assume p ∈ S, If p = ⊥ then [[def p]] is empty, choosing r = ⊥ will fulfill
the conclusion then. If p = > then we have a q ∈ [[> = >]] −→ S, so choose an
m ∈ [[> = >]] and let r , q(m) such that again the conclusion will hold. The difficult
part is to find a realizer for the proposition. Take

Λp.Λq. 〈Λz. µ〈x, y〉. T (p, p, x) ∧ T ({q} eQ, {q} eQ, y) , m 〉
where m is a realizer for the proposition (def r)⇔ (∃w:(def p). def(q w)) which can be
canonically constructed as there are only propositions of kind def involved which all
have canonical realizers. �

8.4 Comparing Σ-cpo-s with other approaches

Now that we have a realizability model of our theory we can try to compare the Σ-
cpo-s with other SDT approaches w.r.t. to this model, namely the complete Σ-spaces
and the ExPERs, or also the Σ-replete objects. We can generally state:

Theorem 8.4.1 With respect to the category PER (with PCA N) the categories of
Σ-replete objects, R, the category of complete ExPERs, CEx, the category of Σ-cpo-s,
Cpo, the category of complete Σ-spaces, CSig, and the category of well-complete PERs,
W , as full subcategories of PER, satisfy the following relationship:

R & Cpo ' CEx & CSig &W .

194 Chapter 8. A realizability model for Σ-cpo-s

Proof: The first inclusion holds, since any Σ-replete object is orthogonal to the
inlcusion ω −→ ω which is Σ-equable. The equivalence of Cpo and CEx follows from
the Representation Theorem of Σ-cpo-s, Propositions 9.3.1 and 9.3.2 proved in the next
chapter, and the way how suprema are computed in ExPERs and Σ-cpo-s. Hyland
has found an ExPER which is not replete (cf. [Pho90]), so the first inclusion is proper.
Any Σ-cpo is of course a complete Σ-space by the Representation Theorem of Σ-cpo-s.
The inverse is not true because suprema do not have to be necessarily computed as
unions, so this inclusion is proper again. The complete Σ-spaces and well-completes
are defined by orthogonality to ω � ω, but be careful, since ω for Σ-spaces is what
we called ω′′ (remember the discussion after Def. 2.6.5). Orthogonality to ω ′′ � ω,
however, is stronger than orthogonality to ω� ω (note that ω ′′� ω and ¬¬ω ∼= ω′′),
so the last inclusion is also valid. Now Simpson proved that ω ′′ is a well-complete
PER, but it is certainly not a complete Σ-space since it is linked but not orthogonal
to ω′′� ω (see Thm. 9.4.3), and therefore the last inclusion is proper. �
Note that the strength of the well-completes lies in other realizability models with
more sequential PCA-s, where the notion of Σ-cpo does not even make sense.

11 9 “Brevis esse laboro, Obscurus fio.
I strive to be brief, and I become obscure”.

Horace, Ars Poetica, 25

A short guide through Synthetic
Domain Theory

In this chapter we want to give a survey over the contributions of other researchers to
the field of SDT that influenced this thesis. Their approaches will be discussed more
or less extensively according to their relevance for our setting. Some historical remarks
are added, too. The sections about replete and well-complete objects and Σ-cpos are
not very detailed as we have already presented axiomatic versions in Chapter 6 and 2,
respectivel.

We will try to give a chronological picture of the history. We begin with the big
bang of Scott’s idea (Sect. 9.1) and Rosolini’s σ-sets (9.2); other suggestions inside the
effective topos like ExPERs (9.3) or Phoa’s complete Σ-spaces (Sect. 9.4) followed. The
Σ-replete objects (Sect. 9.5) are a categorical axiomatization in a topos-like category.
Longley’s well-complete objects (Sect. 9.7) exhibit a model of domains for arbitrary
realizability toposes.

Also the very related subject of Axiomatic Domain Theory is addressed in a proper
Section 9.8. At the end, we give a quick, tabular survey over all these approaches
(Sect. 9.9).

9.1 Scott and the beginnings

There are few remarks about the date of birth of SDT in the literature. Indeed J.M.E.
Hyland’s article “First steps in SDT” [Hyl91] – which has also been the source of
information for [Pho90] – gives some vague indications. Pino Rosolini pointed out to
me the interconnections to the development of topos theory and realizability semantics

195

196 Chapter 9. A short guide through Synthetic Domain Theory

and contributed to the following historical summary. The introduction of [Ros86b] is
also a good source for historical comments.

Already in the seventies topos-theoretic models of intuitionistic theories have been
studied. At Oxford Grayson [Gra79] presented theoretically the realizability topos
which was introduced in ‘82 as the effective topos [Hyl82]. All this work might have
been influenced by Eršhov who visited Oxford in ‘74. At the end of the seventies
Scott promoted the idea of models in which all functions are continuous, wherever he
went. In a talk of Dana Scott at a meeting of the Peripatetic Seminar on Sheaves and
Logic in Sussex 1980 (Phoa differs by dating it back to 1979) the idea of “domains as
sets” or more exactly “domains are certain kinds of constructive sets” was mentioned
for the first time. “He had in mind the example of Synthetic Differential Geometry
where generalized manifolds are treated as (special kinds of) sets with the result that the
development of the basic theory becomes highly intuitive: and he asked for a treatment of
domain theory in a similar spirit.” [Hyl91]. Scott mentioned at the CLICS’94 meeting
in Paris that he originally intended this as a good way to teach domain theory to
beginners. Other scientists like Reyes, Kock, Fourman, Hyland or Lawvere, received
this ask for set-like domains and some passed it also to their Ph.D. students. In
80/81 Sčédrov built von Neumann universes from realizability, and Mulry found the
recursive topos [Mul81] and already the r.e. subobject classifier. At the same time
Scott presented full subcategory of fixpoint objects, i.e. of objects X such that for
any Y any map XY −→ XY has a fixpoint. This fixpoint categories are cartesian
closed but turned out to be too large. He also showed that one can embed cpo-s (and
any other category of domains) in presheaf toposes via the Yoneda embedding such
that they became sets. But as Phoa pointed out [Pho90, page 19] this approach is
“back-to-front”: one should define the category of domains referring to an ambient
topos and not vice versa.

Influenced by the effective topos and Sčédrov, McCarty showed ‘84 that the cat-
egory of PERs and also the effective Scott-domains can be fully embedded in the
effective topos [McC84]. Around the same time Moggi and Hyland proved that PERs
are internally complete in the effective topos [Hyl88, LM91] which is important to
interpret polymorphism. But up to that time all the work was heavily building on cat-
egory theory. In ‘83 Scott presented in Pisa the internal r.e. subobject classifier Σ and
Heller dominical categories. Scott’s Ph.D. student Pino Rosolini developed these ideas
further. With his σ-sets Synthetic Domain Theory became more concrete and by using
the effective topos also more “logical”. Rice-Shapiro was recognized as the theorem
which guarantees continuity. So we start with a closer look to Rosolini’s thesis.

9.2 Rosolini’s σ-sets

In the thesis [Ros86b] G. Rosolini uses the abstract notion of a dominance which give
rise to partial map classifiers. He works in an arbitrary topos E with a natural numbers
object N, requiring that the equality on N is decidable, and that the N-axiom of choice,
Church’s thesis, and Markov’s principle hold. Note that the effective topos fulfills all
these requirements. Rosolini defined Σ to be some very special dominance, namely the

9.2. Rosolini’s σ-sets 197

r.e. subset classifier.

9.2.1 The dominance Σ of r.e. propositions

As Rosolini mentions in his thesis [Ros86b, page 121], Eršhov [Erš73] was the first to
define a category of effective objects. “But it was too complicated for category theory
to be of substantial help”.

Mulry then was the first who defined a subobject of Ω in the recursive topos which
classified the r.e. subobjects of N, but without giving an internal definition. The first
who gave such a definition was Scott during a lecture in Pisa. The classifying object
Σ in [Ros86b] is defined as follows:

Definition 9.2.1

Σ = {p ∈ Ω | ∃f : NN. p⇔ (∃n:N. f(n) = 0)}

i.e. those propositions which are only positively semi-decidable. �

It is proved in loc.cit. that Σ is indeed a dominance (i.e. that it gives rise to a
partial-map-category).

Theorem 9.2.1 Σ is a dominance.

Proof: Rosolini proved first that a subobject Σ of Ω is a dominance iff > ∈ Σ and
the Dominance Axiom (Do) holds. Obviously, > ∈ Σ by definition of Σ. To prove
(Do) assume p ∈ Σ and p ⇒ (q ∈ Σ). One has to show that p ∧ q ∈ Σ. By definition
of Σ we get an f ∈ NN such that that p⇒ q rewrites to

(∃n:N. f(n) = 0)⇒ ∃g:NN. (q iff ∃m:N. g(m) = 0).

Since f(n) = 0 is decidable and thus g does not depend on its proof it follows

∀n:N. ∃g:NN. (f(n) = 0)⇒ (q iff ∃m:N. g(m) = 0).

By the N-Axiom of Choice (ACN) one can derive

∃F :(NN)N.∀n:N. (f(n) = 0)⇒ (q iff ∃m:N. F (n)(m) = 0).

Therefore, p ∧ q iff ∃n:N. ∃m:N. (f(n) = 0 ∧ F (n)(m) = 0). Defining h(〈n,m〉) ,
〈f(n), F (n)(m)〉 it follows immediately that p ∧ q ∈ Σ since p ∧ q iff ∃l:N. h(l) = 0. �
In loc.cit. it is also proved that ΣN are exactly the r.e. subobjects of N. We now give
a short recap of the results in [Ros86b, chapter 8]. Note that the key idea is to define
countable objects which are already completely determined by their Σ-subsets, i.e.
those subsets that are classified by Σ.

198 Chapter 9. A short guide through Synthetic Domain Theory

9.2.2 σ-sets

Following the proposals of Scott, the idea behind Rosolini’s σ-sets was to define sober
spaces (for more about “sober” spaces consult [AJ95, Joh82]) for a revised form of
topology, which is only closed under N-indexed joins.

First one defines the notion of σ-algebra in E :

Definition 9.2.2 A partially ordered object of E is called σ-algebra iff it is bounded,
has binary meets and N-indexed joins and meets distribute over N-joins. Let S be the
category of σ-algebras with morphisms that preserve binary meets and N-joins. �

If E is a topos with an object Σ then ΣX represents the “natural” open set topol-
ogy. The functor Σ : Eop −→ S corresponds to Ω in ordinary Stone-duality and
HomS(,Σ) : Sop −→ E corresponds to Pt. Rosolini proved the following:

Theorem 9.2.2 Σ() and HomS(,Σ) form an adjunction via ηX :X → HomS(ΣX ,Σ)
defined as ηX(x) , {f ∈ ΣX | f(x)} as unit.
Let H be a σ-algebra. The counit sH :H −→ ΣHomS(H,Σ) is defined as

sH(h) , {p ∈ HomS(H,Σ) | p(h)}.

Note, that any ΣX is a σ-algebra since any ΣX is a lattice, in particular partially
ordered, has binary meets and N-indexed joins because already Σ has them.

Remark: In [Ros86b] η is called σ which might have given the name for σ-sets. We
prefer the “standard” name for units η. Note the connection to the η used in the Σ-cpo
approach.

Definition 9.2.3 The σ-sets are those objects in E for which η is an iso. �

In other words, the σ-sets are the sober spaces (σ-algebras can be regarded as topolog-
ical spaces with N-indexed joins only) with respect to the above defined adjunction.
Already for this definition of domains one gets Scott-continuity and monotonicity for
free. The η is a natural iso and for any f the map η(f) preserves suprema of chains
since suprema in HomS(H,Σ) are pointwise and can be computed by unions (as for Σ-
cpos). But σ-sets do not have enough closure properties. It is for example not known
if they form a cartesian closed category and there is also no reflection map w.r.t. E .
Therefore, one has to go one step further.

Definition 9.2.4 Call b∈X basic iff {x∈X | b ≤ x} is a Σ-subset of X . A σ-set X
with a countable set of basic elements, that has bounded, finite joins and decidable
compatibility relation is called an ω-domain. �

Note that basic elements are compact in the common sense. An ω-domains is then a
σ-set and a Scott domain.

Theorem 9.2.3 The ω-domains are closed under finite products, N-indexed coprod-
ucts, partial function spaces and limits of projections.

9.3. Extensional PERs 199

These are the objects which have enough good closure properties to be considered
as “domains”. Phoa objected, however, that the definition of basic systems is too
classical an approach. One should rather use the effective topos for expressing effec-
tiveness. Moreover, we have no reflection for σ-sets. It was, however, a great step
towards SDT, using the recursively enumerable sets as the right topology for domains.
Note that Phoa’s criticism is also valid for [Erš77], where the model of (higher-order)
partial continuous functions on natural numbers is defined and where it is shown that
maps between certain topological objects (some particular complete “f0-spaces”) are
automatically continuous. This approach, however, also uses enumerable bases and is
not “synthetic” at all.

After Rosolini’s work for a while nothing happened, then Phoa defined the complete
Σ-spaces [Pho90], which form a reflective subcategory of PER. In the same year another
more technical definition of a class of domains in PER, the ExPERs, was given by
[FMRS92]. Both approaches live inside Eff and are described in the following sections

We will be more verbose here to present the spirit of these approaches. The setting
presented in Chapters 2, 3, 4 combines somewhat the positive aspects of both.

9.3 Extensional PERs

The approach of [FMRS92] works inside the category of partial equivalence relations
on natural numbers and defines a full subcategory of PER that has “all the expected
properties of a good category of cpo-s”. This means e.g. that it is cartesian closed, endo-
morphism have a least fixpoint and there is a lifting functor establishing a connection
between partial maps and strict maps. Moreover, it allows solutions of recursive do-
main equations.

Phoa remarked that “the authors adapted a very concrete view, preferring explicit
calculations with PERs . . . to more abstract, high-level methods” [Pho90, page 195]. We
agree on that point since proofs get messy when they are given by means of certain
Turing machines. The fact that the ExPERs are defined such that they are not even
closed under isomorphism illustrates our view. The axiomatic approach we followed
avoids these difficulties. Having proved the basic axioms once and for all for the
standard PER-model, all the derived theorems must be valid due to the correctness of
the logical reasoning we employed.

Let us review, however, the original “concrete” definitions. PERs have already
been introduced in Sect. 8.1. In particular we know that PERs are closed under
exponentials. For Kleene-application we simply write {m} x.

Definition 9.3.1 Let A be a PER. Then m.xAn.y means that either both {m} x and
{n} y are undefined or {m} x A {n} y. �

Definition 9.3.2 For any PER A the PER (ΣA) is defined as the partial equivalence
relation : m (ΣA)n ⇐⇒ m.0An.0. �

So the PER ΣA classifies the partial maps into A as ΣA consists of the equivalence
classes of A plus an additional one that represents the undefined elements.

200 Chapter 9. A short guide through Synthetic Domain Theory

Definition 9.3.3 For any PER A we define

Base(A) , {s ∈ N | ∀a, a′. a A a′ ⇒ a.s = a′.s}

and a PER A is called an extensional PER (ExPER) iff

a A a′ ⇐⇒ ∀s ∈ Base(A). a.s = a′.s. �

Example: ΣN is an ExPER with Base(ΣN) = {0}
(Remember that n N m iff n = m).

Remark: Notice that this definition is not closed under isomorphisms.
(e.g. N ∼= {p∈(ΣN)N | p(n) ↓ ⇒ p(n) = 0 ∧ ∃!n:N. p(n) ↓ } where the latter is an
ExPER but N is not).

Definition 9.3.4 Let Σ be an abbreviation for the PER Σ1. So Σ is the following
PER:

n Σ m iff ({n} 0 ↓ ⇐⇒ {m} 0 ↓).
There are two equivalence classes: n > iff {n} 0 ↓ and n ⊥ iff {n} 0 ↑. �

This Σ is the PER S in the model of the last chapter (cf. Def. 8.3.1). This is the link
to the Σ-cpo-s. The following theorem establishes a connection between ExPERs and
Σ-posets. Sometimes similar results are stated for the connection between ExPERs
and Σ-spaces but hardly ever proved.

Theorem 9.3.1 If A is a PER such that A ⊆¬¬ ΣX for a PER X , i.e. domA ⊆
domΣX then there exists an ExPER B such that A ∼= B as PERs.

Proof: Let us define the corresponding ExPER B:

n ∈ dom(B) ,

∃f :A. ∀x∈X. k x⇒ ({n} k = 0 ⇐⇒ f(x) = >) ∧ ({n} k ↑ ⇐⇒ f(x) = ⊥).

The realizability relation is then defined by

n B m , ∀x∈X. k x⇒ ({n} k ↓ ⇐⇒ {m} k ↓).

It is easy to see that the f in the above definition is always uniquely determined by the
realizer n and so we have an iso. It remains to prove that B is in fact an ExPER. But
due to the definition of the carrier of B we know that Base(B) = {s | s x, x ∈ X}
and that nBm iff

∀x∈X. ∀k. k x⇒ ({n} k ↓ ⇐⇒ {m} k ↓) iff

∀x∈X. ∀k x⇒ n.k = m.k iff

∀k ∈ Base(B). n.k = m.k

which proves that B is indeed an ExPER. �

9.3. Extensional PERs 201

Theorem 9.3.2 If B is an ExPER then there exists a PER X such that B ∼= A for
some A ⊆¬¬ ΣX .

Proof: Let B be an ExPER. Define X , Base(B)×N and e : B −→ ΣX satisfying
e(b)(s, n) , >⇐⇒b.s ↓ ∧ b.s = n. It is an easy exercise to verify that e with codomain
restricted to its image is an isomorphism in PER where the realizability relation on
im(e) is taken over from ΣX . Therefore B ∼= im(e) ⊆¬¬ ΣX . �

Now let us consider binary products and the exponential object of ExPERs.

Theorem 9.3.3 ExPERs as a full subcategory of PER is cartesian closed.

Proof: Products and exponential in PER do not yield ExPERs any more, so one
must refine the definitions. With the help of the above theorem we can easily describe
the ideas without defining bases and so on as in [FMRS92]. In fact, we are doing the
corresponding proofs for Σ-posets in the model, whilst in Chapter 2 we have presented
them logically in the internal language.

Suppose we have two ExPERs A ⊆¬¬ ΣX and B ⊆¬¬ ΣY . The isomorphism
ΣX × ΣY ∼= ΣX+Y suggests the definition of Base(A × B). Moreover, define n ∈
dom(A× B) iff n ∈ dom(A)∧ n ∈ dom(B).

For the function space let A and B be as above just dropping the requirement that
A is an ExPER. Now the isomorphism ΣX −→ ΣY ∼= ΣΣX×Y suggests the definition
of Base(A −→ B). It remains to define n ∈ dom(A −→ B) iff the codomain of n is
indeed B. �

Definition 9.3.5 On any ExPER A one can define a canonical partial ordering

m ≤ n iff ∀s ∈ Base(A). m.s ↓ ⇒ n.s = m.s

which is the already well-known observational ordering v in the ExPER model. �

The following results for ExPERs are mainly given without proofs (they can be found
in [FMRS92]) since for the proofs in Chapter 2 one proceeds analogously even though
on a more abstract, model free level.

Theorem 9.3.4 Any map between ExPERs preserves the order ≤ and suprema of
ascending chains.

Proof: The map on ΣΣ that maps > to ⊥ and viceversa cannot be realized otherwise
the halting problem would be decidable. One can show that any non-order-preserving
map would give rise to the map above. �
Definition 9.3.6 Let S be a set of natural numbers. Let AC(ΣN S) denote the as-
cending chains in (ΣNS).

c ∈ dom(AC(ΣNS)) iff ∀n. ({c}n) ∈ dom(S −→ ΣN) ∧ {c}n ≤ {c} (succ(n))

where ≤ denotes the ordering given above.
The supremum of c, called sup(c) ∈ (ΣNS), is then defined as follows:
{sup(c)} s ↓ iff ∃n. {{c}n} s ↓ and {sup(c)} s = {{c}n} s for that n. �

202 Chapter 9. A short guide through Synthetic Domain Theory

Note that the result of {sup(c)} s is not determined at first sight. [FMRS92] think of
sup(c) as a Turing machine that outputs the first {{c}n} s that halts. Since the result
is unimportant anyway, the ΣN in the definition of ExPERs is better replaced by Σ
in the spirit of Theorem 9.3.2, which leads automatically to Σ-posets.

Definition 9.3.7 For any ExPER B let AS(B) be the restriction of AC(ΣNBase(B))
such that any c ∈ dom(AC(ΣNBase(B))) lies in AS(B) iff ∀n.{c}n ∈ dom(B). An
ExPER B is called complete if for every c ∈ dom(AS(B)) the supremum sup(c) lies
again in B. �

The complete ExPERs form a good candidate for predomains.

Theorem 9.3.5 Any map between ExPERs is (Scott-)continuous.

Proof: The proof is by contradiction. If it would not be continuous then one could
construct a Turing machine that could decide whether a recursive function has a zero.
�
Such Turing machine proofs contain a lot of coding and are difficult to understand.

For domains then take the complete ExPERs that contain the totally undefined
function, which is obviousy the least element. The corresponding subcategory is called
ExP0. It is also shown in [FMRS92] that all realizable covariant functors have a
minimal fixed point. One can also prove reflectivity:

Theorem 9.3.6 The full subcategories of ExPERs and complete ExPERs are reflec-
tive subcategories of PER.

Proof: Let A be an ExPER. For the moment let us stick to the original notation and
call the reflection map !. Define eA : A −→ (ΣN)ΣNA such that eA a , λh:(ΣN)A. h(a)
and mA!n , m (ΣN)ΣNA n. So Base(A!) = (ΣN)A. Let

Cl(A) , {X ∈ ExPER |Base(X) = Base(A!) ∧ ∀a ∈ dom(A). eA a ∈ dom(X)}

and let n ∈ dom(A!) iff n ∈ dom(
⋂
Cl(A)). The map ! can be extended to a functor.

Then eA is obviously an iso in the category of ExPERs, but it shall be a reflextion
map. To show this assume an f : A −→ B where B is an ExPER. We get that
e−1
B ◦ f ! ◦ eA = e−1

B ◦ eB ◦ f = f , so we get a map h = e−1
B ◦ f ! such that h ◦ eA = f .

A
eA

> A!

B

f

∨ eB
> B!
∨
f !

B
∨
eB
−1

9.4. Complete Σ-spaces 203

Uniqueness: Consider there were two maps g and h such that f = g ◦ e and f = h ◦ e.
Then there is a map from A to the equalizer E of the two maps. This means that E
is a subobject of A! that contains all e a. Since ExPERs are closed under equalizers E
is also an ExPER, hence by definition of A! it must be isomorphic to A! and therefore
g must equal h. Note that this is once more the FAFT-trick (see 3.2.1) played on the
concrete category of ExPER. It can be shown analogously inside the logic of Σ-cpo-s
that Pos and Cpo are reflective in Set.1

For complete ExPERs the proof is analogous. We take again e as reflection map
and define Base(A!) as before. In the definition of Cl we only consider complete
ExPERs X . Then it only remains to prove that complete ExPERs are also closed
under equalizers and that is true. �
In ‘91 Rosolini gave an ExPER model for Quest [Ros91] and equipped SDT with a
higher-order-language for the first time.

9.4 Complete Σ-spaces

In the thesis [Pho90] Phoa describes at some length a category of predomains living
inside the effective topos Eff, the complete Σ-spaces. The complete focal Σ-spaces with
a least element will have all the desired properties of domains.

The main motivation for choosing a realizability topos was the fact that effectivity
is already built in. In a sense it substitutes the classical concept of algebraicity. The
effective topos has been found by [Hyl82], it’s the realizability topos based on the
Kleene-algebra N of natural numbers and partial recursive functions. “Computability
in the underlying model gives rise to intrinsic structure on (some of) the objects. We
don’t manipulate it – in fact we can’t – we just observe it ” [Pho90, page 13].

All the proofs work directly on PERs or make use of more abstract principles of
category (topos) theory. In fact, Phoa claims in his introduction that proofs inside
Eff are often sketched by some constructive argument because “a formal proof would
be extremely long and unreadable, and would defeat the purpose of working in a topos-
theoretic setting”. We do not agree completely on that point. Of course the knowledge
of topos theory make ones lifes easier. But for formal argumentations, such as needed
for program verification, or also for someone who is not familiar with topos theory this
is no satisfactory answer. We have demonstrated in Chapter 2 how a formalization is
indeed possible and in a way it is much clearer than some handwaving argumentations.

At the end of his thesis Phoa also discusses other realizability models but as he
admits himself “the results there are a little mysterious” (cf. Section 9.4.6).

For historical reasons it should be mentioned that in August ‘89 Dana Scott wrote
a long letter to Phoa in order to influence some of his work in his own direction
[Sco89]. (He suggested e.g. the name “Σ-space”.) In the sequel we cite the important
definitions and main results that are relevant for our axiomatization in Chapter 2.

1This has also been checked in Lego.

204 Chapter 9. A short guide through Synthetic Domain Theory

9.4.1 The r.e. subobject classifier

Again everything is built on Σ that has already been found by Rosolini, Mulry and
Scott. The PER Σ is thus defined as for the σ-sets (Def. 9.2.1), i.e.

Σ = {p ∈ Ω | ∃f : 2N. p⇔ (∃n:N. f(n) = 0)}

which turns out to be the same as in the ExPER approach. Phoa differs from Rosolini
by taking a function of type 2N instead of type NN, but this is immaterial as one is
only interested in the zeros of the function.

The next two lemmas are not taken from [Pho90]. We add them to give a better
feeling of “the r.e. classifier” as Phoa calls Σ.

Lemma 9.4.1 Σ is isomorphic to the following modest set S with |S| , {⊥,>} and
the realizability relation

n S > iff ∃m.{n}m ↓

n S ⊥ iff ∀m.{n}m ↑

Proof: The interpretation of Ω in Eff is (Pω,⇔). Remember that an object in Eff is
a set X together with a Pω-valued equivalence relation = that is realizably symmetric
and transitive [Hyl82, Pho92] and that functions in Eff are functional relations. In order
to avoid all the necessary codings, we simply give the isomorphism on a “functional
level”: As Σ = {p ∈ Ω | ∃f : NN. p ⇔ (∃n:N. f(n) = 0)} one can readily see that a
p ∈ Pω is in Σ if there is a total recursive function f realized by some e, such that p is
realizably equivalent to ∃n:N. {e}n = 0. Therefore, one can define an isomorphism in
Eff that maps p to > if the corresponding f has a zero and to ⊥ otherwise. A realizer
for this map is Λe.Λz. µ〈n, k〉. T (e, n, k)∧ U(k) = 0. �
Remark: Note that Σ is therefore a modest set (Ω is not!).

Phoa states (sloppily) that “Σ ∼= {p ∈ Ω | ∃e:N. p ⇔ {e} e↓}”. This has been proved
in Lem. 8.3.5.

As before A⊆ΣX means that A is a Σ-subset of X , i.e. the classifying map for A
factors through Σ. Due to [Ros86b] this Σ is a dominance. The following is a trivial
observation:

Corollary 9.4.2 For any f :X −→ Y and U⊆ΣY it holds that f−1(U)⊆ΣX .

9.4.2 Σ-spaces

Definition 9.4.1 An object X of Eff is called a Σ-space if ηX :X −→ ΣΣX is a mono,
where ηX(x)(h) , h(x). The full category of Σ-space is called Sig. �

Remarks: Note the difference to Σ-posets. It is not required that η is ¬¬-closed.
This has advantages (no ¬¬’s around) but also disadvantages, as one has to introduce
the notion of “linkedness”. By definition, Σ-posets are automatically modest sets, as
Σ is modest and modest sets are closed under exponentials and subobjects.

9.4. Complete Σ-spaces 205

In his thesis Phoa blurs the distinction between external and internal reasoning.
He argues that in the category of modest sets one can always jump back and forth
between diagrams and logical formulae. We object that this is dangerous, since one is
likely to make mistakes. Remember the problems about ω (Sect. 2.6.2).

The following representation theorem is useful and similar to orthogonality in the
Σ-cpo-case (cf. Thm. 2.7.3):

Theorem 9.4.3 An object X is a Σ-space iff it is a subobject of some ΣY .

Proof: The “⇒” direction is obvious, just choose Y , ΣX and the image of η is
the required subobject. For the opposite direction observe that functions of the form
λh:ΣY . hy for all y ∈ Y suffice to distinguish between elements of ΣY . �

Theorem 9.4.4 Sig is reflective.

Proof: By taking the (¬¬-epi,mono) factorization of η; the image under the corre-
sponding ¬¬-epi will do the job by 9.4.3. �
More about factorization systems can be found in Section 6.1.2. In fact, Σ-posets, Σ-
cpo-s, Σ-spaces, complete Σ-spaces, Σ-repletes, they can all be defined by exhibiting
an appropriate factorization system in the ambient category of sets. Unfortunately,
we do not have the space to go into this here.

Definition 9.4.2 Let x, x′ ∈ X . Define x ≤ y iff ∀p:ΣX . p(x) ≤ p(y). If X is a
Σ-space then this defines an order. It is called the Σ-order. �

This is the observational preorder again. Monotonicity is shown as for the other
approaches.

Corollary 9.4.5 Any map f :X −→ Y is monotone, i.e. x ≤ x′ ⇒ f(x) ≤ f(x′).

9.4.3 Linkedness

The following notion of linkedness was introduced to ensure that limits of Σ-space have
the pointwise Σ-order.

Definition 9.4.3 A Σ-space X is called linked if ∀x, x′:X. (x ≤ x′) ⇒ ∃:XΣ. f(⊥) =
x ∧ f(>) = x′. The category of linked Σ-spaces is denoted LSig. �

Corollary 9.4.6 For a linked Σ-space XΣ ∼= {(x, x′) ∈ X ×X | x ≤ x′}.

For the Σ-space Σ this is required as an axiom in the categorical approaches of Hyland
and Taylor (see Section 9.5) under the name Phoa’s Axiom (or Principle) paying tribute
to W. Phoa who observed originally the importance of linkedness. Our axiomatization
depends on it, too. We use it to show that the partial order on products is pointwise.
While it is a property in our approach, for Σ-space it must be stipulated.

Theorem 9.4.7 LSig is complete (the limit has pointwise Σ-order) and thus reflec-
tive.

206 Chapter 9. A short guide through Synthetic Domain Theory

Proof: Let D be the index set of the diagram F in LSig, let X be the limit of F
(which exists as Sig is complete) and x, x′ ∈ X . If x ≤ x′ then ∀d:D. πd(x) ≤ πd(x′), so
by linkedness of each component we get that ∀d:D. ∃fd:F (d)Σ. fd(⊥) = πd x∧ fd(>) =
πd x

′. These maps are uniquely defined by Cor. 9.4.6 so one can construct a function
f :Σ −→ X with f(⊥) = x and f(>) = x′ where f is defined componentwise. So the
limit is linked again. From Freyd’s Adjoint Functor Theorem (FAFT) then it follows
that LSig is also reflective. �
The linkedness property can also be expressed by an orthogonality condition (Section
6.1.4).

Lemma 9.4.8 The Σ-order on a Σ-space X is a ¬¬-closed relation, i.e.

∀x, x′:X.¬¬(x ≤ x′)⇒ x ≤ x′.

Proof: As the Σ-order for Σ is ¬¬-closed by Markov’s Principle which holds in Eff,
it’s also ¬¬-closed for powers of Σ. As the Σ-order of a Σ-space X is determined by
the one on ΣΣX the proposition is true. �
Now Σ-spaces correspond to posets, but for domains we need some chain completeness
therefore one defines complete Σ-spaces.

9.4.4 Complete Σ-spaces

Definition 9.4.4 A Σ-space that has suprema for all ascending N-indexed chains
(ascending under the Σ-order) is called a complete Σ-space. Call CSig the category of
complete Σ-spaces. �

Remarks: Note that the supremum operation has to exist inside Eff, so it must be
computable! A Σ-space with non-computable sups is not complete in this sense.

Again all functions are continuous. We go into this more carefully, since it is not only
one of the main aspects of SDT but here lies the heart of one of the distinguishing as-
pects w.r.t. our axiomatization. Order theoretic suprema are used in Phoas approach.
Consequently, in the standard PER-model any Σ-cpo is a complete Σ-space, but non
vice versa (not every supremum must be a union). For deriving continuity of arbitrary
maps one first proves a lemma that Σ-subsets of chain-complete posets are Scott-open
(in the restricted sense of topology: countable joins only!). This is also different from
the Σ-cpo approach. There we defined suprema in a way that maps are automatically
Scott-continuous, but had to apply Rice-Shapiro in order to show that ω is indeed a
Σ-cpo. Here we have the somewhat inverse situation that Rice-Shapiro is applied for
proving continuity and ω is a complete Σ-space by definition (cf. Def. 9.4.5 below).

Lemma 9.4.9 Let (P,v) be a poset in Eff that has suprema of N-indexed chains. For
any U⊆ΣP and any chain a ∈ N −→ P the following hold:

(i) U is upward closed, i.e. if x v y and x ∈ U then y ∈ U .

(ii) sup(an) ∈ U iff ∃n:N. an ∈ U .

9.4. Complete Σ-spaces 207

Proof: The proof of (i) can be found in [Pho90, Proposition 5.3.1] and (ii) in
[Ros86a]. Since the proofs are fairly interesting and fundamental we repeat them
anyway.
(i): Assume x ∈ U and x v y. As U is a Σ-subset it is ¬¬-closed by Markov’s Principle.
So it suffices to lead y 6∈ U to a contradiction. If there was a function f :N −→ P with
image {x, y} such that f−1(x) = K and f−1(y) = K then from y 6∈ U it immediately
follows that f−1(U) = K which contradicts the fact that f−1(U) must be a Σ-subset.
Now how can such an f be defined? Well, this is done by a standard trick.

y(n)
m ,

{
x if ∀k ≤ m.¬T (n, n, k)
y if ∃k ≤ m.T (n, n, k)

Case analysis is right here, because the Kleene T -predicate is decidable and so are
bounded quantifiers. Now as P is chain complete and y

(n)
m is an ascending chain for

any n one can define f(n) , supm y
(n)
m which completes part (i).

(ii): “⇒”: Let x = sup an. Let us proceed analgously to (i). As ∃n:N. an ∈ U is
¬¬-closed we can assume ¬∃n:N. an∈U . If there was a function f :N −→ P with image
{an |n ∈ N} ∪ {x} such that f−1(x) = K and f−1(an) ⊆ K for any n ∈ N then one
immediately gets that f−1(U) = K which contradicts the fact that f−1(U) must be a
Σ-subset. The construction of f is also similar to (i).

y(n)
m ,

{
x if ∀k ≤ m.¬T (n, n, k)
ak′ if ∃k ≤ m.T (n, n, k) where k′ is the smallest such k

Now as P is chain complete and y(n)
m is an ascending chain for any n, as already an

was, define f(n) , supm y
(n)
m which completes the proof.

“⇐”: Suppose there is an n∈N such that an∈U . Of course, an v sup an so by (i) we
get supn an ∈ U . �
This is the proof of Rice-Shapiro if one sets P = ΣN !

Corollary 9.4.10 Let Y be a complete Σ-space and U a Σ-subset of Y . Then U is
Scott-open.

Now it is possible to prove that all functions between complete Σ-spaces are (Scott-)
continuous.

Theorem 9.4.11 If X is a complete Σ-space, and Y a Σ-space. Then any f :X −→ Y
preserves sups of ascending N-indexed chains.

Proof: Let (an)n∈N be a chain in X with supremum x. By monotonicity of f we
already know that sup(f ◦ a) ≤ f(x). So it remains to verify sup(f ◦ a) ≥ f(x). Let
us show that any upper bound of f ◦ a is above f(x):
Assume ∀n:N. y ≥ f(an), then we must show y ≥ f(x). By Lemma 9.4.9(i) this means
for any U⊆ΣY that if f(x)∈U then y∈U . Now f(x)∈U implies x ∈ f−1(U) where
f−1(U) is a Σ-subset of X (Lemma 9.4.2). Thus by 9.4.9(ii) there is an an∈f−1(U),
so f(an) ∈ U and by assumption y ∈ U since U is upward closed. �

208 Chapter 9. A short guide through Synthetic Domain Theory

Rice-Shapiro (or Myhill-Sheperdson) is the standard argument that lies behind all
recursion theoretic domains of continuous functions and so it appears in different dis-
guises in [Ros86b, FMRS92, Pho90, Erš77] and also in the model for the Σ-cpo-s
(Sect. 8.3.2).

