
A Universal Realizability Model
for

Sequential Functional
Computation

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation

von

Dipl.-Math. Alexander Rohr
aus Wiesbaden

Referent: Prof. Dr. Thomas Streicher
Korreferent: John Longley, PhD
Tag der Einreichung: 25. April 2002
Tag der mündlichen Prüfung: 5. Juli 2002

Darmstadt 2002
D 17

2

Abstract

We construct a universal and even logically fully abstract realizability model
for the sequential functional programming language of call-by-name FPC. This
model is defined within the category of modest sets over the total combinatory
algebra L of observational equivalence classes of closed terms of the untyped
programming language λ+Error. This language is untyped lazy call-by-name
lambda-calculus extended by a single constant ERR and a conditional construct
which distinguishes this constant from any other syntactic value.

Universality and (constructive) logical full abstraction of the model are proved
in three steps. Firstly, a canonical universal and logically fully abstract realiz-
ability model for FPC over the typed combinatory algebra T of observational
equivalence classes of closed FPC-terms is constructed. Then the recursive
type U := µα.void + [α→ α] is shown to be universal, i. e. any other type is
a definable retract of U . Hence this type gives rise to an untyped combinatory
algebra U which is applicatively equivalent to the typed combinatory alge-
bra T . As a consequence, the realizability toposes over T and U are equivalent
and hence the realizability model for FPC over U also universal and logically
fully abstract. Finally it is shown that every closed FPC-term of type U can
be defined in the untyped language λ+Error. Hence the combinatory algebras
U and L are applicatively equivalent. It follows that the realizability model
over L is universal and logically fully abstract. As a consequence we prove a
variant of the Longley-Phoa Conjecture.

3

Zusammenfassung

Wir konstruieren ein universelles und sogar logisch voll abstraktes Realisier-
barkeitsmodell für die sequentielle funktionale Programmiersprache Call-by-
name-FPC. Das Modell existiert in der Kategorie der Modest Sets über ei-
ner totalen kombinatorischen Algebra L bestehend aus observationalen Äqui-
valenzklassen von geschlossenen Termen der ungetypten Programmiersprache
λ+Error. Diese Programmiersprache ist eine Erweiterung des ungetypten Call-
by-name-lambda-Kalküls um eine einzelne Konstante ERR und ein Konditio-
nalkonstrukt, welches diese Konstante von jedem anderen syntaktischen Wert
zu unterscheiden vermag.

Die Universalität und die (konstruktive) logische volle Abstraktheit des Mo-
dells werden in drei Schritten gezeigt. Zunächst wird ein kanonisches univer-
selles und logisch voll abstraktes Realisierbarkeitsmodell für FPC über der ge-
typten kombinatorischen Algebra T der Äquivalenzklassen der geschlossenen
FPC-Terme modulo beobachtbarer Gleichheit konstruiert. Anschließend wird
gezeigt, daß der rekursive Typ U := µα.void+ [α→ α] universell ist, daß also
jeder andere Typ ein definierbares Retrakt von U ist. Der universelle Typ indu-
ziert eine ungetypte kombinatorische Algebra U , welche applikativ äquivalent
zur getypten kombinatorischen Algebra T ist. Folglich sind die Realisierbar-
keitstopoi über T und U äquivalent und daher ist das Realisierbarkeitsmodell
von FPC über U ebenfalls universell und logisch voll abstrakt. Schließlich wird
bewiesen, daß jeder geschlossene FPC-Term vom Typ U in der ungetypten
Sprache λ+Error definierbar ist. Daher sind die kombinatorischen Algebren U
und L applikativ äquivalent. Es folgt, daß das Realisierbarkeitsmodell über L
universell und logisch voll abstrakt ist. Als Folgerung daraus beweisen wir eine
Variante der Longley-Phoa-Vermutung.

Erklärung

Ich habe die vorliegende Arbeit, abgesehen von den in ihr ausdrücklich genann-
ten Hilfen, selbständig verfaßt.

Alexander Rohr

4

Contents

Acknowledgements 7

1 Introduction 9

1.1 The full abstraction problem for sequential functional languages 9

1.2 Game models for sequential computation 11

1.3 Realizability . 12

1.4 Toposes and modest sets . 14

1.5 Realizability models for sequential computation 14

1.6 Overview of this thesis . 18

1.7 Notational conventions . 19

2 The canonical realizability model 21

2.1 Typed and untyped realizability 21

2.2 A very general sequential functional programming language . . 27

2.3 The algebra of closed FPC-terms 31

2.4 A subcategory of domains . 32

2.5 Liftings . 35

2.6 Sum types . 40

2.7 Minimal invariants of functors 42

2.8 Properties of the canonical realizability model 49

3 The universal type 55

3.1 Universal types in general . 55

3.2 The untyped language λ+Error 59

3.3 Construction of a universal type 63

3.4 A fixed point combinator . 70

5

Contents

4 Equivalence of the languages 73

4.1 Untyped terms as realizers . 73

4.2 Representability of retractions 80

4.3 Implementation of terms . 85

4.4 The universal λ+Error-model 85

4.5 A variant of the Longley-Phoa Conjecture 87

5 Remarks and future work 89

Bibliography 91

6

Acknowledgements

In the first place I want to express my gratitude towards my advisor Thomas
Streicher for his support and for many helpful explanations, comments and
discussions. Further, I am grateful to John Longley who, as a referee, carefully
read and examined this thesis and provided many helpful comments. I would
also like to thank Hanno Nickau, who came to Darmstadt in April 1998 for
some days to present his ideas about realizability models based on games and
to discuss them with us.

Peter Lietz, Tobias Löw and Michael Marz deserve special thanks for their
careful proofreading and for many helpful suggestions.

Furthermore, I am grateful to our department for the opportunity to teach
mathematics to students of many different courses and years. I always enjoyed
this very much. Moreover I would like to thank the members of the Hochschul-
didaktische Arbeitsstelle and Reiner Liese and especially Michael Heger who
helped me to learn a lot about learning, teaching and communication.

This thesis was typeset using teTEX together with LATEX, AMS-LATEX, XY and
other macro packages. I would like to thank all people involved in developing
and providing all this free software.

I have received financial support from the federal state of Hessen through a
grant according to the “Hessisches Gesetz zur Förderung von Nachwuchswis-
senschaftlern”. I have also received support from the Fachbereich Mathematik
and the European Community, through the Esprit Working Group on Applied
Semantics. I am very grateful to these bodies for their generosity.

Finally, I want to express my gratitude to all the people who have helped
me in other ways through the years; to name them would take many pages.
In particular my thank goes to my friends from the Fachschaft Mathematik
together with whom I experienced and learned so many things. I want to thank
my mother, who encouraged me and made many sacrifices for my sake. Very
special thanks go to Viola. Without her love and support I would hardly ever
have finished this thesis.

7

8

1 Introduction

The aim of this thesis is to present a universal and (constructively) logically
fully abstract realizability model for a typed sequential functional program-
ming language with recursive types. Hence I sketch the full abstraction prob-
lem for PCF and discuss different constructions of fully abstract models in
Section 1.1 and 1.2. A short overview of the historical context of realizability
and topos theory is given in Sections 1.3 and 1.4. In Section 1.5 different real-
izability models for sequential computation are discussed. An overview of this
thesis is given in Section 1.6.

1.1 The full abstraction problem for sequential
functional languages

In the sixties, Dana Scott defined the language LCF (Logic of Computable
Functionals) for reasoning about computable functionals. His paper [Sco93]
circulated as an unpublished but most influential manuscript for many years.
It was Gordon Plotkin who first studied the properties of this language as a pro-
totypical functional programming language PCF (Programming Computable
Functionals) [Plo77]. The language PCF is the simply typed λ-calculus ex-
tended by a base type for natural numbers and constructors for arithmetic
operations, a conditional and a fixed point operator. Due to the chosen evalu-
ation strategy of leftmost outermost reduction, PCF-terms denote sequential
functions in a strong sense: it follows from Plotkin’s Activity Lemma that every
PCF-term t contains a uniquely determined sub-term which has to be reduced
in the next step of evaluation. In other words, derivation trees for judgements
of the form t ⇓ v (‘term t reduces to value v’) are unique. However, every
partial recursive function N→ N is PCF-definable.

Scott presented a denotational model for PCF where every type is interpreted
as a pointed partially ordered set closed under directed suprema (to be more
precise, it is interpreted as a so called Scott-domain), and every term is inter-
preted as a Scott-continuous function between Scott-domains. This model is
adequate, but not all computable continuous functions are definable in PCF,
e. g. there is no PCF-term implementing the ‘parallel or’ function. Moreover,

9

1 Introduction

there are two different PCF-terms denoting different functions in the Scott
model, which cannot be distinguished by observations in the programming
language (the terms are observationally equivalent). Thus the question arose,
whether there was a fully abstract model for PCF, i. e. a model where the
interpretations of any two terms were equal if, and only if, the terms were
observationally equivalent. Such a fully abstract model would provide a very
good semantical representation of the language. However, even in a fully ab-
stract model not every element has to be definable; models with this stronger
property are called universal.

It turned out to be quite difficult to find a satisfactory fully abstract model for
PCF. Robin Milner did find a fully abstract model within the ideal completion
of a quotient set of certain PCF-terms. Furthermore, he showed that all order-
extensional fully abstract domain models (i. e. cpo-enriched models) of PCF
are isomorphic. But the presentation of the fully abstract model as a term
model is in some sense unsatisfactory as it does not provide real new insights
into the nature of sequentiality. A good general reference for semantics of PCF
is [Ong95].

The real aim was to find a satisfactory set-theoretic presentation for the fully
abstract model and thus to give a non-operational characterisation of sequen-
tial higher type functionals. The problem resulted from demanding that in-
terpretations for PCF-terms should, on the one hand, interact like functions,
i. e. in an extensional way, while, on the other hand, they should embody the
intensional property of being sequential.

The problem remained unsolved for many years. An intensional model based
on so-called sequential algorithms was introduced by Berry and Curien in
[BC82]. Bucciarelli and Ehrhard presented an extensional model in the cate-
gory of dI-domains and strongly stable functions [BE91] and Ehrhard showed
in [Ehr96] that this model is isomorphic to the extensional collapse of the
sequential algorithms. However, it turned out that sequential algorithms de-
scribe a different, more liberal notion of sequentiality than PCF does. Thus
the strongly stable model is not fully abstract for PCF.

In [Mul87, JS93] it was proved that the extensional collapse of the syntactically
definable fragment of the Scott model is fully abstract for PCF. This repre-
sentation of the fully abstract model is syntax free, but it has the disadvantage
that every PCF-term is interpreted as an equivalence class of continuous func-
tions instead of being interpreted as a single function.

A natural way to construct domain models for PCF is to equip complete partial
orders (cpo) with additional structure and to consider only those Scott contin-
uous functions which preserve this structure. That way O’Hearn and Riecke
found their Kripke relations model [OR95], which is fully abstract. On each cpo
O’Hearn and Riecke defined an uncountable family of relations and restricted
the morphisms in their model to the continuous functions respecting these

10

1.2 Game models for sequential computation

relations. Their approach generalized that of [Sie92] by generalizing logical re-
lations (as introduced by Plotkin in [Plo73]) to the more general Kripke logical
relations, which had been introduced by Jung and Tiuryn [JT93]. Riecke and
Sandholm [RS97b, RS99b] generalized this approach to obtain a fully abstract
model for call-by-value FPC. Following the same relational approach, Marz
[Mar00] defined a category SD of Sequential Domains and presented a fully
abstract model for a very general sequential language SFL incorporating both
call-by-name and call-by-value constructs. The disadvantage of this kind of
model is the vast number of relations imposed on each domain. On the other
hand, according to Loader [Loa01], observational equivalence is undecidable
even for finitary PCF and hence one cannot expect to find a simpler model in
this way.

1.2 Game models for sequential computation

In the years 1994 and 95 several new and independently developed representa-
tions of the fully abstract model for PCF were presented, which are based on a
game theoretic approach. One of these was described by Abramsky, Malacaria
and Jagadeesan [AJM00], another one by Hyland and Ong [HO00] and inde-
pendently by Nickau [Nic94].

Abramsky, Malacaria and Jagadeesan suggest considering “intensional seman-
tics” as a connection between operational and denotational semantics (cf.
[Gir89, Gir90]). Such a model does not have to be extensional, but all mor-
phisms have to respect extensional equality. Abramsky et alii define an inten-
sional model to be “intensionally fully abstract” iff the extensional collapse of
it is fully abstract. They define an intensional game semantics for PCF, where
types are represented as a special kind of two person games and terms are
interpreted as history-free strategies. They consider game semantics to be an
expressive and comprehensive theory of intensional semantics for programming
languages, which allows one to investigate PCF and non-extensional extensions
of it in a unified setting and which is more appropriate for the dynamic charac-
ter of sequentiality than domain semantics (see also [AHM98] and Jim Laird’s
PhD Thesis [Lai98]). However, it is still open whether this fully abstract game
model is cpo-enriched.

Game semantics looks at an information processing system and its environment
as player and opponent, respectively, in a game with questions and answers.
The rules of the game correspond to the specification of the possible interac-
tions between a system and its environment. A closed term is interpreted as a
strategy specifying how the system should actually behave and an actual play
corresponds to a ‘run’ of a program.

To obtain a model for PCF, Abramsky et al. define a symmetric monoidal
closed category of games with an exponential ‘!’. Objects of this category are

11

1 Introduction

two person games and a morphism between two games is a strategy in a new
game which is composed from the two given ones. The co-Kleisli-category of
this category of games with respect to ‘!’ is a rational cartesian closed category
which contains an intensionally fully abstract model for an extension of PCF
by a construct for infinite case analysis. Factorizing the sets of morphisms
by observational equivalence one obtains a rational cartesian closed category
giving rise to a fully abstract model for PCF. Abramsky et al. argue that
the collapse is obtained by a continuous homomorphism and that this was
an advantage over the extensional collapse of the Scott model obtained by
Mulmuley, Stoughton and Jung. However, it is not known whether this model
is cpo-enriched.

In [HO00] a similar kind of game semantics is introduced, considering certain
games with questions and answers and interpreting PCF-terms as strategies.
In contrast to Abramsky et al., this model is not based on linear logic. Hyland
and Ong obtain the existence of exponentials by considering innocent strategies
where moves depend only on a limited view of the previous history. Thus they
define a cartesian closed category of games to obtain an intensionally fully
abstract model for an extension of PCF. They too get the fully abstract
model as the extensional collapse of this model. The model by Hanno Nickau
appears as quite similar to the one by Hyland and Ong [Nic94].

From our point of view, the drawback of these fully abstract models for PCF
is, that terms have to be interpreted as equivalence classes of strategies rather
than single strategies. To us, game semantics seems better suited for non-
extensional functional languages like, e. g., µPCF, an extension of PCF. Jim
Laird showed in [Lai01b] that the extensional collapse of certain Hyland-Ong-
style game models is isomorphic to the sequential algorithms model for PCF.
Thus Laird shows that any two µPCF-terms are observationally equivalent if,
and only if, their interpretations as sequential algorithms are equivalent. Hence
the sequential algorithms model is fully abstract and not only ‘intensionally
fully abstract’ for µPCF.

1.3 Realizability

The notion of realizability was introduced by Stephen Cole Kleene in [Kle45],
who wanted to explore the connection between Intuitionism and the theory of
recursive functions (both theories stressing the importance of extracting infor-
mation effectively). Inspired by certain formulations in Hilbert and Bernays
[HB34], he started thinking about it in 1940. His definition specifies in an
inductive way what it means that a natural number n realizes a sentence ϕ of
the language of arithmetic. Kleene presented an interpretation of intuitionistic
logic which can be understood from the point of view of a classical mathemati-
cian by giving an interpretation of the intuitionistic connectives in terms of

12

1.3 Realizability

the classical ones.

Kleene’s approach is one possible way to make the Brouwer-Heyting-Kolmogo-
rov interpretation of logic more precise, which dates back to the early 1930s
and is widely recognized as the intended semantics for intuitionistic logic. This
corresponds to the analogy of ‘propositions as types’: formulae correspond to
types and their deductions to terms of this type. In other words, a proposition
is considered as the type of its proofs. This analogy, discovered by Howard
[How80] in Curry’s work, was developed by Dana Scott and Per Martin-Löf
[ML84]. See [Kle73] for a retrospective survey of Kleene’s work and [vO00] for
a survey of realizability in general. A thorough treatment of realizability can
be found in [Tro73] and [Tro98].

The first definition of realizability which is based on a general notion of combi-
natory algebra appears in [Sta73]. Feferman, in [Fef75], sets out to code what
he calls “explicit mathematics” in a language for partial combinatory algebras.
A partial combinatory algebra A is a set A equipped with a partial binary op-
eration (application) x, y 7→ xy such that there are elements (combinators) k
and s satisfying the postulates

kx and (kx)y are always defined, and kxy = x;
sxy is always defined and xz(yz) is defined iff sxyz is, and in this
case sxyz = xz(yz).

The natural numbers with partial recursive function application form a partial
combinatory algebra, called the first Kleene algebra. Another example is the
set of functions NN with application as follows: every function α codes a partial
continuous operation NN → N

N (see e. g. [Tro98]). This partial combinatory
algebra, the second Kleene algebra, was at the basis of Kleene’s function re-
alizability [Kle65, KV65, Kle69] providing an interpretation of “intuitionistic
analysis” (a theory validating continuity principles and bar induction which
treats numerical functions as well as natural numbers; the functions often being
seen as reals).

An example of a total combinatory algebra is the set of closed terms of the
λ-calculus modulo β-equivalence [Bar84].

Within any partial combinatory algebra A one can implement the booleans
and natural numbers, pairing and projection operators, primitive recursors and
fixed-point operators. Moreover, any total recursive function is representable
in A. Properties such as this give the substance to the idea that any partial
combinatory algebra provides a rich universe of untyped computation [Lon98].