Lemma 9.4.12 Any complete Σ-space X is linked.

Proof: Assume x ≤ x′ ∈ X . Define a function f : N −→ X as in the proof of
Lemma 9.4.9(i), such that f(n) = x if {n}n ↑ and f(n) = x′ otherwise. As n ⊥ iff
{n}n ↑ it is easy to see that from f one can define the desired map. �
Also the category CSig has good categorical properties.

Theorem 9.4.13 CSig is complete and reflective.

Proof: Completeness: By linkedness of CSig (9.4.12) and completeness of LSig
(9.4.7) it suffices to show that limits of diagrams of complete Σ-spaces have sups of
N-indexed ascending chains. But as complete Σ-spaces are linked, the order on the
limit object is pointwise und thus suprema are computed componentwise. Reflectivity
then follows from completeness by the Adjoint Functor Theorem. �
Complete Σ-spaces are also closed under retracts. One interesting class of Σ-spaces
are the flat ones. They can be characterized as follows.

Lemma 9.4.14 A linked Σ-space A is flat iff it is orthogonal to Σ.

Proof: By inspection of the following diagram

Σ
!Σ

> 1

A

[x, y]

∨ <
which means that the linkage map [x, y] : Σ −→ A (that exists iff x ≤ y) is constant.
�
This characterization holds also for Σ-posets (which are linked automatically) but does
not help to prove flatness there. However, the formulation by orthogonality is useful
for Σ-replete objects.

Definition 9.4.5 Let c : N −→ ω be the initial object in the comma category of
chains in LSig, N ↓ LSig. Let ω be the chain completion of ω. �
Alex Simpson pointed out to me that this corresponds to ω ′′ in Section 2.6.2 [Sim95].

By initiality of ω one gets an interesting representation lemma for complete Σ-
spaces similar to Theorem 2.7.3:

Corollary 9.4.15 A is a complete Σ-space iff A is linked and orthogonal to ι : ω −→
ω.

Simpson proved that this theorem does not hold in the PER model if one chooses
the intial lift algebra for ω as defined in 2.6.5, because then the inclusion would be
orthogonal to what we called ω ′′ before, which is linked but certainly not complete
[Sim95].

9.4. Complete Σ-spaces 209

9.4.5 Domains and Lifting

Still no notion of domains has been established yet. This will be immediately remedied.

Definition 9.4.6 An object in Eff is called focal if it has a least element ⊥ w.r.t. the
Σ-order. The category of complete focal Σ-spaces is called CFSig and the category of
complete focal Σ-spaces with strict maps CFSig⊥. �

These complete focal Σ-spaces are the domains of Phoa. They have the desired prop-
erties:

Theorem 9.4.16 Any endofunction in CFSig has a least fixpoint.

This can be proved as usual. We also have a completeness result which follows from
the completeness of CSig.

Theorem 9.4.17 Let F :D −→ CFSig⊥ be a diagram. Then its limit is a complete
focal Σ-space again and each projection is strict.

From the above theorem it follows that one can solve domain equations:

Corollary 9.4.18 For any internal (!) functor F :CFSig⊥−→ CFSig⊥ there exists a
least fixpoint.

Proof: By the inverse limit construction of Plotkin & Smyth [SP82]. Note that the
functor must be given internally, in order to ensure that the morphism part of the
functor is an internal map and therefore continuous. �
Lifting allows one to express partial maps in terms of total ones, in other words the
lifting X⊥ of X classifies the partial maps into X . But be careful there! When working
with complete Σ-spaces one considers only computable partial maps between them.
A computable map is a map the domain of which is recursively enumerable. This is
in analogy to our Section 3.1.5. Again define lifting as proposed in [Hyl91] (see also
Def. 6.1.9).

Definition 9.4.7 Let X⊥ ,
∑
p:Σ. (p = >) −→ X . �

X⊥ can be described in (maybe) more familiar notation: X⊥ =
∑
s:Σ.F (s) where

F (>) = X and F (⊥) = 1. In this section we denote Σ-partial maps from X to Y
simply X ⇀Σ Y , without indicating its domain of definition.

From the definition one gets the universal property of lifting.

Theorem 9.4.19 Let X, Y ∈ Sig. Then X ⇀Σ Y ∼= X −→ Y⊥, and the following
diagram is a pullback

X > 1

X⊥

upX

∨
↓ > Σ

∨
>

and upX is a mono that is classified by ↓.

210 Chapter 9. A short guide through Synthetic Domain Theory

Proof: The proof is like in Thm. 6.1.23. �
The classifier for the subobject 0 � X is called ∅ and it is obviously the bottom
element of X⊥. First of all, lifting yields focal Σ-spaces.

Theorem 9.4.20 If X is a (linked/complete) Σ-space then also X⊥ is.

Proof: For Σ-spaces: Let x, x′:A −→ X⊥. One must prove ∀h:ΣX⊥ . h ◦ x = h ◦ x′
implies x = x′. By the universal property of lifting we know by pulling back along
ηX that x corresponds to a partial map (m, f) and x′ to (m′, f ′). By the preceding
theorem it suffices to prove m = m′ and f = f ′. We know that ↓ ◦ x = ↓ ◦ x′ by
assumption, and from pulling those composites back along > we get by uniqueness of
classifier that C = C ′ and m = m′.

C,C ′
m,m′

> A

X

f, f ′

∨
ηX

> X⊥
∨
x, x′

1

!

∨
> > Σ

∨
↓

It remains to show f = f ′; since X is a Σ-space it suffices to show that ∀p:ΣX . p ◦ f =
p ◦ f ′. But this can be derived from the following pullback-diagram:

C
m = m′

> A

X

f, f ′

∨ upX > X⊥
∨
x, x′

Σ

p

∨ <
p⊥

The map p⊥ is the classifier of the subset X⊆Σ X⊥. Now we know that p⊥ ◦x = p⊥◦x′
by assumption, thus we get p ◦ f = p ◦ f ′.

For linked Σ-spaces: Let OX⊥ denote the Σ-order relation on X⊥. One has to
construct the inverse to the function mapping f ∈ (X⊥)Σ to (f(⊥), f(>))∈OX⊥ . This
is done by “patching” two maps together. One is given by linkedness of X and for the

9.4. Complete Σ-spaces 211

other define Y , {((x, x′),>) | x ≤ x′ ∧ x′∈X } ⊆Σ OX⊥ × Σ and the partial map
((x, x′), s) 7→ x′ in Y −→ X .

For complete Σ-spaces: Let AS(X) denote the ascending chains in X . There is
a partial map AS(X⊥) ⇀ AS(X) which is the identity on chains in X . So as X is
complete there is a partial map AS(X⊥) ⇀ X and the corresponding classifying map
is easily shown to compute sups in X⊥. �

Lemma 9.4.21 For any complete focal Σ-space Y and U⊆ΣX and f :U −→ Y there
is an extension ext(f):X −→ Y .

Proof: For an x ∈ U there is, by definition of Σ, a chain of decidable truth values
pn such that x ∈ U ⇐⇒ ∃n:N. pn. The one can define a chain yn by

yn
(x) ,

{
f(x) if pn
⊥ if ¬pn .

Then ext(f)(x) , sup yn(x). It can be easily shown that this definition is independent
from the choice of p. �
Consequently, there is a unique minimal extension:

Corollary 9.4.22 Let X be a complete Σ-space and Y be a complete focal Σ-space
then any map f :X −→ Y extends uniquely to a strict map f⊥:X⊥ −→ Y .

So ()⊥ can be seen to be the lifting monad with the embedding upX : X −→ X⊥ as
unit and (idX⊥)⊥ as multiplication.

The following Lemma is useful since it allows reasoning by case analysis for func-
tions on X⊥ (compare this to our Lemma 3.1.2(3)).

Lemma 9.4.23 X + 1 is a ¬¬-dense subobject of X⊥, or equivalently every element
of X + 1 is in the ¬¬-sense already in X⊥. This means for ¬¬-predicates on x ∈ X⊥
we can do the case analysis x = ⊥ or x ∈ X .

Proof: As X is a Σ-subset of X⊥ it is by Markov’s Principle also a ¬¬-subobject.
The proposition then follows from the observation that X ∨ ¬X is ¬¬-dense in Y if
X is a ¬¬-subobject of Y . �
The following lemma emphasizes why algebras for the lift monad are important. Note
that when talking of an algebra for a monad we mean the Eilenberg-Moore algebra
with the associative and unitary identities (cf. [BW90, LS80]).

Lemma 9.4.24 Any A ∈ Sig that carries an algebra structure for the lift monad is
focal.

Proof: As A is an algebra with structure map α we know that α ◦ upA = idA. Now
∅ ≤ upA(a) for all a ∈ A. Thus α(∅) ≤ α(upA(a)) = a for all a ∈ A. Thus A already
has a bottom element, namely α(∅) and the structure map is strict. �

212 Chapter 9. A short guide through Synthetic Domain Theory

Corollary 9.4.25 Let X be a complete Σ-space then there exists a unique map
rX :X⊥ −→ X such that X is an algebra of the lift monad on CSig.

Proof: By the previous lemma such an X is already focal. The map rX is the lifting
of the identity on X . By definition rX ◦ i = id. By case analysis it’s easy to check that
it’s unique since an algebra map must be strict. �
Remark: One can observe that the algebra structure on objects in CFSig⊥ is unique,
so it is rather a property than a structure.

Theorem 9.4.26 The category of algebras for the lift monad on CSig is equivalent
to CFSig⊥.

Proof: By the previous two lemmas there is a 1-1 correspondence on the objects.
For the morphisms one has to show that f : X −→ Y is an algebra morphism iff it is
strict. This is easy, for the ⇐ direction one needs case analysis. �

Theorem 9.4.27 The Kleisli category for the lift monad on CSig is equivalent to the
category of complete Σ-spaces and computable partial maps.

Proof: As objects are the same in both categories one simply proves that any partial
map f : X ⇀ Y with r.e. domain is isomorphic to a map X −→ Y⊥ which follows from
the fact that lifting is the Σ-partial-map-classifier. �
In the two theorems above Phoa only considers the category CSig, but analogous
results can be shown for the lift monad on Sig and Σ-spaces. The following proposition
characterizes the free algebras for the lift monad.

Lemma 9.4.28 Let X be in CSig and D = {x ∈ X | x 6= ⊥}. Then X is a free
algebra (for the lift monad) iff D⊆ΣX .

Proof: The “⇒”-direction is easy (X = D⊥). For the converse assume that D⊆ΣX .
We have to show that X = D⊥. By the previous theorem it is sufficient to verify that
maps into X correspond to computable partial maps into D. Let f : Z −→ X be
given. It is easy to get a partial map with codomain D, f ′ : Z −→ D by pulling f
back along the inclusion D � X . Conversely, given a partial map (m, g) : Z ⇀ D
with domain m : Y ⊆ΣZ, we have to construct a classifying map Z −→ X . This can
be done as the given map g : Y −→ D can be composed with the embedding D� X
and the resulting map extends to Z by Lemma 9.4.21. �
Again this should also go through if we switch from CSig to Sig.

Realizability-models are not restricted to the Kleene algebra as the underlying
partial combinatory algebra. There are also other kinds of realizability. The next
approach tries to give an axiomatization independent of the underlying PCA.

9.4.6 Other realizability toposes

The categories of domains we have seen so far in this chapter are all defined as (internal)
subcategories of the effective topos2, i.e. the realizability topos based on the partial

2More precisely, they are even subcategories of the modest sets.

9.4. Complete Σ-spaces 213

combinatory algebra (PCA) of natural numbers [Hyl82]. There is, however, some effort
to extend these results to other realizability toposes.3 This has to do with the idea
of “Synthetic Domain Theory in different flavours” often propagated by Hyland. He
proposed not only to have a synthetic theory of Scott-domains (in the effective topos),
but also one for stable or sequential domains in some other realizability topos. The
most natural choice seems to be the PCA of closed terms of untyped λ-calculus where
equality is equality of the Böhm tree representation (cf. [Bar84]).

In [Pho90, Chapter 13] such a realizability model is discussed, called B. Now if Ω
for the moment denotes the diverging term (λx. x x)(λx. x x) and i the identity then
one can define Σ as follows

Definition 9.4.8 Σ = {p | ∃!M ∈ B. (¬p⇔M = Ω) ∧ p⇔ (M = i)}. �

Then it is proved that Σ is a dominance w.r.t. the ¬¬-separated objects of B. One can
define the lifting via the partial map classifier and moreover, characterize the lifting
directly on PERs. There is no obvious way, however, to define a partial order as in the
settings above including ours. This means that chain completeness must be expressed
on the level of PERs themselves.

Definition 9.4.9 A PER R is called complete iff for all terms M , N

∀n:N. (M cn)R (N cn)⇒My R Ny

where cn , λf. fn Ω and y denotes the fixpoint combinator λf. (λx. f(x x))(λx. f(x x)).
�

These sups are obviously sufficient to compute fixpoints. A modest set is called com-
plete if its a quotient by a complete PER. One can show that the category of complete
modest sets is reflective, that any complete modest set preserves sups of chains by a
good coding of ω and ω: cn n and y ∞. Moreover, any endomap in the category of
complete modest sets has a fixpoint (which however carries “intensional information”
and is not necessarily the minimal one).

For stability of maps between PERs one has to put one more restriction on the
complete modest sets. Define the category of meet-closed PERs (The meet-map itself
cannot be internalized, one has to code it as a relation.) Any map between meet-closed
modest sets can shown to be stable which follows from the stability property of the
underlying model.

The category of meet-closed, complete PERs is closed under (Hyland’s) lifting. Be
careful here as meet-closed PERs are not closed under isomorphism in general.

One could also work with the replete objects in such a model. Since complete
and meet-closed PERs form small internally complete categories that contain Σ, any
replete object is isomorphic to one that is complete and meet-closed.

Without partial order one cannot compute solutions of recursive domain equations
by the inverse limit technique. This is a severe drawback. For covariant functors F ,

3There is a short history of realizability toposes in the introduction of [Lon94].

214 Chapter 9. A short guide through Synthetic Domain Theory

however, one can still solve domain equations by computing the initial algebra for F -
algebras using completeness of the category of domains (see also Rosolini’s order free
approach Sect. 9.8.1).

In [Pho90, Chapter 12] the realizability topos with the r.e. graph model Pω as PCA
is treated in a similar spririt. There one can keep the partial order, but must do some
tricks for completeness w.r.t. chains.

9.5 Repletion

Beside the definitions of (pre-)domains and ExPERs in the effective topos, the year
1990 brought some more improvements, and can be regarded as a milestone for Syn-
thetic Domain Theory. At the Category Theory Conference in Como there was a paper
by Martin Hyland that presented a real axiomatization of a category of domains in a
more general (categorical) setting [Hyl91]. In the same conference Freyd gave a nice
description for guaranteeing the existence of solutions for domain equations, by the
notion of “algebraic completeness” (cf. [Fre91]). The importance for solving domain
equations has already been discussed (cf. Theorem 4.2.2). We shall quickly review the
original definition of replete objects. An axiomatic treatment in the spirit of Σ-cpo-s
has already been presented in Chapter 6.

The notion of “replete objects” was found independently by [Hyl91] and [Tay91].
Both authors use slightly different definitions but one can show that they are isomor-
phic (see Theorem 6.1.14). The basic ingredient is again a dominance Σ in some ambi-
ent category of sets S (a topos, Hyland requires something weaker). Then a Σ-replete
object should be determined uniquely in some appropriate sense by its Σ-subsets. The
word replete alludes at the characteristic property that such objects should already
contain all interesting (limit) points.

The category of replete objects R is a full reflective subcategory of the ambient
category S. In fact the story tells us even more, namely it is the least full reflective
subcategory of S which contains Σ. Hyland and Taylor give sort of axiomatizations
based on a category (of sets) with certain structure. They do not work in a very con-
crete category unlike the previous approaches that use special PERs (e.g. [FMRS92],
[Pho90]). So their presentations might be considered as the first “real” attempts to
axiomatize SDT.

9.5.1 Hyland’s replete objects

Hyland works in a nontrivial, for the moment rather arbitrary category S [Hyl91],
emphasizing that this has not necessarily to be a topos. In fact some properties
enjoyed by the modest sets that form a subcategory of the effective topos suffice, i.e.

I S is a locally cartesian closed subcategory of a topos

I S has a natural numbers object

9.5. Repletion 215

I S is the category of separated objects for a topology j on a subpretopos which
guarantees the existence of a (regular epi, mono) factorization and the existence
of pushouts.

I S is a small category within and complete relative to the category of j-separated
objects. This is for completeness properties especially for modeling polymor-
phism.

One can already deduce from the above prerequisites that Hyland makes heavy use
of category theory and all his axioms and proofs are expressed categorically. This is
a handicap for those who are not too familiar with the language of category theory.
Remember that one motivation for us was to do a naive approach based on logics. The
internal language of the (quasi-) topos S, of course provides such a logic. Let us now
take a look on Hyland’s axioms.

The Axioms

We now shortly present the ten laws for SDT given in [Hyl91]:

1. There is an object Σ with a subobject >:1 −→ Σ that is a subobject classifier.
Pullbacks of > along some a:X −→ Σ are called Σ-subsets (written A⊆ΣX). >
is a generic Σ-subset i.e. Σ is the Σ-subset classifier.

Consequences: One can define the lift functor ⊥. The classifying map ⊥(X) −→
Σ is defined as Π>(X −→ 1) as S is locally cartesian closed (this is the same idea
as for the lifting of Σ-spaces, just using categorical definitions), and the resulting
pullback gives the map ηX : X −→ ⊥(X) which classifies partial maps having
Σ-subsets as domains.

2. Σ-subsets of Σ-subsets are Σ-subsets again.

Consequences: Σ is a dominance. An alternative formulation of this would have
been that the lifting is a monad ! It follows that Σ is closed under binary meets.
Therefore, one can define an intrinsic pre-order on objects in S as a pullback
by stipulating that x ≤ y iff η x ≤ η y. It is the same as in the approaches
mentioned so far and one gets analogously that all maps are monotone. One can
define Σ-spaces following Phoa. For Σ-spaces the intrinsic preorder is an order.
X is called focal (or an object equipped with a least element) if it is an algebra
⊥(X) −→ X for the lift monad. A strict map between Σ-spaces is a map of
algebras.

3. The empty set ∅ is a Σ-subset of any object X (equivalently ∅⊆Σ1).

Consequences: There is a map ⊥:1 −→ Σ distinct from > (representing the
element ⊥ of Σ). One gets that decidable subsets are Σ-subsets (compose the
classifier with [>,⊥]:2 −→ Σ). Moreover, pullbacks of ⊥ are called co-Σ-subsets.

4. ⊥:1 −→ Σ is a generic co-Σ-subset, i.e. it classifies co-Σ-subsets.

Consequences: This allows one to define the co-lift-functor >.

216 Chapter 9. A short guide through Synthetic Domain Theory

5. Co-Σ-subsets of co-Σ-subsets are co-Σ-subsets. (this is analogue to (2)).

Consequences: As for (2) we get that co-Σ-subsets form a dominance and that
> is a strong monad (the co-lifting or “topping”). The lift functor ⊥ preserves
co-Σ-subsets whereas the co-lift functor > preserves Σ-subsets.

6. Σ[>,⊥]:ΣΣ −→ Σ2 represents the inclusion order on Σ (or equivalently ΣΣ ∼= ⊥(Σ)
and ΣΣ ∼= >(Σ)).

Consequences: In other words this is linkedness of Σ (see Sect. 2.4). On objects
of the form ΣX inclusion order and intrinsic order coincide. Since this represents
the undecidability of the halting problem one also gets an interesting version of
Rice’s Theorem: 2(N⊥N) ∼= 2 proving first the lemma (B + C)X ∼= BX + CX for
focal objects X (using that 2 = 1+1). So Σ can be viewed as “the r.e. subobject
classifier”. Moreover, the intrinsic order on lifted objects can be characterized.

7. Σ-subsets are closed under finite unions.

Consequences: There is a binary join for Σ.

One can define the object ω of finite ordinals as the colimit of the internal
diagram induced by the lift functor (this can be described as a coequalizer on
maps

∐
Σn −→

∐
Σn, where Σ0

∼= 1 and Σn+1
∼= ⊥(Σn)). Consequently Σω is

the object of increasing sequences in Σ. Note that due to Simpson’s observation
this ω does not correspond to our ω but rather to ω ′′ (see Def. 2.6.5).

8. The collection of Σ-subsets of an object is closed under suprema of increasing
N-indexed sequences. In other words, there is a supremum map

∨
: Σω −→ Σ

(left adjoint to the constant map).

Remark: This is built in for the ExPER approach by definition of ExPERs and
suprema for chains.

Consequences: Now since ω is not closed under suprema of chains one performs
the usual closure to get ω. So ω represents the chain of natural numbers with
an element ∞ added at the top.

9. (The main infinitary axiom) The inclusion ω −→ ω induces an iso Σω −→ Σω.

Consequences: All functions of type ΣA −→ ΣB preserve suprema because the
suprema of ω-chains are internally represented as the composite of the iso Σω −→
Σω and the evaluation at ∞ (and the extensions is unique).

10. (Second infinitary axiom) The collection of Σ-subsets of an object is closed under
unions of increasing N-indexed sequences.

Consequences: Σ-subsets are closed under N-indexed unions (combine with Ax-
iom 7). N is the equalizer of two maps ΣN −→ Σ2 (see also Thm. 6.1.20). The
Σ-subsets of any object are Scott open with respect to ω-chains.

9.5. Repletion 217

The Σ-replete objects

Definition 9.5.1 A map e:X −→ Y is Σ-epi iff the induced map Σf :ΣY −→ ΣX is a
mono.
It is Σ-equable (or Σ-anodyne or Σ-iso) iff the induced map Σf :ΣY −→ ΣX is an
isomorphism. �

Remark: In other words e:X −→ Y Σ-epi means for any p, q:Y −→ Σ that f ◦ p =
f ◦ q ⇒ p = q. That e is Σ-equable means that any map X −→ Σ uniquely extends
along e to a map Y −→ Σ.

Definition 9.5.2 A map f :A −→ B is Σ-replete iff for any Σ-equable map e : X → Y
any commuting square like below has a unique fill-in Y −→ A.

X
e

> Y

A
∨ f

>
<

B
∨

�

Since an object A can be seen as a map A −→ 1, A is a Σ-replete object iff for any
Σ-equable map e:X −→ Y and any f :X −→ A there exists a unique f ∗:Y −→ A such
that the diagram

X
e

> Y

A
∨
f

.>
<

f
∗

1
∨

.

..

...

...

commutes. Maps between Σ-replete objects are automatically Σ-replete.

Definition 9.5.3 Let R denote the category of Σ-replete objects. �

The following theorems state some characterizing properties of R. Reflectivity induces
that R inherits completeness properties from S and a nice abstract description of R.

Lemma 9.5.1 Any power of Σ is Σ-replete.

Proof: Σ is Σ-replete by definition. If e is Σ-equable then any map into Σ extends
uniquely along e. This also works for powers of Σ by pointwise application. �
Let us first give a detailed explanation of the sketchy proof of ([Hyl91, Theorem 6.1.1.]):

Theorem 9.5.2 R is a reflective subcategory of S.

218 Chapter 9. A short guide through Synthetic Domain Theory

Proof: For any f :A −→ B where B is Σ-replete we search for the reflection map
rA:A −→ R(A) such that f factors through rA via an f ∗. But if ηA = mA ◦ rA such
that the map rA is Σ-equable then by repleteness of B we find such an f ∗ and we are
done.

A
ηA

> ΣΣA

R(A)

m
A

>
r
A

>

B

f

∨ <

f
∗

Hence we take for R(A) the largest subobject of ΣΣA containing the image of ηA such
that rA is Σ-equable (such a subject is called extremal). We must show that R(A) is
itself Σ-replete. So for any f :X −→ R(A) and any Σ-equable map e:X −→ Y there
exists a map g such that the square below commutes as ΣΣA is Σ-replete.

X
e

> Y

A
rA

> R(A)

f

∨ mA
>

<
ΣΣA
∨
g

Lastly, there exists a unique fill-in since there is a (Σ-epi, extremal mono) factorization
system. (More about this in section 6.1.2). �
Furthermore, R is the least full reflective subcategory of S in the internal sense. The
latter point is often easily ignored. That the reflection map can be internally de-
fined is also a consequence of the internal and relative completeness of S w.r.t. itself
(impredicativity). In [Hyl91, Theorem 6.1.2.] this is stated without proof.

Theorem 9.5.3 R is the least internally full reflective subcategory of S which contains
Σ.

Proof: Due to Theorems 9.5.2 and 9.5.1 R is an internally full reflective subcategory
of S and contains Σ. Why is it the least ? Let R′ be another subcategory of S enjoying
the same properties as R such that R′ is contained in R. It remains to show that any
replete object is in R′. As R′ is contained in R we get:

X
rX
> R(X)

R′(X)

r′X

∨ <
∃!j

9.5. Repletion 219

Since R′ contains Σ, we know that r′X is Σ-equable. By repleteness of R(X) we also
get the following commuting triangle:

X
r′X
> R′(X)

R(X)

rX

∨ <
∃!i

So i ◦ r′X = rX and j ◦ rX = r′X . Therefore, we get i ◦ j ◦ rX = rX and j ◦ i ◦ r′X = r′X
and by uniqueness we get i ◦ j = id and j ◦ i = id. �
An immediate consequence of the reflectivity of R is the following.

Theorem 9.5.4 [Hyl91, Theorem 6.2.1–6.3.1] The category R

(a) is complete and co-complete as S was, it is cartesian closed and closed under
products indexed over separated objects (in particular indexed over S itself).

(b) contains the objects ∅, 2 and N.

(c) is closed under lifting and co-lifting.

Proof: (a): This follows from the assumption made about S and reflectivity. (b)
follows from (a) and previous observations, e.g. that N can be expressed as an equalizer
of maps between Σ-powers. (c) follows from some abstract nonsense. �
Remark: In spite of completeness it does not follow that R is locally cartesian closed
like S (cf. [Str92a]).

Now why are Σ-replete objects closed under ascending N-indexed chains (or even
shorter ω-chains) ? This is a consequence of Axiom 9 which can be rephrased now
in the new terminology: The map ω −→ ω is Σ-equable. So for a Σ-replete object A
this means that any chain Aω can be uniquely extended to one in Aω for which the
supremum is computed by applying it to ∞.

In fact the inclusion ω −→ ω is the archetypical Σ-equable map. You may ask of
other one’s, other limit processes under which Σ-replete objects are closed. This is
in fact still under investigation. In [RS93a] some more concrete characterizations of
repletion can be found.

An immediate consequence of the closure under limits of ω-chains is that endomaps
between Σ-replete objects with a least element have fixed points. Quoting Hyland “the
usual proof works”. So the Σ-replete objects with a bottom element can serve as a
category of domains.

9.5.2 Taylors approach

Taylor aims at giving a model-free axiomatization of SDT trying to admit also presheaf-
models besides the classical PER-models. This is emphasized by his comment “. . . by

220 Chapter 9. A short guide through Synthetic Domain Theory

providing a common framework in which both PER and classical models can be ex-
pressed, this work builds a bridge between the two” [Tay91]. He chooses any old topos
with natural numbers object as ambient category of sets, differing slightly from Hy-
land’s basis. He could, however, also work in Hyland’s type-theoretical setting because
he does not make use of full topos logic.

Predomains and the Strong Leibniz Principle

Let us shortly recapitulate Taylor’s way to describe replete objects.

Definition 9.5.4 A topos E with natural numbers object and subobject classifier Ω
is a model of SDT iff it satisfies the following axioms:

1. There is an object Σ in E such that Σ is a subobject of Ω and it is closed under
finite meets and countable joins.

Consequences: Σ contains ⊥ (minimal) and > (maximal element). Such an
object Σ has already the right closure properties, but we must require a little bit
more to get the right Σ.

2. (Phoa Principle) The object ΣΣ is isomorphic to the set {(p, q) ∈ Σ2 | p⇒ q}.
Consequences: This excludes non-monotone functions in ΣΣ (in other words
it is linkedness of Σ) and suffices to derive that the intrinsic order (i.e. the
observational order defined as usual) on ΣX is the inclusion order.

3. (Scott Principle) For any Φ:ΣΣN , if Φ(λn.>) then there exists an m such that
Φ(λn. n < m).

Consequences: This is sort of a Rice-Shapiro Theorem. And this is the most
astonishing result of [Tay91], that this rudimentary form of continuity axiom
suffices to guarantee chain-completeness (and even a bit more in the sense of
repleteness). Hyland’s main infinitary axiom 9 is indeed derivable from it.

These axioms look familiar, we have used them in the axiomatization for Σ-cpo-s in
Section 2.2. �

Taylor’s axiomatization is obviously much more compact than the one we have seen
before. And note that it is not using category speech. By contrast, it uses sloppily the
internal language of the topos E . Still proofs are performed externally, i.e. by diagram
chasing. The SDT-axioms we have used in Section 2.2 are all but one (namely MP)
translations of Taylor’s axioms.

The next step is to define the objects of interest, i.e. predomains and domains.
Here come Paul Taylor’s definitions:

Definition 9.5.5 A set X fulfills the Weak Leibniz Principle iff any two points which
satisfy the same semi-decidable predicates are the same, i.e. if

∀x, y:X. x = y iff ∀P :ΣX . Px⇔ Py

holds. �

9.5. Repletion 221

This is like the T0 property for topological spaces. Sets that are weak Leibniz corre-
spond to Σ-spaces. But clearly this is not sufficient for chain-completeness, so there is
a stronger version:

Definition 9.5.6 A set X fulfills the Strong Leibniz Principle iff for any Y which
satisfies the Weak Leibniz Principle a given map X −→ Y that induces an iso ΣY −→
ΣX is an isomorphism. �
Here we recognize again the principle that a “domain” should be determined by its
Σ-subsets. It will be proved later that an object fulfilling the Strong Leibniz Principle
also fulfills the Weak Leibniz Principle which justifies in some sense the choice of the
name “Leibniz” for this property.

Definition 9.5.7 X is focal iff it has an element ⊥ which has no non-trivial semi-
decidable property. �
Definition 9.5.8 A predomain is an object that satisfies the Strong Leibniz Property.
A domain is a focal predomain. �
From here on one proceeds as with the Σ-replete objects. There is a (Σ-epi,extremal
mono) factorization system, where an extremal mono is the largest subobject w.r.t all
other (Σ-epi,mono) factorizations (see also Sect. 6.1.2).

Corollary 9.5.5 X is a predomain iff ηX is an extremal mono.

So there cannot be a non-trivial Σ-equable map coming out of a predomain. Indeed
such a predomain is already closed under “dense” (Σ-equable) maps or in Hyland’s
terminology “replete”. In fact Hyland’s and Taylor’s definitions are equivalent, simply
as both categories are the least full reflective subcategory containing Σ. The reflection
property is proved below. An internal version of the equivalence proof is Thm. 6.1.14.
The corollary also implies that any Σ-replete object fulfills the Weak Leibniz Property,
as ηX is a mono.

On X one can define the relation ≤ as usual and it is an order iff the Weak
Leibniz Principle holds for X . Again this intrinsic ordering on ΣX is the inclusion and
definitions of Σ-epi, Σ-equable are as in [Hyl91]. Also the Σ-epi-part of the (Σ-epi,
extremal mono) factorization of η yields a reflection map.

Theorem 9.5.6 Let X
eX−→ R(X)

mX−→ ΣΣX be the (Σ-epi, extremal mono) factoriza-
tion of ηX . Then eX is the object part of the reflection of X into the full subcategory
of predomains.

Proof: It suffices to show that R(X) is a predomain. The rest is as in 9.5.2. The
following square can easily be shown to commute

X
eX

> R(X)

ΣΣX
∨
ηX

ΣeX

∼=>
<

m
X

ΣΣR(X)

∨
ηR(X)

222 Chapter 9. A short guide through Synthetic Domain Theory

Since eX factors into η it is Σ-equable (compare Lemma 6.1.8) and therefore the fill-in
exists and must be necessarily mX , hence an extremal mono. But ηR(X)

∼= eX and
hence ηR(X) is also extremal. �
Furthermore, one can show that any predomain is linked in the sense of Phoa and
therefore the order on limits in pointwise.

For computing suprema it remains to be shown that ω −→ ω is Σ-equable using
only Scott’s Principle. There is a very technical, hardly comprehensible, proof (sketch)
in [Tay91]. To avoid this we have proposed an axiom different from Scott Principle in
Sect. 6.1.6.

Stone Duality in SDT

As Taylor is interested in sheaf-models for SDT he was inspired by a result of Paré
that states that for a topos C the functor Σ():C −→ Cop is left adjoint to itself and this
adjunction is monadic, which means that C is dual to a category of algebras over itself.
(cf. [Tay93] which is a draft and extremely technical). The resulting monadic functor

is ΣΣ()
, so let Alg denote the category of Eilenberg-Moore algebras for it. Now C has

the same “properties” as Algop, in particular C ' Algop. In Algop the object ΣΣ “is the
Σ”. This construction is a pure form of Stone duality. So we are inclined to call the
resulting category of domains C the sober objects in Taylor’s sense.

Taylor’s dream is now that his sober objects are exactly the replete ones. There
are a lot of equivalent conditions that have to hold in order to achieve this. But so
far there are no models known (except the classical CPO model) where they are in
fact valid. So it’s still an open question whether these sober objects are the Σ-replete
ones and if they admit interesting models at all. Despite these deficiencies, the work
of Taylor leads to an interesting hierarchy of Leibniz principles.

Taylor’s Hierarchy of Leibniz Principles

There are three forms of Leibniz principles that we have met in the work of Taylor.

I order 0 : (Weak Leibniz Principle) any two points which satisfies the same (semi-
decidable) properties are equal. In other words ∀f : ΣX . fx = fx′ ⇒ x = x′.

I order 1: (Strong Leibniz Principle). If Y is Weak Leibniz and f :X −→ Y induces
an iso Σf :ΣY −→ ΣX then f is already an iso.

I order 2: any two categories of domains with equivalent categories of (semi-
decidable) properties are equivalent. In other words for categories C,D if ΣΣC '
ΣΣD then C ' D or shortly the functor ΣΣ()

reflects equivalences.

Remark: The 0-order (Weak) Leibniz Principle holds for Taylor’s predomains, Σ-
spaces, Σ-posets, and Σ-replete objects. The 1-order (Strong) Leibniz Principle holds
for Σ-replete objects, but not for complete Σ-spaces. The 2-order Leibniz Principle
only holds for the category of “sober” predomains as discussed above. For Σ-replete
objects it leads to very unlikely consequences to assume that two domains with the
same lattice of (semi-decidable) properties are equal because an arbitrary iso between

9.6. Σ-cpo-s and Σ-domains 223

ΣX and ΣY does not have to be of the form Σf for some f :X −→ Y . This more
restrictive requirement is satisfied by sober domains.

Our knowledge of Σ-replete objects can only be as concrete as our knowledge of the
“generalized limit processes”, but the latter is rather poor by contrast to the archetyp-
ical (well understood) limit ω � ω used in all other SDT-approaches. Therefore, a
good characterization of Σ-replete objects is still to be found.

9.6 Σ-cpo-s and Σ-domains

In 1993 we started to think about an internal version of SDT, that allows one to do
formal reasoning. Formalization provides a control authority when translating things
into the internal language. The first unpublished (privately circulated) notes [RS93a]
comprise mainly Chapter 2 and parts of Section 6.1 of this thesis. It was written,
however, before the author started to check things in a proof system. Hence it contains
still some vague and sloppy formulations.

The Σ-cpo-s can be viewed as a model-free, logical formalization of the ExPERs.
The axioms are therefore “real” axioms in a logical formalism and we can talk of a
complete axiomatization of SDT. In this thesis (Chapters 3 to 5) this idea is developed
to a full-blown theory where one can express recursive domains such that program ver-
ification in an LCF-style is possible. So we simply refer to che corresponding chapters
and proceed towards the latest innovations in Synthetic Domain Theory.

9.7 Well-complete objects

In Longley’s thesis [Lon94] realizability models are treated in full generality. Chapters 4
and 5 of loc.cit. give an axiomatization for a Synthetic Domain Theory in arbitrary
realizability toposes which is based on joint work with Alex Simpson.4 All the proofs
given there are on the level of realizers. This differs from the “logical approach” we are
following. In fact the computation with realizers requires training and so we have tried
to reduce it to a minimum, just giving a model for the axiomatization in Chapter 8 and
then working entirely in the internal language. We have already presented a logical
axiomatization of the well-completes in the spirit of Σ-cpo-s (Section 6.2), so we won’t
go into details here.

The main advantage of Longley’s development is that his results hold for arbi-
trary realizability models, so this seems to be the first attempt of a general “PCA-
independent” SDT. For arriving at that stage of generality, one has to give up some
nice properties (e.g. the partial order). In loc.cit. dominances are investigated in gen-
eral realizability toposes by introducing the concept of a divergence, thus generalizing
also Phoa’s dominances (see Section 9.4.6). Most of the interesting dominances arise
from divergences, but not all (i.e. 2 for the Kleene PCA). Moreover, Longley defines
a category of predomains, called well-complete objects, by a sufficient completeness
axiom, and uses the well-complete objects in the rest of his thesis to give an adequate

4There is also a paper in preparation [LS95]

224 Chapter 9. A short guide through Synthetic Domain Theory

interpretation of call-by-name and call-by-value versions of the sequential language
PCF (and extensions). Choosing the PCA of closed λ-terms modulo equivalence of
Böhm-trees he can show that the well-complete assemblies provide a fully abstract
model for cbv-PCF at least up to type 3.

We give a short overview over the (model-dependent, but PCA-independent) ax-
iomatization of well-complete objects. First note that in a topos with a dominance
one can define lifting (due to [Hyl91], see also Def. 6.1.9) as the partial map classifier
for maps with domains specified by the dominance.

Let Mod(A) denote the modest sets in the corresponding realizability topos with
PCA A. First, the objects ω and ω are defined in the same way as in Definition 2.6.5 –
just directly on the level of realizers. They represent the generic chain and the generic
chain with top, respectively.

Definition 9.7.1 Let ω ∈ Mod(A) be the modest set with underlying set |ω| = N
and realizability relation ‖n ∈ ω‖ = ‖step n ∈ ΣN‖.
The map step is the one from Section 2.2.3. Let ω ∈Mod(A) be the modest set with
underlying set |ω| = N∪{∞} with realizability relation ‖n ∈ ω‖ = ‖step n ∈ ΣN‖ and
‖∞ ∈ ω‖ = ‖λx.> ∈ ΣN‖.
Let j:ω⊥ −→ ω be defined via j(⊥) = 0 and j(n) = n + 1.
It can be realized by Λq.Λm. if(m = 0) then π1(q) else π2(q)(i)(m− 1) where i is a
(canonical) realizer for > = >. �

One can prove that j is the initial algebra and that there is an isomorphism h : ω⊥ −→
ω (like j) that is the terminal coalgebra for the lifting functor. Let ι : ω −→ ω denote
the usual embedding.

The idea behind the initial lifting algebra is to define ascending chains, unlike the
Σ-cpo or the Σ-space-approach, by providing a map of type XX⊥ that “generates” a
Kleene-chain in X starting with ⊥. This is sufficient if suprema are only needed to
compute fixpoints as for program semantics. The main concept of the well-complete
objects is closure under supremum of ω-chains, i.e. any morphism f : ω −→ X extends
uniquely to an f : ω −→ X . Expressing this internally is the next definition:

Definition 9.7.2 An assembly X is called complete iff the map X ι : Xω −→ Xω is
an isomorphism. �

This is already sufficient for simple domain theory; compare with Section 2.7.3 or
the main infinitary axiom in Section 9.5.1 : the supremum of a chain a : ω −→ X
can be computed by means of the unique extension a(∞). Consequently, any map is
continuous. Given a function f : X −→ Y , f ◦a and f ◦ a both extend f ◦a and must
therefore be equal.

The complete objects have already very nice closure properties but they are not
closed under lifting, or more exact, it is not possible to prove that they are. Therefore
one defines the well-complete objects:

Definition 9.7.3 An assembly X is called well-complete iff X⊥ is complete. �

Then the following closure properties are easy consequences of the definitions:

9.7. Well-complete objects 225

Theorem 9.7.1 The complete and well-complete objects are closed under retracts
and binary products. The complete objects are even closed under arbitrary products
indexed by assemblies.

One axiom, however, is necessary to ensure still better closure conditions for the well-
completes (this axiom shall be strengthened soon) :

(Axiom 1) 1 is well-complete.

This axioms says that the inclusion ι is in fact Σ-equable (a Σ-iso) as 1⊥ ∼= Σ. A direct
consequence is:

Corollary 9.7.2 Any well-complete object is complete.

With (Axiom 1) one gets closure under lifting, too:

Lemma 9.7.3 Well complete objects are closed under lifting.

In general, Phoa’s axioms do not hold anymore with one exception: (PHOA 1) (see
2.2.2) which is commonly viewed as an abstract version of the undecidability of the
halting problem.

Lemma 9.7.4 There is no map f : Σ −→ Σ such that f(⊥) = > and f(>) = ⊥.

In [Lon94] we find additional closure properties:

Theorem 9.7.5 The well completes are an exponential ideal.

In Sect. 6.2.3 we gave some more closure properties working in an internal language.
For proving closure under binary sums a stronger axiom is stipulated:

(Axiom 2) 2 is well-complete.

With this axiom one can show that:

Theorem 9.7.6 The well-completes are closed under binary sums and N is well-
complete.

There is, however, no proof that the well-complete assemblies are a full reflective
internally-complete subcategory of the ambient realizability topos.5 An axiomatization
in the internal language like suggested in Section 6.2 has the advantage of getting rid
of calculations with realizers. Moreover, one could continue the road to solve domain
equations and to program verification as in Chapter 4. It will be quite cumbersome
to manage this on the level of realizers and besides, there is no machine support for
computing with realizers.

5Note that for well-complete PERs this has been achieved in Sect. 6.2.3.

226 Chapter 9. A short guide through Synthetic Domain Theory

9.8 Axiomatic Domain Theory

Apart from SDT, there is a lot of ongoing research in the area of denotational semantics
discussing the questions “What are good categories of domains ?” and “What axioms
have to be required?” This is summarized under the slogan Axiomatic Domain Theory
(ADT).

Several people have contributed to the field of ADT like Fiore, Freyd, Moggi,
Crole & Pitts, Plotkin, Rosolini and others. The goal of ADT is to give an abstract
(categorical) definition of what a “good category of domains” shall be. This combines
nicely with SDT that may provide models satisfying certain ADT-axiomatizations.
SDT is distinguished from ADT as it always comes equipped with a logic obtained
from the ambient topos.

Using ⊥ to represent undefined results is convenient since one can work with to-
tal functions then, but as Fiore states: “This approach has been extremely successful
but it is not entirely satisfactory. For example, the description of types by universal
properties is not always possible (e.g. cartesian closure and fixed-point operators are
inconsistent with coproducts – see [HP90]); also the way of expressing termination of
a program p is indirect, ¬(p = ⊥) These considerations lead Gordon Plotkin to
reformulate domain theory in terms of partial functions [Plo85]. Technically, this was
achieved by eliminating the least element from the domains. Conceptually, that result
was the incorporation of partiality, to the notion of approximation, in the foundations
of domain theory.” [Fio94a].

Fiore’s thesis suggests how to axiomatize domains in categories of partial maps
(see also [FP94]). The partial approach (cf. [RR88]) has the advantage that one can
work with recursive domains without having to bother about least elements. Fiore
somehow combines the partial map approach with recursive types following Freyd
[Fre91, Fre92, Fre90]. The category he is interested in is p(Cpo,Σ), the category
of cpo-s and partial maps with Σ-subsets as domains of definition (like defined in
Section 3.1). The general slogan could be “work in the Kleisli category rather than
in the category of Eilenberg-Moore algebras” (for the lifting monad). Now partiality
is considered as the primitive notion and the information ordering is derived: let
v, v′ : Q ⇀ P , then one defines

v v v′ iff ∀x:Q. ∀u : P ⇀ 1. u(v x) ↓ ⇒ u(v′ x) ↓ .

Note that P ⇀ 1 ∼= P −→ 1⊥. One knows that Σ ∼= 1⊥ and Cpo(P,Σ) are the
Scott-open subsets of P . It is also discussed how the approximation between partial
maps can be expressed in terms of the approximation of total maps.

Categories of partial maps are in general not cartesian closed (otherwise such a
category wold be trivial as 0 ∼= 0 × A ∼= A, since 0 is initial and terminal.) So
one works with partial cartesian closure instead. Fiore criticizes that the classical
inverse limit approach only applies to Cpo-enriched categories. He rather follows
Freyd and axiomatizes Cpo-algebraically compact categories, i.e. categories where
Cpo-enriched endofunctors have free algebras. The category p(Cpo,Σ) is then a
Cpo-algebraically-compact partial cartesian closed algebra with coproducts and thus
adequate to interpret the (meta)language FPC, a type theory with sums, products,

9.8. Axiomatic Domain Theory 227

exponentials and recursive types. It can be considered as a programming language with
call-by-value (operational) semantics. Interpretation of FPC expressions is shown to
be computationally sound and adequate with respect to “classical” domain-theoretic
models (e.g. a cpo-enriched category of partial maps induced by a dominance where
Cpo-algebraic compactness is obtained from the limit/colimit coincidence).

Fiore has also proposed a nice axiomatic setting for domains which allows the
treatment of stability [Fio94b]. It requires a cartesian closed category C with terminal
object 1 and an initial object 0, a map > : 1 −→ Σ such that pullbacks along > always
exist and >∗ : C/Σ −→ C has a right adjoint. This is for defining the lifting L in order
to have partial maps represented as total ones. The unit of the lifting monad is called
η. Such a category C is said to be a domain theoretic category if it fulfills the following
axioms

1. Σ is a dominance or in other words ηΣ ◦ > is a Σ-subset.
This is for defining the lifting.

2. 0� 1 is a Σ-subset, the classifying map of which defines ⊥.
This is for defining ⊥.

3. The diagram 0 −→ L 0 = 1 −→ L2 0 = Σ −→ . . .Ln 0 has a colimit ω and L
preserves it, so there is a map σ : Lω −→ ω.
Internalization of chains with respect to vlink, where vlink is the usual link order,
Fiore calls it the path order.

4. σ ◦ ηω : ω −→ ω has a fixpoint ∞ : 1 −→ ω.
This is for computing the limit of a chain. The idea of a fixpoint object in this
sense goes back to [CP92] and is already fairly standard in ADT.

5. The following pullback diagram is also a pushout diagram:

Ln 1
Ln⊥

> Ln Σ

Ln Σ

ηLn 1

∨

∨

Ln+1⊥> Ln+1 Σ
∨

∨

ηLn Σ

which means that Ln+1 Σ is obtained by glueing together two copies of Ln Σ,
sharing the “middle part” Ln 1.
This is needed with n = 1 to prove that the link order vlink is transitive.

6. The map [⊥,>] is jointly epic.
Consequently, the witness for f v g is always unique. This is a version of
(PHOA2). Now one can show that C is a preorder-enriched category w.r.t vlink.

228 Chapter 9. A short guide through Synthetic Domain Theory

7. The following diagram is a pushout:

Σ
o

> Σ⊥

Σ⊥
∨
o

h
> Σ× Σ
∨
g

where o is the linkage map for ⊥ v up> and g is the “transitive” linkage map
for 〈⊥,⊥〉 v 〈>,⊥〉 v 〈>,>〉 and h for 〈⊥,⊥〉 v 〈⊥,>〉 v 〈>,>〉.
This is equivalent to the “diamond property” stating that linkage maps are ordered
in the right way, i.e. [x v x′] v [y v y′] if x v y and x′ v y′.

The last three axioms are needed to prove internal completeness in the sense that
C(ω,BA) is isomorphic to the ω-chains w.r.t. the link order in Cvlink(A,B). Finally,
one gets that the Poset-enriched category Cvlink is Cpo-enriched and cartesian closed.
A representation theorem is proved saying that every small domain-theoretic category
D possesses a full and faithfull representation in the category of cpo-s with continuous
functions in the presheaf topos SetD

op

.
Domains are the Eilenberg-Moore categories for the lift-monad. Fixpoints for en-

domaps on those domains can be shown to exist, since the Kleene chain can be inter-
nalized. In loc.cit. there is a hint that stable models fulfill the axiomatization if one
drops Axiom 7.

Moggi proposed the following axiomatic setting (for his computational monads):
Consider a category C with the following requirements: C is a fibred reflection of an
ambient topos E, such that the C⊥ is algebraically compact, lifting is a strong monad,
there is a dominance Σ in C, Bekic’ Lemma and computational induction for Σ-regular
monos are valid. He has recently presented an internalization of his approach in LF
(Logical Framework) [Mog95].

9.8.1 Axiomatizing S-replete objects

Rosolini suggested a way to construct a free F -algebra without referring to the ob-
servational order, v, which plays an essential role in the Smyth&Plotkin-construction
[Ros95]. In his opinion this contradicts the slogan “domains are sets”. As Freyd
put it, “Computer science contradicts mathematics”. The 2-categorical aspect of
Smyth&Plotkin rather seems to follow the motto “domains are posets”. Rosolini’s ax-
iomatization of SDT aims at generalizing the Σ-repletes to arbitrary S-repletes which
means that one cannot make any assumptions like e.g. Phoa’s Principle. Consequently,
one does not get an observational order. Note that the observational preorder is auto-
matically present by the usual second order definition, simply taking functions into S
instead of Σ.

The basic setting here is an elementary topos E with a natural number object N ,
a strong pointed endofunctor L (lifting). Let R be the category of S-replete objects.
Two axioms are stipulated :

9.9. Survey 229

I The strong pointed endofunctor L restricts to R.
Partial evaluation restricts well to domains.

I There exist an initial L-algebra Lω −→ ω and a final L-coalgebra ω −→ Lω.
The canoncial map ω −→ ω is reflected to an isomorphism in R.
Initial algebra and final co-algebra for L are the same in R.

It is easy to compute fixpoints for (L, η)-algebras in R. For general functors it is more
difficult. A criterion is postulated in [Ros95] to ensure that an initial T -algebra is also
terminal T -coalgebra for a functor T . The 2-categorical aspect of Smyth-Plotkin is
mirrored somehow by the fact that the functor and the category it acts on must be
enriched over the intended category of cpos (in this case S-replete objects). Still it
remains to compute the initial T -algebra and for the moment it seems that this can only
be done in some restricted case where the functor is indeed a strong monad. Although
we appreciate a nice, order-free construction, we think that it might not be sufficient
for program verification. The proof of the Sieve of Eratosthenes, presented in Chapter
5, required an additional proof principle on streams, namely induction on the length
of streams. To prove this induction rule, one has to exploit the fact that every stream
is the supremum of a chain of approximations of finite length. In this case, this is
precisely the algebraicity of streams. This can still be expressed in an order-free style
with the help of the copy functional. In order to prove that the predicate repitition free
is sufficiently co-admissible, explicit reasoning with the order had to be performed
because this predicate is not Σ. Eugenio Moggi proposed to define this predicate as an
equalizer (between Σ-cpo-s) which is indeed possible. But it is not clear whether this
can be done with all relevant predicates. If some class of equalizers6 would turn out to
be sufficient, then one could work in a setting where “all (interesting) predicates are
admissible”.

9.9 Survey

Table 9.1 gives a quick survey over the presented approches of SDT (and ADT) and
its most significant properties. The following abbreviations are used to indicate the
genre:

a = axiomatic
c = categorical
e = external
f = formal
i = internal (but often rather sloppy and presented diagramatically)
o = order-free

6between Σ-posets, it is not sufficent to have equalizers between sets

230 Chapter 9. A short guide through Synthetic Domain Theory

(pre-)domain year section literature kind basic frame

σ-domains ‘86 9.2 [Ros86b] i topos
ExPERs ’89 9.3 [FMRS92] e PER
complete Σ-spaces ‘89 9.4 [Pho90] i modest sets
Σ-replete objects ‘90 9.5, 6.1 [Hyl91, Tay91] a,i,(c) (almost a) topos
Σ-cpo-s ‘93 9.6 [RS93b], Ch. 2 a,i,f intuit. h.o.-logic
S-replete objects ‘94 9.8.1 [Ros95, HM95] e,c,a,o elem. topos
well-completes ‘94 9.7, 6.2 [Lon94] e,o any realiz. topos

ADT ‘94 9.8
[Fio94b, FP94]
[Fio94a] et al.

a,c,e,(o)
categories of
partial maps

Table 9.1: Summary of synthetic and axiomatic approaches

11 10 “What I tell you three times is true.”
Lewis Carroll,

The Hunting of the Snark

Conclusions and further research

We have presented a Synthetic Domain Theory, based on a few axioms, that has
been completely formalized in type theory. The theory has been tested by a formal
correctness proof of the Sieve of Eratosthenes and it has been shown to be consistent
by exhibiting a model. This can be seen as a step towards LCF+, i.e. an enhancement
of LCF, which is more expressive and permits the treatmeant of domains as sets.

Working in a type theoretical setting has another advantage. One can express
modules by

∑
-types. On top of the presented core theory, one could imagine a theory

of program modules and modular specifications (Sect. 10.1). Other variants of SDT
should be implemented in the style of Chapter 6 (Sect. 10.2). More case studies should
be carried out to test how far one can get doing denotational semantics in SDT.

Finally, a lot of theoretical questions are still open. Generalizing SDT from Scott
domain theory to stable domain theory seems to be a major research topic. But also
investigations about admissibility seem to be appropriate (Sect. 10.3).

10.1 Σ-cpo-s for modular software development

It is well-known how to specify functions using ∀∃-statements. In predicate logic a
proposition of the form

∀x:N.∃!y:N. P (x, y)

describes a function of type N −→ N. With the help of a sum-type a specification of
a function can then be written as

∑
f :N −→ N. ∀x:N. P (x, f(x)).

231

232 Chapter 10. Conclusions and further research

In type theory such specifications are sometimes called deliverables [BM92, Luo93,
McK92, RS93b]. They are also appropriate for specifications of datatypes. For a
survey on (algebraic) specifications we refer the reader to e.g. [Wir90]. An algebraic
specification for lists over natural numbers might look like the specification below. We
assume that monomorphic specifications for N and the unit type 1 are given.

spec LIST
sort List
cons nil: List

append: N −→ List −→ List
func hd: List−→ N

tl: List−→ List
axioms

hd(append(n, x)) = n
tl(append(n, x)) = x

endspec

Note that this is a loose specification, it does not prescribe the behaviour of hd
and tl for the empty list. Let us assume that these are partial functions, i.e. their
result is undefined whenever no result can be determined by the axioms. There exists,
in fact, a whole theory of partial algebraic specifications (cf. [AC92, BW82]). Such a
specification can be translated into a deliverable, or a type theoretic specification as
follows:

SList =
∑

List:Type(0).
List ×
(N −→ List −→ List) ×
(List −→ N⊥) ×
(List −→ List⊥)

PList = λX :SList.
∀n:N. ∀x:π1(X).

π2.2.2.1(X)(π2.2.1(X)n x) = n ∧
π2.2.2.2(X)(π2.2.1(X)n x) = x ∧
∀P :π1(X)→ Prop. P (π2.1(X)) ∧ (∀n:N. ∀l:π1(X). P (l)⇒ P (π2.2.1(X)n l))
⇒ ∀x:π1(X). P (x)

LIST = (SList, PList)

So the specification LIST is now a pair consisting of a (structure) type and a predicate
of this type, i.e. LIST ∈ SPEC =

∑
X :Type. X −→ Prop. The structure type X

(in our case SList) corresponds to the signature given in the algebraic specification ,
the predicate (PList) corresponds to the axioms. In the axioms we used a shorthand
for nested projections writing πi.j for πj ◦ πi etc. These projections are hard to read
for humans (but not for the machine). This can be remedied by defining “named”
projection functions, e.g. append for π2.2.1 . The last axiom is an induction rule for

10.1. Σ-cpo-s for modular software development 233

lists. It corresponds to the statement that nil and append are constructors, which
means that the algebraic specification is term generated by those constructors.

One could also add the equality as a binary predicate with congruence axioms such
that refinements of specifications by quotients are possible, simply by redefining the
equality predicate.

So far it is not clear what the lifting ()⊥ shall be, it just indicated that we want
to admit a kind of partial functions. We will come back to this soon.

The datatype List belongs to universe Type(0), the universe of small types. We
could also take another universe, depending on the kind of implementations that should
be admitted. For the example above one could think of an inductively defined list type.
The induction axiom would then hold by the generated elimination rule (compare to
N elim in Sect. 7.1.3). Yet, we want to interpret lifted types such that hd and tl are
partial maps. Moreover, inductive definitions are not always sufficient, sometimes it
is more convenient to write recursive programs. Think of the Euclidean algorithm for
the gcc or an interpreter for a functional language. In type theory we cannot program
recursive functions, as everything must be strongly normalizable to ensure that type
checking is decidable. There is only higher-order primitive recursion available. But
coming back to our universe of domains Dom this is not a problem anymore. As we
have seen in the previous chapters, one can code recursive functions in any Σ-domain
via fix. Simply take Dom as the universe for implementations and combine the domain
theoretic reasoning on programs with the idea of deliverables. Of course, elements
of a Σ-domain cannot be evaluated anymore by the normalization calculus of type
theory, so this setting is not intended for performing computations. With Σ-domains
as datatypes we can now define partial functions and we can interpret the target type
of a function by its lifting as in the example above. And even more, if we prefer to
switch to “real” partial functions with Σ-subsets as domains we can do this too as we
have seen in Sect. 3.1.5.

Whereas implementations of specifications in the algebraic datatypes world are
normally obtained by refining a specification until it “corresponds” to an executable
program – which means often that it is executable by a rewriting system – in the
deliverables approach implementations can be described by a type.

IMP = λSP :SPEC.
∑

X :π1(SP). π2(SP)(X)

For any specification SP we have the type of its implementations IMP (SP) consisting
of structures X of appropriate type defined by π1(SP), together with a proof that X
fulfills the axioms, i.e. a proof object of propositional type π2(SP)(X).

This elegant treatment is supported by type theory which allows to express struc-
tures (programs) and propositions (axioms). Even module construction operators
[SW90, Wir86] can be described in the deliverables framework [RS93b] as well as
parameterized specifications or modules. For example, in the deliverable LIST the
type N could be parameterized to obtain polymorphic lists simply by abstracting over
N. The parameter is called Y .

SList = λY :Dom.∑
Listc : Dom.

234 Chapter 10. Conclusions and further research

Listc ×
(Y c −→ Listc −→ Listc) ×
(Listc −→ Y⊥

c) ×
(Listc −→ List⊥c)

PList = λY :Dom. λX :SList(Y).
∀n:Y c. ∀x:π1(X).

π2.2.2.1(X)(π2.2.1(X)n x) = upn ∧
π2.2.2.2(X)(π2.2.1(X)n x) = up x ∧
∀P :π1(X) −→ Prop. adm(P) ∧ P (π2.1(X))∧

(∀n:Y c. ∀l:π1(X). P (l)⇒ P (π2.2.1(X)n l))⇒ ∀x:π1(X). P (x)

LIST = λY :Dom. (SList(Y), PList(Y))

The operation c – here written shortly as superscript – is necessary in the type theoretic
formulation to change an element of the universe Dom into its carrier living in Set, i.e.
c , λD:Dom. π1(D). Remember, that the sub-universes of Set are coded by sum-types.

This time we have used the universe of Σ-domains Dom also for the formal param-
eter Y and the corresponding lifting ()⊥. As Dom is closed under arbitrary products,
we can build domain theoretic implementations for such deliverables. Induction must
be restricted to admissible predicates.

In the same spirit one can also abstract over program modules or specifications.
The incorporation of domain theory via the Σ-domains into type theory provides an
excellent playground for investigations of formal program verification and development.
Because of the enormous flexibility of deliverables it seems that different development
methodologies can be simulated as well as any kind of “denotational semantics”. More
research and case studies are to be done on this subject.

10.2 Implementation issues

We have implemented the Σ-cpo approach for SDT in Lego. Of course, there is still
much left to do. Future work on implementations should include the following tasks.

Try to build so-called “pragmatic versions” of the presented theory, axiomatizing
it (with many high-level axioms) instead of implementing it (based on few low-level
axioms). Certain subtype relations between the different universes could be eventually
built into the type checker to avoid boring type coercions. Additionally, the syntax
would become lighter. The presentation may be done in a deliverable style. The
presented theory could then serve as an implementation. Working in such a modular
style bears also some practical advantages, combined with a conceptual shift. Instead
of defining objects and performing proofs about them by normalization, one declares
objects with certain equalities and uses these equality laws in the proofs. Consequently
normalization for terms is reduced which leads to a better performance of the Lego
code.1 Additionally, one gets a modular system with respect to implementations.

1This corresponds somewhat to the freezing of terms in Lego.

10.3. More research about SDT and ADT 235

Correct implementations of single modules can be exchanged without affecting the
behaviour of the whole system.

Implement Σ-replete and well-complete objects based on the outline given in Chap-
ter 6. Find out whether they are easier to treat as Σ-domains. For proofs of closure
properties this is rather obvious as most of those properties follow easily from orthog-
onality. At a certain abstraction level one should not notice any difference to other
implementations of domains. This supports the idea of defining a deliverable (specifi-
cation) of (Synthetic) Domain Theory. We have already tried to do the inverse limit
construction in an abstract way, formulating necessary requirements on categories such
that the constructions goes through. If not only the category Cpo of Σ-cpo-s satisfies
these axioms, but also the Σ-replete and well-complete objects, one could save the
cumbersome work of redoing the inverse limit construction all the time.

Putting the first two items together may give rise to a SDT-theory which is “pa-
rameterized by its core theory”, i.e. which can be used independently of the choice of
Σ-cpo-s, Σ-replete or well complete objects as the notion of cpo.

Implement co-induction or, even better, Pitts’ general approach [Pit93a, Pit93b]
using relational structures. Find out whether it can substitute pragmatically the LCF-
like fixpoint induction where admissibility is required.

Implement denotational semantics of a toy language in Synthetic Domain Theory.
Prove interesting properties like adequacy or full abstractness. Therefore, it is also
necessary to provide means for the solutions of mutually recursive domain equations
(using Bekic’ Lemma).

Implement a toy system in an EML like manner [ST86, KST94]. Develop program
modules w.r.t. specification modules based on Σ-domains (or Σ-repletes).

10.3 More research about SDT and ADT

On the theoretical side several problems have not been brought to a conclusive answer
yet. One of the challenging subjects is the question whether one can define a Synthetic
Domain Theory which admits also stable models. The well-completes of the Edinburgh
group seems to be a step in that direction. Rosolini approaches this goal in purely
categorical terms refining the theory of S-replete objects. A crucial point here is
that recursive domains are not computed via the inverse limit construction but using
Freyd’s ideas of free F -algebras. Also Fiore and Plotkin work on this subject in a
purely axiomatic setting. Further research will show whether the results obtained
there allow good models. The “order-free” approach still has to prove itself adequate
for program verification. This is not obvious since without order, fixpoints are not
known to be least fixpoints which seems to be crucial for proofs by Park or fixpoint
induction. Thus [Lon94] introduces the notion of order a posteriori in order to interpret
PCF appropriately.

One has to take a closer look at models, too. We have already addressed in Sec-
tion 5.4.3 the open question whether union is admissible in the standard model. Models
of SDT are of general interest as they do not seem to abound. Modified realizability
models might be promising candidates as they have a rich structure, where Markov’s

236 Chapter 10. Conclusions and further research

Principle does not hold. They might provide a nice model for the theory of Σ-replete
objects.

Another solution to the admissibility problem is to find a good class of equalizers
(in the class of predomains) with nice closure properties that contains all relevant
predicates for verification. Since such equalizers are admissible, we could then somehow
add the slogan “all (such) predicates are continuous (i.e. admissible)” to the meanwhile
familiar “all functions are continuous”.

Power domains have not been considered in this thesis at all. They are important
for non-deterministic programs. Work in this direction has been done by Phoa and
Taylor.

Another interesting aspect that could not be touched in this thesis is the use of
Stone duality (as e.g. for Rosolini’s σ-sets). Domains can be regarded as topological
spaces (Scott-topology). An adjunction between spaces and a category of frames gives
rise to the subcategory of sober spaces. The category of frames consists of complete
lattices with N-indexed joins and binary meets as objects – meets must distribute over
N-indexed joins – and maps preserving meets and N-indexed joins as morphisms. The
functors of the adjunction can be interpreted to map a space into its lattice of open
sets and a locale into the space of points it describes, respectively. Taylor suggested
to consider the algebras for the continuation monad ΣΣ as the adequate category of
frames and tried to prove that the Σ-replete objects are in fact the sober objects w.r.t.
this adjunction. This could only be proved, however, under some special assumptions.
At present the outcome is inconclusive.

We have demonstrated that Synthetic Domain Theory provides a nice logic where
domains are special sets and all functions are continuous. We have also shown that in
our logic of domains domains fit elegantly into the typing system which is important for
a nice handling in a formal system. It remains to be seen whether these ideas support
easier (in whatsoever sense) verification proofs of recursive functions than LCF. Is
there a methodology of program verification different from LCF-style? At least we
know that we don’t have to bother about continuity, as it comes for free. Up to now,
we have demonstrated that a relevant part of classical domain theory can be gracefully
done in SDT. The verification of the Sieve of Eratosthenes has shown that LCF-like
proofs can be completely formalized in SDT including the proofs of admissibility. The
programme is to investigate how far one can push the boundaries of the “domains as
sets” paradigm without losing fixpoints of recursive functions and domain equations.

11 A
The theory as Lego-code

This Appendix contains the Lego-code of the theory of Σ-cpo-s described in the first
chapters of this thesis, i.e. all definitions and proved propositions, yet without proofs,
because of lack of space.

A.1 logic.l

Module logic;

Logic;

(* GENERAL DEFINITIONS OF "almost"-TOPOS LOGIC *)

(* SOME NON-LOGICAL AXIOMS *)

[proof_irrelevance: {P|Prop}{p,q:P} Q p q];

[surj_pairing : {X|Type}{A|X->Type} {u:<x:X>A x} Q (u.1, u.2:<x:X>A x) u];

ExU == [X| Type] [P : X -> Prop]

and (Ex P) ({x,y : X} (P x) -> (P y) -> Q x y) ;

(* Extensionality *)

[A:Type][D:A->Type]

$[EXT_dep: { f,g: {a:A}D a } (({x:A} (Q (f x)(g x))) -> Q f g)];
Discharge A;

(* Axiom of Unique Choice - dependent *)

[A|Type][C|A->Type][P:{a:A}(C a)->Prop]

237

238 Appendix A. The theory as Lego-code

$[ACu_dep : ({x:A} (ExU (P x)))->(<f:{a:A}C a> {a:A} P a (f a))];

Discharge A;

(* END OF AXIOMS *)

EXT == [A,C|Type][f,g: A->C] EXT_dep A ([_:A]C) f g ;

ACu == [A,C|Type][P:A->C->Prop] ACu_dep|A|([_:A]C) P;

(* proof values *)

ff == absurd;

tt == not (absurd);

(* General Lemmas *)

[Prf_irr : {X|Type}{P:X->Prop}{p,q:<x:X>P x} (Q p.1 q.1) -> Q p q];

[Prf_strongEx : {X|Type}{P:X->Prop} (<x:X>P x) -> Ex [x:X] P x];

[Prf_CongNOT : {A,B|Prop}(iff A B) -> iff (not A)(not B)];

[Prf_CongOR : {A,B,C,D|Prop}(iff A C) -> (iff B D) -> iff (or A B)(or C D)];

[Prf_CongAND : {A,B,C,D|Prop} (iff A C)->(iff B D)-> iff (and A B)(and C D)];

[Prf_CongImpOR : {A,B,C,D|Prop} (A-> C)->(B-> D)->(or A B)->(or C D)];

[Prf_CongImpORSwap : {A,B,C,D|Prop} (A-> C)->(B-> D)->(or A B)->(or D C)];

[Prf_congIMP_iff : {A,A’,B,B’:Prop} (iff A A’) -> (iff B B’) -> iff (A->B)(A’->B’)];

dnclo == [p: Prop] (not(not(p))) -> p;

dnify == [q:Prop][x:q][y:not q] y x :{q:Prop}q-> not (not q);

[Prf_iff_Refl : {A|Prop} iff A A];

[Prf_iff_Trans : {B,A,C|Prop}(iff A B) -> (iff B C) -> iff A C];

[Prf_iff_Symm : {A,B|Prop} (iff A B)-> iff B A];

[Prf_notEx : {X|Type}{P|X->Prop} iff (not (Ex [x:X] P x)) {x:X} not (P x)];

[Prf_neg_disch : {A,B|Prop}(not (and A B))-> (B -> (not A))];

[Prf_and_not_lem : {A,B|Prop}(and A (not (not B)))->not(not(and A B))];

[Prf_forall_equiv : {X,Y|Type} {P:X->Prop}{R:Y->Prop}
(and ({y:Y} Ex [x:X] (P x)-> R y)

({x:X} Ex [y:Y] (R y)-> P x)) -> iff ({x:X} P x)({y:Y} R y)];

[Prf_iff_switch_not : {A,B|Prop}(dnclo A)->(iff (not A) B)->(iff A (not B))];

[Prf_negative_impl : {A,B|Prop} (dnclo A)-> iff (not(A->B))(and A (not B))];

[Prf_neg_forall : {X|Type}{P,R:X->Prop}

({x:X}dnclo (P x))->({x:X} iff (P x)(R x))->

iff (not ({x:X}P x)) (not(not(Ex [x:X] not (R x))))] ;

[Prf_iff_not: {A,B|Prop}(dnclo A)->(dnclo B)->(iff (not A)(not B))->iff A B];

[Prf_neg_exist : {X|Type}{P,R:X->Prop} ({x:X} iff(R x) (not (P x)))->

iff (not (Ex [x:X] P x)) ({x:X} R x)] ;

[Prf_Q_trans_neg: {A|Type}{x,y,a:A} (not (Q x y))->(Q a x)->not (Q a y)];

A.1. logic.l 239

[Prf_DeMorgan_positive: {p,q:Prop} (not(or p q))->and (not p)(not q)];

[Prf_notnot_or: {p,q:Prop} (not(not(or p q)))->(not p)->(not(not q))];

(* Negation , Double Negation Lemmata *)

inv == [A,B|Prop] [p:A->B] [q:not B] [a:A] q (p a) :

{A,B|Prop} (A->B) -> (not B)->(not A);

dinv == [A,B|Prop] [p:A->B] [q:not(not A)][r:not B]

q((inv p) r) : {A,B|Prop} (A->B) -> (not(not A))-> not(not B);

hi == [A,B|Prop] [a:A] inv ([b:not B][k:A->B] b (k a)) :
{A,B|Prop} A-> (not(not (A-> B)))-> not(not B);

[Prf_not3 : {A|Prop} (not(not(not A)))->(not A)];

[Prf_DnclImp : {p,q:Prop} (dnclo q) -> dnclo(p->q)];

[Prf_DnclAnd : {p,q:Prop} (dnclo p) -> (dnclo q) -> dnclo (and p q)];

[Prf_DnclForall : {X|Type}{P:X->Prop} ({x:X} dnclo (P x)) -> dnclo ({x:X} P x)];

[Prf_DnclIff : {p,q:Prop}(dnclo p)->(dnclo q)->(dnclo (iff p q))];

[Prf_DncloNOT : {P:Prop} dnclo (not P)];

[Prf_dnclo_closed_equiv : {A,B|Prop} (dnclo A)->(iff A B)->dnclo B];

(* isos and mono s *)

mono == [X,Y|Type][m:X->Y] {x,y:X} (Q (m x)(m y)) -> Q x y;

epi == [X,Y|Type][e:X->Y]{Z:Type}{f,g:Y->Z} (Q (compose f e)(compose g e))->Q f g;

iso == [X,Y|Type][i:X->Y]

Ex [j:Y->X] and (Q (compose j i) (I|X)) (Q (compose i j) (I|Y));

[Prf_iso_mono : {X,Y|Type}{i:X->Y} (iso i)->mono i];

[Prf_iso_epi : {A,B|Type}{i:A->B}(iso i)->{b:B}Ex [a:A] Q (i a) b];