For any partial combinatory algebra A one can define cartesian closed cate-
gories Ass(A) and Mod(A) of assemblies and modest sets over A. An assembly
is a set together with a realizability relation specifying, for each element x ∈ X,
a non-empty subset of A thought of realizers (codes, algorithms) for x. Mor-
phisms in Ass(A) are those functions which are tracked by an element of A.

13

1 Introduction

A modest set is an assembly X where each element of A realizes at most one
element of X (the details are given in Definition 2.4). Modest sets over A
correspond to partial equivalence relations (PERs) on A.

The categories of assemblies and modest sets play a major role in realizability
semantics. They can be identified with certain subcategories of realizability
toposes.

1.4 Toposes and modest sets

Around 1970, Lawvere and Tierney generalized Grothendieck’s notion of topos
to the notion of elementary topos generalizing semantical ideas that had devel-
oped in the sixties [Joh77]. Dana Scott, in his foreword to [Bel77], pointed out
that toposes provide a natural framework for semantics of higher-order lan-
guages. Following ideas of Scott to think about realizability as a kind of truth-
value semantics, a completely new type of toposes was discovered around 1979
by Martin Hyland, Peter Johnstone and Andy Pitts [HJP80, Pit81, Hyl82].
Hyland defined the effective topos Eff and together with Johnstone and Pitts
he described a construction of a standard realizability topos RTA over an ar-
bitrary partial combinatory algebra A. In particular, the effective topos is the
standard realizability topos over the first Kleene algebra.

Furthermore, Hyland singled out an interesting subcategory of Eff : the sub-
category of what he called ‘effective objects’. This subcategory is equivalent to
the category of ω-Sets, i. e. the category of modest sets or partial equivalence
relations (PERs) over the first Kleene algebra. The idea behind the construc-
tion of PERs can be traced back to Kreisel [Kre59] and appears more explicitly
in [Gir72].

1.5 Realizability models for sequential
computation

Around 1985, Moggi and Hyland discovered that a specific internal category
in Eff was complete in some sense. As a consequence, Moggi found an interest-
ing set-theoretic interpretation of Girard’s second-order λ-calculus ‘system F ’
[Gir72] in the category of ω-Sets [LM91]. Subsequently, realizability models for
constructive type theories and for System F were studied by Ehrhard, Hyland,
Jacobs, Pavlovic, Robinson, Rosolini, Streicher and many others; nowadays
realizability models form a standard tool in the semantics of programming
languages. John Longley was the first to systematically study and relate real-
izability models over different partial combinatory algebras [Lon95]. He gives
a good introduction to the basic ideas of realizability semantics in [Lon98]:

14

1.5 Realizability models for sequential computation

“We start by choosing some model of data and computations on
it which we think of as primitive [e. g. a combinatory algebra]. If
we like, we can think of this primitive layer as a model for low-
level or “machine level” computation. In some cases, this might
look quite close to what actually goes on inside a machine; in other
cases, it might correspond to a machine only in some quite abstract
sense.

In any case, we then build a category of datatypes derived from
this primitive model of computation [e. g. the corresponding cate-
gory of modest sets]. We can think of these as high-level or “pro-
gramming language level” datatypes, and they will include types
for natural numbers, functions, lists, streams and many other kinds
of data familiar to functional programmers. In our model, these
high-level datatypes will be related to the world of low-level com-
putation as follows: each element x of a high-level datatype will
have a non-empty set ‖x‖ of low-level representations or realizers,
and moreover every function between datatypes in the model will
be realized by some low-level computation acting on these repre-
sentations. This corresponds to the idea that, in any high-level
programming language, all data values must somehow have repre-
sentations at a lower machine level, and all run-time computations
really happen at this machine level. We might have in mind the
representation of data as sequences of bytes, or some intermedi-
ate level of description such as the representation of a functional
program by closures.

Even in terms of the vague description just given, we may note
two typical features of realizability models. Firstly, an element x
of a datatype may have more than one realizer. This corresponds
to the fact that the “same” value (for instance, the same function)
may have several possible machine representations, the differences
between them being irrelevant from the point of view of the high-
level programmer. (Of course, there might be important differences
between representations from the point of view of efficiency, but
here we are considering only the relation between inputs and out-
puts.)

Secondly, the fact that we require every function in the high-
level model to be realized by a low-level computation means that
we obtain a category in which all morphisms are computable in
the sense determined by the underlying machine level. We should
clarify what we mean here by computable. In some instances, our
low-level model may have some notion of effectivity built into it,
and in this case, all morphisms in the high-level model may in-
deed be computable in some realistic sense. In other instances, the
low-level model might admit many non-effective computations, in

15

1 Introduction

which case morphisms need not be computable in any genuinely
effective sense. Nevertheless, we can still regard the morphisms
as computable in an abstract sense: we think of the combinatory
algebra as defining what we mean by computability, and proceed
from there.”

Longley [Lon98] also discusses important advantages of realizability models:

“1. Firstly, [. . .] realizability models offer a very rich categorical structure,
and, there are known techniques for modelling phenomena such as poly-
morphism and recursive types. If one found a good (e. g. universal) real-
izability model for PCF, one would know in advance, as it were, that all
this machinery would be available. For other kinds of model, one might
have to work harder to model all these additional language features.

2. Another distinctive feature of realizability models is that they have their
own internal logic. In other words, realizability toposes can be seen as
“universes” within which one can perform various kinds of constructive
“set-theoretic” reasoning. Although the precise practical significance of
this fact is perhaps not yet clear, the ongoing work of Reus and Streicher
[RS97a] explores the possibility of using this logic as a basis for program
verification.

3. Many of the combinatory algebras [. . .] are in some way inspired by the
fully abstract models mentioned above; however, it sometimes turns out
that the realizability models are technically simpler to construct than
the models that inspired them. A good example is Abramsky’s model of
well-bracketed strategies [. . .]. The corresponding realizability model [see
below] closely resembles the games model of [AJM00], but many of the
rather technical conditions appearing in [AJM00] become unnecessary in
the realizability model because they actually come for free as consequences
of quite simple definitions. This suggests that realizability models may
sometimes be [. . .] useful as ways of simplifying the presentation of other
known models. [As a footnote Longley adds:] We have already hinted at
the idea that with untyped realizability models one frequently gets a lot
out for what one puts in. It is worth mentioning another example of this
phenomenon: The [first Kleene algebra] [. . .] gives rise to the same type
structure as the effective Scott model (see e. g. [Lon95]). The construction
of the Scott model is based on continuity, to which effectivity is then added
on, while the realizability model is constructed using only effectivity, and
continuity follows as a consequence.”

In 1996/97 Jaap van Oosten and John Longley independently developed a
partial combinatory algebra such that the corresponding realizability model
for PCF is equivalent to the strongly stable model of Bucciarelli and Ehrhard.

16

1.5 Realizability models for sequential computation

In [MRS99], Marz, Streicher and the present author present a total combina-
tory algebra A which is the solution of a recursive domain equation in the cat-
egory of sequential domains defined in [Mar00]. They show that the category
ModA of modest sets over A contains a fully abstract model for PCF. More-
over, an extension of untyped lazy call-by-name λ-calculus is defined which
can be interpreted in A such that the syntactically definable subalgebra of A
gives rise to another fully abstract realizability model for PCF. This leads to a
proof of a variant of the Longley-Phoa Conjecture. It is claimed that the latter
model is universal for PCF. This is the case if, and only if, any SFL-term of a
PCF-type is PCF-definable, i. e. if SFL (or, equivalently, call-by-name FPC) is
a conservative extension of PCF. McCusker showed in his PhD Thesis [McC98]
that game semantics is conservative over PCF in the sense that every effective
strategy in the game model for PCF is definable by a PCF-term.
In [MRS99] it is further announced that using similar methods one could obtain
a universal model for a much more general sequential functional language which
is equivalent to call-by-name FPC. The aim of the present thesis is to work
out the announced ideas.
In [Lon99a] and [Lon99b], Longley defines a typed version of partial combina-
tory algebras and a 2-category of all typed and untyped combinatory algebras.
As observed by Lietz and Streicher in [LS02], a typed partial combinatory al-
gebra contains a universal type if, and only if, it is applicatively equivalent to
an untyped partial combinatory algebra.
In this thesis two applicatively equivalent combinatory algebras are presented,
a typed and an untyped one, such that the modest sets over each of these
contain a universal and logically fully abstract model for call-by-name FPC.
The notion of (constructive) logical full abstraction of a realizability model
was defined by Longley in [Lon99a]. He shows that logical full abstraction is
a stronger criterion than universality.
Note that toposes over different partial combinatory algebras need not be
equivalent even if the corresponding finite type hierarchies over the N⊥ are
equivalent. For example, Abramsky and Longley define a partial combinatory
algebra Awb,eff of effective well-bracketed history-free strategies in [LA99] such
that the corresponding realizability model is universal for PCF. Hence this
model is isomorphic to the model presented in this thesis. However, it is not
clear whether the model defined by Abramsky and Longley is logically fully
abstract. Moreover, Gernot Belger proved in his Master’s Thesis [Bel00] that
the realizability topos over Awb,eff is not equivalent to the topos over the par-
tial combinatory algebra U presented in this thesis. He showed that the type
(N → N⊥) → N⊥ is not projective in the modest sets over Awb,eff whereas it
is projective in Mod(U). As the combinatory algebra U is applicatively equiv-
alent to the combinatory algebra of closed FPC-terms, the realizability topos
over U is the best possible choice for a realizability semantics of FPC, as the
internal logic of this topos exactly reflects the properties of the language. Thus

17

1 Introduction

the realizability model over U provides the best possible realizability semantics
of FPC.

1.6 Overview of this thesis

In this thesis a universal and (constructively) logically fully abstract realiz-
ability model for call-by-name FPC is presented. This model is constructed
within the category of modest sets over the total combinatory algebra of obser-
vational equivalence classes of closed λ+Error-terms. The language λ+Error
is an extension of untyped lazy call-by-name lambda-calculus.

In Chapter 2 the typed combinatory algebra of observational equivalence clas-
ses of closed FPC-terms, denoted by T , is defined. It is shown how to obtain a
universal model for FPC in the category of modest sets over this combinatory
algebra. We shall refer to this model as the canonical realizability model for
FPC.

Chapter 3 is devoted to the study of universal types in the combinatory alge-
bra T . A necessary and sufficient condition for an FPC-type to be universal
is established. Further, the untyped language λ+Error is defined, which is an
extension of lazy untyped λ-calculus by a single constant ERR and a condi-
tional construct distinguishing this constant from any other syntactic value.
This language is a sub-language of FPC. Using this language λ+Error the
type U := µα.void + [α → α] is shown to be universal in the combinatory
algebra T , i. e. any other type is a definable retract of U . In [LS02] it is shown
that for any universal type in a typed combinatory algebra T there exists an
untyped combinatory algebra U which is applicatively equivalent to T . As a
consequence, the realizability toposes over T and U are equivalent and hence
the realizability model for FPC over U also universal and logically fully ab-
stract.

In Chapter 4 it is shown that any closed FPC-term of type U can be imple-
mented in our extension of the lambda-calculus. Hence the untyped combi-
natory algebra U is applicatively equivalent to the untyped combinatory alge-
bra L of all observational equivalence classes of closed λ+Error-terms. Hence
the combinatory algebras U and L are applicatively equivalent. It follows that
the realizability model over L is universal and logically fully abstract. As a
consequence we prove a variant of the Longley-Phoa Conjecture.

As for prerequisites, the reader is expected to have some basic knowledge about
category theory (see [Mac71]) and to be familiar with basic ideas of semantics
of functional programming languages (see [Gun92]).

18

1.7 Notational conventions

1.7 Notational conventions

Throughout this thesis, the symbol N stands for the set of natural numbers
including 0. Combinatory algebras are denoted by letters in the calligraphic
font, like A, T etc. Variables for categories are written in the blackboard bold
font, C, D etc. Variables for FPC-types are lowercase Greek letters. Type
contexts (i. e. lists of type variables) are denoted by Θ, Θ′ and contexts for
FPC-terms by Γ, Γ′. The latter symbols are also used for contexts in the
untyped language λ+Error. Terms of the typed language FPC are denoted by
s, t, t′ etc. and terms of the untyped language λ+Error are denoted by M ,
M ′, N and so on. Names for FPC-constructs (case, fold) are written in bold
type. Capital letters are used for names of λ+Error-constructs (ERR, IFR).
The symbol ≡ is used to indicate literal equality of terms or contexts and =obs

or just = to indicate observational equality.

As usual we use the arrow symbol→ for set-theoretic functions and morphisms
in categories. We use � for monomorphisms, � for epimorphisms and ⇀ for
partial functions. Composition of morphisms is written g ◦ f which should be
read as ‘apply f first and then g’. Names for special morphisms like fold or up
are printed in sans serif. The symbol ∼= indicates isomorphy. In commutative
diagrams I use the symbol to indicate a pullback. Exponentials in categories
are denoted by exponentiation (Y X) or by X → Y or [X → Y]. For an
object X in a category C we write C/X for the slice category of C over X.
Recall that objects in this category are C-morphisms with co-domain X and
a morphism h between two such objects g : W → X and g′ : W ′ → X is a
C-morphism h : W →W ′ such that g = g′ ◦ h (cf. Diagram 1.1).

W
h //

g
 AAAAAAAA W ′

g′}}||||||||

X

Diagram 1.1: h is a morphism from g to g′ in C/X

19

1 Introduction

20

2 The canonical realizability model

This chapter is devoted to the construction of the typed combinatory algebra T
of closed FPC-terms modulo observational equivalence and of the canonical
realizability model for call-by-name FPC over this algebra.

In Section 2.1 we set up basic definitions and notation for realizability cate-
gories over typed combinatory algebras. Section 2.2 gives a precise definition
for the sequential typed functional programming of call-by-name FPC. The
total combinatory algebra T of observational equivalence classes of closed FPC-
terms is presented in Section 2.3. In Section 2.4 we describe a subcategory D
of domains in the category of modest sets over T . Sections 2.5 and 2.7 are
devoted to the construction of lifting, sum types and minimal invariants for
FPC-definable functors within D which are necessary to obtain a model for
FPC. In Section 2.8 this canonical realizability model is presented and shown
to be universal.

2.1 Typed and untyped realizability

In this first section we set up definitions and notation for typed and untyped
total combinatory algebras and briefly discuss some basic properties of cate-
gories of modest sets. For a detailed introduction into realizability semantics
over untyped partial combinatory algebras see [Lon95]. In 1999, Longley first
investigated partial combinatory type systems (cf. [Lon99b]). These very much
coincide with the typed partial combinatory algebras defined in [LS02]. We re-
strict ourselves to total combinatory algebras as these suffice for our purposes.

2.1 Definition (typed combinatory algebra) A typed combinatory alge-
bra is a non-empty set T , the elements of which will be called types, together
with

• binary operations × and → on T ,

• for every type σ ∈ T , a set |σ| of so-called potential realizers of type σ,

• for all types σ and τ , an application function |σ→τ |× |σ| → |τ |, denoted
by mere juxtaposition of its arguments, i. e. f applied to x is written fx,

21

2 The canonical realizability model

• and, for all types %, σ and τ ∈ T , a collection of combinators

kσ,τ ∈ |σ→τ→σ| s%,σ,τ ∈
∣∣[%→σ→τ]→ [%→σ]→ %→ τ

∣∣
pairσ,τ ∈ |σ→τ→σ×τ | fstσ,τ ∈ |σ×τ→σ| sndσ,τ ∈ |σ×τ→τ | ,

satisfying the following equations

kab = a sabc = ac(bc)
fst(pair ab) = a snd(pair ab) = b.

As usual, → associates to the right and × binds more strongly than →. Ap-
plication and × associate to the left. Type annotations usually are omitted.

�

Note that any typed combinatory algebra is combinatorically complete, i. e.
there is an algorithm for function abstraction allowing to define functions just
like in the λ-calculus (cf. [LS02]). Let us list some examples of typed combi-
natory algebras. More examples can be found in [LS02].

2.2 Examples i) Every untyped total combinatory algebra can be viewed
as a typed combinatory algebra with exactly one type [Lon99b].

ii) For any untyped partial combinatory algebra A we define the typed
combinatory algebra P(A) as follows. The underlying set of types is
the power set of A and, for any type S, we set |S| := S. For types S and
T we define

|S×T | := {a ∈ A | p0a ∈ |S| and p1a ∈ |T |}
|S→T | := {a ∈ A | ∀b ∈ |S| . ab ∈ |T |},

where p, p0 and p1 are appropriate combinators for pairing and projec-
tions. The typed application operations are defined as restrictions of the
application operation in A to the respective subsets and, therefore, total
[LS02].

Moreover, we can restrict the set of types to the set of finite types over
some chosen ground type. For appropriate choices of A this gives rise to
HRO (hereditary recursive operations) and ICF (intensional continuous
functionals) as discussed in [Tro73].

iii) From a small cartesian closed category C we obtain a typed combinatory
algebra as follows. Define the set of types to be the set of objects of
C and for any type T let |T | be the set C(1, T) of global sections of T .
For global sections f : 1 → TS and x : 1 → S we define application as
fx := eval ◦ 〈f, x〉, where eval stands for the evaluation morphism.

22

2.1 Typed and untyped realizability

For instance, the cartesian closed category of algebraic lattices gives rise
to a notion of realizability investigated in [BBS98]. Other interesting ex-
amples arise from the cartesian closed category PER(A) of partial equiv-
alence relations on a partial combinatory algebra A [LS02].

Furthermore, one can restrict to subcategories of finite types over some
chosen ground type thus obtaining in particular cases HEO (hereditary
effective operations) and ECF (effective continuous functionals) [Tro73].

iv) Fix a set B of base types and define the set of types as the set freely
generated from B by × and →. For any type T define |T | to be the
set of closed simply typed λ-terms of type T modulo β- or βη-equality.
Application is induced by the application of λ-calculus [LS02].