[Prf_prove_iso : {X,Y|Type}{i:X->Y} ({y:Y} ExU [x:X] Q (i x) y)-> iso i];

[Prf_iso_swap : {A,B|Type}{i:A->B}{j:B->A}

(and (Q (compose j i) (I|A)) (Q (compose i j) (I|B))) -> (iso j)];

(* dnclo *)

mapToPred == [X,Y|Type][m:X->Y] [y:Y] Ex [x:X] Q (m x) y;

mapDnclo == [X,Y|Type][m:X->Y] {y:Y} dnclo (mapToPred m y);

dnclo_mono == [X,Y|Type][m:X->Y] and (mono m) (mapDnclo m);

[Prf_iso_dnclo : {A,B|Type}{i:A->B}(iso i)->dnclo_mono i];

[Prf_conditional_exists:

{X,Y,Z|Type}{R:X->Y->Prop} ({x:X}{y:Y}dnclo (R x y))->
{P:X->Prop}{m:Y->Z} (dnclo_mono m)->

(Ex [t:X->Z] {x:X} and((P x)-> (Ex ([y:Y]Q (m y) (t x))))

((P x)->{y:Y}(Q (m y) (t x))-> R x y)) ->

({x:X}(not(not(P x)))-> Ex[y:Y] R x y)];

[Prf_DnCL : {A|Prop} not (not (or A (not A)))];

240 Appendix A. The theory as Lego-code

[Prf_Dn_Ind : {X|Type}{P,A:X->Prop}

({x:X} dnclo (P x))->

({x:X} not (not (A x))) ->

{x:X} ((A x)->P x) -> P x];

[Dncl_case_simpl : {P,A:Prop}(dnclo P)->(not (not A)) -> (A->P) -> P];

(* Identity Types *)

[Id : {A | Type} {x , y : A}Prop] ;

[r : {A | Type} {x : A} Id x x] ;

[J : {A | Type} {C : {x , y : A} {z : Id x y} Type}

{d : {x :A} C x x (r x) } {a , b : A} {c : Id a b}
C a b c] ;

[[A :Type] [C : {x , y : A} {z : Id x y} Type][d : {x :A} C x x (r x)] [a :A]

J C d a a (r a) ==> d a] ;

[Prf_symmId: {A:Type}{x,y:A}(Id x y)-> Id y x];

[Prf_transId: {A:Type}{x,y,z:A}(Id x y)-> (Id y z) -> Id x z];

subst == [A :Type] [C : A -> Type] [x : A][d : C x] [y : A] [z : Id x y]
J ([x,y : A] [z : Id x y] (C x) -> (C y)) ([x:A] [v : C x] v) x y z d ;

[Prf_substId: {A|Type}{a,b|A}(Id a b)->{P:A->Type}(P a)->P b];

[Prf_Id_Q_Equiv: {A|Type}{x,y:A} iff (Id x y) (Q x y)];

Id_Axiom == [A|Type][x,y:A] snd (Prf_Id_Q_Equiv x y);

[UniqueIdProof : {A:Type}{x:A}{c:Id x x} Id c (r x)];

[Prf_Id_Prf_irr: {X|Type}{x,y:X}{q,q’:Id x y} Q q q’];

Id_resp == [X,Y|Type][f:X->Y] [x,y:X][p:Id x y]

J ([x,y:X][Z:Id x y] Id (f x)(f y))([x:X]r (f x)) x y p;

[Prf_prove_irrelevance_dep :
{X,Y|Type}{P:X->Prop}{f:{x:X}(P x)->Y}

{x,y:X}{o: Id x y}{q:P x}{q’: P y} Q (f x q)(f y q’)];

[Prf_Id_prove_irrelevance_dep :

{X,Y,Z|Type}{n,m:X->Z}{f:{x:X}(Id (n x)(m x))->Y}
{x,y:X}{o: Id x y}{q:Id (n x)(m x)}{q’: Id (n y)(m y)} Q (f x q)(f y q’)];

[Prf_LemmId : {X,Y|Type}{C:Y->Type}{a,b:X->Y}

{P:{x:X}(C (b x))->Prop}{e:{x:X}C(a x)}{x,y:X}

{q: Q x y}{pa: Id (a x)(b x)}{pr: Id (a y)(b y)}
(P x (subst Y C (a x)(e x)(b x) pa))-> P y (subst Y C (a y)(e y)(b y) pr)];

[Prf_substlem : {X|Type}{C: X -> Type}

{x : X}{y : X}{z : Id x y}{a : C x}{s:X->X}{f: (C x)->(C (s x))}

Q (subst X C (s x) (f a) (s y) (Id_resp s x y z))
((subst X ([x:X](C x)-> (C (s x))) x f y z)(subst X C x a y z))];

[Prf_subst_elim : {X|Type}{C|X->Type} {x:X}{a:{x:X}C x}{y:X}{z:Id x y}

Q (subst X C x (a x) y z) (a y)];

[Prf_comp_subst : {X|Type}{C|X->Type}{x,y,z:X}{ps: Id y z}{a: C x}{pr:Id x y}

Q (subst X C y (subst X C x a y pr) z ps)

(subst X C x a z (Prf_transId X x y z pr ps))];

[Prf_subst_resp : {X|Type}{C,D|X->Type}{f:{x:X}(C x)->D x}{a,b:X}{z: Id a b} {p: C a}
Q (f b (subst X C a p b z))(subst X D a (f a p) b z)];

A.2. nat.l 241

[Prf_ext_dep_sum: {X|Type}{A|X->Type} {x,y:<a:X>A a} {p:Q x.1 y.1}

(Q x.2 (subst X A y.1 y.2 x.1 (snd (Prf_Id_Q_Equiv y.1 x.1) (Q_sym p)))) ->Q x y];

A.2 nat.l
Module nat Import logic;

(* Bool *)

[TYPE = Type];

Inductive [B:Set] Constructors [true:B][false:B];

bToProp == B_elim ([_:B]Prop) tt ff;

if_then_else == [A|Type] B_elim ([_:B]A->A->A) ([t:A][e:A]t) ([t:A][e:A]e);

[Prf_if_then_else_true : {A:Type} {t,e:A} Q (if_then_else true t e) t];

[Prf_if_then_else_false : {A:Type} {t,e:A} Q (if_then_else false t e) e];

andB == B_elim ([_:B]B->B) ([b:B]b) ([b:B]false);

orB == B_elim ([_:B]B->B) ([b:B]true) ([b:B]b);

notB == B_elim ([_:B]B) false true;

[Prf_B_exhaustion : {b:B} or (Q b true) (Q b false)];

[Prf_not_Q_true_false : not (Q true false)];

[Prf_not_bToProp: {b:B} iff (not (bToProp b)) (bToProp (notB b))];

[Prf_or_bToProp: {x,y:B} iff (bToProp (orB x y))(or (bToProp x)(bToProp y))];

[Prf_and_bToProp : {x,y:B} iff (bToProp (andB x y))(and (bToProp x)(bToProp y))];

(* NATURAL NUMBERS *)

Inductive [N:Set] Constructors [zero:N][succ:N->N];

[pred [n:N] = N_elim ([_:N]N) zero ([x,_:N]x) n : N] ;

iszero == N_elim ([_:N]B) true ([_:N][_:B]false) ;

leBool == N_elim ([_:N]N->B)

([_:N] true)

([_:N][len:N->B][m:N] if_then_else (iszero m) false (len (pred m)));

lessBool ==[n,m:N] andB (leBool n m)(notB (leBool m n));

eqBool == [n,m:N] andB (leBool n m)(leBool m n);

[plus [m,n:N] = N_elim ([_:N]N) m ([_,x:N]succ x) n : N] ;

[minus [m,n:N] = N_elim ([_:N]N) m ([_,x:N] pred x) n : N] ;

[le [n,m:N] = Ex [k:N] Q (plus n k) m : Prop] ;

[less [n,m:N] = and (le n m) (not (Q m n)) : Prop] ;

(* Properties of Natural Numbers*)

[zero_or_succ : {n:N} or (Q n zero) (Ex [k:N] Q n (succ k))];

242 Appendix A. The theory as Lego-code

[peano4 : {n:N} not (Q zero (succ n))];

[peano3 : {n,m:N} (Q (succ n) (succ m)) -> Q n m];

[notSucc : {n:N} not (Q n (succ n))];

[plusAss : {m,n,l:N} Q (plus m (plus n l)) (plus (plus m n) l)];

[lemmaPlus : {m,n:N} Q (plus (succ m) n) (plus m (succ n))];

[plusComm : {m,n:N} Q (plus m n) (plus n m)];

[zeroUnit : {x,k:N} (Q (plus x k) x) -> Q k zero];

[plusStrict : {m,n:N} (Q (plus m n) zero) -> Q n zero];

(* some properties of le and less *)

[lePred: {m:N} le (pred m) m];

[Prf_less_comp: {k,m,n:N} (le k m)->(less m n)->(less k n)];

[leAntiSym : {m,n:N} (le m n) -> (le n m) -> Q m n];

[leTrans : {m,n,l:N} (le m n) -> (le n l) -> le m l];

[lessTrans : {m,n,l:N} (less m n) -> (less n l) -> less m l];

[aux1 : {m,n:N} (le m n) -> (not (Q m (succ n)))];

[less0 : {n:N} not (less n zero)];

[less_not_refl: {n:N} not (less n n)];

[lemma1: {m,n:N} iff (less m n) (Ex [k:N] and (Q (plus m k) n) (not (Q k zero)))];

[Prf_lessSucc : {n:N} less n (succ n)];

[Prf_less_one : {m:N} (less m (succ zero)) -> Q m zero];

[Prf_less0X : {x:N} less zero (succ x)];

[Prf_less_pred : {m,x:N} (less (pred m) x)-> less m (succ x)];

[succ_preserves_le : {i,j:N} (le i j) -> le (succ i) (succ j)];

[pred_preserves_le : {i,j:N} (le i j) -> le (pred i) (pred j)];

[Prf_less_le_succ: {m,n:N} (less m n)->(le m (succ n))];

[succ_preserves_less : {x,y:N} (less x y) -> less (succ x) (succ y)];

[pred_preserves_less_succ :{m,n:N} (less (succ m)(succ n))-> less m n];

[less_aux :{i,j:N} (less i (succ j)) -> or (Q i j) (less i j)];

[not_equal_succ : {i:N} not (Q (succ i) i)];

[less_pred : {n,m:N} (less n (pred m)) -> less n m];

[Prf_le0 : {n:N} not (le (succ n) zero)];

[Prf_le0X : {n:N} le zero (succ n)];

[Prf_le0nX : {n:N} le zero n];

[Prf_less_and_le : {n,m:N} iff (not (less n m)) (le m n)];

A.2. nat.l 243

[Prf_case_less : {m,n:N} or (less m n)(not (less m n))];

[le_plus : {n,k:N} le n (plus n k)];

[le_refl : {n:N} le n n];

[Prf_less_succ_le : {m,n:N} (less m (succ n))->(le m n)];

[Prf_plus_mon_le : {n,m,k:N} (le n m)-> le (plus n k)(plus m k)];

(* double induction principle *)

[doubleInduct: {C : N->N->Prop}
(C zero zero) ->

({y:N} (C zero y) -> C zero (succ y)) ->

({x:N} ({y:N} C x y) -> C (succ x) zero) ->

({x:N} ({y:N} C x y) -> {y:N} (C (succ x) y) -> C (succ x) (succ y)) ->

{x,y:N} C x y];

(* Segment Induction *)

[segmInduct : {P : N -> Prop} {m:N}

(and (P m) ({i:N} (le i (pred m)) -> P i)) -> {i:N} (le i m) -> P i] ;

(* course value induction *)

[g_ind : {P|N->Prop} ({n:N} ({m:N} (less m n)->P m)-> P n)-> {n:N} P n];

[mult [n:N] = N_elim ([_:N] N) zero ([m:N] [x:N] plus x n)];

[distrib : {n,m,k:N} Q (mult (plus n m) k) (plus (mult n k) (mult m k))];

[zero_annih {n:N} Q (mult zero n) zero];

[one_neutral : {n:N} Q (mult (succ zero) n) n];

[multComm : {n,m:N} Q (mult n m) (mult m n)];

[sum_zero_lemma : {n,m:N} (Q (plus n m) zero) -> and (Q n zero) (Q m zero)];

[Prf_mult_succ: {n,m:N} Q (mult n (succ m)) (plus (mult n m) n)];

[mult_Assoc: {m,n,k:N} Q (mult(mult m n) k) (mult m (mult n k))];

[Prf_less_ex: {n,m:N} (less n m)->Ex [k:N]Q(plus n (succ k)) m];

[eqN [n,m:N] = plus (minus n m) (minus n m)] ;

[condN [n,m1,m2:N] = N_elim ([_:N] N) m1 ([_,_:N] m2) n];

[quot = N_elim ([_:N] N->N)

([_:N] zero)

([n:N] [f:N->N] [m:N]

condN (minus (mult m (succ (f m))) (succ n))
(succ (f m))

(f m))] ;

[rem [n,m:N] = minus n (mult m (quot n m))];

[one = succ zero] [two = succ one] [three = succ two] [four = succ three]

[five = succ four] [six = succ five] [seven = succ six] [eight = succ seven]

[nine = plus six three] [ten = plus five five];

[lemaux1 : {n,m:N}
Q (quot (succ n) m)

(condN (minus (mult m (succ (quot n m))) (succ n))

244 Appendix A. The theory as Lego-code

(succ (quot n m))

(quot n m))];

[lemaux2 : {n,m:N} (Q (minus (mult m (succ (quot n m))) (succ n)) zero)
-> Q (quot (succ n) m) (succ (quot n m))];

[lemaux3 : {n,m:N}

(Ex [k:N] (Q (minus (mult m (succ (quot n m))) (succ n)) (succ k)))

-> Q (quot (succ n) m) (quot n m)];

[ll1 : {x,y:N} Q (minus x (succ y)) (minus (pred x) y)];

[ll2 : {x,y:N} Q (minus (succ x) (succ y)) (minus x y)];

[ll3 : {x:N} Q (minus x x) zero];

[ll4 : {x:N} Q (minus zero x) zero];

[lemaux5 : {n,m,k:N} (Q (minus n m) (succ k)) -> Q (plus m (succ k)) n];

[lemma6 : {n,m:N} (Q (minus n m) zero) -> le n m];

[lemaux4 :

{n,m,k:N} (le (minus n m) k) -> le n (plus m k)];

[quot_corr_prf : {n,m:N}

and (le (mult (succ m) (quot n (succ m))) n)

(less n (mult (succ m) (succ (quot n (succ m)))))]

[Prf_zero_min_le : {n:N} (le n zero) -> Q n zero];

[Prf_dedid_Q : {n,m:N} or (Q n m)(not (Q n m))];

[not_not_Q : {x,y:N} (not(not (Q x y)))->Q x y];

[Prf_ll5: {n :N} Q (succ (minus n n)) (minus (succ n) n)];

[Prf_ll6 : {n,m :N} (le n m)->Q (succ (minus m n)) (minus (succ m) n)];

[Prf_case_not_less : {n,m:N}(not (less n m))->or (not (less n (succ m)))(Q n m)] ;

[ll7: {n,k:N} Q (minus (plus n k) n) k];

[Prf_dnclo_le : {n,m:N}(not(not (le n m)))->le n m];

[Prf_dnclo_less : {n,m:N}(not(not (less n m)))->less n m];

[Prf_plusMinus : {n,m:N}(le m n)->Q (plus m (minus n m)) n];

[Prf_plusMinusN : {n,m:N}(not (le n m))->Q (plus m (minus n m)) n];

[Prf_case_le : {n,m:N} or (le n m)(not (le n m))];

[Prf_le_succ2 : {n,m:N}(le n m)->(le n (succ m))];

[Prf_not_le_succ2 : {n,m:N}(not (le n m))->(not (le (succ n) m))];

[Prf_not_le_analysis : {n,m:N}(not (le n m))->

or (not (le n (succ m)))(Q n (succ m))];

[Prf_le_swap : {n,m:N} (not (le n m))->(le m n)];

[Prf_plus_inj: {k,n,m:N} (Q (plus k n)(plus k m))->Q n m];

[Prf_less_mult: {k,m,n:N}(less k m)-> less (mult (succ n) k) (mult (succ n) m)];

A.3. cats.l 245

A.3 cats.l

Module cats Import logic;

Ca1 [X:Type(0)][Hom: X->X->Set][o: {A,B,C|X} (Hom B C)->(Hom A B)->Hom A C]

== <id: {A|X} Hom A A>
and3 ({A,B|X}{f:Hom A B} Q (o (id|B) f) f)

({A,B|X}{f:Hom A B} Q (o f (id|A)) f)

({A,B,C,D|X}{h:Hom A B}{g:Hom B C}{f: Hom C D}

Q (o (o f g) h) (o f (o g h)));

Ca2 [X:Type(0)][Hom: X->X->Set] ==

< o: {A,B,C|X} (Hom B C)->(Hom A B)->Hom A C> Ca1 X Hom o;

Ca3 [X:Type(0)] == <Hom: X->X->Set> Ca2 X Hom;

Cat == <X:Type(0)> Ca3 X ;

(* ie. the Cat1/2/3’s are necessary for type casting with sums *)

ob == [C:Cat] C.1;
hom == [C:Cat] C.2.1;

o == [C:Cat] C.2.2.1;

id == [C:Cat] C.2.2.2.1;

makeCat ==
[X:Type(0)][Hom: X->X->Set][o: {A,B,C|X} (Hom B C)->(Hom A B)->Hom A C]

[id: {A|X} Hom A A]

[p : and3 ({A,B|X}{f:Hom A B} Q (o (id|B) f) f)

({A,B|X}{f:Hom A B} Q (o f (id|A)) f)

({A,B,C,D|X}{h:Hom A B}{g:Hom B C}{f: Hom C D}
Q (o (o f g) h) (o f (o g h)))]

(X,(Hom, (o,(id,p :Ca1 X Hom o)

:Ca2 X Hom)

:Ca3 X) :Cat) ;

IsFunc == [C,D:Cat][obj:C.ob->C.ob->D.ob]
[mor: {a,b,c,d|C.ob}(C.hom c a)->(C.hom b d)->D.hom (obj a b) (obj c d)]

and ({a,b|C.ob} Q (mor (C.id|a) (C.id|b)) (D.id|(obj a b)))

({a,b,c,d,x,y|C.ob}

{f:C.hom c a}{g:C.hom b d}{h:C.hom x c}{k:C.hom d y}

Q (D.o (mor h k) (mor f g)) (mor (C.o f h)(C.o k g)));

Functor [C,D:Cat] ==

<obj:C.ob->C.ob->D.ob>

<mor: {a,b,c,d|C.ob}(C.hom c a)->(C.hom b d)->D.hom (obj a b) (obj c d)>

IsFunc C D obj mor;

makeFunc == [C,D|Cat][obj:C.ob->C.ob->D.ob]

[mor: {a,b,c,d|C.ob}(C.hom c a)->(C.hom b d)->D.hom (obj a b) (obj c d)]

[prf:IsFunc C D obj mor]

(obj,(mor,prf:<mor: {a,b,c,d|C.ob}(C.hom c a)->(C.hom b d)->D.hom (obj a b)
(obj c d)>IsFunc C D obj mor) :(Functor C D));

(* covariant functors *)

Is_coFunctor ==
[C,D:Cat][obj:C.ob->D.ob][mor: {a,b|C.ob}(C.hom a b)->D.hom (obj a) (obj b)]

and ({a|C.ob} Q (mor (C.id|a)) (D.id|(obj a)))

({a,b,c|C.ob}{f:C.hom b c}{g:C.hom a b}

Q (D.o (mor f) (mor g)) (mor (C.o f g)));

co_Functor [C,D:Cat] ==

<obj:C.ob->D.ob><mor: {a,b|C.ob}(C.hom a b)->D.hom (obj a) (obj b)>

Is_coFunctor C D obj mor;

make_coFunc == [C,D|Cat] [obj:C.ob->D.ob]

[mor: {a,b|C.ob}(C.hom a b)->D.hom (obj a) (obj b)]

246 Appendix A. The theory as Lego-code

[laws:Is_coFunctor C D obj mor]

((obj,(mor,laws:<mor: {a,b|C.ob}(C.hom a b)->D.hom (obj a) (obj b)>

Is_coFunctor C D obj mor)) : (co_Functor C D));

[Prf_co_2_func : {C,D|Cat}{Fco : co_Functor C D}

IsFunc C D ([_,X:C.ob] Fco.1 X)

([a,b,c,d|C.ob][f:(hom C c a)][g:(hom C b d)] Fco.2.1 g)];

coFunc_2_Func == [C,D|Cat][Fco : co_Functor C D]

makeFunc|C|D ([_,X:C.ob] Fco.1 X)
([a,b,c,d|C.ob][f:(hom C c a)][g:(hom C b d)] Fco.2.1 g) (Prf_co_2_func Fco);

isopair [C|Cat][A,B|C.ob][f:C.hom A B][g:C.hom B A] ==

and (Q (C.o f g) (C.id|B)) (Q (C.o g f) (C.id|A));

[Prf_cat_mono : {C|Cat}{X,Y|C.ob}{f:C.hom X Y}{g:C.hom Y X}(isopair f g) ->

and ({A:C.ob}{h,k:C.hom A X} (Q (C.o f h) (C.o f k))-> Q h k)

({A:C.ob}{h,k:C.hom A Y} (Q (C.o g h) (C.o g k))-> Q h k)];

[Prf_cat_epi : {C|Cat}{X,Y|C.ob}{f:C.hom X Y}{g:C.hom Y X}(isopair f g) ->
and ({A:C.ob}{h,k:C.hom Y A} (Q (C.o h f) (C.o k f))-> Q h k)

({A:C.ob}{h,k:C.hom X A} (Q (C.o h g) (C.o k g))-> Q h k)];

initial [C:Cat] == [i:C.ob] {x:C.ob} ExU ([f:C.hom i x] tt);

terminal [C:Cat] == [t:C.ob] {x:C.ob} ExU ([f:C.hom x t] tt);

A.4 axioms.l
Module axioms Import nat;

(* SDT Axioms *)

(* Sigma *)

[Sig:Set];

[top,bot: Sig];

def == [x: Sig] Q x top;

[Prf_botF : not (def bot)] ;

(* equality on Sig *)

[extSig : {p,q:Sig} iff (iff (def p)(def q)) (Q p q)];

(* the operations on Sig *)

[And: Sig->Sig->Sig];

[Or: Sig->Sig->Sig];

[Join: (N->Sig) -> Sig];

[or_pr : {x,y:Sig} iff (def (Or x y)) (or (def x) (def y))] ;

[and_pr : {x,y:Sig} iff (def (And x y)) (and (def x) (def y))] ;

[join_pr : {p:N->Sig} iff (def (Join p))(Ex ([n:N] def (p n)))] ;

(* PHOAs Axioms *)

[PHOA1 : {f:Sig->Sig} (def (f bot)) -> def (f top)];

[PHOA2 : {p:Sig->Sig} {q:Sig->Sig}(Q (p bot) (q bot)) -> (Q (p top) (q top)) -> (Q p q)]

[PHOA3 : {p,q:Sig} ((def p)->(def q)) -> Ex ([f:Sig->Sig] and (Q (f bot) p)(Q (f top) q))];

A.5. sig.l 247

(* SCOTTs Axiom *)

bToSig == B_elim ([_:B]Sig) top bot;

step == [n,m:N] bToSig (lessBool m n);

[SCOTT : {H:(N->Sig)->Sig} (def (H ([n:N]top))) -> Ex ([n:N] def (H (step n)))];

(* Markov’s Principle *)

[Markov : {p:Sig} dnclo(def(p))];

A.5 sig.l
Module sig Import axioms ;

(* Properties and rules for Sig *)

[botNOTtop : not (Q bot top)];

[Prf_TopBotEquiv : {s:Sig} iff (Q s top) (not (Q s bot))];

[Prf_dncloCaseSig : {s:Sig} not (not (or (Q s top)(Q s bot)))];

[Prf_sigInd : {P:Sig->Prop} ({s:Sig} dnclo (P s))->

({s:Sig}(or (Q s top)(Q s bot)) -> P s) -> {s:Sig} P s];

[Prf_And_top : {x,y:Sig} (Q x y)->Q x (And top y)];

[Prf_Or_bot : {x,y:Sig} (Q x y)->Q x (Or bot y)];

[Prf_Or_top : {x,y:Sig} (Q x top)->Q x (Or top y)];

[Prf_And_bot: {x,y:Sig} (Q x bot)->Q x (And bot y)];

[Prf_And_Symm : {x,y,z:Sig} (Q x (And y z)) -> Q x (And z y)];

[Prf_Or_Symm : {x,y,z:Sig} (Q x (Or y z)) -> Q x (Or z y)];

[Prf_Or_Sym : {x,y:Sig} Q (Or x y)(Or y x)];

[Prf_And_Sym : {x,y:Sig} Q (And x y)(And y x)];

(* bool/nat and Sig and Prop *)

sigma_pred2 == [X|Type][P:X->X->Prop] (Ex [f:X->X->Sig] {x,y:X} iff (def (f x y))(P x y));

eqB_sig == B_elim ([_:B]B->Sig) (B_elim ([_:B]Sig) top bot) (B_elim ([_:B]Sig) bot top);

[Prf_eqB_sig_Q : {x,y:B} iff (def (eqB_sig x y))(Q|B x y)];

[Prf_dnclo_ex_bool : {p:B->Sig}dnclo (Ex ([x:B]def (p x)))];

[Prf_Q_Bool_sigma : sigma_pred2 (Q|B)];

[Prf_le_prop_sig : {n,m:N} iff (le n m) (def (bToSig (leBool n m)))];

[Prf_less_prop_bool : {n,m:N} iff (less n m) (def (bToSig (lessBool n m)))];

eqN_sig == [x,y:N] And (bToSig (leBool x y)) (bToSig(leBool y x));

[Prf_eqN_sig_is_Q : {x,y:N} iff (def (And (bToSig (leBool x y)) (bToSig (leBool y x))))

(Q x y)];

[Prf_Q_Nat_sigma : sigma_pred2 (Q|N)] ;

248 Appendix A. The theory as Lego-code

sigma_pred == [X|Type][P:X->Prop] (Ex [f:X->Sig] {x:X} iff (def (f x))(P x));

[Prf_bToProp_sigma : {X:Type}{P:X->B} sigma_pred ([x:X] bToProp (P x))];

[Prf_bToProp_sigma2 : {X:Type}{P:X->X->B} sigma_pred2 ([x,y:X] bToProp (P x y))] ;

[Prf_relate_bToSig : {b:B} iff (def(bToSig b)) (bToProp b)];

[Prf_sigma_is_dnclo : {X|Type}{P|X->Prop} (sigma_pred P)->{x:X} dnclo (P x)];

[Prf_sigma2_is_dnclo : {X|Type}{P|X->X->Prop}(sigma_pred2 P) ->{x,y:X} dnclo (P x y)];

[Prf_decid_is_sigma : {A|Type}{R:A->Prop}({a:A} or (R a)(not (R a)))-> (sigma_pred R)];

AndBoundSig == [k:N] [p:N->Sig] (N_elim ([_:N]Sig) top ([n:N][s:Sig] And (p n) s)) k ;

[Prf_AndBound_Elim : {p:N->Sig}{n:N}(def (AndBoundSig n p))->{k:N}(less k n)-> (def (p k))];

[Prf_AndBound_Intro : {p:N->Sig}{n:N}({k:N}(less k n)-> (def (p k)))-> def (AndBoundSig n p)] ;

ExBoundb == [k:N] [p:N->B] (N_elim ([_:N]B) false ([n:N][e:B] orB (p n) e)) k;

[Prf_ExBoundb_intro : {n:N}{P:N->B}(Ex [k:N] and (less k n) (bToProp (P k)))

-> bToProp (ExBoundb n P)];

[Prf_ExBoundb_elim : {n:N}{P:N->B} (bToProp (ExBoundb n P))->

(Ex [k:N] and (less k n) (bToProp (P k)))];

A.6 preorders.l
Module preorders Import sig;

(* Partial Preorders *)

leq == [X|Type][x,y:X] {p:X->Sig}(def (p x)) -> (def (p y));
eq == [X|Type][x,y:X] and (leq x y)(leq y x);

link == [X|Type][x,y:X] Ex ([h:Sig->X] and (Q (h bot) x)(Q (h top) y));

[Prf_dnclo_leq : {A|Type}{x,y:A} dnclo (leq x y)];

[Prf_lemma2_2_1 : {p,q:Sig} iff ((def p)->(def q)) (leq p q)];

[Prf_thm_2_2_2 : {X|Type}{f,g:X->Sig}

iff3 (link f g)(leq f g)({x:X}((def (f x))->def (g x)))];

[Prf_mono : {X,Y|Type}{f:X->Y}{x,y:X} (leq x y)->leq (f x)(f y)];

[Prf_eq_refl: {X|Type} refl (eq|X)];

[Prf_leq_Trans :{X|Type}{x,y,z:X} (leq x y)->(leq y z)->leq x z];

[Prf_comp_leq :{X,Y|Type}{a,b:X}{f,g:X->Y}(leq f g)->(leq a b)->(leq (f a)(g b))];

[Prf_linkMono : {X,Y|Type}{f:X->Y}{x,y:X} (link x y)->link (f x)(f y)];

ombarP == [p:N->Sig] {n,m:N} (and (def(p n))(less m n)) -> def (p m);

ombar == <p:N->Sig> ombarP(p);

omegaP == [p:ombar] (not(not(Ex [n:N] Q p.1 (step n))));

omega == <o:ombar> omegaP(o);

inc == [p:omega] p.1;

ninc == [p:ombar] p.1;

[Prf_dnclo_ombarP : {f:N->Sig} dnclo (ombarP f)];

A.7. posets.l 249

[Prf_dnclo_mono_ninc : dnclo_mono ninc];

[Prf_dnclo_omegaP : {f:ombar} dnclo (omegaP f)];

AC == [X:Type] <f: N->X>{n:N} leq (f n)(f (succ n));

supr == [X|Type][a:AC(X)][x:X] {P:X->Sig} iff (def(P x)) (Ex [n:N] def(P(a.1 n)));

[Prf_sup_is_ub : {X|Type}{a:AC(X)}{sup:X}(supr a sup)->{n:N} leq (a.1 n) sup];

[Prf_sup_is_lub : {X|Type}{a:AC(X)}{sup,y:X}(supr a sup)->

({n:N} leq (a.1 n) y) -> leq sup y];

[Prf_comp_chains : {A,B|Type}{a:AC A}{f:A->B}

{n:N} leq ((compose f a.1) n)((compose f a.1) (succ n))];

chain_co == [A,B|Type][a:AC A][f:A->B] ((compose f a.1),(Prf_comp_chains a f):(AC B));

[Prf_chain_resp_le : {X|Type}{a:AC X}{m,n:N} (le m n)-> leq (a.1 m)(a.1 n)];

[preserve_as_ch : {X|Type}{f,g:N->X} (Q f g) -> ({n:N} leq (f n)(f (succ n)))

-> ({n:N} leq (g n)(g (succ n)))];

[Prf_eq_of_chains : {X|Type}{a:AC X}{f:N->X}{p: (Q a.1 f)}

Q a (f, preserve_as_ch a.1 f p a.2: AC(X))];

[delta_is_chain :

{X|Type}{a:AC X}{k:N} {n:N} leq (a.1 (plus n k))(a.1 (plus (succ n) k))];

delta == [X|Type][a:AC X][m:N](([n:N] a.1 (plus n m)) , delta_is_chain a m : AC X);

[Prf_equiv_delta : {X|Type}{a:AC X}{m:N}{P:X->Sig}

iff (Ex ([n:N]def (P (a.1 n)))) (Ex ([n:N]def (P (((delta a m)).1 n))))];

[Prf_chain_move : {X|Type} {a:AC X}{m:N}{x:X}
iff (supr a x)(supr (delta a m) x)];

[Prf_scottA : {X,Y|Type}{f:X->Y} {a:AC(X)}{f_o_a:AC(Y)}{x:X}

(Q f_o_a ((compose f a.1),

([n:N] Prf_mono f (a.1 n)(a.1 (succ n)) (a.2 n))

: AC(Y))) -> (supr a x) -> supr f_o_a (f x)] ;

[Prf_scott : {X,Y|Type}{f:X->Y} {a:AC(X)}{x:X}

[f_o_a = ((compose f a.1), ([n:N] Prf_mono f (a.1 n)(a.1 (succ n)) (a.2 n)) : AC(Y))]

(supr a x) -> supr f_o_a (f x)];

[Prf_supr_const : {X|Type} {a:AC(X)}{x:X}(Q a.1 ([n:N] x)) -> supr a x];

[Prf_l3_1_1 : {X|Type}{f,g:X->Sig} (not (not (eq f g))) -> eq f g];

[Prf_dnclo_eq_Sig : {s,s’:Sig} (not (not (eq s s’))) -> eq s s’];

[Prf_resp_eq : {X,Y|Type}{f:X->Y}{x,y:X}(eq x y)-> eq (f x)(f y)];

[Prf_EXT_eq_Sig : {X|Type}{f,g:X->Sig} iff (eq f g)({x:X}eq (f x)(g x))];

A.7 posets.l
Module posets Import preorders ;

(* POSETS -- definition & properties *)

eta == [X:Type] [x:X][p:X->Sig] p x;

[Prf_MonoSSX : {X:Type}mono (eta (X->Sig)->Sig)];

sub == [X,Y|Type][i:X->Y] <y:Y> not (not (mapToPred i y)) ;

250 Appendix A. The theory as Lego-code

[Prf_eq_sub : {X,Y|Type}{m|X->Y}{p,q:sub m} (Q p.1 q.1)-> (Q p q)] ;

[Prf_Iso_Sub : {X|Type}{Y|Type}{m:X->Y}(dnclo_mono m)->
Ex ([i:X->sub m] and (iso i) ({x:X}Q ((i x)).1 (m x)))];

[Prf_dnclo_map_tricky:

{X,Y,Z|Type}({x,x’:X}dnclo (Q x x’))->

{n:Y->X}{m:Y->Z}(dnclo_mono m)->

(Ex [t:X->Z] Q (compose t n) m)-> dnclo_mono n];

poset == [X:Set] dnclo_mono (eta X);

[Prf_eta_reflects : {X|Type} {x,y:X} (leq (eta X x)(eta X y)) -> leq x y];

[Prf_eq_Q_Poset :{X|Type} (mono (eta X)) -> {x,y:X} iff (eq x y) (Q x y)];

[Prf_eq_Q_Sig : {x,y:Sig} iff (eq x y) (Q x y)];

[Prf_eq_Q_FunSig : {X|Type}{f,g:X->Sig} iff (eq f g) (Q f g)];

[Prf_dnclo_Q_Sig : {s,s’:Sig} dnclo(Q s s’)];

[Prf_dnclo_Q_X_Sig : {X:Type}{f,g:X->Sig}dnclo (Q f g)];

[Prf_sup_unique : {A|Set}(poset A)->{a:AC A}{x,y:A} (supr a x)->(supr a y)-> Q x y];

[Prf_theorem_Phoa : {X|Set} {x,y:X} (poset X) -> iff (leq x y)(link x y)];

[Prf_po_rep_lemm : {A,X|Type}{co:A->X->Sig} (dnclo_mono co)->dnclo_mono (eta A)];

[Prf_po_repr_th : {A|Set} iff (poset A)

(Ex [X:Type] Ex [f:A->(X->Sig)] and (mono f)(mapDnclo f))];

[Prf_extend_sub : {X,Y,Z|Type}{m|X->Y}(and (mono m) (mapDnclo m))->
({h:Z->Y} ({z:Z} not(not(mapToPred m (h z)))) ->

Ex [h’:Z->X] {z:Z} Q (m (h’(z))) (h z))];

[Prf_th_3_1_6 : {A|Set}{X|Type}{em:A->(X->Sig)}(and (mono em)(mapDnclo em))

-> {a1,a2:A} iff (leq a1 a2)({x:X} (def (em a1 x))->def(em a2 x))];

[Prf_cor_3_1_7 : {A|Set}(poset A)-> {a1,a2:A} dnclo (eq a1 a2)];

[Prf_cor_3_1_7_Q : {A|Set}(poset A)-> {a1,a2:A} dnclo (Q a1 a2)];

[Prf_dnclo_mono_closure : {X,Y,Z|Type}{i:X->Y}{j:Y->Z} (and (dnclo_mono i)(dnclo_mono j))
-> dnclo_mono (compose j i)];

[Prf_Cor_3_1_8 : {A,B|Set}(and (poset A)(poset B))->{m:A->B}(dnclo_mono m)->

{x,y:A} (leq (m x)(m y))-> leq x y];

[Prf_iso_case_Cor_3_1_8 : {A,B|Set}(and (poset A)(poset B))->{m:A->B}(iso m)->

{x,y:A} iff (leq (m x)(m y)) (leq x y)];

[Prf_dn_sub_poset : {A,B|Set}{m:A->B} (poset B)->(dnclo_mono m)->(poset A)];

incl_dnclo == {A|Set}{P|A->Prop}(poset A)->({a:A}dnclo (P a))->

(poset <a:A>P a)-> mapDnclo ([q:<a:A>P a]q.1) ;

[Prf_incl_dnclo : incl_dnclo];

(* the trick for defining maps by case analysis *)

definition_by_case == [X,Y|Set][P:X->Prop]

[h: {x:X}(P x)->Y][k: {x:X}(not(P x))->Y]

{x:X} ExU [y:Y] and ({p:(P x)}Q y (h x p))({p: not(P x) } Q y (k x p));

[Prf_trick_case_def_dep: {X,Y|Set} {P:X->Prop}

A.8. cpos.l 251

{h: {x:X}(P x)->Y}{k: {x:X}(not(P x))->Y} (poset Y)->

(definition_by_case P ([x:X][p:P x] (eta Y) (h x p))([x:X][p:not(P x)] (eta Y) (k x p)))

-> (definition_by_case P h k)] ;

definition_by_cases == [X,Y|Set][P:X->Prop][h,k:X->Y]

{x:X} ExU [y:Y] and ((P x)->Q y (h x))((not(P x))->Q y (k x));

[Prf_trick_case_def : {X,Y|Set}{P:X->Prop}{h,k:X->Y}(poset Y)->

(definition_by_cases P (compose (eta Y) h)(compose (eta Y) k))->

(definition_by_cases P h k)];

A.8 cpos.l
Module cpos Import posets ;

chain_complete == [X:Type] {a:AC X} Ex [x:X] supr a x;

cpo == [A:Set] and (poset A)(chain_complete A);

[Prf_step_n_m : {n,m:N} iff (def (step n m))(less m n)];

[Prf_lem_3_2_1 : {p:omega} not(not (Ex [n:N]

and (Q (p.1.1 n)(bot)) ({m:N} (less m n)-> def (p.1.1 m))))];

[Prf_step_in_ombar : {n:N} ombarP (step n)];

step_ombar == [n:N] (step n, (Prf_step_in_ombar n) :ombar);

[Prf_dnclo_mono_inc : dnclo_mono inc];

[Prf_ac_step : {n:N} leq (step_ombar n) (step_ombar (succ n))] ;

[Prf_step_in_omega : {n:N} omegaP (step_ombar n)];

step_omega == [n:N] ((step n, (Prf_step_in_ombar n) :ombar),Prf_step_in_omega n :omega);

[Prf_ac_step_omega == {n:N} leq (step_omega n) (step_omega (succ n))];

[Prf_aux_om : {f:omega}{n:N} (Q f.1.1 (step n))-> Q (f.1.1 n) bot];

[Prf_lem_3_2_2 : {P:omega->Prop} ({h:omega} dnclo (P h)) ->

iff ({f:omega} (P f))({n:N} P (step_omega n))];

[Prf_step_def : {n:N}{f:N->Sig} iff (Q f (step n))

(and ({m:N} (less m n)-> Q (f m) top)
({m:N} (not (less m n))-> Q (f m) bot))];

cTop == ([n:N]top,[n,m:N][q:and (def top) (less m n)]Q_refl (top) : ombar) ;

[Prf_notinOm : {f:ombar} (not (omegaP f)) -> ({m:N} Q (f.1 m) top)];

[Prf_lem_3_2_3 : {P:ombar->Prop}({h:ombar} dnclo (P h))->

iff ({f:ombar} (P f))(and({n:N} P (step_ombar n))(P cTop))];

[Prf_lem_3_2_4 : {X|Type}{a:AC(X->Sig)} Ex [H:ombar->(X->Sig)]
and ({n:N} Q (H (step_ombar n)) (a.1 n))

(Q (H cTop) ([x:X] Join [n:N] a.1 n x))] ;

[Prf_lem_2_2_6 : {H:ombar->Sig} (def (H cTop))-> Ex [m:N] def (H (step_ombar m))];

[Prf_cpo_rep_lem : {A|Set}{X|Type}{m:A->(X->Sig)}{x:A}{a:AC A}

(supr a x) -> Q (m x)([x:X] Join ([n:N] m (a.1 n) x))];

[Prf_cpo_rep_lem_2 : {A|Set}{X|Type}{m:A->(X->Sig)}{x:A}{a:AC A}

(dnclo_mono m) -> (Q (m x)([x:X] Join ([n:N] m (a.1 n) x)))-> supr a x];

252 Appendix A. The theory as Lego-code

[Prf_cpo_repr_theorem : {A|Set}

iff (cpo A)

(Ex [X:Type] Ex [f:A->(X->Sig)]

and (dnclo_mono f)
({a:AC(A)} [a’ = ([n:N] f (a.1 n), [n:N] Prf_mono f ? ? (a.2 n))]

Ex [sup_a:A] Q (f sup_a) ([x:X] Join [n:N] a’.1 n x)))];

[Prf_Sig_pow_cpo : {X:Type}cpo (X->Sig)];

A.9 cpo def.l
Module cpo_def Import cpos;

CPO == <X:Set> cpo X;

Sig_X == [X:Type] (X->Sig,Prf_Sig_pow_cpo X:CPO);

[suplemmC : {D:CPO} {a:AC(D.1)} ExU [x:D.1] supr a x];

fam_supC == [D:CPO] ACu|(AC (D.1))|D.1|([a:AC(D.1)][x:D.1] supr a x) (suplemmC D);

sup_C == [D:CPO] (fam_supC D).1;

sup_C_prop == [D:CPO] (fam_supC D).2;

[Prf_sup_C_is_what : {X|Type}{a:AC (X->Sig)}
Q (sup_C (X->Sig ,Prf_Sig_pow_cpo X:CPO) a) ([x:X] Join [n:N] a.1 n x)];

[Prf_scott_supC : {A,C:CPO}{f:A.1->C.1}{a:AC A.1} Q (f (sup_C A a))(sup_C C(chain_co a f))];

[Prf_chain_move_Q : {X|CPO}{a:AC(X.1)}{m:N} Q (sup_C X a)(sup_C X (delta a m))];

[Prf_supr_const_Q : {X|CPO} {a:AC(X.1)}{x:X.1}({n:N}Q (a.1 n) x) -> Q (sup_C X a) x];

A.10 admissible.l
Module admissible Import cpo_def;

(* about admissibility and co-admissibility *)

admissible == [D|CPO][P: D.1 -> Prop] {f:AC D.1} ({n:N} P (f.1 n)) -> P (sup_C D f);

admissible_c == [D|CPO][P:D.1->Prop]and ({d:D.1}dnclo (P d)) (admissible P);

[Pr_adm_clo_and : {A|CPO}{P,R:A.1->Prop}(admissible P)->(admissible R)->
admissible ([a:A.1] and (P a)(R a))];

[Pr_adm_c_clo_and : {A|CPO}{P,R:A.1->Prop}(admissible_c P)->(admissible_c R)->

admissible_c ([a:A.1] and (P a)(R a))];

[Prf_adm_clo_forall : {A|CPO}{C|Type} {P:A.1->C->Prop}({x:C} admissible
([a:A.1]P a x))->admissible ([a:A.1] {x:C} P a x)];

[Prf_adm_c_clo_forall : {A|CPO}{C|Type} {P:A.1->C->Prop}

({x:C} admissible_c ([a:A.1]P a x))->admissible_c ([a:A.1] {x:C} P a x)];

[Prf_adm_clo_func : {A,B|CPO}{f:A.1->B.1}{P:B.1->Prop}(admissible P)->
(admissible (compose P f))];

[Prf_adm_c_clo_func : {A,B|CPO}{f:A.1->B.1}{P:B.1->Prop}(admissible_c P)->

(admissible_c(compose P f))];

[Prf_adm_Q_fg : {A,C|CPO}{f,g:A.1->C.1} admissible ([x:A.1] Q (f x)(g x))];
[Prf_adm_c_Q_fg : {A,C|CPO}{f,g:A.1->C.1}admissible_c ([x:A.1] Q (f x)(g x))];

[Prf_adm_Q : {A|CPO}{y:A.1} admissible ([x:A.1] Q x y)];

[Prf_adm_c_Q : {A|CPO}{y:A.1} admissible_c ([x:A.1] Q x y)];

[Prf_adm_le : {A,C|CPO}{f,g:A.1->C.1} admissible ([x:A.1] leq (f x)(g x))];

A.10. admissible.l 253

[Prf_adm_c_le : {A,C|CPO}{f,g:A.1->C.1}admissible_c ([x:A.1] leq (f x)(g x))];

[Prf_adm_iselem : {A,B|CPO}{m:A.1->B.1}(dnclo_mono m)->

admissible|B ([y:B.1] Ex [a:A.1] Q (m a) y)];
[Prf_adm_c_iselem : {A,B|CPO}{m:A.1->B.1}(dnclo_mono m)->

admissible_c|B ([y:B.1] Ex [a:A.1] Q (m a) y)];

[Prf_adm_elem_po : {A|CPO} admissible|(Sig_X A.1->Sig)

([y:(A.1->Sig)->Sig] Ex [a:A.1] Q (eta (A.1) a) y)];

[Prf_adm_elem_c_po : {A|CPO} admissible_c|(Sig_X A.1->Sig)
([y:(A.1->Sig)->Sig] Ex [a:A.1] Q (eta (A.1) a) y)];

(* co_admissibility *)

co_admissible == [A|CPO][P:A.1->Prop]
({a:AC(A.1)}(P(sup_C A a))->Ex [m:N] {n:N}(le m n)-> P (a.1 n));

dncl_co_admissible == [A|CPO][P:A.1->Prop]

({a:AC(A.1)}(P(sup_C A a))->not(not(Ex [m:N] {n:N}(le m n)-> P (a.1 n))));

co_admissible_c == [D|CPO][P:D.1->Prop]

and ({d:D.1} dnclo (P d)) (co_admissible P);

[Prf_and_co_admissible : {A|CPO}{P,R:A.1->Prop}

(co_admissible P)->(co_admissible R)-> (co_admissible [a:A.1]and (P a)(R a))];

[Prf_and_co_admissible_c : {A|CPO}{P,R:A.1->Prop}

(co_admissible_c P)->(co_admissible_c R)-> (co_admissible_c [a:A.1]and (P a)(R a))];

[Prf_or_co_admissible : {A|CPO}{P,R:A.1->Prop}
(co_admissible P)->(co_admissible R)-> (co_admissible [a:A.1]or (P a)(R a))];

[Prf_ex_co_admissible : {A|CPO}{X|Type}{P:X->A.1->Prop}

({x:X} co_admissible (P x)) -> (co_admissible [a:A.1] Ex[x:X] P x a)];

[Prf_co_adm_Q_Sig_top : {A|Type}{a:A} co_admissible

([p:(A->Sig,Prf_Sig_pow_cpo A:CPO).1] Q (p a) top)];

[Prf_co_adm_Q_Sig_bot : {A|Type}{a:A} co_admissible

([p:(A->Sig,Prf_Sig_pow_cpo A:CPO).1] Q (p a) bot)] ;

[Prf_co_adm_closed_iff : {A|CPO}{P,R:A.1->Prop}(co_admissible P)->

({a:A.1}iff (P a)(R a))->co_admissible R];

[Prf_adm_closed_iff : {A|CPO}{P,R:A.1->Prop}

(admissible P)->({a:A.1}iff (P a)(R a))->admissible R];
[Prf_adm_c_closed_iff : {A|CPO}{P,R:A.1->Prop}

(admissible_c P)->({a:A.1}iff (P a)(R a))->admissible_c R];

[Prf_co_adm_clo_func : {A,B|CPO}{P:B.1->Prop}{f:A.1->B.1}

(co_admissible P)->co_admissible (compose P f)];
[Prf_co_adm_c_clo_func : {A,B|CPO}{P:B.1->Prop}{f:A.1->B.1}

(co_admissible_c P)->co_admissible_c (compose P f)];

[Prf_adm_not: {A|CPO}{P : A.1->Prop} (co_admissible P)

-> admissible ([a:A.1] not (P a))];
[Prf_adm_c_not: {A|CPO}{P :A.1->Prop} (co_admissible_c P)

-> admissible_c ([a:A.1] not (P a))];

[Prf_adm_clo_impl : {A|CPO}{P,R:A.1->Prop}(admissible R)->

(co_admissible P) -> admissible ([a:A.1] (P a)->R a)];
[Prf_adm_c_clo_impl : {A|CPO}{P,R:A.1->Prop}(admissible_c R)->

(co_admissible_c P)-> admissible_c ([a:A.1] (P a)->R a)];

[Prf_adm_clo_impl_dncl : {A|CPO}{P,R:A.1->Prop}(admissible_c R)->

(dncl_co_admissible P)
-> admissible_c ([a:A.1] (P a)->R a)];

254 Appendix A. The theory as Lego-code

[Prf_coad_implies_dncl_coad :

{A|CPO}{P:A.1->Prop}(co_admissible P)->(dncl_co_admissible P)];

(* Scott and Sigma *)

scott_open == [X|CPO] [P:X.1->Prop]

and ({x,y:X.1} (leq x y)-> (P x)->P y)

({a:AC(X.1)} (P (sup_C X a)) -> Ex [n:N] P (a.1 n)) ;

[Prf_scott_op_co_adm : {X|CPO}{P:X.1->Prop} (scott_open P)->co_admissible P];

[Prf_sigma_is_open : {X|CPO}{P:X.1->Prop}(sigma_pred P)->(scott_open P)];

[Prf_sigma_co_ad : {X|CPO}{P:X.1->Prop} (sigma_pred P) -> co_admissible P];

[Prf_sigma_co_ad_c : {X|CPO}{P:X.1->Prop} (sigma_pred P) ->co_admissible_c P];

[Prf_sigma_adm : {X|CPO}{P:X.1->Prop} (sigma_pred P) -> admissible P];

[Prf_sigma_adm_c : {X|CPO}{P:X.1->Prop} (sigma_pred P) ->admissible_c P];

[Prf_adm_const : {X|CPO }{p:Prop} admissible ([_:X.1]p)];

[Prf_coadm_const : {X|CPO }{p:Prop} co_admissible ([_:X.1]p)];

[Prf_coadm_imp_c_clo: {A|CPO}{P,R:A.1->Prop}

(co_admissible ([a:A.1]not (P a)))->

({a:A.1} or (R a) (not(R a)))-> co_admissible_c ([a:A.1] (P a)->R a)];

[Prf_adm_relativized : {X|CPO}{P:X.1->Prop}{a:AC(X.1)}

(admissible P)->(Ex [m:N] {n:N}(le m n)->P (a.1 n))-> P (sup_C X a)];

A.11 closure.l
Module closure Import admissible ;

uncurry == [X,Y|Type][A|X->Type][f:{x:X}((A x)->Y)] [y:<x:X>A x] f y.1 y.2;

curry == [X,Y|Type][A|X->Type][g:(<x:X>A x)->Y]

[x:X][a: A x] g (x,a:(<x:X>A x));

[Prf_curry_un_iso : {X,Y|Type}{A|X->Type}

Q (compose (curry|X|Y|A) (uncurry|X|Y|A)) (I|({x:X}(A x)->Y))];

[Prf_un_curry_iso : {X,Y|Type}{A|X->Type}
Q (compose (uncurry|X|Y|A)(curry|X|Y|A)) (I|((<x:X>A x)->Y))];

[Prf_uncurry_iso : {X,Y|Type}{A|X->Type} iso (uncurry|X|Y|A)];

[Prf_curry_iso : {X,Y|Type}{A|X->Type} iso (curry|X|Y|A)];

(* subset types *)

[Prf_dnclo_dnP : {A|Set}{P:A->Prop}({a:A}dnclo (P a))->mapDnclo ([q:<a:A>P a]q.1)];

[Prf_posets_P_lemma : {A|Set}{P:A->Prop}{X:Type}{m:A->(X->Sig)}

({a:A}dnclo (P a))->(dnclo_mono m)->

dnclo_mono (compose m ([q:<a:A>(P a)]q.1))];

[Prf_posets_clo_P :{D|Set}{p:poset D}{P:D->Prop}({d:D}dnclo (P d))->poset (<x:D> P x)];

[Prf_leq_P : {A|Set}{P:A->Prop}(poset A)->({a:A}dnclo (P a))->

{h,k:<a:A>(P a)} iff (leq h k)(leq h.1 k.1)];

A.11. closure.l 255

(* equalizers as consequences of subset types *)

[Prf_equalizer_dnclo : {A,B|Set}(poset B)->{f,g:A->B} mapDnclo ([q:<a:A>Q (f a) (g a)]q.1)];

[Prf_posets_equ_lemma :

{A,B|Set}{X:Type}{m:A->(X->Sig)}(poset B) -> (dnclo_mono m) ->

{f,g:A->B} dnclo_mono (compose m ([q:<a:A>Q (f a) (g a)]q.1))];

[Prf_posets_clo_equaliz : {A,B|Set}(poset A)->(poset B)->
{f,g:A->B} poset (<a:A> Q (f a)(g a))];

[Prf_leq_equalizer : {A,B|Set}(poset A)->(poset B)->

{f,g:A ->B} {h,k:<a:A>Q (f a)(g a)} iff (leq h k)(leq h.1 k.1)];

(* products *)

[Prf_lemma_3_4_1 : {I|Type} {A,B|I->Type}{m:{i:I}(A i)->B i}

({i:I} dnclo_mono (m i))-> dnclo_mono [f:{i:I}A i][i:I] m i (f i)];

[Prf_posets_po_lemma : {X|Type}{A:X->Set}({x:X}poset (A x))->

dnclo_mono (compose (uncurry|X|Sig|([x:X](A x)->Sig))

([f:{x:X}A x] [x:X] eta (A x) (f x)))];

[Prf_posets_clo_prod : {X|Type}{A:X->Set}({x:X}poset (A x))-> poset ({x:X}A x)];

[Prf_prod_pointwise : {X|Type}{A|X->Set} ({x:X}poset(A x))->

{f,g:{x:X}A x} iff (leq f g)({x:X} leq (f x)(g x))];

(* binary products *)

bs == [X,Y:Set] B_elim ([_:B]Set) X Y;

prod2 == [X,Y:Set] ({b:B}(bs X Y b));

[Prf_prod2_poset: {X,Y:Set}(poset X)->(poset Y)-> poset (prod2 X Y)];

pi1_p == [X,Y|Set] [u:prod2 X Y] ((u true):X);

pi2_p == [X,Y|Set] [u:prod2 X Y] ((u false):Y);

[Prf_prod2_leq: {X,Y:Set}(poset X)->(poset Y)->
{x,y:prod2 X Y} iff (leq x y)

(and (leq (pi1_p x)(pi1_p y))(leq (pi2_p x)(pi2_p y)))];

p_po == [X,Y|Set][a:X][b:Y] (B_elim ([b:B]bs X Y b) a b :(prod2 X Y)) ;

[Prf_surj_pairing_po : {X,Y|Set}(poset X)->(poset Y)->

{x:prod2 X Y} Q x (p_po x.pi1_p x.pi2_p)];

(* isos *)

[Prf_iso_close_po : {A,B|Set}{i:A->B}(poset A)->(iso i)->poset B];

(* flat posets *)

singletons == [A|Set][f:A->A->Sig] <p:A->Sig>and ({x,y:A}(def (p x))->
(def (p y))->(def (f x y))) (Ex [x:A] def (p x));

[Prf_AC_singl : {A|Set}{f:A->A->Sig}({x,y:A}

iff (def (f x y)) (Q|A x y))->({p:(singletons f)}ExU [a:A] def (p.1 a))];

[Prf_singl_dnclo : {A|Set}{f:A->A->Sig}{p:A->Sig}

(dnclo (Ex ([x:A]def (p x))))->

dnclo (and ({x,y:A}(def (p x))->(def (p y))->(def (f x y)))

(Ex [x:A] def (p x)))];

flat_iso_map ==[A|Set][f:A->A->Sig][q:({x,y:A}iff (def (f x y)) (Q|A x y))]

(ACu|(singletons f)|A|([p:(singletons f)][a:A] def (p.1 a))

256 Appendix A. The theory as Lego-code

(Prf_AC_singl f q));

[Prf_iso_singleton : {A|Set}{f :A->A->Sig}{q:({x,y:A}

iff (def (f x y)) (Q|A x y))} iso (flat_iso_map f q).1];

[Prf_flat_poset : {A:Set} ({p:A->Sig} dnclo (Ex [x:A] def(p x)))->

(sigma_pred2 (Q|A))->

and ({x,y:A}iff(leq x y)(Q x y)) (poset A)];

[Prf_B_poset : and ({x,y:B}iff(leq x y)(Q x y)) (poset B)];

[Prf_N_poset : and ({x,y:N}iff(leq x y)(Q x y)) (poset N)];

(* cpos cpos cpos cpos cpos cpos cpos cpos cpos cpos cpos cpos *)

(* equalizers *)

[Prf_admissible_clo_cpo : {D|CPO}{P:D.1->Prop}

(admissible P)->({d:D.1}dnclo (P d))->cpo (<x:D.1 > P x)];

[Prf_eq_admiss : {A|CPO}{X|Set}{f,g:A.1->X} (poset X)->

admissible ([a:A.1] Q(f a)(g a))];

[Prf_cpos_clo_equaliz : {A|CPO}{B|Set}(poset B)->{f,g:A.1->B} cpo (<a:A.1> Q (f a)(g a))];

[Prf_supr_equalizer : {A,X|Set}(cpo A)->(poset X)->{f,g:A->X}

{a : AC (<a:A>Q (f a) (g a))} {z:(<a:A>Q (f a) (g a))}

(supr (chain_co a ([q:<a:A>Q (f a) (g a)]q.1)) z.1)->(supr a z)] ;

(* products *)

[Prf_cpos_clo_prod : {X|Type}{A:X->Set}({x:X}cpo (A x))->cpo ({x:X} A x)];

[Prf_supr_prod : {X|Type} {A|X->Set}({x:X}cpo (A x))->{a:AC({x:X}A x)}
{f:{x:X}A x}({x:X} supr (chain_co a ([y:{x:X}A x] (y x))) (f x))->supr a f];

prod_makerCPO == [X,Y:CPO] B_elim ([_:B]Set) X.1 Y.1;

prodCPO == [X,Y:CPO] ({b:B}(prod_makerCPO X Y b),(Prf_cpos_clo_prod

([b:B](prod_makerCPO X Y b))
(B_elim ([b:B] cpo (prod_makerCPO X Y b)) X.2 Y.2)):CPO);

pi1C == [X,Y|CPO][p:(prodCPO X Y).1] (p true : X.1);

pi2C == [X,Y|CPO][p:(prodCPO X Y).1] (p false: Y.1);

p_c == [X,Y|CPO][a:X.1][b:Y.1] (B_elim ([b:B]prod_makerCPO X Y b) a b

: (prodCPO X Y).1) ;

[Prf_leq_prodCPO_cw : {X,Y|CPO}{u,v:(prodCPO X Y).1}

iff (leq u v) (and (leq u.pi1C v.pi1C)(leq u.pi2C v.pi2C))];

[Prf_eq_prodCPO_cw : {X,Y|CPO}{u,v:(prodCPO X Y).1}

iff (eq u v) (and (eq u.pi1C v.pi1C)(eq u.pi2C v.pi2C))];

[Prf_Q_prodCPO_cw : {X,Y|CPO}{u,v:(prodCPO X Y).1}
iff (Q u v) (and (Q u.pi1C v.pi1C)(Q u.pi2C v.pi2C))];

[Prf_surjective_p_c : {X,Y|CPO}{u:(prodCPO X Y).1} Q u (p_c u.pi1C u.pi2C)];

(* iso *)

[Prf_iso_close_cpo : {A,B|Set}{i:A->B}(cpo A)->(iso i)->cpo B];

[Prf_supr_iso : {A,X|Set}(cpo X)->{a:AC A}{x:A}{j:A->X}(iso j)->

(supr (chain_co a j) (j x))-> supr a x];

A.12. domains.l 257

(* flat cpos *)

[Prf_flat_cpo : {A|Set}({p:A->Sig} dnclo (Ex [x:A] def(p x)))->

(sigma_pred2 (Q|A))->and ({x,y:A}iff(leq x y)(Q x y)) (cpo A)];

[Prf_B_cpo : and ({x,y:B}iff(leq x y)(Q x y)) (cpo B)];

[Prf_N_cpo : and ({x,y:N}iff(leq x y)(Q x y)) (cpo N)];

A.12 domains.l
Module domains Import closure;

(* About domains *)

BB == (B,snd Prf_B_cpo:CPO);

min == [A:Set][m: A] {a:A } leq m a;

dom == [A:Set] and (cpo A)(Ex [bottom: A] min A bottom);

[Prf_bot_unique : {A|Set}(dom A)->{x,y:A} (min A x)->(min A y)->(Q x y)];

Dom == <A:Set>(dom A);

c == [A:Dom] A.1;
dom2cpo== [A:Dom] (A.1, fst A.2: CPO);

[minlemm: {D:Dom} ExU [x:D.c] min D.c x];

fam_bot == ACu_dep|Dom|c|([D:Dom][x:D.c] min D.c x) minlemm;
bot_D == fam_bot.1;

bot_D_prop == fam_bot.2;

[suplemm : {D:Dom} {a:AC(D.c)} ExU [x:D.c] supr a x];

sup_D == [D:Dom]sup_C (dom2cpo D);
sup_D_prop ==[D:Dom]sup_C_prop (dom2cpo D);

[Prf_sup_C_D : {D|Dom}{a:AC D.c} Q (sup_D D a)(sup_C (dom2cpo D) a)];

[Prf_sup_D_supr : {X|Dom}{a:AC (c X)}{y:c X}iff (Q (sup_D X a) y) (supr a y)];

(* general *)

[Prf_leqbot : {X|Set}(poset X)->{b,x:X} (min X b)->(leq x b)->Q x b];

[Prf_leq_not_bot : {D:Dom}{x,y:D.c} (leq x y)->(not (Q x (bot_D D)))->(not (Q y (bot_D D)))];

(* iso *)

[Prf_iso_close_dom : {A,B|Set}{i:A->B}(dom A)->(iso i)->dom B];

(* Unit *)

Unit == ff->Sig;

[Prf_unit_singleton : {x,y:Unit} Q x y];

[Prf_unit_is_dom : dom Unit];

Unit_D == (Unit,Prf_unit_is_dom:Dom);

(* power of sig *)

[Prf_min_X_Sig : {X:Type} min (X->Sig) [x:X]bot];

258 Appendix A. The theory as Lego-code

[Prf_Sig_pow_dom: {X:Type} dom (X->Sig)];

[Prf_Sig_dom : dom(Sig)];

Sig_D == (Sig,Prf_Sig_dom:Dom);

[Prf_what_bot_Sig : Q (bot_D (Sig,Prf_Sig_dom:Dom)) bot];

[Prf_sup_D_is_what : {X|Type}{a:AC (X->Sig)}

Q (sup_D (X->Sig ,Prf_Sig_pow_dom X:Dom) a) ([x:X] Join [n:N] a.1 n x)];

(* admissible subset s and strict equalizers *)

[Prf_bot_P : {D|Dom} {P:D.c->Prop}{dncl:{d:D.c}dnclo (P d)}
{minc:({bot:D.c}(min (D.c) bot)->P bot)}{x:D.c}{mbot:(min D.c x)}

min (<x:D.c>(P x)) (x,minc x mbot:(<x:D.c>(P x)))];

[Prf_bot_Q_P : {D|Dom}{P:D.c->Prop}{dncl:{d:D.c}dnclo (P d)}

{p:P (bot_D D)}{isdom:dom (<x:c D >P x)}
Q (bot_D ((<x:c D >P x),isdom:Dom))(bot_D D,p:(<x:c D >P x))];

[Prf_admissible_clo_dom : {D|Dom}{P:D.c->Prop}(admissible|(dom2cpo D) P)->

({d:D.c}dnclo (P d))->(P (bot_D D))->dom (<x:D.c> P x)];

strict == [A,B|Dom][f:A.c ->B.c] Q (f (bot_D A)) (bot_D B);

[Prf_strict_proj_P : {D|Dom}{P:D.c->Prop}{dncl:{d:D.c}dnclo (P d)}

{ad: admissible|(dom2cpo D) P}{minc: P (bot_D D)}

strict|((<x:D.c>P x) ,(Prf_admissible_clo_dom P ad dncl minc):Dom)|D
([u:(<x:D.c>P x)] u.1)];

[Prf_equaliz_closed : {A|Dom}{B|Set}(poset B)->{f,g:A.c ->B}

(Q (f(bot_D A))(g(bot_D A)))->dom (<a:A.c>(Q (f a)(g a)))];

[Prf_clo_dom_equaliz : {A,B|Dom}{f,g:A.c ->B.c}

(strict f)->(strict g)->dom (<a:A.c>(Q (f a)(g a)))];

[Prf_bot_in_strict_eq :{A,B|Dom}{f,g:A.c ->B.c}{sf:(strict f)}{sg:(strict g)}

Q (f (bot_D A))(g (bot_D A))];

[Prf_bot_equaliz : {A,B|Dom}{f,g:A.c ->B.c}{p:dom (<a:A.c>(Q (f a)(g a)))}

{sf:(strict f)}{sg:(strict g)}

Q (bot_D (<a:A.c>(Q (f a)(g a)),p:Dom))

((bot_D A),Prf_bot_in_strict_eq f g sf sg:(<a:A.c>(Q (f a)(g a))))];

(* pi *)

[Prf_pi_clo_dom : {X|Type}{A|X->Set}{p:{x:X}dom (A x)} dom ({x:X} (A x))];

[Prf_bot_pi : {X|Type}{A|X->Set}{pr:{x:X}dom (A x)}
Q (bot_D ({x:X}A x,Prf_pi_clo_dom pr:Dom)) ([x:X]bot_D (A x,pr x:Dom))];

(* admissibliity *)

[Prf_co_admissible_bot : {D:Dom}co_admissible [x:(dom2cpo D).1] Q x (bot_D D)];

[Prf_adm_not_Q_bot : {A|Dom}admissible|(dom2cpo A) [x:A.c] not(Q x (bot_D A))];

flat_dom == [D:Dom] {x,y:D.c} iff (leq x y) (not(not(or (Q x (bot_D D))(Q x y))));

[Prf_flat_dom_admissible: {D:Dom}{P:D.c->Prop}

(flat_dom D)->({x:D.c}dnclo (P x)) -> admissible|(dom2cpo D) P];

[Prf_flat_dom_co_admissible: {D:Dom}{P:D.c->Prop}

(flat_dom D)->({x:D.c}dnclo (P x)) -> dncl_co_admissible|(dom2cpo D) P];

A.13. fix.l 259

A.13 fix.l
Module fix Import domains;

(* fixpoints & fixpoint theorem & fixpoint induction *)

lfix == [A|Set][f:A->A][fp:A] and (Q (f fp) fp)({x:A} (Q (f x) x)->leq fp x);

Kleene == [A|Dom][f:A.c->A.c] N_elim ([_:N] A.c) (bot_D A) [n:N][an:A.c] f(an);

[Prf_Kleene_mon : {A|Dom}{f:A.c->A.c}{n:N} leq ((Kleene f) n)(Kleene f (succ n))];

Kleene_chain == [A|Dom][f:A.c->A.c] ((Kleene f),(Prf_Kleene_mon f):AC(A.c));

[Prf_fix_theorem_lem : {A|Dom}{f:A.c->A.c} {x:A.c} (supr (Kleene_chain f) x) -> (lfix f x)];

[Prf_fix_theorem : {A|Dom}{f:A.c -> A.c} Ex [fp:A.c] (lfix f fp)];

[Prf_fix_unique : {D|Dom}{f:D.c->D.c}{x,y:D.c}

(lfix f x) -> (lfix f y)->(Q x y)];

[fixlemm : {D:Dom}{f:D.c->D.c} ExU [x:D.c] lfix f x];

fam_fix == [D:Dom] ACu|(D.c->D.c)|D.c|([f:D.c->D.c][x:D.c] lfix f x)(fixlemm D);

fix_D == [D:Dom] (fam_fix D).1;

fix_D_prop == [D:Dom] (fam_fix D).2;

[Prf_char_fix : {D|Dom}{f:D.c->D.c} Q (fix_D D f) (sup_D D (Kleene_chain f))];

[Prf_fixp_ind : {D|Dom}{P:D.c->Prop} (admissible|(dom2cpo D) P)->
{f:D.c->D.c} (P (bot_D D))-> ({d:D.c}(P d)-> P (f d)) -> P(fix_D D f)] ;

A.14 dom constr.l
Module dom_constr Import domains cats;

(* Unit is biterminator *)

[Prf_Unique_Unit_X : X|Dom} ExU [f:Unit_D.c->X.c] strict f];

[Prf_Unique_X_Unique : {X|Dom} ExU [f:X.c->Unit_D.c] strict f];

(* binary products *)

prod_maker == [X,Y:Dom] prod_makerCPO (dom2cpo X)(dom2cpo Y);

prod_c == [X,Y:Dom] prodCPO (dom2cpo X)(dom2cpo Y);

[Prf_min_prod : {X,Y:Dom}

min (prod_c X Y).1 (p_c|(dom2cpo X)|(dom2cpo Y) (bot_D X)(bot_D Y))];

[Prf_prod_dom : {X,Y:Dom} Ex [a:(prod_c X Y).1] min (prod_c X Y).1 a];

prod == [X,Y:Dom] ((prod_c X Y).1,pair (prod_c X Y).2 (Prf_prod_dom X Y):Dom) ;

pi1 == [X,Y|Dom][p:(prod X Y).c] (p true : X.c);

pi2 == [X,Y|Dom][p:(prod X Y).c] (p false: Y.c);

[Prf_leq_prod_cw : {X,Y|Dom}{u,v:(prod_c X Y).1}

iff (leq u v) (and (leq u.pi1 v.pi1)(leq u.pi2 v.pi2))];

[Prf_eq_prod_cw : {X,Y|Dom}{u,v:(prod_c X Y).1}

iff (eq u v) (and (eq u.pi1 v.pi1)(eq u.pi2 v.pi2))];

[Prf_pi1_strict : {X,Y|Dom} strict (pi1|X|Y)];

[Prf_pi2_strict : {X,Y|Dom} strict (pi2|X|Y)];

260 Appendix A. The theory as Lego-code

p_ == [X,Y|Dom][a:X.c][b:Y.c] (B_elim ([b:B]prod_maker X Y b) a b :(prod X Y).c) ;

[Prf_Q_prod_cw : {X,Y|Dom}{u,v:(prod X Y).1}
iff (Q u v) (and (Q u.pi1 v.pi1)(Q u.pi2 v.pi2))];

[Prf_surjective_p : {X,Y|Dom}{u:(prod X Y).1} Q u (p_ u.pi1C u.pi2C)];

prod_bot == {X,Y|Dom} Q (bot_D (prod X Y)) (p_ (bot_D X)(bot_D Y)) ;

[Prf_prod_bot : {X,Y|Dom} Q (bot_D (prod X Y)) (p_ (bot_D X)(bot_D Y))];

(* function space *)

[Prf_dom_func : {X,Y:Dom} dom ({x:X.c}Y.c)];

func == [X,Y:Dom] ({x:X.c}Y.c, (Prf_dom_func X Y):Dom);

[Prf_leq_pw_func : {X,Y|Dom}{f,g:(func X Y).c} iff (leq f g) ({x:X.c} leq (f x)(g x))];

[Prf_botfunc : {X,Y|Dom}{f:(func X Y).c}

iff (min (func X Y).c f) ({x:X.c} min Y.c (f x))];

[comp_asc_chains: {X,Y|Dom}{Z|Type} {f:X.c->Y.c->Z}
{a:AC(X.c)}{a’:AC(Y.c)}

{n:N} leq (f (a.1 n) (a’.1 n)) (f (a.1 (succ n)) (a’.1 (succ n)))];

[chain_co_asc : {X,Y|Dom}{a:AC X.c}{a’:AC Y.c} {n:N}

leq (p_ (a.1 n) (a’.1 n))(p_ (a.1 (succ n)) (a’.1 (succ n)))];

prod_chain == [X,Y|Dom][a:AC(X.c)][a’:AC(Y.c)]

([n:N] p_ (a.1 n) (a’.1 n),chain_co_asc a a’ : AC(prod X Y).c);

[Prf_supr_compwise : {X,Y|Dom}{a:AC(X.c)}{a’:AC(Y.c)}
Q (sup_D (prod X Y) (prod_chain a a’)) (p_ (sup_D X a) (sup_D Y a’))];

[Prf_scott_for_2 : {X,Y|Dom}{Z|Set}

{f:X.c->Y.c->Z}{a:AC(X.c)}{a’:AC(Y.c)}{x:X.c}{y:Y.c}

[a’’ = (([n:N] f (a.1 n) (a’.1 n)), comp_asc_chains f a a’ :AC Z)]

(supr a x)->(supr a’ y)->supr a’’ (f x y)];

[Prf_scott_for_2A : {X,Y|Dom}{Z|Set}{f:X.c->Y.c->Z}{a’’:AC(Z)}

{a:AC(X.c)}{a’:AC(Y.c)}{x:X.c}{y:Y.c}

(Q a’’ (([n:N] f (a.1 n) (a’.1 n)), comp_asc_chains f a a’ :AC Z))->

(supr a x)->(supr a’ y)->supr a’’ (f x y)];

(* strict function space *)

func_s_carrier == [X,Y:Dom] <f:(func X Y).c>strict f;

[Prf_func_s_theorem: {X,Y|Dom} and3

(dom <f:(func X Y).c>strict f)

({f,g: <f:(func X Y).c>strict f} iff (leq f g)(leq f.1 g.1))

({f:func_s_carrier X Y}{a:AC(func_s_carrier X Y)}
({x:X.c} supr (chain_co a ([F:func_s_carrier X Y] F.1 x)) (f.1 x))

-> supr a f)];

func_s ==[X,Y:Dom] (func_s_carrier X Y , (and3_out1 (Prf_func_s_theorem|X|Y)) : Dom);

[Prf_leq_pw_func_s : {X,Y|Dom}{f,g:(func_s X Y).c}

iff (leq f g) ({x:X.c} leq (f.1 x)(g.1 x))];

[Prf_bot_func_s : {X,Y|Dom}

Q (bot_D (func_s X Y)) ([x:X.c] (bot_D Y),Q_refl (bot_D Y):(func_s X Y).c)];

[Prf_min_func_s : {X,Y|Dom}{f:(func_s X Y).c}

A.15. inverse.l 261

iff (min (func_s X Y).c f) ({x:X.c} min Y.c (f.1 x))];

[Prf_id_strict : {D|Dom} strict ([x:D.c]x)];

id_s == [A|Dom] ([x:A.c]x,Prf_id_strict |A : (func_s A A).c);

(* for coalesced sum coding *)

[Prf_strict_leq: {A|Dom}{x,y:A.c}
({P: (func_s A Sig_D).c} (def(P.1 x))->def (P.1 y))->leq x y];

[Prf_strict_preds_suffice :

{A|Dom}{a,b: A.c} ({p:(func_s A Sig_D).c} Q (p.1 a)(p.1 b)) -> Q a b];

(* dm is a category *)

idd == [D|Dom] ([x:D.c]x,(Prf_id_strict|D): (func_s D D).c);

[Prf_comp_strict : {D,E,F|Dom}{f:(func_s D E).c}{g:(func_s E F).c}

strict ([x:D.c] g.1(f.1 x))];

oo == [D,E,F|Dom][g:(func_s E F).c][f:(func_s D E).c]

(([x:D.c] g.1(f.1 x)),Prf_comp_strict f g: (func_s D F).c);

IsCatDom ==

and3 ({A,B|Dom}{f:(func_s A B).c} Q (oo (idd|B) f) f)

({A,B|Dom}{f:(func_s A B).c} Q (oo f (idd|A)) f)

({A,B,C,D|Dom}{h:(func_s A B).c}{g:(func_s B C).c}{f:(func_s C D).c}
Q (oo (oo f g) h) (oo f (oo g h))

);

[Prf_Dom_is_Cat : IsCatDom];

DomC == makeCat Dom ([X,Y:Dom](func_s X Y).c) oo idd Prf_Dom_is_Cat ;

A.15 inverse.l
Module inverse Import fix dom_constr;

(* the inverse limit construction in abstract (categorial) terms *)

(* In this file the large number of auxiliary lemmas has not

been inlcuded, since only the main results are interesting for

the further development of the theory.