In [Lon99b] a 2-category of typed partial combinatory algebras and applicative
morphisms is introduced, containing the 2-category of partial combinatory
algebras familiar from [Lon95] as a full subcategory. In [LS02] the induced
notion of equivalence for typed partial combinatory algebras is stated as a
definition. The following definition is the special case of the latter for typed
(total) combinatory algebras.

2.3 Definition (Applicative equivalence) Two typed combinatory alge-
bras T and S are said to be applicatively equivalent whenever there are two
functions

T → S, written σ 7→ σ′

S → T , written σ 7→ σ∗

and there are two families of functions(
uσ : |σ| → |σ′|

)
σ∈T

and
(
vσ : |σ| → |σ∗|

)
σ∈S

satisfying the following property: for every pair of types σ, τ ∈ T there is an
element qσ,τ in |(σ→τ)′→σ′→τ ′| such that, for all elements a ∈ |σ→τ | and
b ∈ |σ|,

qσ,τ uσ→τ (a)uσ(b) = uτ (ab).

Likewise, the same property holds for the family (vσ)σ∈S .

Furthermore, for every σ ∈ T there are elements iσ ∈ |σ→σ′∗| and jσ ∈
|σ′∗→σ| satisfying for all a ∈ |σ|

iσ a = vσ′ ◦ uσ(a) and a = jσ
(
vσ′ ◦ uσ(a)

)
and the same for uσ′ ◦ vσ for any σ ∈ S. �

23

2 The canonical realizability model

For any typed combinatory algebra one can define the corresponding categories
of assemblies and modest sets. A typed combinatory algebra gives rise to a
realizability topos iff it is applicatively equivalent to an untyped combinatory
algebra (see [LS02]). Since we are not going to use any details about realiz-
ability toposes, the description of the construction of the realizability topos
over an untyped partial combinatory algebra is omitted. The construction is
described in detail in [Lon95].

2.4 Definition (assemblies and modest sets)
An assembly X over a typed combinatory algebra T is a set |X| together with
a type σ ∈ T and a relation X⊆ |σ| × |X| such that, for all x ∈ |X|, there
is an element a ∈ |σ| satisfying a X x (in this case a is called a realizer
for x). We write t(X) to denote the type of an assembly X. Note that every
element x has at least one realizer a, but in general not every element a of |σ|
is the realizer of some element x ∈ |X|. Further, the same realizer can code
more than one element at the same time.

A modest set X is an assembly where, for any a ∈ |t(X)|, there is at most
one x ∈ |X| such that a X x, i. e. X is the graph of a partial surjection
|t(X)|⇀⇀ |X|. This simply means that any element of σ can code at most one
element of X.

Let X be an assembly of type σ ≡ t(X). For any x ∈ |X|, we write ‖x‖X :={
b ∈ |σ|

∣∣ b X x
}

for the set of realizers of x. Note that ‖x‖ is necessarily a
nonempty subset of |σ|.
Let f be a map from the set |X| to |Y |, where Y is an assembly of type τ .
An element a ∈ |σ→τ | is said to track (or realize) the function f iff, for any
element x ∈ |X| and any realizer b ∈ ‖x‖X , application of a to b yields a
realizer ab of the image f(x).

For any typed combinatory algebra T , the assemblies and the modest sets form
categories Ass(T) and Mod(T), respectively. In these categories, a morphism f
from X to Y is a map f : |X| → |Y |, which is tracked by some element
of |σ→τ |.
We define the assembly [X → Y] of morphisms from X to Y as follows: Its
underlying set is the set of all morphisms from X to Y and its type is σ→τ .
The set of realizers ‖f‖ of a morphism f : X → Y is defined to be the set of
all elements of |σ→τ | tracking f . It is easily seen that the assembly [X → Y]
is a modest set if X and Y are modest sets. �

The categories of assemblies and modest sets carry a rich categorical structure:

2.5 Definition (locally cartesian closed category)
A category C is called a locally cartesian closed category (lccc) iff it has fi-
nite limits and, for every morphism f : X → Y , the pullback functor between

24

2.1 Typed and untyped realizability

the corresponding slice categories, written f? : C/Y → C/X, has a right ad-
joint Πf . The pullback functor f? is defined according to Diagram 2.1, where
the square on the left defines the object part of the functor and the larger right
diagram shows how to define f?(h) for a morphism h : g → g′. �

•
f?(g)

��

// •
g

��

X
f
// Y

and

•

g
��

@@@@@@@
h // •

g′��~~~~~~~

Y

f?7−→

•

f?g

��

f?h

// •
h

!!BBBBBBBB

g
1111

��
1111111111

•

f?g′
��

// •

g′

��

X
f
// Y

Diagram 2.1: Definition of the pullback functor

Any lccc is a cartesian closed category (ccc). For simplicity of notation, we
use the letter X both for an object in C and for the unique morphism X → 1
to the terminal object. Using this notation, exponentials can be derived via
Y X = ΠXX

?(Y), see Diagram 2.2.

X × Y

π1=X?Y

��

π2 // X

Y

��

X
X

// 1

Diagram 2.2: Exponentials in a lccc

2.6 Definition A monomorphism is called regular iff it is an equalizer and an
epimorphism is called regular iff it arises as a co-equalizer.

For any morphism f : X → Y its kernel pair (f1, f2) is defined by the pullback
in Diagram 2.3.

•

f1

��

f2 // X

f

��

X
f
// Y

Diagram 2.3: (f1, f2) is the kernel pair of f

A category is regular iff it has finite limits and co-equalizers of kernel pairs,

25

2 The canonical realizability model

and furthermore the pullback of a regular epimorphism along any morphism
is a regular epimorphism. �

2.7 Proposition The categories of assemblies and modest sets over a typed
combinatory algebra are regular lcccs. The obvious inclusion functor from
modest sets to assemblies preserves this structure.

For a proof of regularity see [Lon95, Section 1.2.1]. Note that in regular cat-
egories, regular epimorphisms are closed under composition and every mor-
phism can be factored, uniquely up to isomorphism, as a regular epimorphism
followed by a mono.

2.8 Definition A modest set X is said to be projective iff, for any arrow
f : X → Y and any regular epimorphism e : Z � Y , there is a (not necessarily
unique) arrow g : X → Z with e ◦ g = f (cf. Diagram 2.4). �

X
∃g

~~

f

��

Z e
// // Y

Diagram 2.4: X is projective

2.9 Proposition A modest set is projective iff it is isomorphic to a modest
set X where every element has exactly one realizer.

For a proof see [Lon95, Prop. 2.4.10].

Note that every type σ ∈ T induces a projective modest set δσ := (|σ| , σ,)
in Mod(T) in a canonical way where each element of |σ| is realized by itself
and by no other element.

2.10 Proposition Let A be a typed combinatory algebra. Then any regular
monomorphism in Mod(A) is isomorphic to an inclusion map preserving real-
izers, i. e. to a regular monomorphism i : Y � Z where Y and Z are of the
same type, |Y | is a subset of |Z| and, for any y ∈ |Y |, the realizers for y in Y
and in Z coincide and i is the associated inclusion map y 7→ y : |Y | → |Z|.

The easy proof of this proposition is left to the reader.

26

2.2 A very general sequential functional programming language

2.2 A very general sequential
functional programming language

The call-by-value functional programming language FPC (Fixed Point Calcu-
lus) was introduced by Gordon Plotkin in his “Stanford Lecture Notes” [Plo85].
In [Gun92] a call-by-name version of FPC is defined which is restricted to bi-
nary sum and product types. In this section we define a call-by-name version
of FPC incorporating sum types over an arbitrary finite collection of types.
This generalization is necessary as in a call-by-name language finite sums can-
not be expressed as iterated binary sums. In the sequel, FPC stands for the
language call-by-name FPC.

FPC is the call-by-name fragment of M. Marz’s Sequential Functional Lan-
guage SFL (see [Mar00]). We consider FPC a very general sequential language
since all call-by-value constructions can be simulated in this language (see
below for details). Hence all known non-polymorphic sequential functional
programming languages can be simulated in FPC.

We assume a set of type variables (denoted by α, α′ and so on) and generate
the types of FPC as follows:

σ ::= α | σ→σ | σ×σ
∣∣∣∣ m∑
i=0

σ

∣∣∣∣ µα. σ for any m ∈ N

A type is called closed iff it does not contain free type variables, i. e. if any
occurring type variable α is bound under the scope of a recursive type construc-
tor µα. The terms of FPC are derived according to the following grammar:

t ::= x
∣∣ λx:σ. t

∣∣ tt ∣∣ 〈t, t〉 ∣∣ plσ,τ (t)
∣∣ prσ,τ (t)

∣∣
inσ0,...,σm
i (t)

∣∣ caseσ0,...,σm,τ t of in0x⇒ t . . . inmx⇒ t
∣∣

foldµα. σ(t)
∣∣ unfoldµα. σ(t)

for any variable x, any number m ∈ N, any i ∈ {0, . . . ,m} and all types σ,
σ0, . . . , σm, τ . Type annotations are merely used for type inference, they are
often omitted when they are clear from the context. Terms not containing any
free variables are called closed terms.

For the typing rules (as given in Table 2.1), we look at terms-in-contexts of the
form Γ `M :τ where M is a term, τ is a closed type and Γ ≡ x1 : σ1, . . . , xn : σn
is a context assigning closed types σ1, . . . , σn to a finite set of variables
x1, . . . , xn.

As the language FPC incorporates recursive types, any inductive proof on the
type structure has to deal with types containing free variables. We will use
types-in-contexts to formulate such proofs.

27

2 The canonical realizability model

Γ, x:σ ` x:σ
Γ, x:σ ` t:τ

Γ ` λx:σ. t : σ→τ

Γ ` s : σ→τ Γ ` t:σ
Γ ` st:τ

Γ ` s:σ Γ ` t:τ
Γ ` 〈s, t〉 : σ×τ

Γ ` t:σ×τ
Γ ` pl(t):σ

Γ ` t:σ×τ
Γ ` pr(t):τ

Γ ` t : σ [µα. σ / α]
Γ ` foldµα. σ(t) : µα. σ

Γ ` t : µα. σ
Γ ` unfoldµα. σ(t) : σ [µα. σ / α]

Γ ` t:σi
Γ ` inσ0,...,σm

i (t):
∑m
j=0 σj

Γ ` t:
∑m
j=0 σj

Γ ` caseσ0,...,σm,τ t of in0x⇒ t0 . . . inmx⇒ tm : τ

Table 2.1: The typing rules for FPC (i ranging over {1, . . . ,m})

λx:σ. t ⇓ λx:σ. t
s ⇓ λx:σ. s′ s′ [t / x] ⇓ v

s′t ⇓ v

〈s, t〉 ⇓ 〈s, t〉
r ⇓ 〈s, t〉 s ⇓ v

pl(r) ⇓ v
r ⇓ 〈s, t〉 t ⇓ v

pr(r) ⇓ v

ini(t) ⇓ ini(t)
t ⇓ inis ti [s / x] ⇓ v

case t of in0x⇒ t0 . . . inmx⇒ tm ⇓ v

t ⇓ v
fold(t) ⇓ fold(v)

t ⇓ fold(v)
unfold t ⇓ v

Table 2.2: Big-step reduction for FPC (i ranging over {1, . . . ,m})

28

2.2 A very general sequential functional programming language

2.11 Definition A type context Θ is a finite list of type variables Θ ≡ α1, . . . ,
αn. Let σ be a not necessarily closed type. We use the type judgement Θ ` σ
to indicate that all type variables occurring freely in σ belong to Θ. �

The operational semantics is defined via big-step reduction in Table 2.2 and
syntactic values of FPC are

v ::= 〈t, t〉 | inσ0,...,σm
i (t) | λx:σ. t | foldµα. σ(t).

To simplify notation we introduce the following abbreviations for the type void
possessing no value, for lifted types and for the single valued type.

void := µα. α σ⊥ :=
0∑
i=0

σ unit := void⊥

For any closed type σ we define the following abbreviations for certain terms:

Yσ :≡ λf : σ→σ. k
(
foldτ (k)

)
with τ :≡ µα.[α→σ]
and k :≡ λx:τ. f

(
unfoldτ (x)x

)
idσ :≡ λx:σ. x
Ωσ :≡ Yσ idσ

up(t) :≡ inσ0 (t)
down(t) :≡ caseσ,σ t of in0x⇒ x

In Section 2.8 we are going to define the interpretation of a context Γ ≡
x1:σ1, . . . , xn:σn to be the interpretation of the product type σ1× . . .×σn.
Hence we need some notation for arbitrary finite products. Hence we write
σ1× . . .×σn for the left associative product type

(
. . . (σ1×σ2)× . . .×σn

)
and

pri : σ1× . . .×σn→σi for the obvious closed term doing the projection onto
the ith component. Further we set

σn :≡ σ × · · · × σ︸ ︷︷ ︸
n times

.

2.12 Definition (observational equivalence) Let σ be a closed FPC-type.
Two FPC-programs s and t are called observationally equivalent, written
s =obs t or simply s = t, iff, for any closed term p : σ→unit, the closed
terms ps and pt either both reduce to a syntactic value or they both do not.

The notion of observational equivalence can be generalized to terms: Let Γ be
a non-empty context, Γ ≡ x1:σ1, . . . , xn:σn, and assume Γ ` s:τ and Γ ` t:τ

29

2 The canonical realizability model

are terms-in-context. Then s and t are called observationally equivalent with
respect to Γ, written Γ ` s =obs t, iff the corresponding closed terms are
equivalent, i. e.

λx1:σ1. . . . λxn:σn. s =obs λx1:σ1. . . . λxn:σn. t.

For any closed FPC-term t the observational class of t is defined to be the
class of all observationally equivalent closed terms. It is denoted by [t]obs or
simply by [t]. If no confusion can arise, by abuse of notation, we often write
the letter t to denote the observational class of a closed FPC-term t. �

2.13 Examples i) For any closed FPC-type σ we have

λx:σ.down
(
up(x)

)
=obs idσ .

ii) It is easy to see that Yσ is a fixed point combinator satisfying Yσ t =obs

t(Yσ t) for any closed type σ and any closed term t : σ→σ. The proof
that the interpretation of Yσ in the SD-model is a least fixed point
operator is a standard exercise, which is left to the reader.

There are essentially two different known order-extensional domain models for
call-by-name FPC. One is the well known model pioneered by Dana Scott
and codified and studied in [SP82]. This model is computationally adequate,
but not fully abstract. The second model is the fully abstract model defined
by Marz [Mar00] within the category SD of Sequential Domains. Objects of
SD are domains together with large families of Kripke logical relations and
morphisms are continuous functions preserving these relations. Many domain
theoretic constructions carry over from the Scott domains. In particular, di-
rected suprema of morphisms are calculated pointwise. Marz showed that this
category contains a fully abstract model for the sequential functional language
SFL. SFL is a very general sequential language incorporating both call-by-
name and call-by-value constructs. However, any computational SFL-type can
be represented as a retract of an FPC-type and any SFL-construct can be
simulated in FPC. We illustrate this for the coalesced sum type σ0 ⊕ σ1 (cf.
Diagram 2.5).

///////������� ///////�������

KKKKKK

⊥

ssssss

?????????????********** �����������������������

⊥

Diagram 2.5: Separated sum and coalesced sum of two types

Assume σ0 and σ1 are closed FPC-types and there are closed FPC-terms
ti : σi→σi such that ti⊥σi diverges and tix =obs x for any terminating x:σi.

30

2.3 The algebra of closed FPC-terms

Such types are called computational types or SSB-types in SFL, SSB standing
for sequentially separable bottom. Then there is an obvious retraction from
the coalesced sum σ ⊕ τ to the separated sum σ + τ . Informally spoken, the
embedding maps ⊥σ⊕τ to ⊥σ+τ and any other element of σ ⊕ τ to the corre-
sponding element of σ + τ . The projection maps each of the elements ⊥σ+τ ,
in0(⊥σ) and in1(⊥τ) to ⊥σ⊕τ and any other element of σ + τ to the corre-
sponding element of σ ⊕ τ . Obviously, projection after embedding gives the
identity on σ ⊕ τ . The retraction, i. e. embedding after projection, is given by
the following closed FPC-term:

r : σ+τ→σ+τ,
r :≡ λx:σ+τ. casex of in0w⇒ t0in0(w) in1w⇒ t1in1(w)

In this sense, the computational SFL-type σ⊕τ can be simulated in FPC by the
retraction r. Since any computational SFL-type can be simulated this way, the
SD-model is also fully abstract for call-by-name FPC. However, our results do
not depend on full abstraction of the SD-model but only on adequacy. In the
following we will thus deliberately use the fact that adequate domain models
for FPC are well known to show observational equivalence of closed FPC-
terms. We do this by proving that their interpretations in some adequate
model coincide. However, we are convinced that in principle it should be
possible — although quite tedious and not very illustrative — to formulate
all proofs in this thesis in a purely syntactic way without any reference to a
domain model.

The aim of this thesis is to present a universal realizability model for call-by-
name FPC. In [MRS99] we announced a similar result for call-by-value FPC.
Both languages possess a universal type U such that all other types appear as
retracts of U . However, for our construction it is essential that for any type σ,
there is an FPC-definable embedding and projection between U and σ. In
Section 3.1 we will see that the projection can always be chosen to be a strict
function, but the embedding in general cannot. However, in call-by-value FPC
any definable function is strict. Hence not all relevant embeddings are definable
in call-by-value FPC. To avoid this problem, we decided to concentrate on
the call-by-name version of FPC defined above. Anyway, this is not a severe
restriction since call-by-value FPC can be simulated in call-by-name FPC.

2.3 The algebra of closed FPC-terms

We are now going to define a combinatory algebra consisting of equivalence
classes of closed FPC-terms. For every closed FPC-type σ, let σ/=obs de-
note the set of equivalence classes of observationally equivalent closed terms
of type σ. Further, we write [t]obs or just [t] for the class of a closed term t.