The details can be found in the file inverseIMP.l *)

dcpo_enriched == [C:Cat] ({a,b:C.ob} cpo (C.hom a b));

strict_cat == [C:Cat]

and ({a,b:C.ob} dom (C.hom a b))
({a,b,c|C.ob}{f:C.hom a b}{g:C.hom b c}

and ((min (C.hom a b) f) -> min (C.hom a c)(C.o g f))

((min (C.hom b c) g) -> min (C.hom a c)(C.o g f))

);

embed_pro [C:Cat] == [a,b|C.ob][e:C.hom a b][p:C.hom b a]

and (Q (C.o p e)(C.id|a)) (leq (C.o e p) (C.id|b));

embedding_chain [C:Cat] ==

[D:N->C.ob]
<e_p: ({n:N} C.hom(D n) (D (succ n)))#({n:N} C.hom (D (succ n)) (D n))>

{n:N} embed_pro C (e_p.1 n) (e_p.2 n);

[Prf_help_cond : {C:Cat}{lim:C.ob}{D:N->C.ob}{ch:embedding_chain C D}

[e= ch.1.1][p=ch.1.2]

{i:{n:N}C.hom (D n) lim}{q:{n:N}C.hom lim (D n)}

262 Appendix A. The theory as Lego-code

({n:N} (and (embed_pro C (i n)(q n))

(Q (C.o (i (succ n)) (e n)) (i n)))

)

-> {n:N} leq (C.o (i n)(q n)) (C.o (i (succ n))(q (succ n)))];

COND == [C:Cat]{D:N->C.ob}{ch:embedding_chain C D}

[e= ch.1.1][p=ch.1.2]

<lim:C.ob> <i:{n:N}C.hom (D n) lim> <q:{n:N}C.hom lim (D n)>

[EM = {n:N}and (embed_pro C (i n)(q n))(Q (C.o (i (succ n)) (e n)) (i n))]

<ass: EM>
[a = (([n:N] C.o (i n)(q n)),(Prf_help_cond C lim D ch i q ass)

: AC(C.hom lim lim))]

(supr a (C.id|lim)) ;

[Prf_inv_lim : {C:Cat}
{sc:strict_cat C}

{bitermin:<i:ob C>and (initial C i) (terminal C i)}

{cond:COND C}

{F:Functor C C}

<D’:C.ob> <alpha:hom C (F.1 D’ D’) D’> <alpha_1:hom C D’ (F.1 D’ D’)>
and (isopair alpha alpha_1)

(lfix ([h:hom C D’ D’] C.o alpha (C.o (F.2.1 h h) alpha_1))(id C|D’))];

[Prf_IniTermi_lem1 : {C|Cat}{F:Functor C C}{A:ob C}{alpha’:hom C (F.1 A A) A}

{alpha_1’:hom C A (F.1 A A)}(isopair alpha’ alpha_1’)->
({B:ob C}{f:hom C (F.1 B B) B}{g:hom C B (F.1 B B)}

ExU ([uv:(hom C A B)#hom C B A]

and (Q (o C uv.1 alpha’) (o C f (F.2.1 uv.2 uv.1)))

(Q (o C alpha_1’ uv.2) (o C (F.2.1 uv.1 uv.2) g)))

)
-> lfix ([h:hom C A A]o C alpha’ (o C (F.2.1 h h) alpha_1’)) (id C|A)

];

[Prf_IniTermi_lem_Ex : {C|Cat}{sc:strict_cat C}{F:Functor C C}{A:ob C}

{alpha’:hom C (F.1 A A) A}{alpha_1’:hom C A (F.1 A A)}
(isopair alpha’ alpha_1’)->

{B’:ob C}{f:hom C (F.1 B’ B’) B’}{g:hom C B’ (F.1 B’ B’)}

[Dab=(hom C A B’,fst sc A B’:Dom)][Dba=(hom C B’ A,fst sc B’ A:Dom)]

[u_v=Kleene_chain ([k:c (prod Dab Dba)]p_|Dab|Dba (o C (o C f (F.2.1 (pi2 k)

(pi1 k))) alpha_1’) (o C (o C alpha’ (F.2.1 (pi1 k) (pi2 k))) g))]

[sup_u_v=sup_D (prod Dab Dba) u_v][u=pi1 sup_u_v][v=pi2 sup_u_v]
and (Q (o C u alpha’) (o C f (F.2.1 v u)))

(Q (o C alpha_1’ v) (o C (F.2.1 u v) g))];

[Prf_IniTermi_Unique : {C|Cat}(strict_cat C)->{F:Functor C C}

{A:ob C}{alpha’:hom C (F.1 A A) A}{alpha_1’:hom C A (F.1 A A)}
(isopair alpha’ alpha_1’)->

(lfix ([h:hom C A A]o C alpha’ (o C (F.2.1 h h) alpha_1’)) (id C|A))->

{B’:ob C}{f:hom C (F.1 B’ B’) B’}{g:hom C B’ (F.1 B’ B’)}

{uv,uv’:(hom C A B’)#hom C B’ A}[u=uv.1][v=uv.2][u’=uv’.1][v’=uv’.2]

(and (Q (o C u alpha’) (o C f (F.2.1 v u)))
(Q (o C alpha_1’ v) (o C (F.2.1 u v) g)))->

(and (Q (o C u’ alpha’) (o C f (F.2.1 v’ u’)))

(Q (o C alpha_1’ v’) (o C (F.2.1 u’ v’) g)))->

Q uv uv’

];

[Prf_thm_initial_terminal : {C|Cat}(strict_cat C) ->

{F:Functor C C} {A:ob C}

{alpha:hom C (F.1 A A) A} {alpha_1:hom C A (F.1 A A)}

(isopair alpha alpha_1)->
iff (lfix ([h:hom C A A]o C alpha (o C (F.2.1 h h) alpha_1)) (id C|A))

({B:C.ob}{f: C.hom (F.1 B B) B}{g:C.hom B (F.1 B B)}

ExU [uv:(C.hom A B)#(C.hom B A)]

and (Q (C.o uv.1 alpha) (C.o f (F.2.1 uv.2 uv.1)))

(Q (C.o alpha_1 uv.2)(C.o (F.2.1 uv.1 uv.2) g)))
];

A.16. recdom.l 263

A.16 recdom.l

Module recdom Import inverse;

(* DomC admits solutions of recursive domain equations *)

(* In this file the large number of auxiliary lemmas has not
been inlcuded, since only the main results are interesting for

the further development of the theory.

The details can be found in the file recdomIMP.l *)

[Prf_DomC_is_strict : strict_cat DomC];

[D:N->DomC.ob][ch:embedding_chain DomC D]

$[e=[n:N]ch.1.1 n]$[p=[n:N]ch.1.2 n]$[C=DomC];

$[e_n_k= [n:N] N_elim ([k:N]C.hom (D n)(D (plus n k)))

(C.id|(D n))
([k:N][ee:C.hom (D n)(D (plus n k))] C.o (e (plus n k)) ee)];

$[p_n_k = [n:N] N_elim ([k:N]C.hom (D (plus n k))(D n))

(C.id|(D n))

([k:N][pp:C.hom (D (plus n k))(D n)] C.o pp (p (plus n k)))];

$[e_aux = [n,m,k:N][p:Q (plus n k) m] subst N ([m:N](C.hom (D n)(D m)))

(plus n k) (e_n_k n k) m (Id_Axiom (plus n k) m p)];

$[p_aux = [m,n,k:N][p:Q (plus m k) n] subst N ([n:N](C.hom (D n)(D m)))

(plus m k) (p_n_k m k) n (Id_Axiom (plus m k) n p)];

[e_n_m = [n,m:N][p:le n m] (e_aux n m (minus m n) (Prf_plusMinus m n p))];

[p_n_m = [n,m:N][p:not (le n m)] (p_aux m n (minus n m) (Prf_plusMinusN n m p))];

$[Prf_lemma_fnm :
{u:N#N}ExU [f:C.hom (D u.1)(D u.2)]

and ({p: le u.1 u.2} Q f (e_n_m u.1 u.2 p))

({p:not (le u.1 u.2)} Q f (p_n_m u.1 u.2 p))];

$[fnm = (ACu_dep|(N#N)|([u:N#N]C.hom (D u.1)(D u.2))|

([u:N#N][f: C.hom (D u.1)(D u.2)]
and ({p:le u.1 u.2}Q f (e_n_m u.1 u.2 p))

({p:not (le u.1 u.2)}Q f (p_n_m u.1 u.2 p)))

Prf_lemma_fnm)

];

$[COND_part : <lim:ob C> <i:{n:N}hom C (D n) lim>

<q:{n:N}hom C lim (D n)>

[EM={n:N}and (embed_pro C (i n) (q n)) (Q (o C (i (succ n)) (e n)) (i n))]

<ass:EM>

[a=([n:N]C.o (i n)(q n),Prf_help_cond C lim D ch i q ass : AC(C.hom lim lim))]
supr a (id C|lim)

];

Discharge D;

O == (Unit,Prf_unit_is_dom: Dom);

[Prf_initial_O : initial DomC O];

[Prf_terminal_O: terminal DomC O];

[Prf_rec_DomC : {F:Functor DomC DomC}

<D’:Dom><alpha:hom DomC (F.1 D’ D’) D’><alpha_1:hom DomC D’ (F.1 D’ D’)>

and (isopair alpha alpha_1)

(lfix ([h:hom DomC D’ D’]oo alpha (oo (F.2.1 h h) alpha_1)) (idd|D’))] ;

(* structural induction for co-variant functors *)

[Fco: co_Functor DomC DomC]

$[F = coFunc_2_Func Fco];

$[covLIM = (Prf_rec_DomC F).1];

264 Appendix A. The theory as Lego-code

$[alpha = (Prf_rec_DomC F).2.1];

$[alpha_1 = (Prf_rec_DomC F).2.2.1];

$[Assoc_Cat = and3_out3 DomC.2.2.2.2];
$[IdL_Cat = and3_out1 DomC.2.2.2.2];

$[IdR_Cat = and3_out2 DomC.2.2.2.2];

$[Prf_Induction_Rec :

{P:covLIM.c->Prop} {ad: admissible_c|(dom2cpo covLIM) P}{minc: P (bot_D covLIM)}

[P’ = ((<x:covLIM.c>P x), Prf_admissible_clo_dom P (snd ad) (fst ad) minc: Dom)]
[inc = (([u:(<x:covLIM.c>P x)] u.1),

Prf_strict_proj_P P (fst ad) (snd ad) minc:DomC.hom P’ covLIM)]

(Ex [beta: DomC.hom (Fco.1 P’) P’]Q (DomC.o inc beta)(DomC.o alpha (Fco.2.1 inc)))

-> {d:covLIM.c}P d

];

$[Inductive_Def : {A:Dom}(hom DomC (Fco.1 A) A)->hom DomC covLIM A];

$[Inductive_Def_Prop : {A:Dom}{a:hom DomC (Fco.1 A) A}

Q (o DomC (Inductive_Def A a) alpha) (o DomC a (Fco.2.1 (Inductive_Def A a)))];

$[Co_Inductive_Def : {A:Dom}(hom DomC A (Fco.1 A))->hom DomC A covLIM];

$[Co_Inductive_Def_Prop : {A:Dom}{a:hom DomC A (Fco.1 A)}

Q (o DomC alpha_1 (Co_Inductive_Def A a)) (o DomC (Fco.2.1 (Co_Inductive_Def A a)) a)];

Discharge Fco;

[Prf_leq_recdom: {F: Functor DomC DomC}

[D= (Prf_rec_DomC F).1][alpha_1 =(Prf_rec_DomC F).2.2.1]

{x,y:D.c} iff (leq x y)(leq (alpha_1.1 x)(alpha_1.1 y))];

A.17 lift.l
Module lift Import domains cats;

(* one needs one more axiom there *)
(* the dominance axiom *)

[Domina : {p:Sig} {q: (def p)->Sig} <r:Sig>

iff (def r) (Ex ([w:(def p)] def (q w)))];

lift == [A:CPO] <p:(A.1->Sig)->Sig> {f:A.1->Sig} (Q (p f) top)->Ex [a:A.1] Q (eta A.1 a) p;

[Prf_lift_pred_dnclo : {A|CPO}{p:(A.1->Sig)->Sig}

dnclo {f:A.1->Sig} (Q (p f) top)->Ex [a:A.1] Q (eta A.1 a) p];

[Prf_lift_cpo : {A:CPO}cpo(lift A)];

[botlift : {A|CPO}{f:A.1->Sig} (Q (([p:A.1->Sig]bot) f) top)

->Ex [a:A.1] Q (eta A.1 a) ([p:A.1->Sig]bot)];

[Prf_lift_dom : {A:CPO}dom (lift A)];

LiftCpo == [A:CPO] (lift A, Prf_lift_dom A: Dom);

Lift == [A:Dom] (lift (dom2cpo A), Prf_lift_dom (dom2cpo A): Dom);

[up_lemma: {A|CPO}{x:A.1} {f:A.1->Sig} (Q ((eta (A.1) x) f) top)->

Ex [a:A.1] Q (eta A.1 a) (eta (A.1) x)];

up == [A|CPO][x:A.1] ((eta (A.1) x),up_lemma x:(LiftCpo A).c);

[Prf_Q_bot_lift_cpo : {A|CPO}

Q (bot_D (LiftCpo A)) ([p:A.1->Sig]bot,botlift|A : (LiftCpo A).c)];

[Prf_Q_bot_lift : {A|Dom}

Q (bot_D (Lift A)) ([p:A.c->Sig]bot,botlift|(dom2cpo A) : (Lift A).c)];

A.17. lift.l 265

[Prf_Lift_botNup_cpo : {A|CPO}{a:A.1} not (Q (bot_D (LiftCpo A)) (up a))];

up’ == [A|Dom][x:A.1] up|(dom2cpo A) x;

[Prf_Lift_botNup : {A|Dom}{a:A.c} not (Q (bot_D (Lift A)) (up’ a))];

[Prf_leq_lift_cpo : {A:CPO} {a,a’:A.1} iff (leq (up a)(up a’))(leq a a’)];

[Prf_leq_lift : {A:Dom} {a,a’:A.c} iff (leq (up’ a)(up’ a’))(leq a a’)];

[Prf_eq_lift_cpo : {A:CPO} {a,a’:A.1} iff (eq (up a)(up a’))(eq a a’)];

[Prf_up_is_iso : {A:CPO} {a,a’:A.1} iff (Q (up a)(up a’))(Q a a’)];

[Prf_up_mono : {A:CPO} mono (up|A)];

[Prf_case_lift_cpo : {A|CPO}{x:(LiftCpo A).c}

not(not(or (Ex [a:A.1] Q x (up a))(Q x (bot_D (LiftCpo A)))))];

[Prf_case_lift: {A|Dom}{x:(Lift A).c}
not(not(or (Ex [a:A.c] Q x (up’ a))(Q x (bot_D (Lift A)))))];

[Prf_not_leq_up_bot : {A|CPO}{a:A.1} not (leq (up a)(bot_D (LiftCpo A)))];

(* down *)

[Prf_down_cpo_aux : {A:CPO}{d:<p:(LiftCpo A).c>(not (Q p (bot_D (LiftCpo A))))}

ExU [a:A.1] Q (eta A.1 a) d.1.1];

down_cpo == [A:CPO]

(ACu|(<p:(LiftCpo A).c>(not (Q p (bot_D (LiftCpo A)))))|A.1|

([d:(<p:(LiftCpo A).c>(not (Q p (bot_D (LiftCpo A)))))][a:A.1]

Q (eta A.1 a) d.1.1)

(Prf_down_cpo_aux A)).1;

down_cpo_prop == [A:CPO]

(ACu|(<p:(LiftCpo A).c>(not (Q p (bot_D (LiftCpo A)))))|A.1|

([d:(<p:(LiftCpo A).c>(not (Q p (bot_D (LiftCpo A)))))][a:A.1]

Q (eta A.1 a) d.1.1)

(Prf_down_cpo_aux A)).2;

[Prf_charact_up : {A|CPO}{p:(LiftCpo A).c}

(def (p.1 ([x:A.1]top)))->(not (Q p (bot_D (LiftCpo A))))];

[Prf_Lift_unbot : {A|CPO}{a:(LiftCpo A).1} (not (Q a (bot_D (LiftCpo A))))
->Ex ([u:A.1]Q a (up u))];

[Prf_charact_uplifts : {A|CPO} {a:(LiftCpo A).1} {p:def (a.1 ([_:A.1]top)) }

Q a (up|A

(down_cpo A (a,Prf_charact_up a p:<p:c (LiftCpo A)>not (Q p (bot_D (LiftCpo A))))))
];

(* equality *)

strong == [A|CPO][P:A.1->A.1->Prop][x,y:(LiftCpo A).1]
Ex [a:A.1] and (Q x (up a)) (Ex [b:A.1] and (Q y (up b))(P a b));

[Prf_strong_sigma : {A|CPO}{P:A.1->A.1->Prop}

(sigma_pred2 P)->sigma_pred2 (strong P)];

[Prf_Lift_leq : {A|CPO}{x,y:(LiftCpo A).1}

iff (leq x y)

(not(not(or (Q x (bot_D (LiftCpo A))) ((strong (leq|A.1)) x y))))];

[Prf_Lift_Q : {A|CPO}{x,y:(LiftCpo A).1}
iff (Q x y)

(not(not(or

266 Appendix A. The theory as Lego-code

(and (Q x (bot_D (LiftCpo A)))(Q y (bot_D (LiftCpo A))))

((strong (Q|A.1)) x y))

))];

[Prf_sigma_not_Q_LiftCpo : {D:CPO}

sigma_pred ([x:(LiftCpo D).c] not (Q x (bot_D (LiftCpo D))))];

[Prf_strong_up_intro : {A|CPO}{P:A.1->A.1->Prop}{a,b:A.1} (P a b)->(strong P)(up a)(up b)];

[Prf_strong_up_elim : {A|CPO}{P:A.1->A.1->Prop}{a,b:A.1} ((strong P)(up a)(up b))->(P a b)];

(* the lifting map *)

etaf == [A,B|Type] [f:A->B] [p:(A->Sig)->Sig] [q:B->Sig] p ([a:A] q(f a));

lift_trick == [A|CPO][B|Dom][f:A.1->B.c][a:(LiftCpo A).c] [p:B.c->Sig]

Or ((etaf f a.1) p) (p (bot_D B));

[AC_for_lifting : {A|CPO}{B|Dom}{f:A.1->B.c}
definition_by_case

([a:(LiftCpo A).c] Q a (bot_D (LiftCpo A)))

([a:(LiftCpo A).c][_:Q a (bot_D (LiftCpo A))]bot_D B)

([a:(LiftCpo A).c][p:not(Q a (bot_D (LiftCpo A)))]

f(down_cpo A (a,p:(<y:c (LiftCpo A)>not (Q y (bot_D (LiftCpo A)))))))];

lift_pair == [A|CPO][B|Dom] [f:A.1->B.c]

ACu|(LiftCpo A).c|B.c|

([a:(LiftCpo A).c][y:B.c] (and ({p:Q a (bot_D (LiftCpo A))} Q y ((bot_D B)))

({p:not (Q a (bot_D (LiftCpo A)))}Q y
(f (down_cpo A (a,p:<y:c (LiftCpo A)>not (Q y (bot_D (LiftCpo A)))))))

))

(AC_for_lifting f);

liftingCpo == [A|CPO][B|Dom][f:A.1->B.c] (lift_pair f).1;
lift_propCpo == [A|CPO][B|Dom][f:A.1->B.c] (lift_pair f).2;

lifting == [A,B|Dom][f:A.c->B.c] (lift_pair|(dom2cpo A) f).1;

lift_prop == [A,B|Dom][f:A.c->B.c] (lift_pair|(dom2cpo A) f).2;

[Prf_liftingCpo_up : {A|CPO}{B|Dom}{f:A.1->B.c}{a:A.1} Q (liftingCpo f (up a))(f a)];

[Prf_lifting_up : {A,B|Dom}{f:A.c->B.c}{a:A.c} Q (lifting f (up’ a))(f a)];

[Prf_lifting_bot_cpo: {A|CPO}{B|Dom}{f:A.1->B.c}

Q (liftingCpo f (bot_D (LiftCpo A))) (bot_D B)];

[Prf_lifting_bot: {A,B|Dom}{f:A.c->B.c} Q (lifting f (bot_D (Lift A))) (bot_D B)];

(* iso Lift(Unit) -> Sig *)

sigtolift == [s:Sig][p:Unit->Sig] And s (p (bot_D Unit_D));

[Well_Def_sigtolift : {s:Sig}{f:Unit->Sig}

(Q ((sigtolift s) f) top)->Ex [a:Unit] Q (eta Unit a) (sigtolift s)];

map_sig_2_lift1 == [s:Sig](sigtolift s, Well_Def_sigtolift s: (Lift Unit_D).c);

[Prf_map_sig_2_bot : Q (map_sig_2_lift1 bot) (bot_D (Lift Unit_D))];

[Prf_map_sig_2_top : Q (map_sig_2_lift1 top) (up’ (bot_D (Unit_D)))];

[Prf_iso_Sig_Lift_Unit : iso map_sig_2_lift1];

(* iso Lift(Sig) -> Sig *)

sig2_to_sigl == [f:Sig->Sig][h:Sig->Sig] And (h (f bot))(f top);

A.17. lift.l 267

[Well_Def_sig2_to_sigl : {f:Sig->Sig}{h:Sig->Sig} (Q ((sig2_to_sigl f) h) top)

-> Ex [a:Sig] Q (eta Sig a) (sig2_to_sigl f)] ;

[sigsig_lemm : {f:Sig->Sig}ExU [x:(Lift Sig_D).c] Q x.1 (sig2_to_sigl f)] ;

sigsig == (ACu|(Sig->Sig)|(Lift Sig_D).c|([f:Sig->Sig][x:(Lift Sig_D).c]

Q x.1 (sig2_to_sigl f))) sigsig_lemm;

map_sigsig_2_liftsig == [f:Sig->Sig] (sig2_to_sigl f, Well_Def_sig2_to_sigl f: (Lift Sig_D).c);

inv_sigsig == [s:Sig] [x:Sig] Or x s;

Sig2_D == (Sig->Sig,Prf_Sig_pow_dom Sig: Dom);

[Prf_map_sigsig_top : {f:Sig->Sig}
(Q (f top) top)->(Q (f bot) top)-> Q (map_sigsig_2_liftsig f)(up’|Sig_D top)];

[Prf_map_sigsig_id : {f:Sig->Sig}(Q (f top) top)->(Q (f bot) bot)->

Q (map_sigsig_2_liftsig f) (up’|Sig_D bot)];

[Prf_map_sigsig_bot : {f:Sig->Sig}(Q (f top) bot)->(Q (f bot) bot)->

Q (map_sigsig_2_liftsig f) (bot_D (Lift Sig_D))];

[Prf_iso_SigSig_Lift_Sig : iso map_sigsig_2_liftsig];

(* Partial map classifier *)

sigma_subset == [A,B|CPO][m:A.1->B.1] and (mono m)(Ex [p:B.1->Sig]

({b:B.1} iff (mapToPred m b) (def (p b))));

[Ca:Cat] [homs = hom Ca] [obj = ob Ca] [o_ = Ca.2.2.1];

partial_map_c == [class:{X,Y|obj}(homs X Y)->Prop][A,B:obj]

<D:obj><f: homs D B ><m: homs D A > class m ;

commute == [A,B,C,D|obj][f1:homs A B][g1:homs B D][f2:homs A C][g2:homs C D]

Q (o_ g1 f1)(o_ g2 f2);

ispullback ==

[A,B,C,D|obj][f1:homs A B][g1:homs B D][f2:homs A C][g2:homs C D]
and (commute f1 g1 f2 g2)

({A’:obj}{k:homs A’ C}{h:homs A’ B} (commute h g1 k g2)->

ExU [i:homs A’ A] and (Q k (o_ f2 i))(Q h (o_ f1 i)));

Discharge Ca;

[Give_El_of_Subtype :

{A,B|Type}{m:A->B}(mono m)->{b:B}(mapToPred m b) -> <a:A>Q (m a) b];

[Prf_CPOC_is_Cat : [X=CPO][Hom=([X,Y:CPO] X.1->Y.1)]
[o =([A,B,C|CPO][f:B.1->C.1][g:A.1->B.1] compose f g)]

[id = ([A:CPO] (I|A.1))]

and3 ({A,B|X}{f:Hom A B} Q (o (id|B) f) f)

({A,B|X}{f:Hom A B} Q (o f (id|A)) f)

({A,B,C,D|X}{h:Hom A B}{g:Hom B C}{f: Hom C D}
Q (o (o f g) h) (o f (o g h)))];

CPOC == makeCat CPO ([X,Y:CPO] X.1->Y.1)

([A,B,C|CPO][f:B.1->C.1][g:A.1->B.1] compose f g) ([A:CPO] (I|A.1))

Prf_CPOC_is_Cat;

[Prf_partial_map_classi_unique :

{A,B|CPO}{p:partial_map_c CPOC sigma_subset A B }{g,g’:A.1->((LiftCpo B)).1}

([f=p.2.1][m=p.2.2.1]ispullback CPOC|p.1|B|A|(dom2cpo (LiftCpo B)) f (up|B) m g) ->

([f=p.2.1][m=p.2.2.1]ispullback CPOC|p.1|B|A|(dom2cpo (LiftCpo B)) f (up|B) m g’)
->Q g g’];

268 Appendix A. The theory as Lego-code

[Prf_partial_map_class : {A,B|CPO}{p:partial_map_c CPOC sigma_subset A B }

ExU [g:A.1->(LiftCpo B).1][f=p.2.1][m=p.2.2.1]

ispullback CPOC|p.1|B|A|(dom2cpo (LiftCpo B)) f (up|B) m g] ;

partial2map == [A,B|CPO] (ACu|(partial_map_c CPOC sigma_subset A B)

|(A.1->((LiftCpo B)).1)|

([p: partial_map_c CPOC sigma_subset A B]

[g: (A.1->((LiftCpo B)).1)][f=p.2.1][m=p.2.2.1]

ispullback CPOC|p.1|B|A|(dom2cpo (LiftCpo B)) f (up|B) m g))

(Prf_partial_map_class|A|B) ;

partial2map_f == [A,B|CPO] (partial2map|A|B).1;

partial2map_prop == [A,B|CPO] (partial2map|A|B).2;

[sub_g_aux : {A,B|CPO} {g:A.1->(LiftCpo B).c} cpo (<a:A.1> def ((g a).1 ([x:B.1] top)))];

sub_g == [A,B|CPO][g:A.1->(LiftCpo B).c]

(<a:A.1> def ((g a).1 ([x:B.1] top)), sub_g_aux g:CPO);

[Prf_def_eta : {A|CPO} {y:(LiftCpo A).c} (def (y.1 ([_:A.1]top)))->
Ex [a:A.1] Q (eta (A.1) a) y.1];

[Prf_make_pm : {A,B|CPO}{g:A.1->(LiftCpo B).c}{d:(sub_g g).1}

ExU [b:B.1] Q (up b) (g (d.1))];

restrict2def == [A,B|CPO] [g:A.1->c (LiftCpo B)]

ACu|((sub_g g)).1|B.1|([d: ((sub_g g)).1][b:B.1]Q (up b) (g d.1))

(Prf_make_pm g);

res2def == [A,B|CPO] [g:A.1->c (LiftCpo B)] (restrict2def g).1;
res2def_prop == [A,B|CPO] [g:A.1->c (LiftCpo B)] (restrict2def g).2;

eq_partial_map == [Ca|Cat][cla:{X,Y|Ca.ob}(Ca.hom X Y)->Prop]

[A,B|Ca.ob][p,p’:partial_map_c Ca cla A B]

Ex [i: Ca.hom p’.1 p.1] Ex [j: Ca.hom p.1 p’.1]
and3 (isopair i j)

(Q p’.2.1 (Ca.o p.2.1 i))

(Q p’.2.2.1 (Ca.o p.2.2.1 i));

[Prf_pullback_unique_up2iso :

{Ca|Cat}{cla:{X,Y|obj Ca}(homs Ca X Y)->Prop}
{A,B,C,D,A’|Ca.ob}{f:Ca.hom A B}{g:Ca.hom B D}{h:Ca.hom A C}

{k:Ca.hom C D}{f’: Ca.hom A’ B}{h’: Ca.hom A’ C}

{ch:cla h}{ch’:cla h’}

(ispullback Ca f g h k)->(ispullback Ca f’ g h’ k)->

(eq_partial_map cla
(A,(f,(h,ch:<m:homs Ca A C>cla m)) : partial_map_c Ca cla C B)

(A’,(f’,(h’,ch’:<m:homs Ca A’ C>cla m)) : partial_map_c Ca cla C B))

];

[Prf_partial_map_class_inverse :
{A,B|CPO} {g:A.1->(LiftCpo B).c}

and (Ex [p:partial_map_c CPOC sigma_subset A B](Q (partial2map_f p) g))

({p,p’:partial_map_c CPOC sigma_subset A B}

(Q (partial2map_f p) g)->(Q (partial2map_f p’) g)

-> eq_partial_map|CPOC sigma_subset p p’)
];

[Prf_sig_monos_compose : {A,B,C|CPO}

{m:A.1->B.1}{m’:B.1->C.1} (sigma_subset m)->(sigma_subset m’)->

sigma_subset (compose m’ m)
];

[Prf_part_map_compose :

{A,B,C|CPO}{p:partial_map_c CPOC sigma_subset A B}

{p’:partial_map_c CPOC sigma_subset B C}
Ex [o:partial_map_c CPOC sigma_subset A C]

[f=p.2.1][g=p’.2.1][f_o_g=o.2.1][m=p.2.2.1][m’=p’.2.2.1][mo=o.2.2.1]

A.18. smash.l 269

{a:A.1}

and (iff (mapToPred mo a)

(and (mapToPred m a)

({w:(mapToPred m a)}
(mapToPred m’ (f (Give_El_of_Subtype m (fst p.2.2.2) a w).1))))

)

({w:(mapToPred m a)}

{w’:(mapToPred m’ (f (Give_El_of_Subtype m (fst p.2.2.2) a w).1))}

{w’’:(mapToPred mo a)}

Q (g (Give_El_of_Subtype m’ (fst p’.2.2.2)
(f (Give_El_of_Subtype m (fst p.2.2.2) a w).1) w’).1)

(f_o_g (Give_El_of_Subtype mo (fst o.2.2.2) a w’’).1)

)];

A.18 smash.l
Module smash Import lift dom_constr ;

(* the smash product *)

(* defined via FAFT *)

BF == [A,B,C|Dom] [f: (prod A B).c->C.c] [p:(prod A B).c]

p_ (f (p_ p.pi1 (bot_D B))) (f (p_ (bot_D A) p.pi2));

BG == [A,B,C|Dom] [f: (prod A B).c->C.c] [p:(prod A B).c]
p_ (bot_D C)(bot_D C);

IsBistrict == [A,B,C:Dom][f:(prod A B).c->C.c] Q (BF f)(BG f);

Bistrict == [A,B,C:Dom] <f:(prod A B).c->C.c> Q (BF f)(BG f);

carry_smash == [A,B:Dom] {C:Dom}(Bistrict A B C)->C.1;

str_p_ == [A,B:Dom] [a:A.c][b:B.c] [C:Dom] [h:(Bistrict A B C)]

h.1 (p_ a b) : {A,B|Dom}{a:A.c}{b:B.c} carry_smash A B);

[P_aux1 : {A,B,C:Dom} {m:(Bistrict A B C) } dom C.1];

[P_aux2 : {A,B:Dom} {C:Dom} dom (Bistrict A B C)->C.1];