31

2 The canonical realizability model

2.14 Proposition Equipping the set of FPC-types with the following struc-
ture yields a typed combinatory algebra T :

• for every type σ, the set |σ| of realizers of type σ is defined to be the
quotient set σ/=obs

;

• product and function types are those of FPC;

• application is defined in the obvious manner: given terms t:σ→τ and s:σ
we put [t][s] := [ts];

• each of the combinators is defined to be the class of the evidently corre-
sponding FPC-term.

The straightforward proof of this proposition is left to the reader.

2.15 Definition From now on we write T for the particular typed combi-
natory algebra as defined above and call it the typed combinatory algebra of
closed FPC-terms.

Furthermore, we write M to denote the category Mod(T) of modest sets over
this algebra of closed terms.

By abuse of notation, we will often write t f for [t]obs f and call t a
realizer of f . �

The category M is the category within which we are going to construct a
universal model for FPC. According to Proposition 2.7 it is locally cartesian
closed.

2.4 A subcategory of domains

We are going to prove that the combinatory algebra T carries the structure of
a cartesian closed category and can be embedded into M as a full sub-ccc D. In
order to interpret FPC in M we have to come up with a category of domains
in M allowing the construction of sum types and recursive types. We will
show in the subsequent sections that we can regard the subcategory D as such
a category of domains within M.

2.16 Definition The class of objects of D is defined to be the set of all closed
FPC-types. For objects σ and τ , the set of morphisms D(σ, τ) is simply
[σ→τ]/=obs , the set of observational equivalence classes of closed terms of type
σ→τ . For closed terms t:σ→τ and s:%→σ, composition of the corresponding
morphisms is defined as [t]obs ◦ [s]obs :=

[
λx:%. t(sx)

]
obs

. The identity mor-
phism on σ/=obs is [λx:σ. x]obs.

32

2.4 A subcategory of domains

For any object σ the morphism [λx:σ.Ωvoid]obs is the only morphism going to
the terminal object void.

The product of σ and τ is the type σ×τ with the projections[
λx:σ×τ.pl(x)

]
obs

and
[
λx:σ×τ.pr(x)

]
obs
.

The exponential τσ is the type [σ→τ] with the evaluation morphism[
λx:[σ→τ]×σ.

(
pl(x)

)(
pr(x)

)]
obs
.

It is easy to verify that D is a cartesian closed category. It embeds into M as
a full sub-ccc in the following way:

• Every type σ canonically induces a projective modest set δσ of type σ.
Its underlying set is the quotient set |σ| = σ/=obs . Realizability is trivial,
i. e. each class [t] ∈ |σ| is realized by itself and by nothing else.

• For every class [t] of a closed term t : σ→τ there is a unique function δt
from σ/=obs to τ/=obs which is tracked by [t]. It is given by [s] 7→ [ts].
On the other hand, any M-morphism δσ → δτ is of this kind.

2.17 Proposition The above embedding δ : D → M respects the cartesian
closed structure.

Proof: We have to show that δ preserves terminal objects, binary products
and exponentials.

Terminals: The set |δvoid| is a singleton, hence it is terminal in Set. For any
X in M the unique function |X| → |δvoid| is tracked by λx: t(X).Ωvoid,
where t(X) stands for the type of the modest set X. Hence δvoid is
terminal in M.

Products: Let σ and τ be types, X an arbitrary M-object of type % and [p]
and [q] realizers of M-morphisms f and g, respectively, which make the
outer square of the following diagram commute:

X
[q]g

//

[t]m
##

[p]f

��

δτ

δσ δ(σ×τ)
λx.pl(x)
oo

λx.pr(x)

OO Obviously the whole diagram commutes if
we choose t := λx:%. 〈px, qx〉. We are left to
show that the morphism m realized by [t] is
the only one making this diagram commute.

Assume there is another such morphism, m′, realized by [t′]. Then the
interpretations of t and t′ in some adequate domain model, like Marz’s
SD-Model, make the corresponding diagram of domains commute. Hence
these interpretations coincide and we conclude t =obs t

′.

33

2 The canonical realizability model

Exponentials: Suppose σ and τ are types, X an arbitrary M-object of type %
and [t] a realizer of a morphism f : X × δ(σ)→ δ(τ).

Let s := λx:[σ→τ]×σ.
(
pl(x)

)(
pr(x)

)
and [q] e : δ(σ→τ)×δ(σ)→ δ(τ).

δ(σ→τ) δ(σ→τ)× δ(σ)
[q]e

// δ(τ)

X

[r]obsf̃

OO

X × δ(σ)

[r′]f̃×id

OO

[t]m

88qqqqqqqqqqq

We have to show that there is a unique morphism f̃ such that the above
diagram commutes. To prove its existence we set r := λx:%. λy:σ. t 〈x, y〉.
Then the observational equivalence class of

r′ := λy:%×σ.
〈
r
(
pl(y)

)
,pr(y)

〉
realizes f̃ × id and hence we obtain

qr′ =obs λy:%×σ.
(
r(pl(y))

)
(pr(y))

=obs λy:%×σ. t 〈pl(y),pr(y)〉 =obs λy:%×σ. ty =obs t.

As for uniqueness, suppose there is another morphism [s] d : X →
δ(σ→τ) making the above diagram commute. Then again the inter-
pretations of r and s in some adequate domain model have to coincide
since they both make the corresponding diagram in SD commute. Hence
r =obs s. �

2.18 Remark A typed combinatory algebra A is called extensional iff, for all arrow
types σ→τ , two realizers f , g ∈ |σ→τ | coincide iff fx = gx for all x ∈ |σ|.
If A is extensional, one can define a full subcategory C of Mod(A) consisting of all
modest sets (|σ| , σ,) with trivial realizability relations. Note that C always is a
sub-ccc, which in general is not closed under isomorphisms.

For the algebra T of closed FPC-terms, this subcategory is equivalent to the subcat-
egory D defined above.

Maybe the definition for our category D seems a bit ad hoc. Of course one
could use the machinery of synthetic domain theory to describe an internal
category of domains (see, e. g. [RS99a, LS97, vOS00]). However, in the end
this would probably lead to the same model for FPC. Furthermore, our D is
easily seen to be a sub-category of the category of well-complete objects as
defined in [LS97].

If no confusion can arise, from now on we will identify a closed FPC-term t
with the corresponding D-morphism [t]obs. In particular in diagrams in D we
will label arrows with closed FPC-terms instead of their observational classes.

34

2.5 Liftings

2.5 Liftings

Our next aim is to present a realizability model for FPC in the category D,
which we will call the canonical realizability model for FPC. The interpretation
of product and function types will turn out to be straightforward. It will be
more difficult to define the interpretation of liftings, sum types and recursive
types. Hence we will discuss them extensively in this section and the following.

Let t be a closed FPC-term. Whenever no confusion can arise, we will use
the letter t from now on not only to denote this term, but also to denote the
class [t]obs of terms observationally equivalent to t. It will be clear from the
context, whether t refers to the term or the class of terms.

In order to interpret lifted types and sum types we have to define a lifting
monad on M. We do this by choosing a dominance Σ in M which, in a natural
way, gives rise to such a monad. The following definitions are taken from
[Ros86, Chapter 2] and [Lon95, Section 4].

2.19 Definition (Dominion) A dominion in a category C is a class D of
monomorphisms, which contains all identity morphisms and is closed un-
der composition and has the property that, for any C-morphisms f and any
monomorphism m ∈ D, a pullback of m along f exists and all such pullbacks
belong to D. �

2.20 Definition (Partial Morphism) Let D be a dominion in C. A partial
morphism X ⇀ Y with domain of definition in the dominion D (also called a
D-partial morphism) is given by a pair (m, f) consisting of a monomorphism
m : X ′� X in D and a C-morphism f : X ′ → Y . We regard (m : X ′� X, f)
and (m̃ : X̃ ′ � X, f̃) as giving the same partial morphism iff there is an
isomorphism i : X ′ ∼= X̃ ′ such that the left square of Diagram 2.6 commutes.

X ′
f
//

��

m

��

i
∼=

 AAAAAAAA Y

X X̃ ′oo
m̃
oo

f̃

OO X ′′
��

k

��

��

m′

��

ϑ

""
ϕ′
// Y ′
��

n

��

ψ
// Z

X ′
��

m

��

ϕ
// Y

X

Diagram 2.6: Composition of partial morphisms

35

2 The canonical realizability model

For any two partial morphisms given by X
m
� X ′

ϕ→ Y and Y
n
� Y ′

ψ→ Z,
the composition (k, ϑ) = (m,ϕ) ◦ (n, ψ) is defined by the pullback given in the
right diagram in Diagram 2.6.

For any class D of monomorphisms in C, we write D(X,Y) for the set of partial

morphisms X
m
� X ′

f→ Y with m ∈ D.

The category of D-partial morphisms corresponding to C, denoted by PartD,
consists of all objects of C together with all D-partial morphisms. �

The category C embeds into PartD via the functor J : C→ PartD with JX = X
and Jf = (id, f) for f : X → Y . This functor is faithful and reflects isomor-
phisms.

2.21 Definition (Pre-dominance)
For any object Σ, a monomorphism > : 1 � Σ is called a pre-dominance iff,
for any two morphisms f , g : X → Σ,

f?(>) ∼= g?(>) implies f = g.

Hence f and g have to coincide, if the pullback functors f? and g? map > to
isomorphic objects. �

2.22 Definition A class D of monomorphisms is called representable iff, for
any object Y , there is a morphism upY : Y → Y⊥ such that, for every X, we

have a bijective correspondence D(X,Y) ∼= C(X,Y⊥) where X
m
� X ′

f→ Y
corresponds to g iff Diagram 2.7 is a pullback.

X ′
��

m

��

f
// Y

upY

��

X g
// Y⊥

Diagram 2.7: g classifies (m, f)

In this case we call g the classifier of (m, f). We will abbreviate upY to up
when no confusion can arise. �

In particular, a dominion is representable iff there is a bijective correspondence
between PartD(X,Y) and C(X,Y⊥).

2.23 Proposition For any pre-dominance > : 1 → Σ in a locally cartesian
closed category C, the class D of all pullbacks of > is representable. Further,
the class D has the following properties:

36

2.5 Liftings

• it contains all isomorphisms in C;

• it contains upY for any Y ;

• for any Y , the object Y⊥ and morphism upY are uniquely determined up
to isomorphism;

• D is closed under pullbacks;

• the mapping Y 7→ Y⊥ extends to a functor (-)⊥ : C → C, called the
lift functor associated with D, and the morphisms upY form a natural
transformation.

A proof for the representability of D can be found in [Lon95, Proposition 4.1.7].
The rest of the above proposition is straightforward.

2.24 Definition (Dominance) A pre-dominance > is said to be a domi-
nance iff the associated class D of pullbacks of > is a dominion. In this case,
> is called a classifier for D. �

2.25 Proposition For a pre-dominance > and its associated class D of pull-
backs the following are equivalent:

• > is a dominance;

• D is closed under composition;

• the composite morphism up ◦ > : 1→ Σ⊥ is a pullback of >.

If > is a dominance then the associated lift functor can be equipped with the
structure of a monad. Specifically, there is a right adjoint L : PartD → C of
the inclusion functor J such that the lift monad is L ◦ J .

For a proof see [Lon95, Section 4.1].

2.26 Example Let K1 denote the first Kleene algebra, i. e. the set of natural
numbers together with the application m • n := {m}n, the value of the mth
partial recursive function at the argument n. Let Mod(K1) be the category of
ω-sets and N the canonical natural numbers object. Define Σ by

|Σ| = {>,⊥}, ‖>‖ =
{
n
∣∣ {n}(0)↓

}
, ‖⊥‖ =

{
n
∣∣ {n}(0)↑

}
.

Then the morphism > : 1 → Σ which picks out the element > is a domi-
nance. The monomorphisms into N belonging to the associated dominion D
correspond precisely to the recursively enumerable subsets of N. Further, the
partial morphisms N ⇀ N defined within D are just the partial recursive
functions. For a proof that Σ indeed is a dominance see [Lon95, Example
4.2.9(ii)].

37

2 The canonical realizability model

The following proposition establishes a sufficient criterion for a morphism in
the category M = Mod(T) of modest sets over the typed combinatory algebra
of FPC-terms to be a pre-dominance. Moreover, it gives a concrete description
of the associated lifting functor. It is a variant of Proposition 4.2.4 and Remark
4.2.5 in [Lon95] for modest sets over the typed combinatory algebra T .

2.27 Proposition (Lifting in Mod(T)) A monomorphism > : 1→ Σ in the
category M = Mod(T) is a pre-dominance if Σ has exactly two elements. In
this case, for any modest set X of type σ := t(X), the object X⊥ and the
morphism up are given as follows (up to isomorphism):

|X⊥| = |X| ∪· {⊥X}, t(X⊥) = σ⊥, ‖x ∈ X‖ =
{
up(a)

∣∣ a X x
}
,

‖⊥X‖ =
{

Ωσ⊥
}
, up(x) = x for x ∈ |X| , λx:σ.up(x) up.

Furthermore, the lift functor maps any morphism f : X → Y of type σ→τ to

f 7→ (f⊥ : X⊥ → Y⊥) f⊥(x) =

{
f(x) if x ∈ |X|
⊥Y if x = ⊥X

If f is tracked by t, then the lifted morphism f⊥ is tracked by

λx:σ⊥. casex of in0w⇒ up(tw).

Proof: Suppose Σ has exactly two elements b and t and let > : 1 → Σ be
a monomorphism in M such that the image of > is t. Then, for any M-
morphism f : X → Σ, the image of > under the pullback functor f? is the
inclusion map f−1{t} ↪→ X (cf. Diagram 2.8). Given f and g : X → Σ such

f−1{t} ! //

_�

f?(>)

��

1

>

��

X
f

// Σ

Diagram 2.8: Pullback of > along f

that f?(>) ∼= g?(>), we conclude f−1{t} = g−1{t} and since Σ has exactly
two elements this yields f = g. Hence Σ is a pre-dominance.

The morphism up is tracked by λx:σ.up(x). It remains to be shown that

every partial morphism X
m
� X ′

f→ Y with m ∈ D has a unique classifier
g : X → Y⊥. As it is a pullback of the regular monomorphism >, the monomor-
phism m is again regular. According to Proposition 2.10, m is isomorphic to an
inclusion which preserves realizers. Thus we can assume, without loss of gen-
erality, |X ′| ⊆ |X| with a X′ x ⇐⇒ a X x and m(x) = x. Let σ := t(X),

38

2.5 Liftings

X ′
! //

_�

m

��

1
��

>
��

X
m
// Σ.

Diagram 2.9: Choice of m

τ := t(Y) and let m be the morphism making Diagram 2.9 a pullback. Let t
and s be realizers of m and f , respectively. We show that the morphism
g : X → Y⊥ tracked by λb:σ. case tb of in0w⇒ up(sb) classifies f . Let m and
f ′ be morphisms such that the outer square of Diagram 2.10 commutes. Then
the morphism h : X ′′ → X ′ realized by t′ obviously is the unique mediating
morphism and therefore Diagram 2.10 is a pullback.

X ′′

[t′]obs
m′

,,

h

!!

f ′

��

X ′
_�

m

��

f
// X
��

up

��

X g
// X⊥,

Diagram 2.10: Construction of a classifier g for (m, f)

We are left to show that g is unique. The above pullback in M induces a
pullback in Set and g is the only function making that diagram a pullback.
Thus g also has to be unique in M. �

2.28 Definition Let Σ denote the modest set in D given by

|Σ| = {⊥,>}, t(Σ) = void⊥, up(Ωvoid) >, Ωvoid⊥ ⊥

and let, by abuse of notation, > : 1 → Σ also denote the morphism mapping
the only element of 1 to the element > ∈ |Σ|. This morphism is tracked by
λx:void.up(x). �

2.29 Proposition The morphism > : 1 → Σ defined in Definition 2.28 is a
dominance in M.

Proof: Due to Proposition 2.25 it suffices to show that up ◦ > : 1 → Σ⊥ is a
pullback of >. This is a fact as Proposition 2.27 shows that this morphism is
the pullback of > along the morphism g realized by λx:(void⊥)⊥.down(x).

�

39

2 The canonical realizability model

1
��

>
��

1
��

>

��

Σ

up

��

Σ⊥ g
// Σ

Diagram 2.11: > is a dominance

2.6 Sum types

Based on lifting we define the notion of separated sum in M as the lifted
co-product of objects and show that it has the expected universal property.

2.30 Notation Let X0, . . . , Xm be a finite collection of objects of M with
types σi := t(Xi). We write

∐m
i=0Xi to denote the co-product of these

objects and we use coprj : Xj →
∐m
i=0Xi to denote the jth co-projection,

j ∈ {0, . . . ,m}. Up to isomorphism, the underlying set of
∐m
i=0Xi is the dis-

joint union
⋃m
i=0{i} × |Xi|. The type of the co-product is

∑m
i=0 σi and the

set of realizers of an element (i, x) ∈
∣∣∐m

i=0Xi

∣∣ is
{
ini(t)

∣∣ t Xi x}. The jth
co-projection, mapping x ∈ Xj to coprj(x) = (j, x) is realized by λx:σj . inj(x).
It is easy to verify the universal property. �

///////������� ///////�������

///////������� ///////�������

KKKKKK

⊥

ssssss

Diagram 2.12: Co-product and separated sum of two objects

2.31 Definition If X0, . . . ,Xm are objects of types σ0, . . . , σm in M, the
separated sum

∑m
i=0Xi of these objects is defined to be the object with under-

lying set {⊥∑m
i=0 Xi

} ∪·
⋃m
i=0{i} × Xi and type t

(∑m
i=0Xi

)
=
∑m
i=0 σi where

realizability is defined as∥∥⊥∑m
i=0 Xi

∥∥ := Ω∑m
i=0 σi

and ‖(j, x)‖ := λx:σj . inj(x).

The inclusion map inj : Xj →
∑m
i=0Xi, x 7→ (j, x) is realized by λx:σj . inj(x).

40

2.6 Sum types

For any object Y of type τ in M, we define a function case:

case :

(
m∑
i=0

Xi

)
×[X0→Y]× . . .×[Xm→Y] −→ Y

case(x, f0, . . . , fm) :=

fi(w)
iff x = ini(w) for some i ∈ {0, . . . ,m}

and w ∈ Xi

⊥Y otherwise,

realized by the observational equivalence class of

λp :

(
m∑
i=0

σi

)
×[σ0→τ]× . . .×[σm→τ].

case pr0(p) of in0w⇒
(
pr1(p)

)
w . . . inmw⇒ prm+1

(
pr(p)

)
w.

�

To formulate the usual universal property of separated sums, we first have to
define the notion of strictness of morphisms. It is impossible to do this for
arbitrary M-morphisms. However, there is a canonical notion of strictness of
morphisms in the subcategory D of domains in M. Recall that objects of D
are just the closed FPC-types and the morphisms are observational classes of
closed terms.

2.32 Definition (strict morphism) For any closed FPC-type σ we define
the closed term downσ :≡ λx:σ⊥.down(x).

Let σ and τ be closed FPC-types. A D-morphism σ
t // τ , i. e. a closed term

t : σ→τ , is called strict iff Diagram 2.13 commutes. We write σ ◦
t // τ to

σ⊥
t⊥ //

downσ

��

τ⊥

downτ

��
σ

t
// τ

Diagram 2.13: t is strict

indicate that t is strict. �

2.33 Proposition Let t : σ→τ be a closed FPC-term. Then t is strict iff it
satisfies tΩσ =obs Ωτ .

In D the separated sum
∑m
i=0Xi has the following universal property:

41

2 The canonical realizability model

For any object Z and any collection of strict morphisms fi :
Xi ◦ // Z with i ∈ {0, . . . ,m} there is a unique strict morphism

h :
∑m
i=0Xi ◦ // Z such that h ◦ inj = fj for any j ∈ {0, . . . ,m}.

(See Diagram 2.14 for the binary case.)

Z

∑1
i=0Xi

◦
∃1h strict

OO

X0

◦
in0

;;wwwwwwwww◦

f0

22

X1

◦
in1

ccHHHHHHHH
◦

f1

ll

Diagram 2.14: The universal property of sums

In particular, the separated sum
∑m
i=0Xi thus is isomorphic to the lifted co-

product (
∐m
i=0Xi)⊥ via an isomorphism which takes the inclusion map inj to

up ◦ coprj .

Proof: The first claim holds since tΩσ =obs Ωτ is equivalent to

t(λx:σ⊥. casex of in0w⇒ w) = λx:σ⊥. casex of in0w⇒ tw

and hence

t ◦ downσ = λx:σ⊥. casex of in0w⇒ tw

= λx:σ⊥. casex of in0w⇒ down
(
up(tw)

)
= λx:σ⊥.down

(
casex of in0w⇒ up(tw)

)
= downτ ◦ t⊥.

As the morphisms fj are assumed to be strict, in Set there is a unique strict
function h :

∣∣∑m
i=0Xi

∣∣→ |Z| such that h ◦ inj = fj . If tj fj for any j, then
h is realized by λx:

∑m
i=0 σi. casex of in0w⇒ t0w . . . inmw⇒ tmw. �

2.7 Minimal invariants of functors

As the language FPC includes recursive types and the interpretation of types
in M has to be defined inductively on the type structure, we cannot restrict
ourselves to closed types, but we have to give an interpretation of types con-
taining free type variables.

42

2.7 Minimal invariants of functors

There is a natural way to interpret a type-in-context α1, . . . , αn ` σ as a functor
(Dop × D)n → D, where D is the subcategory of domains in M. For example,
the type α ` α→α corresponds to the Hom-functor, which is contravariant in
the first and covariant in the second argument:

F (X,Y) := [X → Y] for objects X,Y ∈ D
F (f, g) := [f → g] for morphisms f : X ′ → X, g : Y → Y ′,

where [f → g] : [X→Y]→ [X ′→Y ′], [f → g](h) = g ◦ h ◦ f

It is straightforward to define such functors for finite (i. e. non-recursive) types.
Things are not that easy for recursive types. In the categories of Scott domains
or Sequential Domains recursive types are interpreted as solutions of recursive
domain equations, which can be constructed as a bilimit (see [SP82, Mar00]).
This construction can be carried over to a subcategory of domains of the cat-
egory M = Mod(T) using methods of synthetic domain theory (cf. [RS99a,
Sim92]). In the special case of our syntactically defined subcategory D there is
a simpler way to show that so-called syntactic functors have unique minimal
invariants which we will use to interpret recursive types. However, we are con-
vinced that synthetic domain theory leads to essentially the same model for
FPC. Our approach is related to Freyd’s results on initial algebras and final
co-algebras, see [Fre91] and [Fre92].

Following the notational convention introduced in [Pit96] we will decorate vari-
able names with superscripts + and − to distinguish between ‘co- and con-
travariant arguments’. If F : Dop × D → D is a functor, we will use variable
names x−, y−, . . . to denote its first, ‘contravariant’, argument and x+, y+

and so on for its second, ‘covariant’, argument. Further, we will abbreviate
pairs like (τ−, τ+) to τ∓ and (τ+, τ−) to τ± and type variable substitutions
like σ [τ− / α−, τ+ / α+] to σ [τ∓ / α∓]. Hence the superscript ∓ is used to
indicate ‘first minus, then plus’ and ± stands for ‘first plus, then minus’.

2.34 Definition (minimal invariant) Let F : Dop × D → D be a functor.
An object ι ∈ D together with an isomorphism fold : F (ι, ι) ∼= ι is called a
minimal invariant of F in D if it has the following universal property (with
unfold := fold−1):

For any two objects τ− and τ+ and any morphisms f− : τ− →
F (τ+, τ−) and f+ : F (τ−, τ+)→ τ+ there is a unique pair of mor-
phisms k− : τ− → ι and k+ : ι → τ+ making Diagram 2.15 com-
mute.

Minimal invariants of functors are easily seen to be unique up to isomorphism.

2.35 Remark If (ι, fold) is a minimal invariant of F : Dop×D→ D, then the identity
on ι is the only morphism f : ι→ ι making the Diagram 2.16 commute:

43

2 The canonical realizability model

F (ι, ι) ι
unfoldoo

F (τ+, τ−)

F (k+,k−)

OO

τ−
f−
oo

k+

OO F (ι, ι)

F (k−,k+)

��

fold // ι

k−

��

F (τ−, τ+)
f+
// τ+

Diagram 2.15: Universal property of the minimal invariant

F (ι, ι)

F (f,f)

��

ι
foldoo

f

��
F (ι, ι) ι

foldoo

Diagram 2.16: f = id is the only morphism making this diagram commute

The above definition of minimal invariants suffices to handle recursive types
which are not nested. In order to handle nested recursive types, we have to
generalize this notion. Given a syntactic functor, we have to form a min-
imal invariant in, say, the ith argument pair τ−i , τ+

i of F , regarding the
other arguments τ−j , τ+

j (j 6= i) of F as parameters. For simplicity of no-
tation, we gather these parameters of F in an ‘argument vector’ denoted by
~τ . Because of the mixed variant nature of F , we not only have to consider
F (τ−1 , τ

+
1 , . . .) but also F (τ+

1 , τ
−
1 , . . .). We again use superscripts ∓ and ±

to indicate this reversal of order of ‘contravariant’ and ‘covariant’ arguments:
for any sequence ~τ := (τ−1 , τ

+
1 , . . . , τ

−
n , τ

+
n) of FPC-types we put ~τ∓ := ~τ and

~τ± := (τ+
1 , τ

−
1 , . . . , τ

+
n , τ

−
n).

2.36 Definition (syntactic functor) A functor F : (Dop ×D)n → D is said
to be syntactic iff there is an associated type-in-context α∓1 , . . . , α

∓
n ` σ satis-

fying the following properties for all collections of closed types ~τ = τ−1 , τ
+
1 , . . . ,

τ−n , τ
+
n and all types %− and %+:

1. F (~σ) = σ [~τ / ~α]

2. for any i ∈ {1, . . . , n}, the restriction of the morphism part of the functor
F in the ith argument pair to the product of Hom-sets D(%−, τ−i) ×
D(τ+

i , %
+) can be implemented in FPC. This means there is a closed

term

m : [%−→τ−i]×[τ+
i →%

+]→
[
σ [~τ / ~α]→ σ

[
%∓ / α∓i , τ

∓
j / α∓j , j 6= i

]]
such that, for all morphisms [s−]obs : %− → τ−i and [s+]obs : τ+

i → %+,

F
(

id, . . . , id,
[
s−
]
obs

,
[
s+
]
obs

, id, . . . , id
)

=
[
t〈s−, s+〉

]
obs

44

2.7 Minimal invariants of functors

2.37 Definition (minimal invariant, generalized) Let F : (Dop × D)n →
D be a functor. A functor H : (Dop × D)n−1 → D together with a natural
isomorphism fold~τ : F

(
H(~τ±),H(~τ∓), ~τ∓

) ∼= H(~τ∓) with ~τ ranging over all
sequences (τ−2 , τ

+
2 , . . . , τ

−
n , τ

+
n) of types is called a minimal invariant in the

first argument pair of F if it has the following universal property:

For any two objects %− and %+, any sequence of types ~τ and any
two morphisms f− : %− → F (%+, %−, ~τ∓) and f+ : F (%−, %+, ~τ±)→
%+ there is a unique pair of morphisms k− : %− → H(~τ∓) and
k+ : H(~τ±) → %+ making Diagram 2.17 commute. Here unfold~τ
stands for the inverse of fold~τ .

F
(
H(~τ±),H(~τ∓), ~τ∓

)
H(~τ∓)

unfold~τoo

F (%+, %−, ~τ∓)

F (k+,k−,~id)

OO

%−
f−

oo

k−

OO
F
(
H(~τ∓),H(~τ±), ~τ±

)
F (k−,k+,~id)

��

fold~τ // H(~τ±)

k+

��

F (%−, %+, ~τ±)
f+

// %+

Diagram 2.17: Universal property of the generalized minimal invariant

Similarly one can define the notion of minimal invariant in any other of the
argument pairs of F . �

Definition 2.34 is obviously a special case of Definition 2.37: For F : Dop×D→
D, the functorH becomes a constant functor, the natural isomorphism becomes
one single isomorphism fold and the diagrams in the general definition boils
down to the simpler ones in Definition 2.34.

Using the fact that Marz’s SD-model is an adequate model for FPC, a purely
syntactical argument suffices to show that every syntactic functor has a min-
imal invariant in each argument pair. A similar proposition for categories of
domains can be found in [Pit96, Section 7] and [Mar00, Proposition 2.3].

2.38 Proposition For every syntactic functor F : (Dop × D)n → D and any
number i ∈ {1, . . . , n} there exists a minimal invariant in the ith argument
pair consisting of a syntactic functor H and a natural isomorphism

fold~τ : F
(
H(~τ±),H(~τ∓), ~τ∓

) ∼= H(~τ∓).

Proof: Let F : (Dop × D)n → D be a syntactic functor and α∓1 , . . . , α
∓
n ` σ∓

be an associated type-in-context. Without loss of generality assume i = 1 and
let σ := σ∓ [α / α−, α / α+] be the type obtained by replacing the first two
arguments by a fresh type variable α.

45

2 The canonical realizability model

For any sequence of objects ~τ = (τ−2 , τ
+
2 , . . . , τ

−
n , τ

+
n) let

H(~τ∓) := µα. σ
[
τ∓i / α∓i

]
and

fold~τ :=
[
λx : σ [µα. σ/α]

[
τ∓i / α∓i

]
. fold(x)

]
obs
.

Before defining the morphism part of H we verify the universal property. So
assume %−, %+ ∈ D, f− : %− → F (%+, %−, ~τ∓) and f+ : F (%−, %+, ~τ±)→ %+.

Existence of k− and k+: The two diagrams in Definition 2.37 are equivalent
to the equations

k− = fold~τ∓ ◦ F (k+, k−, ~id) ◦ f−

k+ = f+ ◦ F (k−, k+, ~id) ◦ unfold~τ± .

As F is syntactic, these mutually recursive equations in D can be translated
into equations of closed terms and by forming pairs and applying the appropri-
ate fixed point combinator one obtains a closed term s such that k− := [pl(s)]
and k+ := [pr(s)] make the diagrams commute. Specifically, for f− = [q−]
and f+ = [q+] and t as in Definition 2.36, we set

s :≡ Y λy :
(
%−→H(~τ∓)

)
×
(
H(~τ±)→%+

)
.〈

λx:%−. fold
(
t〈pr(y),pl(y)〉(q−x)

)
, λx:H(~τ±). q+

(
ty (unfold(x))

)〉
.

Uniqueness of k− and k+: If h− and h+ satisfy the above equations, both the
interpretation of the closed terms for k− and k+ and for h− and h+ in some
adequate domain model, like the SD-model, make the diagrams from Defini-
tion 2.37 in SD commute. Thus these interpretations have to coincide and we
obtain k− = h− and k+ = h+.

Now we are able to define the morphism part of the functor H applying
the universal property. Given a collection of morphisms u−i : %−i → τ−i and
u+
i : τ+

i → %+
i , i ∈ {2, . . . , n}, we define H(~u∓) : H(~τ∓) → H(~%∓) to be the

first component of the pair (k−, k+) given by the universal property in Defini-
tion 2.37 for the morphisms

f− := F (idH(~τ±), idH(~τ∓), ~u
∓) ◦ unfold~τ∓

f+ := fold~τ∓ ◦ F (idH(~τ∓), idH(~τ±), ~u
±).

Hence H(~u∓) is uniquely determined by Diagram 2.18.

Uniqueness of k− and k+ ensures that this action on morphisms preserves
identities and composition.

It is easily seen that H is a syntactic functor with associated type µα. σ. We
leave it to the reader to explicitly describe the FPC implementation of the
morphism part of H (see also Proposition 2.41 below). �

46

2.7 Minimal invariants of functors

F
(
H(~%±),H(~%∓), ~%∓

)
H(~%∓)

unfold~%
oo

F
(
H(~τ±),H(~τ∓), ~%∓

)F (k+,k−,~id)

OO

H(~τ∓)
f−
oo

k−=H(~u∓)

OO

unfold~τ
vvmmmmmmmmmmmmm

F
(
H(~τ±),H(~τ∓), ~τ∓

)F (id,id,~u∓)

OO

F
(
H(~%∓),H(~%±), ~%±

)
F (k−,k+,~id)

��

fold~%
// H(~%±)

k+

��

F
(
H(~τ∓),H(~τ±), ~%±

) f+
//

F (id,id,~u±)

��

H(~τ±)

F
(
H(~τ∓),H(~τ±), ~τ±

)fold~τ

66mmmmmmmmmmmmm

Diagram 2.18: The morphism part of H

2.39 Notation In Proposition 2.38 the functor H : Dop × D → D is con-
structed out of the functor F : (Dop × D) → D as a minimal invariant in the
ith argument pair. To indicate this dependence, we write

H =: reci F.

2.40 Definition Let Θ ≡ α1, . . . , αn be a type context. For any type-in-
context Θ ` σ, we define the corresponding syntactic functor FΘ`σ : (Dop ×
D)n → D by induction on the structure of σ. For any collection ~x∓ =
(x−1 , x

+
1 , . . . , x

−
n , x

+
n) of either objects or morphisms in Dop and D, respectively,

we put

FΘ`αi~x
∓ := x+

i

FΘ`σ1×σ2 ~x
∓ = FΘ`σ1 ~x

∓ × FΘ`σ2 ~x
∓

FΘ`σ1→σ2 ~x
∓ = FΘ`σ1 ~x

± → FΘ`σ2 ~x
∓

FΘ`
∑n
i=0 σi

~x∓ =
n∑
i=0

FΘ`σi ~x
∓

FΘ`µα. σ ~x
∓ = rec1 Fα,Θ`σ ~x

∓ for α /∈ {α1, . . . , αn}

2.41 Proposition For any type-in-context Θ ` σ, the functor FΘ`σ is a syn-
tactic functor. For later use in Section 4.2 we give an explicit description of a
special case of its FPC-implementation.

For any closed FPC-type %, for any collection ~τ := (τ1, . . . , τn) of closed FPC-
types and any number i ∈ {1, . . . , n} we define

σ~τ := FΘ`σ(~τ) = σ
[
τi / αi

]
σ% := FΘ`σ(τ1, . . . , τi−1, %, %, τi+1, . . . , τn) = σ

[
% / αi, τj / αj where j 6= i

]
.

Further, let πi := [τi→%]×[%→τi]. Then the functor FΘ`σ induces a function
of type πi → [σ%→σ~τ] mapping g− : τi → % and g+ : %→ τi to

FΘ`σ(id, . . . , id, g−, g+, id, . . . , id).

47

2 The canonical realizability model

As F is syntactic, this function is implementable, i. e. there is a closed FPC-

term t%,~τ,iΘ`σ : πi →
[
σ%→σ~τ

]
such that, for all closed terms k− : τi→% and

k+ : %→τi, we get

FΘ`σ
(
id, . . . , id,

[
k−
]

obs
,
[
k+
]

obs
, id, . . . , id

)
=
[
t~%,τ,iΘ`σk

−k+
]

obs
.

For j ∈ {1, . . . , n} with j 6= i explicit descriptions of these FPC-terms are
given in Table 2.3. For later use in Chapter 4 we further define

t~τ,iΘ`σ : πi →
[
σ~τ→σ~τ

]
, t~τ,iΘ`σ :≡ tτi,~τ,iΘ`σ .