[Prf_dom_carry_s_pro : {A,B:Dom} dom (carry_smash A B)];

smash_pro == [A,B:Dom] (carry_smash A B,Prf_dom_carry_s_pro A B:Dom) ;

target_pro == [A,B:Dom] {C:Dom}{u,v:(func_s (smash_pro A B) C).c}

(Q ([a:A.c] compose u.1 (str_p_ A B a)) ([a:A.c]compose v.1 (str_p_ A B a))) ->C.1 ;

[Prf_target_pro_dom_min : {A,B:Dom}

and (dom (target_pro A B))

(min (target_pro A B)

([C:Dom][u,v:(func_s (smash_pro A B) C).c]
[_:(Q ([a:A.c] compose u.1 (str_p_ A B a))

([a:A.c]compose v.1 (str_p_ A B a)))]

(bot_D C))

)] ;

target_smash == [A,B:Dom](target_pro A B,fst(Prf_target_pro_dom_min A B):Dom);

Fsm == [A,B|Dom][p:(smash_pro A B).1]

[C:Dom][u,v:(func_s (smash_pro A B) C).c]

[m:Q ([a:c A]compose u.1 (str_p_ A B a)) ([a:c A]compose v.1 (str_p_ A B a))]
u.1 p : {A,B|Dom}(smash_pro A B).1->(target_smash A B).1;

Gsm == [A,B|Dom][p:(smash_pro A B).1]

[C:Dom][u,v:(func_s (smash_pro A B) C).c]

[m:Q ([a:c A]compose u.1 (str_p_ A B a)) ([a:c A]compose v.1 (str_p_ A B a))]

v.1 p : {A,B|Dom}(smash_pro A B).1->(target_smash A B).1;

270 Appendix A. The theory as Lego-code

smash_carry == [A,B:Dom] <p:(smash_pro A B).1> Q (Fsm p)(Gsm p);

[Prf_Q_bot_target_smash : {A,B|Dom}
Q (bot_D (target_smash A B))

([C:Dom][u,v:c (func_s (smash_pro A B) C)]

[m: Q ([a:c A]compose u.1 (str_p_ A B a)) ([a:c A]compose v.1 (str_p_ A B a))]

(bot_D C))];

[Prf_Fsm_strict : {A,B|Dom} (strict|(smash_pro A B)|(target_smash A B)) (Fsm|A|B)];

[Prf_Gsm_strict : {A,B|Dom} (strict|(smash_pro A B)|(target_smash A B)) (Gsm|A|B)] ;

[Prf_smash_carry_dom : {A,B:Dom}dom (smash_carry A B)];

smash == [A,B:Dom] (smash_carry A B,Prf_smash_carry_dom A B:Dom);

[Prf_p_stri_ok : {A,B:Dom} {a:A.c}{b:B.c}

Q (Fsm (str_p_ A B a b))(Gsm (str_p_ A B a b))];

p’_ == [A,B|Dom][a:A.c][b:B.c]

(str_p_ A B a b, Prf_p_stri_ok A B a b:(smash A B).c);

smash_elim == [A,B,C|Dom][f: (Bistrict A B C)][p:(smash A B).c] p.1 C f;

[Prf_Q_bot_smash : {A,B|Dom}

Q (bot_D (smash A B)).1 ([C:Dom][h:(Bistrict A B C)] (bot_D C))];

[Prf_rightstrict_p’ : {A,B|Dom}{a:A.c} Q (p’_ a (bot_D B)) (bot_D (smash A B))];

[Prf_leftstrict_p’ : {A,B|Dom}{b:B.c} Q (p’_ (bot_D A) b) (bot_D (smash A B))];

[Prf_smash_elim_p’ : {A,B,C|Dom}{f:Bistrict A B C}{a:A.c}{b:B.c}

Q ((smash_elim f)(p’_ a b))(f.1 (p_ a b))];

[Prf_leq_smash : {X,Y:Dom}{x,x’:X.c}{y,y’:Y.c}

(and (leq x x’)(leq y y’))-> (leq (p’_ x y)(p’_ x’ y’))];

[Prf_pointwise_strict_2_bistrict :

{A,B,C,D|Dom}{f:(func_s A C).c}{g:(func_s B D).c}

IsBistrict A B (smash C D) ([u:(prod A B).c] p’_ (f.1 u.pi1)(g.1 u.pi2))];

(* uniqueness of elimination *)

E_pro == [A,B|Dom] [C:Dom][f,g: (func_s (smash A B) C).1]

<u:(smash A B).1 >Q(f.1 u)(g.1 u);

[Prf_Epro_dom : {A,B|Dom}{C:Dom}{f,g:(func_s (smash A B) C).1} dom(E_pro C f g)];

Fsm’ == [A,B|Dom][p:(smash_pro A B).1]

[h: (func_s (smash_pro A B) (smash_pro A B)).c]
[m: Q ([a:c A]compose h.1 (str_p_ A B a)) ([a:c A](str_p_ A B a))]

h.1 p ;

Gsm’ == [A,B|Dom][p:(smash_pro A B).1]

[h: (func_s (smash_pro A B) (smash_pro A B)).c]
[m: Q ([a:c A]compose h.1 (str_p_ A B a)) ([a:c A](str_p_ A B a))]

p ;

ism == [A,B|Dom][x: (smash A B).1] x.1;

[Prf_IsBistrict_psm : {A,B:Dom}

IsBistrict A B (smash A B) ([u:(prod A B).c] p’_ (pi1 u)(pi2 u))];

psm_aux == [A,B:Dom]

(([u:(prod A B).c] p’_ (pi1 u)(pi2 u)),(Prf_IsBistrict_psm A B)
: Bistrict A B (smash A B));

A.19. functors.l 271

psm == [A,B|Dom][x:(smash_pro A B).1] x (smash A B) (psm_aux A B) ;

[Prf_psm_str_p : {A,B|Dom} {a:A.c}{b:B.c} Q (psm (str_p_ A B a b)) (p’_ a b)];

[Prf_Q_bot_smashpro : {A,B|Dom}

Q (bot_D (smash_pro A B)) ([C:Dom][h:(Bistrict A B C)] (bot_D C))];

[Prf_strictness_of_composite_smash :{A,B|Dom}{C:Dom}{f: (func_s (smash A B) C).c }

(strict|(smash_pro A B)|C) (compose f.1 (psm|A|B))] ;

fpm == [A,B,C|Dom] [f: (func_s (smash A B) C).c]

((compose f.1 (psm|A|B)), Prf_strictness_of_composite_smash|A|B C f

: c (func_s (smash_pro A B) C));

px_m == [A,B|Dom][C:Dom][f,g: (func_s (smash A B) C).c]
[m : Q ([a:A.c](compose (compose f.1 (psm|A|B)) (str_p_ A B a)))

([a:A.c](compose (compose g.1 (psm|A|B)) (str_p_ A B a)))]

[p: (smash A B).1]

(psm p.1 ,Q_resp ([U:((target_smash A B)).1] U C (fpm f) (fpm g) m) p.2:E_pro C f g);

ix_m == [A,B|Dom][C:Dom][f,g: (func_s (smash A B) C).c][p:E_pro C f g] p.1;

[Prf_ism_psm_id : {A,B|Dom}{p:(smash_pro A B).c}

(Q (Fsm’ p)(Gsm’ p)) -> Q((compose (ism|A|B) (psm|A|B)) p) p];

[Prf_equiv_smash : {A,B|Dom}{p:(smash_pro A B).c}

iff (Q (Fsm p)(Gsm p))(Q (Fsm’ p)(Gsm’ p))];

[Prf_psm_ism_id : {A,B|Dom}{p:(smash A B).c}

Q((compose (psm|A|B) (ism|A|B)) p) p];

[Prf_aux_ixm_pxm: {A,B|Dom}{C:Dom}{f,g:c (func_s (smash A B) C)}

{ m: Q ([a:A.c](compose (compose f.1 (psm|A|B)) (str_p_ A B a)))

([a:A.c](compose (compose g.1 (psm|A|B)) (str_p_ A B a)))

}
Q (compose (ism|A|B) (compose (ix_m C f g)

(compose (px_m C f g m) (compose (psm|A|B)(ism|A|B)))))

(ism|A|B)];

[Prf_rectract_ixm_pxm: {A,B|Dom}{C:Dom}{f,g:c (func_s (smash A B) C)}

{m : Q ([a:A.c](compose (compose f.1 (psm|A|B)) (str_p_ A B a)))
([a:A.c](compose (compose g.1 (psm|A|B)) (str_p_ A B a)))

}

Q (compose (ix_m C f g) (px_m C f g m)) (I|(smash A B).1)];

[Prf_strict_smash_elim : {A,B,C|Dom}{f:Bistrict A B C} strict (smash_elim f)];

[Prf_smash_elim_unique : {A,B,C|Dom} {f: (Bistrict A B C)}

ExU [h: (func_s (smash A B) C).c]

{a:A.c}{b:B.c}Q (h.1 (p’_ a b)) (f.1 (p_ a b))] ;

[Prf_Q_smash_funcs : {A,B,C|Dom} {f,g: (func_s (smash A B) C).c}

({a:A.c}{b:B.c} Q (f.1 (p’_ a b))(g.1 (p’_ a b)))->Q f g];

A.19 functors.l
Module functors Import dom_constr smash ;

Ob == DomC.ob;

Hom == DomC.hom;

make2strict_to_bistrict == [A,B,C,D|Dom][f:Hom A C][g:Hom B D]

(([u:(prod A B).c] p’_ (f.1 u.pi1)(g.1 u.pi2)),

(Prf_pointwise_strict_2_bistrict f g): Bistrict A B (smash C D));

(* smash X _ is a covariant functor in DomC *)

272 Appendix A. The theory as Lego-code

[smash_hom_strict :

{A|Dom}{b,d|Ob}{g:(Hom b d)} (strict|(smash A b)|(smash A d))

[x:(smash A b).c] smash_elim (make2strict_to_bistrict (idd|A) g) x];

obj_part_smash1 == [A:Ob] ([X:Ob] smash A X);

hom_part_smash1 == [A:Ob][a,b|Ob][f:(Hom a b)]

(smash_elim (make2strict_to_bistrict (idd|A) f) , (smash_hom_strict f)

: Hom (smash A a)(smash A b));

[Prf_smash1_is_coFunctor :
{A:Dom} Is_coFunctor DomC DomC (obj_part_smash1 A) (hom_part_smash1 A)];

SMASH1_F == [A:Dom]

make_coFunc|DomC|DomC (obj_part_smash1 A)(hom_part_smash1 A)

(Prf_smash1_is_coFunctor A);

(* prodCPO _ ist covariant in CPOC *)

obj_part_prodCPO == [A:CPO] ([X:CPO] prodCPO A X);
hom_part_prodCPO == [A:CPO] [a,b|CPO][f: CPOC.hom a b]

([u:(prodCPO A a).1] p_c u.pi1C (f u.pi2C));

[Prod1CPO_is_Func : {A:CPO}

Is_coFunctor CPOC CPOC (obj_part_prodCPO A) (hom_part_prodCPO A)];

Prod1_F == [A:CPO]

make_coFunc|CPOC|CPOC (obj_part_prodCPO A) (hom_part_prodCPO A) (Prod1CPO_is_Func A);

(* Lift is covarinat functor CPOC -> DomC *)

obj_part_Lift == [D:CPO] (LiftCpo D);

mor_part_Lift == [X,Y|ob CPOC][f:hom CPOC X Y] liftingCpo (compose (up|Y) f);

[Prf_strict_hom_part_Lift : {X,Y|CPOC.ob}{f:CPOC.hom X Y}

strict|(LiftCpo X)|(LiftCpo Y) (mor_part_Lift f)];

hom_part_Lift == [X,Y|CPOC.ob][f:CPOC.hom X Y]

(mor_part_Lift f,Prf_strict_hom_part_Lift f:DomC.hom (LiftCpo X) (LiftCpo Y));

[Prf_Lift_coFunctor : Is_coFunctor CPOC DomC obj_part_Lift hom_part_Lift];

Lift_F == make_coFunc|CPOC|DomC (obj_part_Lift) (hom_part_Lift) Prf_Lift_coFunctor;

[Prf_Lift_mor_up : {X,Y|CPO}{f:X.1->Y.1}{a:X.1} Q ((Lift_F.2.1 f).1 (up a)) (up (f a))];

(* composition of functors *)

[C,D,E|Cat]
[F:co_Functor C D][G:co_Functor D E];

obj_part_comp_Func == [X:C.ob]G.1(F.1(X));

hom_part_comp_Func == [X,Y:C.ob][f:C.hom X Y]G.2.1(F.2.1 f);

$[Prf_comp_is_Functor : Is_coFunctor C E obj_part_comp_Func hom_part_comp_Func];

comp_Fu == make_coFunc|C|E obj_part_comp_Func hom_part_comp_Func Prf_comp_is_Functor ;

Discharge C;

(* forgetful Functor from DomC -> CPOC *)

U_obj_part == [D:Ob] dom2cpo D;

U_mor_part == [X,Y:Ob] [F: Hom X Y] F.1;

[Prf_is_coFunc_U : Is_coFunctor DomC CPOC U_obj_part U_mor_part];

A.20. orthogonal.l 273

U_Fu == make_coFunc|DomC|CPOC U_obj_part U_mor_part Prf_is_coFunc_U ;

A.20 orthogonal.l
Module orthogonal Import cpos;

[Prf_cTop_supr_of_step : supr (step_ombar, Prf_ac_step :AC(ombar)) cTop];

[Prf_lem_3_3_1 : {X|Set}{F,G:omega->X} (poset X)->

iff (Q (compose F step_omega)(compose G step_omega))(Q F G)];

[Prf_lem_3_3_1_ombar : {X|Set}{F,G:ombar->X}(poset X)->

iff (Q (compose F step_ombar)(compose G step_ombar))(Q F G)];

[Prf_lem_3_3_2a : {X|Set}(poset X)->{a:AC X} ExU [a_:omega->X] Q (compose a_ step_omega) a.1];

[Prf_lem_3_3_2b : {X|Set} (cpo X)->{a:AC X} ExU [a_:ombar->X]

Q (compose a_ step_ombar) a.1];

[Prf_lem_3_3_2c : {X|Set} (cpo X)-> iso ([f:ombar->X][p:omega] f(inc p))];

[Prf_main_theorem_3_3_3 : {X|Set}

iff (cpo X) (and (poset X) (iso ([f:ombar->X][p:omega] f(inc p))))];

A.21 binary sums.l
Module binary_sums Import closure;

(* binary sums *)

sum2 == [X,Y:Set]<b:B>bs X Y b;

inl_po == [X,Y:Set][x:X](true,x:sum2 X Y);

inr_po == [X,Y:Set][y:Y](false,y:sum2 X Y);

sum2_elim == [X,Y:Set][C:Set] [f:X->C][g:Y->C] [e:sum2 X Y]

(B_elim ([b:B](bs X Y b)->C)([x:X]f x)([y:Y]g y)) e.1 e.2;

sum2_Elim == [X,Y:Set][C:B->Set] [f:{x:X}C(true)][g:{y:Y}C(false)] [e:sum2 X Y]

(B_elim ([b:B](bs X Y b)->C b)([x:X]f x)([y:Y]g y)) e.1 e.2;
SUM2_elim == [X,Y:Set][C:(sum2 X Y)->Type] [f:{x:X}C (inl_po X Y x)][g:{y:Y}C (inr_po X Y y)]

[e:sum2 X Y](B_elim ([b:B]{u:(bs X Y b)} C((b,u:sum2 X Y)))([x:X]f x)([y:Y]g y)) e.1 e.2;

s_cond == [X,Y|Set][p: prod2 ((X->Sig)->Sig)((Y->Sig)->Sig)]

{h:X->Sig}{k:Y->Sig}
(not(not(or (and (Ex [x:X] Q (eta X x) p.pi1_p)(Q (p.pi2_p k) bot))

(and (Ex [y:Y] Q (eta Y y) p.pi2_p)(Q (p.pi1_p h) bot)))));

sum_sub == [X,Y:Set] <p: prod2 ((X->Sig)->Sig)((Y->Sig)->Sig)> s_cond p;

[Prf_sum_sub_poset : {X,Y:Set}(poset X)->(poset Y)-> poset (sum_sub X Y)] ;

[Prf_sumpo_l : {X,Y:Set}{x:X} s_cond (p_po (eta X x) ([y:Y->Sig]bot))];

[Prf_sumpo_r : {X,Y:Set}{y:Y} s_cond (p_po ([x:X->Sig]bot)(eta Y y))];

mono_sum_poset == [X,Y|Set][p:poset X][q:poset Y]

sum2_elim X Y (sum_sub X Y)

([x:X] ((p_po (eta X x) ([y:Y->Sig]bot)),(Prf_sumpo_l X Y x):sum_sub X Y))

([y:Y] ((p_po ([x:X->Sig]bot) (eta Y y)), (Prf_sumpo_r X Y y):sum_sub X Y)) ;

[Prf_sum_po_inl : {X,Y:Set}{x:sum2 X Y}{p:(Q x.1 true)}

Q x (inl_po X Y (subst B (bs X Y) x.1 x.2 true (snd (Prf_Id_Q_Equiv x.1 true) p)))];

[Prf_sum_po_inr : {X,Y:Set}{x:sum2 X Y}{p:(Q x.1 false)}

Q x (inr_po X Y (subst B (bs X Y) x.1 x.2 false (snd (Prf_Id_Q_Equiv x.1 false) p)))];

274 Appendix A. The theory as Lego-code

[Prf_SigSig_bot_chec: {X|Type} {p:(X->Sig)->Sig}

(not (def (p ([x:X]top))))->Q p ([x:X->Sig]bot)];

[Prf_sum_rule : {X,Y|Set}{C:(sum2 X Y)->Prop}

({x:X}C (inl_po X Y x))->({y:Y}C (inr_po X Y y))-> {a:sum2 X Y} C a];

[Prf_sum_give_bool : {X,Y|Set} definition_by_cases

([h:sum_sub X Y] def(h.1.pi1_p ([x:X]top)))

([h:sum_sub X Y]true)([h:sum_sub X Y]false)];

[Prf_inl_po_mono : {X,Y|Set}{x,x’:X}(Q (inl_po X Y x)(inl_po X Y x’))->Q x x’];

[Prf_inr_po_mono : {X,Y|Set}{y,y’:Y}(Q (inr_po X Y y)(inr_po X Y y’))->Q y y’];

[Prf_sum_dnclo_mono : {X,Y|Set}{p:(poset X)}{q:(poset Y)}

dnclo_mono (mono_sum_poset p q)];

[Prf_sum2_poset : {X,Y:Set}(poset X)->(poset Y)->poset(sum2 X Y)];

[Prf_sum2_leq : {X,Y|Set}(poset X)->(poset Y)->

{a,b:sum2 X Y} iff (leq a b)

(or (Ex [x:X] and (Q a (inl_po X Y x))

(Ex [x’:X] and(Q b (inl_po X Y x’)) (leq x x’)))

(Ex [y:Y] and (Q a (inr_po X Y y))
(Ex [y’:Y] and(Q b (inr_po X Y y’)) (leq y y’))))];

[Prf_chain_in_sum : {X,Y|Set}{a:AC(sum2 X Y)}(poset X)->(poset Y)->

or (Ex [a’:AC(X)] Q a (chain_co a’ (inl_po X Y)))

(Ex [a’:AC(Y)] Q a (chain_co a’ (inr_po X Y)))];

[Prf_sum2_cpo : {X,Y|Set}(cpo X)->(cpo Y)->cpo (sum2 X Y)];

[Prf_inl_neq_inr : {X,Y|Set}{x:X}{y:Y} not (Q (inl_po X Y x)(inr_po X Y y))];

[Prf_sum2_exhaustion : {X,Y|Set}{x:sum2 X Y}

or (Ex [a:X] Q x (inl_po X Y a))(Ex [b:Y]Q x (inr_po X Y b))];

[Prf_Q_subst_elim : {X|Type}{C|X->Type}{a,b:X}{x,y:C a}{p:Id a b}

(Q(subst X C a x b p)(subst X C a y b p))->Q x y];

[Prf_sum2_Elim : {X,Y|Set}{C|(sum2 X Y)->Type}

{h: {x:X}C(inl_po X Y x)}{k:{y:Y}C(inr_po X Y y)}

<f:{u:sum2 X Y}C u>

and ({x:X}Q(f (inl_po X Y x)) (h x))({y:Y}Q(f (inr_po X Y y)) (k y))];

[Prf_sum2_inl : {X,Y,C:Set}{f:X->C}{g:Y->C}

{x:X}Q (sum2_elim X Y C f g (inl_po X Y x)) (f x)];

[Prf_sum2_inr: {X,Y,C:Set}{f:X->C}{g:Y->C}

{y:Y}Q (sum2_elim X Y C f g (inr_po X Y y)) (g y)];

A.22 sums.l
Module sums Import lift dom_constr binary_sums;

(* strict sum and separated sum *)

(* defined via FAFT *)

(* strict or coalesced sum *)

sS_c == [A,B:Dom] {C:Dom} (((func_s A C).c)#((func_s B C).c))->C.1 ;

[S_aux1: {A,B,C:Dom} {u:(((func_s A C).c)#((func_s B C).c))} dom C.1];

[S_aux2: {A,B,C:Dom} dom (((func_s A C).c)#((func_s B C).c))->C.1];

A.22. sums.l 275

[sS_c_dom: {A,B:Dom} dom (sS_c A B)];

sSC == [A,B:Dom] (sS_c A B ,sS_c_dom A B:Dom);

inl_stri == [A,B:Dom][a:A.c][C:Dom][h:(func_s A C).c#(func_s B C).c] h.1.1 a;

inr_stri == [A,B:Dom][b:B.c][C:Dom][h:(func_s A C).c#(func_s B C).c] h.2.1 b;

target_s == [A,B:Dom] {C:Dom}{u,v: (func_s (sSC A B) C).c}

(Q (compose u.1 (inl_stri A B)) (compose v.1 (inl_stri A B)))->

(Q (compose u.1 (inr_stri A B)) (compose v.1 (inr_stri A B)))->C.1;

[Prf_target_s_dom_min : {A,B:Dom}

and (dom (target_s A B))

(min (target_s A B) ([C:Dom][u,v:c (func_s (sSC A B) C)]

[_:Q (compose u.1 (inl_stri A B)) (compose v.1 (inl_stri A B))]
[_:Q (compose u.1 (inr_stri A B)) (compose v.1 (inr_stri A B))]

(bot_D C))

)];

target_str == [A,B:Dom](target_s A B,fst(Prf_target_s_dom_min A B):Dom);

Fstr == [A,B|Dom][p:(sSC A B).1]

[C:Dom][u,v:(func_s (sSC A B) C).c]

[ml: Q(compose u.1 (inl_stri A B))(compose v.1 (inl_stri A B))]

[mr: Q(compose u.1 (inr_stri A B))(compose v.1 (inr_stri A B))]
u.1 p : {A,B|Dom}(sSC A B).1->(target_str A B).1;

Gstr == [A,B|Dom][p:(sSC A B).1]

[C:Dom][u,v:(func_s (sSC A B) C).c]

[ml: Q(compose u.1 (inl_stri A B))(compose v.1 (inl_stri A B))]
[mr: Q(compose u.1 (inr_stri A B))(compose v.1 (inr_stri A B))]

v.1 p : {A,B|Dom}(sSC A B).1->(target_str A B).1;

sum_str_carry == [A,B:Dom] <p:(sSC A B).1> Q (Fstr p)(Gstr p);

[Prf_Q_bot_target_str : {A,B|Dom}

Q (bot_D (target_str A B))

([C:Dom][u,v:c (func_s (sSC A B) C)]

[_:Q (compose u.1 (inl_stri A B)) (compose v.1 (inl_stri A B))]

[_:Q (compose u.1 (inr_stri A B)) (compose v.1 (inr_stri A B))]

(bot_D C))];

[Prf_Fstr_strict : {A,B|Dom} (strict|(sSC A B)|(target_str A B)) (Fstr|A|B)];

[Prf_Gstr_strict : {A,B|Dom} (strict|(sSC A B)|(target_str A B)) (Gstr|A|B)];

[Prf_sum_strict_carry_dom: {A,B:Dom}dom (sum_str_carry A B)];

sum_strict == [A,B:Dom] (sum_str_carry A B,Prf_sum_strict_carry_dom A B:Dom);

[Prf_inl_stri_ok : {A,B:Dom} {a:A.1}
Q (Fstr (inl_stri A B a))(Gstr (inl_stri A B a))];

inl_st == [A,B|Dom][a:A.c]

(inl_stri A B a, Prf_inl_stri_ok A B a: (sum_strict A B).1);

[Prf_inr_stri_ok : {A,B:Dom} {b:B.c} Q (Fstr (inr_stri A B b))(Gstr (inr_stri A B b))];

inr_st == [A,B|Dom][b:B.c] (inr_stri A B b, Prf_inr_stri_ok A B b : (sum_strict A B).1);

sum_strict_elim == [A,B,C|Dom] [f: (func_s A C).c][g:(func_s B C).c]
[x:(sum_strict A B).1] x.1 C (f ,g);

[Prf_sum_strict_elim_bot : {A,B,C|Dom}{f: (func_s A C).c}{g:(func_s B C).c}

Q (sum_strict_elim f g (bot_D (sum_strict A B))) (bot_D C)];

[Prf_sum_strict_elim_inl : {A,B,C|Dom}{a:A.c}

{f: (func_s A C).c}{g:(func_s B C).c}

276 Appendix A. The theory as Lego-code

Q (sum_strict_elim f g (inl_st a)) (f.1 a)] ;

[Prf_sum_strict_elim_inr : {A,B,C|Dom} {b:B.c}

{f: (func_s A C).c}{g:(func_s B C).c}
Q (sum_strict_elim f g (inr_st b)) (g.1 b)];

[Prf_Q_bot_sum_st : {A,B:Dom} Q (bot_D (sum_strict A B)).1

([C:Dom][h:(c (func_s A C))#c (func_s B C)] (bot_D C))];

[Prf_strict_inl_st : {A,B|Dom} strict|A|(sum_strict A B) (inl_st|A|B)] ;

[Prf_strict_inr_st {A,B|Dom} strict|B|(sum_strict A B) (inr_st|A|B)] ;

inl_strict == [A,B|Dom](inl_st|A|B,Prf_strict_inl_st|A|B : (func_s A (sum_strict A B)).c);

inr_strict == [A,B|Dom](inr_st|A|B,Prf_strict_inr_st|A|B : (func_s B (sum_strict A B)).c);

[Prf_triv_strict: {A,C|Dom} strict [x:A.c]bot_D C];

k_bot == [A,D|Dom] ([x:A.c]bot_D D,Prf_triv_strict|A|D: (func_s A D).c);

[Prf_leq_inl_sum_str : {A,B|Dom} {x,y:A.c} iff (leq (inl_st|A|B x)(inl_st|A|B y))(leq x y)];

[Prf_leq_inr_sum_str : {A,B|Dom} {x,y:B.c} iff (leq (inr_st|A|B x)(inr_st|A|B y))(leq x y)];

[Prf_inl_st_bot : {A,B|Dom} Q (inl_st|A|B (bot_D A))(bot_D (sum_strict A B))];

[Prf_inr_st_bot : {A,B|Dom} Q (inr_st|A|B (bot_D B))(bot_D (sum_strict A B))];

(* uniqueness of eliminitation *)

E_sum == [A,B|Dom][C:Dom][f,g:(func_s (sum_strict A B) C).1]

<u:(sum_strict A B).1 >Q(f.1 u)(g.1 u);

[Prf_Es_Dom : {A,B|Dom}{C:Dom}{f,g:(func_s (sum_strict A B) C).1} dom(E_sum C f g)];

Fstr’ == [A,B|Dom][p:(sSC A B).1]

[h: (func_s (sSC A B) (sSC A B)).c]

[pl: Q (compose h.1 (inl_stri A B)) (inl_stri A B)]

[pr: Q (compose h.1 (inr_stri A B)) (inr_stri A B)]
h.1 p ;

Gstr’ == [A,B|Dom][p:(sSC A B).1]

[h: (func_s (sSC A B) (sSC A B)).c]

[pl: Q (compose h.1 (inl_stri A B)) (inl_stri A B)]
[pr: Q (compose h.1 (inr_stri A B)) (inr_stri A B)]

p ;

is == [A,B|Dom][x: (sum_strict A B).1] x.1;

ps == [A,B|Dom][x:(sSC A B).1]

x (sum_strict A B) ((inl_strict|A|B) ,(inr_strict|A|B)) ;

[Prf_ps_inl : {A,B|Dom}{a:A.c} Q (ps (inl_stri A B a)) (inl_st a)];

[Prf_ps_inr : {A,B|Dom}{b:B.c} Q (ps (inr_stri A B b)) (inr_st b)];

[Prf_Q_bot_sSC : {A,B|Dom}

Q (bot_D (sSC A B)) ([C:Dom][h:(c (func_s A C))#c (func_s B C)] (bot_D C))];

[Prf_strictness_of_composite : {A,B|Dom}{C:Dom}

{f:(func_s (sum_strict A B) C).c } (strict|(sSC A B)|C) (compose f.1 (ps|A|B))];

fps == [A,B,C|Dom] [f: (func_s (sum_strict A B) C).c]

((compose f.1 (ps|A|B)), Prf_strictness_of_composite|A|B C f : c (func_s (sSC A B) C));

px_s == [A,B|Dom][C:Dom][f,g: (func_s (sum_strict A B) C).c]

A.23. reflect.l 277

[ml : Q (compose (compose f.1 (ps|A|B)) (inl_stri A B))

(compose (compose g.1 (ps|A|B)) (inl_stri A B))

]

[mr : Q (compose (compose f.1 (ps|A|B)) (inr_stri A B))
(compose (compose g.1 (ps|A|B)) (inr_stri A B))

]

[p:(sum_strict A B).1]

(ps p.1 , Q_resp ([U:((target_str A B)).1] U C (fps f) (fps g) ml mr) p.2 : E_sum C f g);

[Prf_is_ps_id : {A,B|Dom}{p:(sSC A B).c} (Q (Fstr’ p)(Gstr’ p)) ->
Q((compose (is|A|B) (ps|A|B)) p) p];

[Prf_equiv_sum : {A,B|Dom}{p:(sSC A B).c} iff (Q (Fstr p)(Gstr p))(Q (Fstr’ p)(Gstr’ p))];

[Prf_ps_is_id : {A,B|Dom}{p:(sum_strict A B).c} Q ((compose (ps|A|B) (is|A|B)) p) p];

ix == [A,B|Dom][C:Dom][f,g:c (func_s (sum_strict A B) C)][p:(E_sum C f g)] p.1;

[Prf_aux_ix_px : {A,B|Dom}{C:Dom}{f,g:c (func_s (sum_strict A B) C)}

{ml: Q (compose (compose f.1 (ps|A|B)) (inl_stri A B))
(compose (compose g.1 (ps|A|B)) (inl_stri A B))}

{mr: Q (compose (compose f.1 (ps|A|B)) (inr_stri A B))

(compose (compose g.1 (ps|A|B)) (inr_stri A B))}

Q (compose (is|A|B) (compose (ix C f g) (compose (px_s C f g ml mr)

(compose (ps|A|B)(is|A|B)))))
(is|A|B)];

[Prf_rectract_ix_px : {A,B|Dom}{C:Dom}{f,g:c (func_s (sum_strict A B) C)}

{ml: Q (compose (compose f.1 (ps|A|B)) (inl_stri A B))

(compose (compose g.1 (ps|A|B)) (inl_stri A B))}
{mr: Q (compose (compose f.1 (ps|A|B)) (inr_stri A B))

(compose (compose g.1 (ps|A|B)) (inr_stri A B))}

Q (compose (ix C f g) (px_s C f g ml mr)) (I|(sum_strict A B).1)];

[Prf_sum_strict_elim_unique : {A,B,C|Dom}
{f: (func_s A C).c}{g:(func_s B C).c}

ExU [h: (func_s (sum_strict A B) C).c]

and ({a:A.c} Q (h.1 (inl_st a)) (f.1 a))

({b:B.c} Q (h.1 (inr_st b)) (g.1 b))] ;

[Prf_Q_strict_sum_funcs : {A,B,C|Dom} {h,h’:(func_s (sum_strict A B) C).c}
({a:A.c} Q (h.1 (inl_st a)) (h’.1 (inl_st a)))->

({b:B.c} Q (h.1 (inr_st b)) (h’.1 (inr_st b)))-> Q h h’];

(* separated sum *)

sum2_cpo == [X,Y:CPO] (sum2 X.1 Y.1,Prf_sum2_cpo X.2 Y.2 :CPO);

lazy_sum == [X,Y:Dom] LiftCpo (sum2_cpo (dom2cpo X)(dom2cpo Y));

(* iso Lift (A+B) =~= sum_strict (Lift A) (Lift B) *)
(* here we really need uniqueness of elimination !!! *)

[Prf_iso_smash_lazy : {X,Y:Dom} Ex

[beta : (lazy_sum X Y).c -> (sum_strict (Lift X)(Lift Y)).c] iso beta];

A.23 reflect.l
Module reflect Import closure ;

(* by FAFT: PO and CPO are reflective subcategories of Set *)

[X:Set];

[class : Set->Prop];

[Ca = <A:Set>class A]

[pc: {A:Type}{F:A->Set}({a:A}class (F a))-> class ({x:A}F x)];

[peq: {A,C:Set}(class A)->(class C)-> {f,g:A->C}class (<x:A>Q(f x)(g x))];

278 Appendix A. The theory as Lego-code

W== {C:Ca } (X->C.1)->C.1;

rx== [x:X] [C:Ca][h: X->C.1] h x;

W_elim == [C:Ca][f:X->C.1][c:W]c C f;

$[Prf_W_class: class W];

Fr == [p:W] [h:W->W][m:Q (compose h rx) rx] h p;

Gr == [p:W] [h:W->W] [m:Q (compose h rx) rx] p;

R == <p:W >Q (Fr p)(Gr p);

$[Prf_R_class : class R];

$[Prf_rx_welldef : {x:X } Q (Fr (rx x))(Gr (rx x))] ;

E == [Y:Ca][f,g:W->Y.1] <u:W >Q(f u)(g u);

$[Prf_E_class : {Y:Ca}{f,g:W->Y.1} class (E Y f g)];

Ec == [Y:Ca][f,g:W->Y.1] (E Y f g, Prf_E_class Y f g:Ca);

px == [Y:Ca][f,g:W->Y.1]
[m:Q (compose f (rx)) (compose g (rx))] [p:W]

W_elim (Ec Y f g) ([x:X] ((rx x),Q_resp ([U:X ->Y.1] U x) m :(E Y f g))) p;

ix == [Y:Ca][f,g:W->Y.1] [u:E Y f g]u.1;

rX == [x:X] (rx x, Prf_rx_welldef x : R);

R_elim == [Y:Ca][f:X->Y.1][a:R] a.1 Y f;

ir == [a:R] (a.1:W);
pr == [a:W] W_elim (R,Prf_R_class:Ca) rX a;

$[Prf_ix_o_px_id : {Y:Ca}{f,g:W->Y.1}{m:Q (compose f (rx)) (compose g (rx))}

{p:W }(Q (Fr p)(Gr p))-> Q ((compose (ix Y f g) (px Y f g m))p) p];

$[Prf_refl_help_1:
{Y:Ca}{f,g:W->Y.1}{m:Q (compose f (rx)) (compose g (rx))}

{r:R} Q ((compose (ix Y f g)

(px Y f g m))(ir r)) (ir r)];

$[Prf_ir_pr_rx: Q (compose (compose ir pr) rx) rx];

$[Prf_retract_pr_ir: {p:R} Q ((compose pr ir) p) p];

$[Prf_equaliz_R: {Y:Ca}{f,g:W->Y.1}{m:Q (compose f (rx)) (compose g (rx))}

Q (compose (compose pr (ix Y f g))
(compose (px Y f g m) ir)) (I|R)];

$[Prf_reflection :{Y:Ca}{f:X->Y.1}ExU [g:R->Y.1] Q (compose g rX) f];

Discharge X;

(* application of the previous work to po and cpo *)

PO == <A:Set>poset A;

[P:Set];
R_po == R P poset ;

rX_po == rX P poset;

R_po_is_poset == Prf_R_class P poset ;

[Prf_relective_PO : {Y:PO}{f:P->Y.1}ExU [g: R_po->Y.1] Q (compose g rX_po) f];