σ t%,~τ,iΘ`σ

void Ωπi→[void→void]

αi λx : πi.pr(x)

αj λx : πi. idτj

σ1×σ2 λx : πi. λy : σ~τ1×σ~τ2 .
〈
t%,~τ,iΘ`σ1

x(pl(y)), t%,~τ,iΘ`σ2
x(pr(y))

〉
σ1→σ2 λx : πi. λy : [σ~τ1→σ~τ2]. λz:σ~τ1 . t

%,~τ,i
Θ`σ2

x
(
y
(
t%,~τ,iΘ`σ1

〈pr(x),pl(x)〉z
))

∑m
i=0 σi λx : πi. λy :

m∑
j=0

σ~τj . case y of in0w⇒ in0(t%,~τ,iΘ`σ0
xw) . . .

inmw⇒ inm(t%,~τ,iΘ`σmxw)

Table 2.3: Implementation of syntactic functors in FPC

Recursive types are discussed in the following lemma. We leave it to the reader
to verify the details of the above proposition.

2.42 Lemma Consider type contexts Θ :≡ α1, . . . , αn and Θ′ :≡ α2, . . . , αn
and let % be a closed type and ~τ2 := (τ2, . . . , τn) be a sequence of closed
types. Further, let Θ ` σ be a type-in-context and let τ1 := µα1. σ and
~τ := (τ1, . . . , τn).

Let i ∈ {2, . . . , n} and πi := [τi→%]×[%→τi]. Assume t%,~τ,1Θ`σ : π1 → [σ~τ→σ~τ]
and t%,~τ,iΘ`σ : πi → [σ~τ→σ~τ] are FPC-implementations as described in Proposi-
tion 2.41 for the syntactic functor FΘ`σ.

48

2.8 Properties of the canonical realizability model

Then we claim that

t%,~τ2,iΘ′`µα1. σ
≡λp:πi.pl

(
Yπ1 λq:π1.〈l, r〉

)
where

l :≡λx:τ1. fold
(
t%,~τ,1Θ`σ 〈pr(q).pl(q)〉

(
t%,~τ,iΘ`σp(unfold(x))

))
r :≡λx:τ1. fold

(
t%,~τ,iΘ`σ〈pr(p),pl(p)〉

(
t%,~τ,1Θ`σ q(unfold(x))

))
is an FPC-implementation of the function

(g−, g+) 7→ FΘ′`µα1. σ(id, . . . , id, g−, g+, id, . . . , id).

Proof: Let g− : τi → % and g+ : %→ τi be morphisms. By definition we have
FΘ′`µα1. σ = rec1 FΘ`σ. The proof of Proposition 2.38 shows that rec1 FΘ`σ
applied to ~u∓ := (id, . . . , id, g−, g+, id, . . . , id) is the first component of the
pair (k−, k+) of morphisms which is uniquely determined by Diagram 2.19.
Replacing functors by their implementations completes the proof. �

σ~τ
fold // τ1

σ~τ

FΘ`σ(k+,k−,~id)

OO

τ1

k−

OO

unfold
����������

σ~τ

FΘ`σ(id,id,~u∓)

OO

σ~τ

FΘ`σ(k−,k+,~id)

��

τ1
unfoldoo

k+

��

σ~τ

FΘ`σ(id,id,~u±)

��

τ1

σ~τ

fold

@@��������

Diagram 2.19: Implementation of a syntactic functor for a recursive type

2.8 Properties of the canonical realizability model

Applying the results about lifting and minimal invariants in D we define the
canonical realizability model for FPC in D. Any type-in-context Θ ` σ is
interpreted as the corresponding syntactic functor FΘ`σ. The interpretation
of a closed type σ is a constant functor. Hence it can be identified with the
value of this functor, which is just σ viewed as an object of D.

A context Γ ≡ x1:σ1, . . . , xn:σn is interpreted as the product JΓK := Jσ1K×· · ·×
JσnK. A term-in-context Γ ` t:σ is interpreted as a morphism JΓ ` tK : JΓK→
JσK. Let Γ denote an arbitrary context. We define the interpretation of terms
in context according to Table 2.4.

Given a realizability model for FPC, the question arises how good this model
fits the programming language. There are some standard criteria to classify

49

2 The canonical realizability model

Jx1:σ1, . . . , xn:σn ` xiK := pri

JΓ ` 〈s, t〉K :=
〈
JΓ ` sK , JΓ ` tK

〉
JΓ ` pl(t)K := pr1 ◦ JΓ ` tK
JΓ ` pr(t)K := pr2 ◦ JΓ ` tK

JΓ ` tsK := eval ◦
〈
JΓ ` tK , JΓ ` sK

〉
JΓ ` λx:σ. tK := curry JΓ, x:σ ` tK
JΓ ` ini(t)K := ini ◦ JΓ ` tK

t
Γ ` case t of in0w⇒ t0 . . .

inmw⇒ tm

|
:= case ◦

〈
JΓ ` tK , JΓ,W :τ0 ` t0K , . . . ,

JΓ, w:τm ` tmK
〉

JΓ ` fold(t)K := fold ◦ JΓ ` tK
JΓ ` unfold(t)K := unfold ◦ JΓ ` tK

Table 2.4: Interpretation of terms-in-contexts

models with respect to this aspect, see e. g. [Str02]. Any reasonable model has
to be computationally adequate with respect to the operational semantics of
the language. A much stronger criterion is full abstraction, stating that obser-
vational and denotational equality coincide. The construction of a satisfactory
fully abstract model for the sequential functional language of PCF had been an
open problem for many years when O’Hearn and Riecke [OR95] presented their
Kripke relations model. A similar fully abstract model for SFL, a sequential
language of the same expressivity as FPC, was constructed by Marz [Mar00].
However, Kripke relations models are not universal, i. e. not all elements of the
model are definable in the language. For realizability models Longley stated
the even stronger criterion of (constructive) logical full abstraction.

From the construction of the combinatory algebra T of closed FPC-terms we
expect the canonical model to represent the programming language as exact
as can be. Indeed it satisfies any of these quality criteria.

2.43 Definition A model for FPC is correct with respect to the operational
semantics iff t ⇓ v implies JtK = JvK for any closed term t and any syntactic
value v.

The operational semantics is complete with respect to a model iff JtK 6= ⊥
implies t ⇓ up(Ωvoid) for any closed term t:unit.

A model is called computationally adequate for the operational semantics iff
it is correct and the semantics is complete and JtK = Jup ΩvoidK implies
t ⇓ up Ωvoid for any closed term t of type unit. As a consequence, JsK = JtK
implies s =obs t for closed terms s, t of the same type.

50

2.8 Properties of the canonical realizability model

An adequate model is fully abstract iff, for any closed terms s, t of the same
type,

s =obs t ⇐⇒ JsK = JtK .

An adequate model is universal iff, for any closed FPC-type σ and any element
x ∈ JσK, there is a term t:σ such that JtK = x.

The definition of logical full abstraction is given below. �

2.44 Theorem The canonical model for FPC is computationally adequate,
fully abstract and universal.

This theorem is a trivial consequence of the following lemma.

2.45 Lemma For any context Γ = x1:σ1, . . . , xn:σn and any term-in-context
Γ ` t:τ let t denote the closed term λx:σ1× . . .×σn. t [pri x / xi].

Then JΓ ` tK =
[
t
]

obs
, i. e. the interpretation of a term-in-context in the canon-

ical model is just the observational class of the corresponding closed term. In
particular, JtK = [t]obs for any closed term t.

Proof: The proof is a straightforward induction on the typing rules. We
illustrate it for function application and leave the other cases to the reader.
Hence assume JΓ ` s : σ→τK = [s]obs and JΓ ` t:σK =

[
t
]
obs

and consider the
term-in-context Γ ` st:τ .

JΓ ` stK = eval ◦
〈
JΓ ` tK , JΓ ` sK

〉
3 λx:σ1× . . .×σn.

(
λp:[σ→τ]×σ.

(
pl(p)

)(
pr(p)

)) 〈
sx, tx

〉
=obs λx:σ1× . . .×σn. (sx)

(
tx
)

=obs λx:σ1× . . .×σn. st [pri x / xi]
=obs st

The notion of (constructive) logical full abstraction was first sketched in Chap-
ter 8 of John Longley’s PhD Thesis [Lon95] and defined and studied for untyped
partial combinatory algebras in [Lon99a]. In order to generalize his definition
to typed combinatory algebras, we consider the class J of logical formulae given
by the following grammar:

ϕ ::= s =σ t
∣∣ r↓ ∣∣ ϕ ∧ ϕ ∣∣ ϕ⇒ ϕ

∣∣ ∃x:σ. ϕ
∣∣ ∀x:σ. ϕ

where σ is a closed FPC-type, s, t:σ are closed terms of this type and r:unit
is a closed term. One should think about =σ being an equality predicate at

51

2 The canonical realizability model

type σ and ↓ being a termination predicate at the unit type; we usually omit
the subscript in equality formulae. Any formula ϕ in J is assigned a closed
FPC-type t(ϕ) as follows:

t(s = t) := unit =: t(r↓)
t(ϕ ∧ ψ) := t(ϕ)× t(ψ)

t(ϕ⇒ ψ) := t(ϕ)→ t(ψ)
t(∃x:σ. ψ) := σ × t(ϕ)
t(∀x:σ. ϕ) := σ→ t(ϕ)

The categorical structure ofM = Mod(T) is rich enough to provide a realizabil-
ity interpretation for the formulae of J within the canonical model. However,
there is another natural notion of realizability, defined purely in terms of the
programming language FPC and without reference to any particular model.
In this definition, realizers are closed FPC-terms rather than elements of a
combinatory algebra. Inductively we define a relation t r ϕ between a closed
FPC-term t and a closed formula ϕ of J. Assume % is a closed type and Γ ` s:%
and Γ ` s′:% are terms-in-context. Further let ϕ and ψ ∈ J be formulae and
let σ := t(ϕ) and τ := t(ψ).

• t r s =% s
′ for any t:unit iff s =obs s

′.

• t r r↓ for any t:unit iff r:unit terminates.

• t r ϕ ∧ ψ iff t : σ×τ and pl(t) r ϕ and pr(t) r ψ.

• t r ϕ⇒ ψ iff t : σ→τ and tt′ r ψ whenever t′ r ϕ for t′:σ.

• t r ∃x:σ. ϕ iff t : σ×τ and pr(t) r ϕ [pl(t) / x].

• t r ∀x:σ. ϕ iff t : σ→τ and tt′ r ϕ [t′ / x], whenever t′:σ.

If there exists a closed FPC-term t such that t r ϕ, we say that ϕ is realizable
in FPC.

2.46 Definition A realizability model of FPC is called is (constructively) log-
ically fully abstract iff a closed formula ϕ ∈ J is realizable in the model iff it is
realizable in FPC. �

2.47 Theorem The canonical model is (constructively) logically fully ab-
stract.

This theorem is again a consequence of Lemma 2.45.

Thus the canonical model is the ‘best fitting’ realizability model for FPC.
On the other hand, this model is derived from the syntax of FPC. Hence

52

2.8 Properties of the canonical realizability model

it does not provide new insights into the nature of sequential programming
languages, which is in some sense unsatisfactory. Therefore this thesis aims
at constructing a realizability model for FPC which is not simply defined in
terms of the syntax of FPC, but which is isomorphic to the canonical model.

53

2 The canonical realizability model

54

3 The universal type

In [LS02] it is shown that a typed partial combinatory algebra T is applicatively
equivalent to an untyped one iff there is a universal type U in T such that every
type of T is a partial retract of U . In this case the category of modest sets over
T can be embedded into a realizability topos. We will state and discuss the
special case of universal types for the combinatory algebra T of FPC in Section
3.1. In Section 3.2 we present the untyped language λ+Error, an extension
of call-by-name λ-calculus. Further we will consider the object D in D which
is given by the interpretation of the FPC-type U :≡ µα.void + [α→α] in
the canonical realizability model. We will show that the untyped language
λ+Error can be interpreted in this object D. In Section 3.3 we exploit this
interpretation to show that the FPC-type U is universal. The final section
of this chapter, Section 3.4, is devoted to presenting a fixed point operator
fix : [U→U]→U in FPC which can easily be implemented in the untyped
language λ+Error.

3.1 Universal types in general

An FPC-type U is a universal type in the sense of [LS02] of the combinatory
algebra T of closed FPC-terms iff any closed FPC-type is an FPC-definable
retract of U (see Definition 3.1 below). The main part of this section is de-
voted to a nice necessary and sufficient criterion for universality: an FPC U
is universal iff the types U→U , U×U and finite sum types constructed of Us
are definable retracts of U .

3.1 Definition A closed FPC-type σ is called an FPC-definable retract of an
FPC-type τ (denoted σ / τ) iff there exist closed FPC-terms e : σ→τ and
p : τ→σ such that, for any closed FPC-term t:σ,

p(et) =obs t,

i. e. t is observationally equivalent to p(et).

The pair e, p is said to be a retraction pair, e is called embedding, p is called
projection. Note that we do not impose any condition on e ◦ p. Thus p is not
neccessarily a projection in the domain theoretic sense. �

55

3 The universal type

Being a definable retract is transitive, i. e. σ / τ / % implies σ / %.

3.2 Definition A type U of FPC is called universal iff every closed FPC-type
is an FPC-definable retract of U . �

3.3 Example One of the main results of this thesis is that the FPC-type

U :≡ µα.void + [α→α]

is universal. We prove this in Section 3.3 using the subsequent lemma.

Obviously, every type which has a universal type as a definable retract is itself
universal.

Note that the following useful characterisation for unversality relies on the
universal canonical realizability model introduced in Section 2.8.

3.4 Lemma An FPC-type U is universal iff the following types are definable
retracts of U :

[U→U], U×U,
m∑
i=0

U for all m ∈ N.

Proof: One of the implications is trivial. In a proof for the other implication
we have to handle recursive types. Hence it does not suffice to look at closed
types only. In order to deal with types containing free variables we will use
syntactic functors.

Assume Θ ≡ α1, . . . , αn is a type context and Θ ` σ is an type-in-context.
Throughout this proof we will call a sequence ~τ := (τ1, . . . , τn) of closed FPC-
types suitable iff the types τ1, . . . , τn are FPC-definable retracts of U . We
further denote by σ~τ the closed FPC-type FΘ`σ(τ1, τ1, . . . , τn, τn).

We have to show that, for any suitable sequence ~τ , the closed type σ~τ is an
FPC-definable retract of U . We prove this by induction on the typing rules.

Let the retraction pairs of [U→U], U×U and
∑n
i=0 U be denoted by e[U→U],

p[U→U] and so on. Further let Θ ` σ, Θ ` σ0, . . . , Θ ` σm be types-in-context
such that, for any suitable sequence ~τ , the closed types σ~τ , σ~τ0 , . . . , σ~τm are
definable retracts of U with retraction pairs eσ~τi , p

σ~τi
. Let ~τ be a suitable

sequence of types.

We have to show that the following types are definable retracts of U :

i) void~τ ii) α~τi iii) σ~τ0→σ~τ1

iv) σ~τ0×σ~τ1 v)
m∑
j=0

σ~τj vi) FΘ′`µα1. σ(τ2, τ2, . . . , τn, τn)

56

3.1 Universal types in general

where i ∈ {1, . . . , n} and Θ′ ≡ α2, . . . , αn. For notational reasons we restrict
to recursion over α1; we may do this without loss of generality.

Claim (i) is obvious and (ii) trivially holds as τi is a definable retract of U .
As / is transitive, for Claims (iii) to (v) it suffices to show

(iii) σ~τ0→σ~τ1 / [U→U] (iv) σ~τ0×σ~τ1 / [U×U] (v)
m∑
j=0

σ~τj /
m∑
j=0

U

In order to prove these claims, we choose the following retraction pairs:

(iii) ẽσ0→σ1 : [σ~τ0→σ~τ1]→ [U→U] p̃σ0→σ1 : [U→U]→ [σ~τ0→σ~τ1]

ẽσ0→σ1 ≡ λf : σ0→σ1. λx:U. eσ~τ1
(
f(pσ~τ0 x)

)
p̃σ0→σ1 ≡ λf : U→U. λx:σ~τ0 .pσ~τ1

(
f(eσ~τ0 x)

)
(iv) ẽσ0×σ1 : σ~τ0×σ~τ1 → U×U p̃σ0×σ1 : U×U → σ~τ0×σ~τ1

ẽσ0×σ1 ≡ λx : σ~τ0×σ~τ1 .
〈
eσ~τ0
(
pl(x)

)
, eσ~τ1

(
pr(x)

)〉
p̃σ0×σ1 ≡ λx : U×U.

〈
p
σ~τ0

(
pl(x)

)
,pσ~τ1

(
pr(x)

)〉

(v) ẽ∑m
j=0 σj

:
m∑
j=0

σ~τj →
m∑
j=0

U p̃∑m
j=0 σj

:
m∑
j=0

U →
m∑
j=0

σ~τj

ẽ∑m
j=0 σj

≡ λx :
m∑
j=0

σ~τj . casex of in0w⇒ in0(eσ~τ0 w) . . .

inmw⇒ inm(eσ~τm w)

p̃∑m
j=0 σj

≡ λx :
m∑
j=0

U. casex of in0w⇒ in0(pσ~τ0 w) . . .

inmw⇒ inm(pσ~τn w)

It is left to the reader to verify that these pairs of closed terms indeed are
retraction pairs, which is not difficult.

Finally we have to consider the case of the recursive type Θ′ ` µαi. σ. We
define

τ1 := FΘ′`µα1. σ(τ2, τ2, . . . , τn, τn) = µα1. σ
[
τi / αi where i > 1

]
σU := FΘ`σ(U,U, τ2, τ2, . . . , τn, τn) = σ

[
U / α1, τi / αi where i > 1

]
~τU := U, τ2, . . . , τn

As U / U , the sequence ~τU is suitable. Hence, by induction hypothesis, σU is
a definable retract of U with a retraction pair eσU , pσU .

57

3 The universal type

For any i ∈ {1, . . . n} let tτ1,U := t~τ,~τU ,iΘ`σ and tU,τ1 := t~τU ,~τ,iΘ`σ be the FPC-
implementations defined in Proposition 2.41 for the functions

(g−, g+) 7→ FΘ`σ(g−, g+, id, . . . , id) : [τ1→U]×[U→τ1]→ [σU→σ~τ]

(g−, g+) 7→ FΘ`σ(g−, g+, id, . . . , id) : [U→τ1]×[τ1→U]→ [σ~τ→σU].