Discharge P;

A.24. stream.l 279

[P:Set];

R_cpo == R P cpo ;

rX_cpo == rX P cpo;
R_cpo_is_cpo == Prf_R_class P cpo;

[Prf_relective_CPO : {Y:<A:Set>cpo A}{f:P->Y.1}ExU [g: R_cpo->Y.1]

Q (compose g rX_cpo) f];

Discharge P;

A.24 stream.l
Module stream Import recdom functors;

NN == (N,snd Prf_N_cpo:CPO);

(* define Stream by applying Theorem Prf_rec_DomC *)

STREAM_F == comp_Fu U_Fu (comp_Fu (Prod1_F NN) Lift_F) ;

(* co_Functor DomC DomC *)

STRM == (coFunc_2_Func STREAM_F);

recdom == Prf_rec_DomC STRM;

Stream == recdom.1;

app_stream == (recdom.2.1 : DomC.hom (STRM.1 Stream Stream) Stream) ;

dec_stream == (recdom.2.2.1 : DomC.hom Stream (STRM.1 Stream Stream));

[Prf_STREAM_F_homs : {A,B:Dom}{h:Hom A B}{a:N}{s:A.c}

Q ((STREAM_F.2.1 h).1 (up (p_c|NN|(dom2cpo A) a s)))

(up (p_c|NN|(dom2cpo B) a (h.1 s)))];

[Prf_STREAM_hom : {h:Hom Stream Stream}{a:N}{s:Stream.c}

Q ((STREAM_F.2.1 h).1 (up (p_c|NN|(dom2cpo Stream) a s)))
(up (p_c|NN|(dom2cpo Stream) a (h.1 s)))];

[Prf_Stream_iso : Q (DomC.o app_stream dec_stream) (idd|Stream)];

[Prf_Stream_iso_1 : Q (compose app_stream.1 dec_stream.1) (I|Stream.c)];

[Prf_Stream_iso’ : Q (DomC.o dec_stream app_stream)

(idd|((coFunc_2_Func STREAM_F).1 Stream Stream))];

[Prf_Stream_iso_1’ : Q (compose dec_stream.1 app_stream.1)
(I|((coFunc_2_Func STREAM_F).1 Stream Stream).c)];

(* Basics : append hd and tl *)

append == [n:N][s:Stream.c] app_stream.1 (up (p_c|NN|(dom2cpo Stream) n s));

s_to_n [A:Dom] == hom_part_Lift (pi1C|NN|(U_Fu.1 A)) : (Hom (STRM.1 A A) (LiftCpo NN)) ;

hd == DomC.o (s_to_n Stream) dec_stream ;

s_to_s [A:Dom] == hom_part_Lift (pi2C|NN|(U_Fu.1 A))

: (Hom (STRM.1 A A) (LiftCpo (U_Fu.1 A))) ;

tl == DomC.o (s_to_s Stream) dec_stream ;

[Prf_Q_hd : {n:N}{s:Stream.c} Q (hd.1 (append n s)) (up|NN n)];

[Prf_Q_tl : {n:N}{s:Stream.c} Q (tl.1 (append n s)) (up|(dom2cpo Stream) s)];

Freeze hd tl;

280 Appendix A. The theory as Lego-code

(* Inductive/Coinductive Definitions *)

co_ind_Stream_Def == [A : Dom][f : Hom A (STREAM_F.1 A)]

Co_Inductive_Def STREAM_F A f :
({A:Dom}(Hom A (STREAM_F.1 A))->Hom A Stream);

Co_ind_Stream_Def_Prop ==

[A:Dom][f:Hom A (STREAM_F.1 A)]((Co_Inductive_Def_Prop STREAM_F A f) :

Q (o DomC dec_stream (co_ind_Stream_Def A f))

(o DomC (STREAM_F.2.1 (co_ind_Stream_Def A f)) f));

Freeze Co_ind_Stream_Def_Prop;

Freeze co_ind_Stream_Def;

[Prf_Stream_coind_hd : {A:Dom}{a:A.c}{f:Hom A (STREAM_F.1 A)}
[k =(co_ind_Stream_Def A f)]

Q (hd.1 (k.1 a)) ((s_to_n A).1 (f.1 a))];

[Prf_Stream_coind_tl : {A:Dom}{a:A.c}{f:Hom A (STREAM_F.1 A)}

[k =(co_ind_Stream_Def A f)]
Q (tl.1 (k.1 a)) ((Lift_F.2.1 (U_Fu.2.1 k)).1 ((s_to_s A).1 (f.1 a)))];

ind_Stream_Def == [A : Dom][f : Hom (STREAM_F.1 A) A]

Inductive_Def STREAM_F A f : ({A:Dom}(Hom (STREAM_F.1 A) A)->Hom Stream A);

Ind_Stream_Def_Prop ==

[A:Dom][f:Hom (STREAM_F.1 A) A]((Inductive_Def_Prop STREAM_F A f) :

Q (o DomC (ind_Stream_Def A f) app_stream) (o DomC f (STREAM_F.2.1 (ind_Stream_Def A f))));

Freeze Ind_Stream_Def_Prop;
Freeze ind_Stream_Def;

(* Stream functions *)

nth == N_elim ([_:N](Stream.c->(LiftCpo NN).c))
([s:Stream.c](hd.1 s))

([n:N][r: Stream.c->(LiftCpo NN).c][s:Stream.c]

(lifting r) (tl.1 s));

[Prf_nth_zero : {s:Stream.c} Q(nth zero s) (hd.1 s)];

[Prf_nth_succ : {s:Stream.c}{n:N} Q (nth (succ n) s) (lifting (nth n) (tl.1 s))];

[Prf_nth_strict : {n:N} Q (nth n (bot_D Stream)) (bot_D (LiftCpo NN))];

(* Stream Proof Principles *)

[Prf_leq_stream : {s,t:Stream.c} iff (leq s t)(leq (dec_stream.1 s)(dec_stream.1 t))];

[Prf_Stream_Ind: {P:Stream.c->Prop}
(admissible_c|(dom2cpo Stream) P)->

(P(bot_D Stream))->({s:Stream.c}{a:N}(P s)-> P(append a s))-> {s:Stream.c}P s];

[Prf_case_Stream : {s:Stream.c} not(not(

or (Q s (bot_D Stream)) (Ex [n:N] Ex[r:Stream.c] Q s (append n r))
))];

[Prf_Q_stream : {r,s:Stream.c} iff (and (Q (hd.1 r)(hd.1 s)) (Q (tl.1 r)(tl.1 s)))(Q r s)];

[Prf_not_leq_stream : {a:NN.1}{s:Stream.c}not (leq (append a s) (bot_D Stream))];

[Prf_leq_app_elim : {a,b:NN.1}{s,t:Stream.c}

(leq (append a s)(append b t))-> and (Q a b)(leq s t)];

[Prf_leq_app_intro : {a,b:NN.1}{s,t:Stream.c}
(and (Q a b)(leq s t))->(leq (append a s)(append b t))];

A.24. stream.l 281

[Prf_leq_Stream : {r,s:Stream.c} iff (leq r s)

(not(not(or (Q r (bot_D Stream))

(Ex [a:NN.1] Ex[r’:Stream.c] and (Q r (append a r’))

(Ex[s’:Stream.c] and (Q s (append a s’)) (leq r’ s’))))))];

[Prf_nth_leq : {n,a:NN.1}{s,t:Stream.c}

(Q (nth n s) (up a))-> (leq s t)-> (Q (nth n t) (up a))];

[Prf_nth_def_lem: {n:N} {s:Stream.c}

(not (Q (nth (succ n) s)(bot_D (LiftCpo NN))))->(not(Q (nth n s)(bot_D (LiftCpo NN))))];

[Prf_def_nth_downward : {n:N} {s:Stream.c}

(not(Q (nth n s)(bot_D (LiftCpo NN))))->

{k:N}(less k n)->(not(Q (nth k s)(bot_D (LiftCpo NN))))];

[Prf_leq_preserves_strongQ : {s,t:Stream.c}{n,m:NN.1}

(strong|NN (Q|N) (nth n s) (nth m s))->(leq s t)->

(strong|NN (Q|N) (nth n t) (nth m t))];

Freeze nth;

compact_s ==

N_elim ([_:N](Hom Stream Stream))

(([s:Stream.c]bot_D Stream),Q_refl (bot_D Stream)

:(Hom Stream Stream))
([n:N][r: Hom Stream Stream]

DomC.o app_stream (DomC.o (STREAM_F.2.1 r) dec_stream));

[Prf_compact_is_chain : {n:N} leq (compact_s n)(compact_s (succ n))];

comp_chain == (compact_s, Prf_compact_is_chain:AC (Hom Stream Stream));

StrStr == (func_s Stream Stream);

[Prf_Str_algebraic : Q (sup_D StrStr comp_chain) (idd|Stream)];

[Prf_compact_succ : {n,a:N}{s:Stream.c}

Q ((compact_s (succ n)).1 (append a s)) (append a ((compact_s n).1 s))];

(* length of streams and induction *)

length == [s:Stream.c][n:N]

{P: Stream.c->N-> Prop} (P (bot_D Stream) zero)->

({n:N}{a:N}{s:Stream.c} (P s n)->(P (append a s) (succ n)))-> (P s n);

[Prf_length_zero : length (bot_D Stream) zero];

[Prf_length_app : {s:Stream.c}{n,a:N} (length s n)-> length (append a s) (succ n)];

[Prf_zero_length : {s:Stream.c} (length s zero)->Q s (bot_D Stream)];

[Prf_succ_length : {n:N}{s:Stream.c} (length s (succ n))->

Ex [a:N] Ex [r:Stream.c] and (Q s (append a r)) (length r n)];

[Prf_compact_finite : {n:N}{s:Stream.c}
not(not(Ex [k:N] length ((compact_s n).1 s) k))];

[Prf_Stream_ind_length : {P:Stream.c->Prop}

(admissible_c|(dom2cpo Stream) P)->

({n:N}{s:Stream.c}(length s n)->P s)->{s:Stream.c}P s];

(* iselement of a stream *)

elem_of_S == [n:(LiftCpo NN).1][s:Stream.c]

and (Ex [k:N] Q (nth k s) n) (not (Q n (bot_D (LiftCpo NN))));

[Prf_elem_append_case2 : {b,n:N} {s:Stream.c}

282 Appendix A. The theory as Lego-code

(Q n b) -> (elem_of_S (up|NN n) (append b s))];

[Prf_elem_bot_case : {s:Stream.c} not (elem_of_S (bot_D (LiftCpo NN)) s)] ;

[Prf_elem_app_inclusion : {x:(LiftCpo NN).1}{a:NN.1}{s:Stream.c}

(elem_of_S x s)->(elem_of_S x (append a s))];

[Prf_elem_of_bot : {x:(LiftCpo NN).1} not (elem_of_S x (bot_D Stream))];

[Prf_elem_append1 : {b,n:N} {s:Stream.c} (not (Q n b)) ->
iff (elem_of_S (up|NN n)(append b s)) (elem_of_S (up|NN n) s)];

[Prf_elem_app_propagate : {x:(LiftCpo NN).1}{a:NN.1}{s:Stream.c}

(not (Q x (up|NN a)))->iff (elem_of_S x (append a s)) (elem_of_S x s)];

Freeze elem_of_S;

A.25 sieve.l
Module sieve Import stream;

(* The sieve of Eratosethenes *)

(* depends on some boolean predicate DIV: N ->N-> B *)

[DIV:N->N->B];

$[Prf_aux_strict_filter’ : {n:N } strict (liftingCpo ([u: (prodCPO NN (dom2cpo Stream)).1]

if_then_else (DIV n u.pi1C)

(u.pi2C)

(app_stream.1 (up u))))];

filter’ [n:N] == (liftingCpo ([u: (prodCPO NN (dom2cpo Stream)).1]

if_then_else (DIV n u.pi1C) (u.pi2C)

(app_stream.1 (up u))), Prf_aux_strict_filter’ n:(func_s (STREAM_F.1 Stream) Stream).c);

filter == [n:N] ind_Stream_Def Stream (filter’ n) ;

$[Prf_filter_def: {n,a:N}{s:Stream.c} (Q (DIV n a) true)->

Q ((filter n).1 (append a s)) ((filter n).1 s)];

$[Prf_filter_def2: {n,a:N}{s:Stream.c} (Q (DIV n a) false)->
Q ((filter n).1 (append a s)) (append a ((filter n).1 s))];

$[Prf_filter_smaller: {n:N}{s:Stream.c}{a:N}

(length s n) -> Ex [k:N] and (length ((filter a).1 s) k) (le k n)];

sieve_aux == [u: (prodCPO NN (dom2cpo Stream)).1]

p_c|NN|(dom2cpo Stream) u.pi1C ((filter u.pi1C).1 u.pi2C);

sieve’ == DomC.o (Lift_F.2.1 sieve_aux) dec_stream ;

sieve == co_ind_Stream_Def Stream sieve’;

Discharge DIV;

Freeze filter;

(* the Stream of all numbers starting with n *)

enum == co_ind_Stream_Def (Lift_F.1 NN)

(Lift_F.2.1 ([n:NN.1] p_c|NN|(dom2cpo(Lift_F.1 NN)) n (up|NN (succ n))));

enum_s == [n:N] enum.1 (up|NN n);

[Prf_enum_hd: {n:N} Q (hd.1 (enum_s n)) (up|NN n)];

[Prf_enum_tl: {n:N} Q (tl.1 (enum_s n)) (up|(U_Fu.1 Stream) (enum_s (succ n)))];

A.25. sieve.l 283

Freeze enum;

(* admissibility stuff *)

[Prf_elem_of_S_sigma_fg: {f:Stream.c->(LiftCpo NN).1}{g:(c Stream)->c Stream}

sigma_pred [s:Stream.c] (elem_of_S (f s)(g s))];

[Prf_elem_of_S_sigma: {n:(LiftCpo NN).1} sigma_pred (elem_of_S n)];

[Prf_sigma_not_Q_stream : sigma_pred [s:Stream.c] not (Q s (bot_D Stream))];

(* -- *)

(* Correctness of the Sieve of Eratosthenes *)

(* -- *)

injective_Stream == [s:Stream.c] {n,m:N} ((strong|NN (Q|N)) (nth n s) (nth m s))->Q n m ;

[Prf_dnclo_injective_Stream : {s:Stream.c} dnclo (injective_Stream s)];

[Prf_not_injective_Stream : {s:Stream.c} iff (not (injective_Stream s))
(not(not(Ex [n:N] not(not(Ex [m:N]

(and (strong|NN (Q|N) (nth n s) (nth m s)) (not (Q n m))))))))];

[Prf_sieve_premis_co_ad : dncl_co_admissible|(dom2cpo Stream) injective_Stream];

[Prf_injective_propagate : {a:NN.1}{s:Stream.c}

(injective_Stream (append a s))->(injective_Stream s)];

[DIV:N->N->B]

[filt=filter DIV][siev = sieve DIV];

$[Prf_sieve_equation : {n:N} {s:Stream.c}

Q (siev.1 (append n s)) (append n (siev.1 ((filt n).1 s)))];

[Prf_admissible_c_lem_filt:
admissible_c|(dom2cpo Stream) [s:Stream.c] {n,a:N}

iff (elem_of_S (up|NN n) (siev.1 ((filt a).1 s)))

(and (bToProp (notB (DIV a n)))

(elem_of_S (up|NN n) (siev.1 s)))];

[divtrans: {a,b,c:N}(and (bToProp (DIV a b))(bToProp(DIV b c))) ->bToProp (DIV a c)];

$[Prf_sieve_lem: {s:Stream.c} {n,a:N}

iff (elem_of_S (up|NN n) (siev.1 ((filt a).1 s)))

(and (bToProp (notB (DIV a n))) (elem_of_S (up|NN n) (siev.1 s))) // divtrans];

sieve_correct == [s:Stream.c] (not (Q s (bot_D Stream)))->(injective_Stream s)->

{n:N} iff (elem_of_S (nth n s) (siev.1 s))

({k:N}(less k n)->(strong|NN [n,m:N]bToProp (notB (DIV n m)))(nth k s)(nth n s));

$[Prf_sigma_auxp : {n:N} sigma_pred [s:Stream.c]
({k:N}(less k n)->(strong|NN [n,m:N]bToProp (DIV n m))(nth k s)(nth n s))];

$[Prf_admissible_sieve_corr : admissible_c|(dom2cpo Stream) sieve_correct];

(* the main statement *)

$[Prf_sieve_correct_I : {s:Stream.c} sieve_correct s //divtrans];

Discharge divtrans;

(* substream properties *)

$[Prf_admissible_lem_aux: {a:NN.1}{x:(LiftCpo NN).1}

admissible_c|(dom2cpo Stream)
[s:Stream.c] (elem_of_S x ((filt a).1 s))->(elem_of_S x s)];

284 Appendix A. The theory as Lego-code

$[Prf_filter_substream: {a:NN.1}{x:(LiftCpo NN).1}{s:Stream.c}

(elem_of_S x ((filt a).1 s))->(elem_of_S x s)];

$[Prf_admissible_lem_siev: admissible_c|(dom2cpo Stream)
[s:Stream.c] {x:(LiftCpo NN).1}(elem_of_S x (siev.1 s))->(elem_of_S x s)]

$[Prf_sieve_substream:

{s:Stream.c} {x:(LiftCpo NN).1} (elem_of_S x (siev.1 s))->(elem_of_S x s)];

Discharge DIV;

ExBoundb == [k:N] [p:N->B] (N_elim ([_:N]B) false ([n:N][e:B] orB (p n) e)) k;

divide == [n,m:N] ExBoundb m [k:N] eqBool (mult k n) m ;

divides == [n,m:N](Ex [k:N] and (less k m)(Q (mult k n) m));

[Prf_divide_correct: {n,m:N}iff (bToProp (divide n m))(divides n m)];

[Prf_divide_transitiv: {l,m,n:N}

(and (bToProp (divide l m))(bToProp (divide m n)))->bToProp (divide l n)];

(* instantiate sieve *)

prim_stream == (sieve divide).1 (enum_s two);

[Prf_nth_enum: {n,m:N} Q (nth n (enum_s m)) (up|NN (plus n m))];

[Prf_enum_injective: {n:N} injective_Stream (enum_s n)];

[Prf_enum_not_bot: {n:N} not (Q (enum_s n) (bot_D Stream))];

is_prime == [n:N] and (less one n)

({k:N}(less k n)->(less one k)-> not (divides k n));

[Prf_isprime_nth_enum_2 :
{n:N} iff (is_prime (plus n two))

({k:N}(less k n)->strong|NN ([n’4,m:N]bToProp (notB (divide n’4 m)))

(up|NN (plus k two)) (up|NN (plus n two)))];

[Prf_prim_stream_correct:

{x: (LiftCpo NN).1} iff (elem_of_S x (prim_stream))
(Ex [m:NN.1]and (Q x (up m)) (is_prime m))];

Bibliography

[Abr84] S. Abramsky. Reasoning about concurrent systems. In F. Chambers, D.
Duce, and G. Jones, editors, Distributed Computing, pages 307–319. Aca-
demic Press, 1984.

[Abr91] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51:1–77, 1991.

[AC92] E. Astesiano and M. Cerioli. Partial higher-order specification. Fundamen-
tae Informaticae, 16:101–126, 1992.

[Age94] S. Agerholm. A HOL Basis for Reasoning about Functional Programs. PhD
thesis, BRICS, University of Aarhus, 1994. Also available as BRICS report
RS-94-44.

[AGN94] Th. Altenkirch, V. Gaspes, and B. Nordström. A user’s guide to
ALF. Chalmers University of Technology, 1994. Available via ftp from
ftp.cs.chalmers.se/pub/provers/walf.

[AJ95] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic In Computer Science,
volume 6. Oxford University Press, 1995.

[Alt93] T. Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, University of Edinburgh, 1993. Available as report ECS-LFCS-
93-279.

[Aud91] P. Audebaud. Partial objects in the calculus of constructions. In 6th Logic
in Computer Science, pages 86–95. IEEE Computer Science Press, 1991.

[Bar84] H.P. Barendregt. The Lambda Calculus. North Holland, 1984.

[BM92] R. Burstall and J. McKinna. Deliverables: a categorical approach to pro-
gram development in type theory. Technical Report ECS-LFCS-92-242,
Edinburgh University, 1992.

[BW82] M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18:47–
64, 1982.

[BW90] M. Barr and Ch. Wells. Category Theory for Computing Science. Prentice
Hall, 1990.

285

286 Bibliography

[CAB+86] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,
R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panagaden, J.T.
Sasaki, and S.F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

[CH88] Th. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76, 1988.

[Coq85] Th. Coquand. Une Theorie des Constructions. PhD thesis, University of
Paris VII, 1985.

[Coq86] Th. Coquand. An analysis of Girard’s paradox. In Proc. 1st Symp. on
Logic in Computer Science, pages 227–236. IEEE Computer Soc. Press,
1986.

[CP92] R.L. Crole and A.M. Pitts. New foundations for fixpoint computations: Fix-
hyperdoctrines and the fix-logic. Information and Computation, 98:171–
210, 1992.

[Cro93] R.C. Crole. Categories for Types. Cambridge University Press, 1993.

[Cut80] N. Cutland. Computability – An introduction to recursive function theory.
Cambridge University Press, 1980.

[Ehr88] Th. Ehrhard. A categorical semantics of constructions. In Proc. of 3rd
Annual Symposium on Logic in Computer Science. IEEE Computer Soc.
Press, 1988.

[Erš73] Y.L. Eršhov. Theorie der Numerierungen I. Zeitschrift für Math. Logik,
19:289–388, 1973.

[Erš77] Y.L. Eršhov. Model C of partial continuous functionals. In R. Gandy and
M. Hyland, editors, Logic Colloquium 1976, pages 455–467. North Holland,
Amsterdam, 1977.

[Fio94a] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD
thesis, University of Edinburgh, April 1994.

[Fio94b] M.P. Fiore. First steps on the representation of domains (extended ab-
stract). Draft, University of Edinburgh, 1994.

[FMRS92] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. Infor-
mation and Computation, 98:211–227, 1992.

[FP94] M.P. Fiore and G.D. Plotkin. An axiomatisation of computationally ade-
quate domain theoretic models of FPC. In 9th Logic in Computer Science,
pages 92–102, Washington, 1994. IEEE Computer Soc. Press.

Bibliography 287

[Fre90] P. Freyd. Recursive types reduced to inductive types. In 5th Symp. on
Logic in Computer Science, pages 498–507. IEEE Computer Science Press,
1990.

[Fre91] P. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio,
and G. Rosolini, editors, Proceedings of the 1990 Como Category Theory
Conference, volume 1488 of Lecture Notes in Mathematics, pages 95–104,
Berlin, 1991. Springer.

[Fre92] P. Freyd. Remarks on algebraically compact categories. In Applications
of Categories in Computer Science, volume 177 in Notes of the London
Mathematical Society, 1992.

[Gir86] J.-Y. Girard. The system F of variable types fifteen years later. Theoretical
Computer Science, 45:159–192, 1986.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Prov-
ing Environment for Higher Order Logic. Cambridge University Press, 1993.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer, Berlin, 1979.

[Gra79] R.J. Grayson. Heyting-valued models for intuitionistic set theory. In M.
Fourman, C. Mulvey, and D.S. Scott, editors, Application of Sheaves, vol-
ume 743 of Lecture Notes in Mathematics, pages 402–414, Berlin, 1979.
Springer.

[GS90] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, chapter 12, pages 635–674.
Elsevier Science Publisher, 1990.

[Gun92] C.A. Gunter. Semantics of Programming Languages: structures and tech-
niques. Foundations of Computing. MIT Press, 1992.

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
In Proc. 2nd Symp. on Logic in Computer Science, pages 194–204. IEEE
Computer Soc. Press, 1987.

[HM95] J.M.E. Hyland and E. Moggi. The S-replete construction. Draft, January
1995.

[Hof95] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis,
University of Edinburgh, 1995.

288 Bibliography

[How69] W.A. Howard. To H.B. Curry: The formulae-as-types notion of construc-
tion. In J. Hindley and J. Seldin, editors, Essays on Combinatory Logic,
Lambda Calculus, and Formalism. Academic Press, 1969.

[HP90] H. Huwig and A. Poigné. A note on inconsistencies caused by fixpoints in a
cartesian closed category. Theoretical Computer Science, 73:101–112, 1990.

[Hyl82] J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van Dalen,
editors, The L.E.J. Brouwer Symposium, pages 165–216. North Holland,
1982.

[Hyl88] J.M.E. Hyland. A small complete category. Annals of Pure and Applied
Logic, 40, 1988.

[Hyl91] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, M.C.
Pedicchio, and G. Rosolini, editors, Proceedings of the 1990 Como Category
Theory Conference, volume 1488 of Lecture Notes in Mathematics, pages
131–156, Berlin, 1991. Springer.

[Jib95] M. Jibladze. A representation of the initial∼-algebra. Draft, Summer 1995.

[Joh77] P.T. Johnstone. Topos Theory. Academic Press, 1977.

[Joh82] P.T. Johnstone. Stone Spaces, volume 3 of Cambridge studies in advanced
mathematics. 1982.

[Kan56] I. Kant. Kritik der reinen Vernunft. Verlag Felix Meiner, 1956. Nach der
ersten und zweiten Originalausgabe 1781/1787.

[Kle45] S.C. Kleene. On the interpretation of intuitionistic number theory. Journal
of Symbolic Logic, 10, 1945.

[Koc81] A. Kock. Synthetic Differential Geometry. Cambridge University Press,
1981.

[KST94] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML.
Technical Report ECS-LFCS-94-300, University of Edinburgh, 1994.

[Lie76] S. Lie. Allgemeine Theorie der partiellen Differentialgleichungen. Mathe-
matische Annalen, 9, 1876.

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its ‘ω-set’
interpretation. Math. Structures in Computer Science, 1, 1991.

[Lon94] J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis,
University of Edinburgh, 1994.

[LP92] Z. Luo and R. Pollack. Lego proof development system: User’s manual.
Technical Report ECS-LFCS-92-211, Edinburgh University, 1992.

Bibliography 289

[LPM94] F. Leclerc and C. Paulin-Mohring. Programming with streams in Coq– a
case study: the sieve of Eratosthenes. In H. Barendregt and T. Nipkow,
editors, Types for proofs and programs, volume 806 of Lecture Notes in
Computer Science, pages 191–212, Berlin, 1994. Springer.

[LS80] J. Lambek and P.J. Scott. Introduction to higher order categorical logic,
volume 7 of Cambridge Studies in advanced mathematics. Cambridge Uni-
versity Press, 1980.

[LS84] J. Loeckx and K. Sieber. The Foundations of Program Verification. Teub-
ner/Wiley, 1984.

[LS95] J.R. Longley and A.K. Simpson. A uniform account of domain theory in
realizability models. To be submitted to special edition of MSCS for the
Workshop on Logic, Domains and Programming Languages, Darmstadt,
Germany, 1995.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990. Available as report ECS-LFCS-90-118.

[Luo91] Z. Luo. A higher-order calculus and theory abstraction. Information and
Computation, 90:107–137, 1991.

[Luo93] Z. Luo. Program specification and data refinement in type theory. MSCS,
3, 1993.

[Luo94] Z. Luo. Computation and Reasoning – A Type Theory for Computer Sci-
ence, volume 11 of Monographs on Computer Science. Oxford University
Press, 1994.

[Mac71] S. MacLane. Categories for the Working Mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer, 1971.

[McC84] D.C. McCarty. Realizability and Recursive Mathematics. PhD thesis, Uni-
versity of Oxford, 1984.

[McK92] J. McKinna. Deliverables: a Categorical Approach to Program Development
in Type Theory. PhD thesis, University of Edinburgh, 1992.

[Mil72] R. Milner. Implementation and application of Scott’s logic of continuous
functions. In Conference on Proving Assertions About Programs, pages 1–6.
SIGPLAN 1, 1972.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[Mog95] E. Moggi. Metalanguages and applications. Lecture Notes of the Summer
School ‘Semantics and Logics of Computation’, September ‘95, Cambridge,
1995.

290 Bibliography

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[Mul80] P.S. Mulry. The Topos of Recursive Sets. PhD thesis, State University of
New York at Buffalo, 1980.

[Mul81] P.S. Mulry. Generalized Banach-Mazur functionals in the topos of recursive
sets. Journal of Pure and Applied Algebra, 26:71–83, 1981.

[Nip91] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and G.
Plotkin, editors, Proc. 2nd Workshop on Logical Frameworks, pages 307–
321. Cambridge University Press, 1991.

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin
Löf ’s Type Theory, volume 7 of Monographs on Computer Science. Oxford
University Press, 1990.

[Pau87] L.C. Paulson. Logic and Computation, volume 2 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1987.

[Pau91] L.C. Paulson. ML for the working programmer. Foundations of Computing.
Cambridge University Press, 1991.

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

[Pet93] K.D. Petersen. Graph Model of LAMBDA in Higher Order Logic. In J.J.
Jones and C.-J.H. Seger, editors, 6th International Workshop on Higher
Order Logic Theorem Proving and its Applications, volume 780, Berlin,
1993. Springer.

[Pho90] W.K. Phoa. Domain Theory in Realizability Toposes. PhD thesis, Uni-
versity of Cambridge, 1990. Also available as report ECS-LFCS-91-171,
University of Edinburgh.

[Pho92] W.K. Phoa. An introduction to fibration, topos theory and the effective
topos and modest sets. Technical Report ECS-LFCS-92-208, Edinburgh
University, 1992.

[Pit93a] A.M. Pitts. Relational properties of domains. Technical Report 321, Cam-
bridge University Computer Laboratory, 1993.

[Pit93b] A.M. Pitts. Relational properties of recursively defined domains. In 8th
Symp. on Logic in Computer Science, pages 86–97, Washington, 1993. IEEE
Computer Soc. Press.

[PJ93] R. Pollack and C. Jones. Incremental Changes in LEGO. LFCS, University
of Edinburgh, 1993. Available via ftp from ftp.dcs.ed.ac.uk/pub/lego/.

Bibliography 291

[Plo83] G.D. Plotkin. Domains. TEXversion edited by Y. Kashiwagi and H. Kondoh,
1983. Course notes of a lecture held 1983 in Pisa.

[Plo85] G.D. Plotkin. Denotational semantics with partial functions. Lecture at
C.S.L.I. Summer School, 1985.

[Pol94a] R. Pollack. Incremental Changes in LEGO: 1994. Chalmers University of
Technology, 1994. Available via ftp from ftp.dcs.ed.ac.uk/pub/lego/.

[Pol94b] R. Pollack. The Theory of LEGO – A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.

[Reg94] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um
LCF. PhD thesis, Technische Universität München, November 1994.

[Ros86a] G. Rosolini. Categories and effective computation. In D.H. Pitt, A. Poigné,
and D.E. Rydeheard, editors, Category Theory and Computer Program-
ming, 1985, Guildford, volume 283 of Lecture Notes in Computer Science,
pages 1–11, Berlin, 1986. Springer.

[Ros86b] G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, University
of Oxford, 1986.

[Ros91] G. Rosolini. An ExPer model for Quest. In S. Brookes, M. Main, A.
Melton, M. Mislove, and D. Schmidt, editors, MFPS’91, volume 598 of
Lecture Notes in Computer Science, pages 436–445, Berlin, 1991. Springer.

[Ros95] G. Rosolini. Notes on synthetic domain theory. Draft, August 1995.

[RR88] E. Robinson and G. Rosolini. Categories of partial maps. Information and
Computation, 79:95–130, 1988.

[RS93a] B. Reus and T. Streicher. Naive Synthetic Domain Theory – a logical
approach. Draft, September 1993.

[RS93b] B. Reus and T. Streicher. Verifying properties of module construction in
type theory. In A.M. Borzyszkowski and S. Soko lowski, editors, MFCS’93,
volume 711 of Lecture Notes in Computer Science, pages 660–670. Springer,
1993.

[Sch86] D.A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[Sch90] H. Schwichtenberg. Primitive recursion on the partial continuous function-
als. In M. Broy, editor, Informatik im Kreuzungspunkt von Numerischer
Mathematik, Rechnerentwurf, Programmierung, Algebra und Logik, pages
251–268. Springer, Berlin, 1990.

[Sco81] D.S. Scott. Lectures on a mathematical theory of computation. Technical
Monograph PRG-19, Oxford University Computing Laboratory, 1981.

292 Bibliography

[Sco82] D.S. Scott. Domains for denotational semantics. In M. Nielsen and E.M.
Schmidt, editors, Automata, Languages and Programming, volume 140 of
Lecture Notes in Computer Science, pages 577–613, Berlin, 1982. Springer.

[Sco89] D.S. Scott, August 1989. Letter to Wesley Phoa, written at Schwangau,
Germany.

[Sco93] D.S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY. The-
oretical Computer Science, 121:411–440, 1993. Reprint of a manuscript
written in 1969.

[SHLG94] V. Stoltenberg-Hansen, I. Lindström, and E.R. Griffor. Mathematical The-
ory of Domains. Cambridge University Press, 1994.

[Sim95] A.K. Simpson. Private communication. June 1995.

[Sok91] S. Soko lowski. Applicative High-Order Programming - The Standard ML
perspective. Chapman&Hall Computing, London, 1991.

[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution to recursive
domain equations. SIAM Jounral of Computing, 11:761–783, 1982.

[ST86] D. Sannella and A. Tarlecki. Extended ML: an institution independent
framework for formal program development. In D.H. Pitt, S. Abramsky, A.
Poingé, and D. Rydeheard, editors, Proc. Workshop on Category Theory
and Computer Programming, 1985, Guildford, volume 240 of Lecture Notes
in Computer Science, pages 364–389, Berlin, 1986. Springer.

[Sto36] M.H. Stone. The theory of representations for boolean algebras. Trans.
American Math. Society, pages 37–111, 1936.

[Str89] T. Streicher. Correctness and Completeness of a Categorical Semantics
of the Calculus of Constructions. PhD thesis, Universität Passau, 1989.
Available as report MIP-8913, University of Passau.

[Str91] T. Streicher. Semantics of Type Theory, Correctness, Completeness and
Independence Results. Birkhäuser, 1991.

[Str92a] T. Streicher. Dependence and independece results for (impredicative) cal-
culi of dependent types. MSCS, 2:29–54, 1992.

[Str92b] T. Streicher. Independence of the induction principle and the axiom of
choice in the pure calculus of constructions. Theoretical Computer Science,
103:395–408, 1992.

[Str94] T. Streicher. Investigations into intensional type theory. Habilitationss-
chrift, Universität München, 1994.

Bibliography 293

[SW90] T. Streicher and M. Wirsing. Dependent types considered necessary for
algebraic specification languages. In H. Ehrig, K.P. Jantke, F. Orejas, and
H. Reichel, editors, Recent Trends in Data Type Specification, Proc. 7th
International Workshop on Specification of Abstract Data Types Wuster-
hausen/Dosse, Germany, volume 534 of Lecture Notes in Computer Sci-
ence, pages 323–340, Berlin, 1990. Springer.

[Tay91] P. Taylor. The fixed point property in synthetic domain theory. In 6th
Symp. on Logic in Computer Science, pages 152–160, Washington, 1991.
IEEE Computer Soc. Press.

[Tay93] P. Taylor. Synthetic domain theory notes. Draft, October 1993.

[Web88] Webster’s Ninth New Collegiate Dictionary – First Digital Edition. Version
3.0. NeXT Computer Inc. and Merriam-Webster Inc., 1988.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. Founda-
tions of Computing. MIT Press, 1993.

[Wir86] M. Wirsing. Structured algebraic specifications: a kernel language. Theo-
retical Computer Science, 42:123–249, 1986.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 13, pages 675–788. Elsevier Science
Publisher, 1990.

[Zha89] Guo Qiang Zhang. Logics of Domains. PhD thesis, University of Cam-
bridge, 1989.

The author

Bernhard Georg Reus was born 23.01.1965 in Freyung (Bayerischer Wald) where he
also went to Elementary School (1971-75) and High School (1975-84).

From 1985 to 1990 he studied Computer Science at the University of Passau. His
minor field of study was Mathematics.

Since December 1990 he works as a research and teaching assistant at the chair
of Prof. Martin Wirsing, first at the University of Passau and since April 1992 at the
Ludwig-Maximilians-Universität München. During this time he participated at several
EU-projects and the DAAD-project Vigoni with the University of Genoa.