We claim that the following recursive equations define a retraction pair for the
recursive type τ1:

eτ1 =obs λx:τ1. eσU
(
tτ1,U 〈pτ1 , eτ1〉 (unfold(x))

)
pτ1 =obs λx:U. fold

(
tU,τ1 〈eτ1 , pτ1〉 (pσU x)

)
Using the fixed point combinator on the product type % := [τ1→U]×[U→τ1]
we obtain as an explicit definition of the retraction pair eτ1 :≡ pl(t) and
pτ1 :≡ pr(t) where

t :≡ Y% λy:%.
〈
λx:τ1. eσU

(
tτ1,U 〈pr(y),pl(y)〉 (unfold(x))

)
,

λx:U. fold
(
tU,τ1y (pσU x)

)〉
.

σU
e
σU // U

σ~τ

F(pτ1 ,eτ1 ,
~id)

OO

τ1
unfold
oo

eτ1

OO σU

F(eτ1 ,pτ1 ,
~id)
��

U
p
σUoo

pτ1

��

σ~τ
fold
// τ1

Diagram 3.1: A retraction pair for a recursive type

Abbreviating FΘ`σ to F , the above recursive equations correspond to Dia-
gram 3.1 in Mod(T). Combining the squares in Diagram 3.1 and applying

F (eτ1 ,pτ1 , idB , idB) ◦ F (pτ1 , eτ1 , idB , idB) = F (pτ1 ◦ eτ1 ,pτ1 ◦ eτ1 , idB , idB)

yields Diagram 3.2. According to Definition 2.40, τ1 is the minimal invariant
of the syntactic functor F (-, -, τ2, τ2, . . . , τn, τn). Hence commutativity of the
latter diagram implies pτ1 ◦ eτ1 = idτ1 , as explained in Remark 2.35. Conse-
quently, in the SD-model the equation Jpτ1(eτ1 t)K = JtK holds for any closed
term t:τ1. As the realizability model for FPC in Mod(FPC/=obs) is fully ab-
stract, this implies pτ1(eτ1 t) =obs t. Thus the terms eτ1 and pτ1 form a
retraction pair. �

3.5 Remark The retraction rτ1 := eτ1 ◦pτ1 is the unique morphism making Dia-
gram 3.3 commute.

58

3.2 The untyped language λ+Error

σ~τ

F (pτ1 ,eτ1 ,
~id)

��

τ1
unfoldoo

eτ1

��

σU

F (eτ1 ,pτ1 ,
~id)

��

e
σU //

U
p
σU

oo

pτ1

��

σ~τ
fold
// τ1

σ~τ
fold //

F (pτ1 ◦ eτ1 ,pτ1 ◦ eτ1 ,idB ,idB)

��

τ1

pτ1 ◦ eτ1

��

σ~τ
fold
// τ1.

Diagram 3.2: pτ1 ◦ eτ1 = id

F (U,U,B,B)

F (rτ1 ,rτ1 ,idB ,idB)

��

U
pσ[ϕU]
oo

rτ1

��

F (U,U,B,B)
eσ[ϕU]

// U

Diagram 3.3: The universal property of rτ1

Recall that a closed FPC-term p : σ→τ is called strict iff pΩσ =obs Ωτ .

3.6 Lemma If U is a universal type and there are strict projections for the
types U→U , U×U and

∑n
i=0 U , then, for any closed FPC-type σ, the projec-

tion pσ constructed in the proof of Lemma 3.4 is also strict.

Proof: The proof is by induction on the structure of σ. Assume ~τ is a sequence
of types with strict projections. For the non-recursive cases it is easy to verify
that the constructions from Lemma 3.4 lead to strict projections.

From Proposition 2.41 and Lemma 2.42 it is readily seen that the closed FPC-
terms tτ1,U and tU,τ1 in the same proof are strict. Hence F

(
eτ1 ,pτ1 , ~id

)
: σU →

σ~τ is strict. The morphism fold is also strict. Hence pτ1 has to be strict. �

3.2 The untyped language λ+Error

The language λ+Error is an extension of untyped lazy call-by-name lambda-
calculus (cf. [Abr90]) by a single constant ERR and a conditional construct
IFR. The constant ERR is thought of as an error element and the term
IFR(M,N0, N1) evaluates to N0 iff M evaluates to ERR and to N1 if M evalu-
ates to some λ-abstraction.

59

3 The universal type

We will show that the FPC-type U = µα.void + [α→α] contains U→U as a
definable retract. Hence the language λ+Error can be interpreted in D in a
canonical way. In particular, any closed λ+Error-term corresponds to a closed
FPC-term of type U . We will use this interpretation in 3.3 to show that the
type U is universal. In Section 4.4 we will consider the category of modest
sets over the combinatory algebra obtained by factorizing the set of closed
λ+Error-terms by observational equivalence and show that it is a universal
model for the typed language FPC.

3.7 Definition We define the language λ+Error as follows:

Contexts Γ ≡ x1, . . . , xn

Terms M ::= x | λx.M |MM | ERR | IFR(M,M,M)

Syntactic values V ::= ERR | λx.M

Operational semantics

λx.M ⇓ λx.M ERR ⇓ ERR

M ⇓ λx.M ′ M ′ [N / x] ⇓ V
MN ⇓ V

M ⇓ ERR N1 ⇓ V
IFR(M,N1, N2) ⇓ V

M ⇓ λx.M ′ N2 ⇓ V
IFR(M,N1, N2) ⇓ V

In order to interpret this language in the FPC-type U = µα.void + [α→α],
we have to show that the function type [U→U] is a definable retract of U .

3.8 Lemma [U→U] / U

Proof: Unfolding U gives the type void + [U→U], which obviously contains
[U→U] as a retract. A straightforward computation shows that

eU→U ≡ λf :[U→U]. fold
(
in1(f)

)
pU→U ≡ λr:U. case unfold(r) of in0f ⇒ ΩU→U in1f ⇒ f

defines a retraction pair. Note that the projection pU→U is strict. �

We write err for the closed FPC-term fold
(
in0(Ωvoid)

)
of type U .

3.9 Definition Inductively we define a syntactic translation of a λ+Error-
term-in-context x1, . . . , xn `M into an FPC-term-in-context x1:U, . . . , xn:U `
t:U . For any λ+Error-context Γ ≡ x1, . . . , xn we will, by abuse of notation,
use Γ also to denote the corresponding FPC-context x1:U, . . . , xn:U .

Variables: For any i ∈ {1, . . . , n} define LΓ ` xiM :≡ Γ ` xi.

60

3.2 The untyped language λ+Error

Abstraction: If Γ, y ` M is translated to Γ, y ` t, then LΓ ` λy.MM :≡
Γ ` eU→U λx:U. t

Application: If LΓ ` MM is Γ ` s and LΓ ` NM is Γ ` t , then we let
LΓ `MNM :≡ Γ ` pU→U s t

Error element: LΓ ` ERRM :≡ Γ ` err

Conditional: If t ≡ LΓ `MM and si ≡ LΓ ` NiM, for i ∈ {0, 1}, then(
Γ ` IFR(M,N0, N1)

)
:≡

Γ ` case unfold(t) of in0w⇒ s0 in1w⇒ s1.

Using the syntactic translation we can define an interpretation of λ+Error-
terms in the category D. A λ+Error-term-in-context Γ ` M is interpreted as
the observational class of the corresponding FPC-term-in-context, i. e. as the
D-morphism

q
LΓ `MM

y
: Un → U . �

3.10 Definition Two closed λ+Error-terms M and N are said to be obser-
vationally equivalent, written M =obs N or simply M = N , iff, for any closed
λ+Error-term P , the term PM reduces to a syntactic value if, and only if, the
term PN does.

Similar to Definition 2.12, the notion of observational equivalence can be gen-
eralized to terms: Let Γ ≡ x1, . . . , xn be a non-empty context and assume
Γ ` M and Γ ` N are λ+Error-terms-in-context. Then M and N are called
observationally equivalent with respect to Γ, written Γ ` M =obs N , iff
λx1. . . . λxn.M =obs λx1. . . . λxn. N, i. e. the corresponding closed terms are
equivalent. �

3.11 Lemma If M is a closed λ+Error-term and V is a syntactic value such
that M ⇓ V , then the interpretations of M and V in D are observationally
equivalent FPC-terms.

If M is a closed λ+Error-term that does not reduce to a syntactic value, then
the interpretation of M in D is observationally equivalent to the diverging
FPC-term ΩU .

In particular, two closed λ+Error-terms M and N are observationally equiva-
lent iff the corresponding FPC-terms LMM and LNM are, i. e. iff their interpre-
tations in D coincide.

The proof of this lemma is straightforward. In any adequate domain model
for FPC, the interpretations of two β-equivalent closed λ+Error-terms M and
N obviously coincide and hence we obtain the following corollary.

61

3 The universal type

3.12 Corollary Two closed λ+Error-terms M and N which are β-equivalent
are also observationally equivalent. In particular, (λx.M)N =obs M [N / x]
for all closed terms M and N .

The language λ+Error is powerful enough to express arithmetic and to encode
products.

3.13 Definition Inductively we define numerals in λ+Error as

0 :≡ ERR n+ 1 :≡ λx. n.

A test for zero is simply given by IFR. Terms for the successor and predecessor
function are

SUCC :≡ λx. λy. x PRED :≡ λx. IFR(x,ERR, x0).

Pairs can be encoded using the closed terms

PAIR :≡ λx, y, z. IFR(z, x, y) FST :≡ λx. x 0 SND :≡ λx. x 1.

Note that pairing not is surjective, i. e. we get the equations

PRED(SUCCx) = x and
FST(PAIR x y) = x and SND(PAIR x y) = y,

but the following equations in general do not hold:

SUCC(PREDx) = x and PAIR (FSTx) (SNDx) = x.

Letting ID :≡ λx. x we define a fixed point combinator FIX and an always
diverging term Ω as

FIX :≡ λf.K
(
λy.Ky

)
, where K :≡ λx. f(xx)

Ω :≡ FIX ID .

It is easy to check that FIX indeed is a fixed point combinator, i. e. FIX f =
f(FIX f). The proof of Lemma 4.3(xiv) shows why we choose this η-expanded
variant of the usual Church-style fixed point combinator. Finally, we induc-
tively define a case construct for any natural number n ∈ N:

CASE0M OF M0 :≡ IFR(M,M0,Ω)
CASEn+1M OF M0 . . . Mn+1 :≡

IFR
(
M,M0,

(
CASEn(PREDM) OF M1 . . . Mn+1

))

62

3.3 Construction of a universal type

3.3 Construction of a universal type

In this section we show that U = µα.void + [α→α] is a universal type and we
choose a canonical retraction pair eσ, pσ for each closed type σ. According
to Lemma 3.4 and 3.8, we can prove universality of U simply by presenting
retraction pairs for the types U×U and

∑n
i=0 U . Let us first define some

auxiliary FPC-terms.

3.14 Definition Let n be a natural number and t, t0 . . . , tn, M , M0, . . . ,
Mn be closed FPC-terms of type U and closed λ+Error-terms, respectively,
such that t ≡ LMM and ti ≡ LMiM for i ∈ {0,n}. Write eU , pU for the trivial
retraction pair eU :≡ pU :≡ idU . Recall that, according to Lemma 3.8 and
Lemma 3.4, the projections pU→U , pU→U→U and pU→U→U→U are defined as

pU→U ≡ λr:U. case unfold(r) of in0f ⇒ ΩU→U in1f ⇒ f

pU→U→U ≡ λx, y:U.pU→U (pU→U x y)
pU→U→U→U ≡ λx, y:U.pU→U→U (pU→U x y).

We define FPC-terms for arithmetic, pairing and case analysis in U according
to Table 3.1. �

It is an easy exercise to verify the equalities postulated in Table 3.1.

Our next aim is to show that the FPC-type U = µα.void + [α→α] is indeed
universal. To apply Lemma 2.4 we have to show that the product type U×U
and all sum types

∑n
i=0 U are definable retracts of U .

3.15 Lemma U×U / U

Proof: The product U×U can be identified as a retract of U by encoding a
pair (x, y) as a function from U to U mapping 0 to x and 1 to y. It is easy to
verify that

eU×U :≡ λx:U×U.pair
(
pl(x)

) (
pr(x)

)
pU×U :≡ λx:U. 〈fstx, sndx〉 .

is a retraction pair and that the projection pU×U is strict. �

3.16 Lemma
n∑
i=0

U / U

Proof: An embedding of a finite sum of U ’s into U can be achieved by replac-
ing inj(x) by the pair (j, x). Hence we will encode inj(x) as pair j x. This

63

3 The universal type

0 :≡L 0 M

≡ fold
(
in0(Ωvoid)

)
n+ 1 :≡Ln+ 1 M

≡ eU→U (λx:U. n)

ifz :≡pU→U→U→U
(
λx, y, z. IFR(x, y, z)

)
≡λx, y, z:U. case unfold(x) of in0w⇒ y in1w⇒ z

succ :≡pU→U LSUCCM
≡λx:U. eU→U λy:U. x

pred :≡pU→U LPREDM
≡λx:U. ifzx err (pU→U x 0)

pair :≡pU→U→U LPAIRM
≡λx, y:U. eU→U (λz:U. ifz zxy)

fst :≡pU→U LFSTM
≡λx:U.pU→U x0

snd :≡pU→U LSNDM
≡λx:U.pU→U x1

casen t of t0 . . . tn :≡
(

CASEnM OF M0 . . . Mn

)
Table 3.1: Auxiliary FPC-terms

yields the following closed terms, which are easily seen to form a retraction
pair. Note that the projection is strict.

e∑n
i=0 U

≡ λx:
n∑
i=0

U. casex of in0w⇒ pair 0w . . .

innw⇒ pair nw
p∑n

i=0 U
≡ λx:U. casen fstx of in0 sndx . . . inn sndx

�

Lemma 3.8, 3.15 and 3.16 ensure that Lemma 3.4 can be applied. Since the
projections given in these lemmas are easily seen to be strict, we obtain the
following theorem.

3.17 Theorem The FPC-type U = µα.void+[α→α] is universal. Moreover,
for any closed type σ, we can choose a canonical retraction pair eσ, pσ, such
that pσ is strict.

64

3.3 Construction of a universal type

The concrete definition for the retraction pairs eσ, pσ is given in Lemma 3.8,
3.15 and 3.16 and in the proof of 3.4. Note that the embedding eσ in general
can not be expected to be strict, since the embeddings in Lemma 3.8, 3.15 and
3.16 are not strict.

3.18 Definition From now on, U shall denote the universal FPC-type

U :≡ µα.void + [α→α].

For any closed type σ we write pσ :U→σ and eσ :σ→U for the canonical re-
traction pair. Further rσ :U→U stands for the canonical retraction rσ :≡
λx:U. eσ(pσ x). �

Given a type-in-context Θ ` σ with a type context Θ :≡ α1, . . . , αn and given
a collection ~τ := τ1, . . . , τn of closed types and given any index j ∈ {1, . . . , n},
we consider the following closed types:

τj σ~τ := σ [τi / αi] σU := σ [U / αj , τi / αi where i 6= j]

It is natural to ask how the canonical retraction pairs of these types are related.
The answer is given by the following lemma, which we are going to apply in
order to find a λ+Error-implementation of fold and unfold for every recursive
FPC-type in Lemma 4.3.

3.19 Lemma Under the above assumptions, Diagram 3.4 in D commutes.
Here and subsequently, F := FΘ`σ : (Dop × D)n → D denotes the syntactic

σU
e
σU // U

σ~τ

F(~id,pτj ,eτj ,~id)
OO

e
σ~τ

// U

r
σU

OO σU

F(~id,eτj ,pτj ,~id)
��

U
p
σUoo

r
σU

��

σ~τ Up
σ~τ

oo

Diagram 3.4: Relation between canonical retractions

functor defined by Θ ` σ and ~id stands for a sequence id, . . . , id of appropriate
length.

Proof: The proof is by induction on the structure of the type σ. First observe
that the claim is equivalent to commutativity of Diagram 3.5.

In case σ = void this is trivial since we have FΘ`void

(
~id,pτj , eτj , ~id

)
= idvoid =

FΘ`void

(
~id, eτj ,pτj , ~id

)
. For the same reason the claim is also trivial if σ is a

closed type.

65

3 The universal type

σU U
p
σUoo

σ~τ

F(~id,pτ1 ,eτ1 ,~id)
OO

e
σ~τ

??��������

σU

F(~id,eτ1 ,pτ1 ,~id)
��

e
σU // U

p
σ~τ����������

σ~τ

Diagram 3.5: Equivalent diagrams to Diagram 3.4

In case σ = αi, for some i ∈ {1, . . . , n}, the claim is also trivial: If i = j

then σU = U and pσU = idU = eσU whereas F
(
~id,pτ1 , eτ1 , ~id

)
= eτ1 and

F
(
~id, eτ1 ,pτ1 , ~id

)
= pτ1 . If i 6= j then σ~τ = τi = σU and F

(
pτ1 , eτ1 , ~id

)
=

idτi = F
(
eτ1 ,pτ1 , ~id

)
.

We are left to discuss the cases σ = σ0×σ1, σ = σ0→σ1 and σ =
∑n
i=0 σi and

the case of recursive types.

Assume σ = σ0×σ1 and the claim holds for σ0 and σ1. Since the associated
functors satisfy Fσ = Fσ0 × Fσ1 , we obtain Diagram 3.6. In this diagram

σU0 ×σU1
e
σU0
× e

σU1 //

e
σU0 ×σ

U
1

''
U×U

eU×U
// U

σ~τ0×σ~τ1

FΘ`σ0×σ1(~id,pτ1 ,eτ1 ,~id)

OO

e
σ~τ0
× e

σ~τ1

::uuuuuuuuuuuuuuuuuuuu

e
σ~τ0×σ

~τ
1

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Diagram 3.6: The case of product types

the top triangle and the lower right triangle commute by definition of eσU0 ×σU1
and eσ~τ0×σ~τ1 and the lower left triangle commutes by induction hypothesis.
Hence the whole diagram commutes. Commutativity of the corresponding
diagram for pσ is obtained in analogous manner. The cases σ = σ0→σ1 and
σ =

∑n
i=0 σi work similarly and are left to the reader.

Now for the case of recursive types. Assume the claim of the lemma holds for
some type Θ ` σ. Then, without loss of generality, it suffices to prove the claim
for Θ′ ` µα1. σ where Θ′ :≡ α2, . . . , αn. If n = 1 then the syntactic functor
FΘ′`µα1. σ is constant and the claim is therefore trivial. Otherwise, without
loss of generality, we assume j = 2.

Let τ2, . . . , τn be closed FPC-types and let F := FΘ`σ and H := rec1 FΘ`σ =
FΘ′`µα1. σ be the syntactic functor associated with the types-in-context under

66

3.3 Construction of a universal type

consideration. Further define

~τ := τ2, τ2, . . . , τn, τn

τ1 := H(~τ) = µα1. σ
[
τi / αi where i > 1

]
π := H(U,U, τ3, τ3 . . . , τn, τn) = µα1. σ

[
U / α2, τi / αi where i > 2

]
To simplify notation we are going to ignore the type variables α3, . . . αn in the
following. Thus we write F (γ, δ) instead of F (γ, γ, δ, δ, τ3, τ3, . . . , τn, τn) for any
closed FPC-types γ and δ and we write F (f1, . . . , f4) instead of F (f1, . . . , f4, ~id)
and H(f3, f4) instead of H(f3, f4, ~id) for any D-morphisms f1, . . . , f4.

π U
pπoo

τ1

H(pτ2 ,eτ2)

OO

eτ1

88qqqqqqqqqqqqq

π

H(eτ2 ,pτ2)

��

eπ // U

pτ1
xxqqqqqqqqqqqqq

τ1

Diagram 3.7: The case of recursive types

F (U,U) U
pF (U,U)

oo

F (U, τ2)

F (id,id,pτ2 ,eτ2)

OO

eF (U,τ2)

77oooooooooooooo

F (U,U)

F (id,id,eτ2 ,pτ2)

��

eF (U,U)
// U

pF (U,τ2)
wwoooooooooooooo

F (U, τ2)

Diagram 3.8: Induction hypothesis

Using this simplified notation the claim reads as commutativity of Diagram 3.7.
By induction hypothesis we obtain Diagram 3.8 and hence Diagram 3.9. In
this diagram, the square containing fold and the one containing unfold commute
according to the definition of the retraction pairs for τ1 and π in the proof of
Lemma 3.4, respectively. The lower left square commutes since F is a functor
and the middle left square commutes by induction hypothesis. Hence the outer
square commutes, as shown in Diagram 3.10.

Analogously one shows that the dual square commutes, see Diagram 3.11. On
the other hand, due to Proposition 2.38, the two morphisms k− := H(pτ2 , eτ2)
and k+ := H(eτ2 ,pτ2) are the unique morphisms making Diagram 3.12 com-
mute. Therefore we get H(pτ2 , eτ2) = pπ ◦ eτ1 and H(eτ2 ,pτ2) = pτ1 ◦ eπ,
which is the desired conclusion. �

3.20 Corollary Let Θ ` σ be a type-in-context. Let τ2, . . . , τn be closed

67

3 The universal type

F (π,U) fold // π

F (U,U)

F (eπ,pπ,id,id)

OO

U
pF (U,U)

oo

pπ

66lllllllllllllllllll

F (U,U) F (U, τ2)
F (id,id,pτ2 ,eτ2)
oo

eF (U,τ2)

OO

F (τ1, U)

F (pτ1 ,eτ1 ,id,id)

OO

F (τ1, τ1, τ2, τ2)
F (id,id,pτ2 ,eτ2)
oo

F (pτ1 ,eτ1 ,id,id)

OO

τ1
unfold

oo

eτ1

bbDDDDDDDDDDDDDDDDDDDDDD

pπ ◦ eτ1

OO

Diagram 3.9: Combining hypotheses

F (π,U) π
unfoldoo

F (τ1, U)

F (pτ1 ◦ eπ,pπ ◦ eτ1 ,id,id)

OO

F (τ1, τ2)
F (id,id,pτ2 ,eτ2)
oo τ1

unfold
oo

pπ ◦ eτ1

OO

Diagram 3.10: The outer square of Diagram 3.9

F (π,U) fold //

F (pπ ◦ eτ1 ,pτ1 ◦ eπ,id,id)

��

π

pτ1 ◦ eπ

��

F (τ1, U)
F (id,id,eτ2 ,pτ2)

// F (τ1, τ2)
fold

// τ1

Diagram 3.11: The dual square

types. Define

τ1 := µα1. σ
[
τi / αi where i > 1

]
~τ := (τ1, . . . , τn)

σ~τ := σ
[
τi / αi

]
.

Then Diagram 3.13 commutes.

Proof: Let F := FΘ`σ. In both squares shown in Diagram 3.14 the outer
square commutes due to the definition of eτ1 and pτ1 in the proof of Lemma 3.4.
Commutativity of the lower left triangle of each square is shown in Lemma 3.19.
Hence the upper right triangle commutes. For unfold this finishes the proof.

68

3.3 Construction of a universal type

F (π,U) π
unfoldoo

F (τ1, U)

F (k−,k+,id,id)

OO

F (τ1, τ1, τ2, τ2)
F (id,id,pτ2 ,eτ2)
oo τ1

unfold
oo

k−

OO

F (π,U)

F (k−,k+,id,id)

��

fold // π

k+

��

F (τ1, U)
F (id,id,eτ2 ,pτ2)

// F (τ1, τ2)
fold

// τ1

Diagram 3.12: k− and k+ are the unique morphisms making these squares
commute

σ~τ
fold // τ1

U

p
σ~τ

OO

r
σ~τ

// U r
σU

// U

pτ1

OO σ~τ τ1
unfoldoo

U

p
σ~τ

OO

U

pτ1

OO

r
σU

oo

Diagram 3.13: Claim of Corollary 3.20

σ~τ

eσ~τ
@@@

��
@@@

F(pτ1 ,eτ1 ,
~id)

��

fold // τ1

eτ1

��

U

r
σU

@@@

��
@@@

σU e
σU

// U

σ~τ τ1
unfoldoo

U

pσ~τ @@

__@@

σU

F(eτ1 ,pτ1 ,
~id)

OO

U

pτ1

OO

r
σU@@@

__@@@

p
σU

oo

Diagram 3.14: Proof of Corollary 3.20

For fold we conclude

eτ1 ◦ fold = rσU ◦ eσ~τ

fold = pτ1 ◦ rσU ◦ eσ~τ

fold ◦ pσ~τ = pτ1 ◦ rσU ◦ rσ~τ ,

69

3 The universal type

which completes the proof. �

3.4 A fixed point combinator

The closed term fix of type [U→U]→U introduced in the following lemma
plays an important role in Chapter 4. Exploiting the fact that the SD-model is
an adequate model for FPC we show that fix is a least fixed point combinator.
The proof follows the line of [Bar84, Exercise 18.4.20].

3.21 Lemma The closed FPC-term fix : [U→U]→U ,

fix :≡ λf :U→U.
(
λx:U. f(pU→U vv)

)(
eU→U

(
λx:U. f(pU→U vv)

))
is observationally equivalent to YU .

Proof: It suffices to show that the interpretation JfixK of fix in some ade-
quate domain model, like Marz’s SD-model, is a least fixed point operator.
Throughout this proof we will identify closed FPC-types and their interpreta-
tion in SD and closed FPC-terms and their interpretation, respectively. E. g.
we will write U both for the FPC-type µα.void + [α→α] and for its SD in-
terpretation. This does not cause any problems since the SD-model is fully
abstract and directed suprema in SD are calculated pointwise.

Let f : U → U be a morphism in SD. We first show that fix f is a fixed point
of f . Define t := λx:U. f(pU→U vv).

fix f = t(eU→U t) = f
(
pU→U (eU→U t)(eU→U t)

)
= f

(
t(eU→U t)

)
= f(fix f).

Interpreting the universal type U in SD we obtain that the least fixed point
of f is the directed supremum

∨
n∈N f

n(⊥). It remains to prove that fix f
equals the least fixed point, i. e.

fix f ≤
∨
n∈N

fn(⊥U).

According to [Mar00], the type U is constructed in SD as a bilimit over Dia-
gram 3.15. where 1 is the singleton domain and F : SDop×SD→ SD, F (x, y) =
1 + [x → y] is the functor corresponding to the type U = µα−, α+.void +

70

3.4 A fixed point combinator

U

q0

xxqqqqqqqqqqqqqqqqqqqqqqqqqqq

q1

�����������������

q2

AAAAAAAAAAAAAAAAA

unfold // 1 + [U → U]
fold

oo

1
v0 //

i0

88qqqqqqqqqqqqqqqqqqqqqqqqqqq
F (1, 1)

w0
oo

v1 //

i1

DD���������������
F
(
F (1, 1), F (1, 1)

)
w1

oo
v2 //

i2

``AAAAAAAAAAAAAAAAA
. . .

w2
oo

Diagram 3.15: Bilimit construction

[α−→α+] and for any n ∈ N the morphisms in the diagram are defined by

v0(x) = ⊥F (1,1) i0(x) = ⊥U
v1(x) = ⊥1 q0(x) = ⊥1

vn+1 = F (wn, vn) in+1 = fold ◦F (qn, in)
wn+1 = F (vn, wn) qn+1 = F (in, qn) ◦ unfold

For any n ∈ N the morphisms vn ◦wn and rn := in ◦qn : U→U are idempotents
and wn ◦ vn = id and qn ◦ in = id. Further qn = wn ◦ qn+1 and in = in+1 ◦ vn.
Thus rn ◦ rn+1 = rn = rn+1 ◦ rn. Any element x ∈ U satisfies x =

∨
n rnx.

For any morphisms g, r : U → U it is easy to see that F (r, r) : 1 + [U → U]→
1 + [U → U] satisfies

F (r, r)
(
invoid,[U→U]

1 (g)
)

= invoid,[U→U]
1 (r ◦ g ◦ r).

Hence we conclude

fix f = t(eU→U t) =
∨
n

rn

(
t

(∨
m

rm(eU→U t)

))
=
∨
m,n

rn

(
t
(
rm(eU→U t)

))
=
∨
n

(rn ◦ t)
(
rn(eU→U t)

)
For any n ∈ N let tn := rn(eU→U t) and fn := rn(eU→U f) ∈ U . We shall have
established the lemma if we prove, for any n ∈ N,

(rn ◦ t) tn = pU→U tn+1tn ≤ fn+1(⊥U).

We apply F (qn, in) ◦ F (in, qn) = F (rn, rn) to conclude, for any g : U → U ,

rn+1(eU→U g) = fold
(
F (rn, rn)

(
unfold(eU→U g)

))
= fold

(
F (rn, rn)(in1g)

)
= fold

(
in1(rn ◦ g ◦ rn)

)
= eU→U (rn ◦ g ◦ rn).

71

3 The universal type

Consequently, rn ◦ t ◦ rn = pU→U tn+1 and hence (rn ◦ t) tn = pU→U tn+1tn.

On the other hand we get rn ◦ f ◦ rn = pU→U fn+1. Accordingly, we have
pU→U tn+1tn = pU→U fn+1

(
pU→U tn+1tn

)
for any n ≥ 1 since

pU→U tn+1tn = rn(t tn)

= rn
(
f(pU→U tntn)

)
= (rn ◦ f)

(
(rn−1 ◦ t ◦ rn−1) tn

)
= (rn ◦ f)

(
(rn ◦ rn−1 ◦ t ◦ rn−1 ◦ rn−1) tn

)
= (rn ◦ f ◦ rn)

(
(rn−1 ◦ t ◦ rn−1)(rn−1tn)

)
= pU→U fn+1(pU→U tntn−1).

In case n = 0 we get pU→U t1t0 = pU→U f1⊥U since

pU→U t1t0 = (r0 ◦ t ◦ r0) t0 = ⊥U = (r0 ◦ f ◦ r0)⊥U = pU→U f1⊥U .

From fn = rn(eU→U f) ≤ eU→U f we conclude f ′n := pU→U fn ≤ f and hence

pU→U tn+1tn = f ′n+1

(
f ′n
(
. . . (f ′1⊥U) . . .

))
≤ fn+1⊥U

which completes the proof. �

72

4 Equivalence of the languages

This chapter constitutes the heart of this thesis. It is devoted to the construc-
tion of a realizability model for FPC over the combinatory algebra of closed
λ+Error-terms factorized by observational equivalence. We will show that this
model is applicatively equivalent to the canonical model. As a consequence,
any sequential functional program is realized by a program in the minimalistic
untyped language λ+Error.

In Section 4.1 we introduce a realizability relation between FPC-terms-in-
context and λ+Error-terms-in-context. We show that all term forming op-
erations of FPC can be implemented in λ+Error, provided that the canonical
retractions of FPC-types can be implemented in λ+Error.

In Section 4.2 we will show that any FPC-type-in-context has a λ+Error rep-
resentation, i. e. its canonical retraction is implementable in λ+Error. To
show this for recursive types we construct λ+Error-implementations for the
morphism parts of the corresponding syntactic functors. Note that the FPC-
implementations of the latter were given in Section 2.7. Combining this result
with the results of the previous section, we conclude in Section 4.3 that any
FPC-term-in-context is implemented by some λ+Error-term-in-context.

In Section 4.4 we define an untyped combinatory algebra L of λ+Error-terms
and show this algebra to be applicatively equivalent to the typed combinatory
algebra T defined in Section 2.3. Thus we derive the main result of this
thesis: the realizability model for FPC over this algebra L of λ+Error-terms
is universal. As an application of this result we prove of a variant of the
Longley-Phoa Conjecture in Section 4.5.

4.1 Untyped terms as realizers

According to Section 2.8, the interpretation of an FPC-term-in-context x:σ ` s
is a morphism f : σ → τ in the cartesian closed category D introduced in
Section 2.4. On the other hand, in Section 3.2 we defined the interpretation
of a λ+Error-term-in-context x ` M to be the observational class of a term-
in-context x:U ` t:U , i. e. a D-morphism g : Un → U . Hence obviously one
cannot expect the interpretation of an arbitrary FPC-term to coincide with the

73

4 Equivalence of the languages

σ
Γ`t // τ

Un

pσ1 ×···×pσn

OO

|Γ|`M
// U

pτ

OO

Diagram 4.1: M realizes t in context Γ

interpretation of some λ+Error-term. However, by composing both morphisms
with the canonical projections pσ and pτ , we obtain morphisms f ◦ pσ and
pτ ◦g : U → τ . Hence we can relate FPC-terms-in-context and λ+Error-terms-
in-context by the following realizability relation:

4.1 Definition If Γ ≡ x1:σ1, . . . , xn:σn is an FPC-context we write |Γ| for
the FPC-context x1:U, . . . , xn:U and, for simplicity of notation, also for the
λ+Error-context x1, . . . , xn. Assume Γ ` t:τ is an FPC-term-in-context and
|Γ| ` M is a λ+Error-term-in-context. We say |Γ| ` M realizes Γ ` t:τ and
write

M Γ t iff |Γ| ` pτ LMM =obs t
[
pσi xi

/
xi
]
,

i. e. iff Diagram 4.1 in D commutes. In the sequel we will use tU to denote the
term t

[
pσi xi

/
xi
]

and we will write M Γ t:τ to indicate that Γ ` t:τ and
M Γ t. Note that tU satisfies the type judgement |Γ| ` tU :τ . �

4.2 Example For the trivial case Γ ` xi:σi of a single variable we get xi Γ xi,
since |Γ| ` xUi = pσi xi = pσiLMM for M :≡ xi.
If M is a closed λ+Error-term and t:τ is a closed FPC-term then t = tU and
therefore M t iff pτ LMM = t.

A nontrivial example can be found in Example 4.4 below.

The following lemma describes how the term forming operations from FPC can
be implemented in λ+Error. Note that functional application in FPC cannot
simply be implemented as functional application in λ+Error; rather it involves
a certain retraction. As we shall see below, if M Γ s : %→τ and N Γ t:%,
then in general we cannot conclude MN Γ st. However, if the canonical
retraction r% is realized by a closed λ+Error-term R%, i. e. R% r% : U→U ,
then M(R%N) Γ st.

4.3 Lemma Let Γ ≡ x1:σ1, . . . , xn:σn be an FPC-context, let m be a natural
number and let %, %0, . . . , %m and τ be closed FPC-types. Further let M ,
M0, . . . , Mm and N be λ+Error-terms-in-context |Γ| and let s, t, t0, . . . , tm
be FPC-term-in-context Γ (unless explicitly stated otherwise).

74

4.1 Untyped terms as realizers

i) Realizability is preserved under extension and retraction of the con-
text: if M Γ t:τ and Γ′ ` t:τ , then M Γ′ t.

ii) If M Γ t:U , then M Γ pτ t : τ .

iii) If Rτ rτ : U→U and M Γ t:τ , then Rτ M Γ eτ t:U .

iv) If we define RU→U :≡ λx. λy. xy, then RU→U rU→U : U→U .

v) Assume M Γ s : %→τ and N Γ t:%. If R% r% : U→U , then we
get M(R%N) Γ st:τ .

vi) If Γ′ ≡ Γ, x:% and M Γ′ t:τ , then λx.M Γ λx:%. t : %→τ .

vii) Folding and unfolding of recursive types are realized as follows: if
α ` σ is an FPC-type-in-context and M Γ s:µα. σ and N Γ′ t :
σ [µα. σ / α], then

RσU M Γ unfold(s) : σ [µα. σ / α] and

RσU

(
Rσ~τ N

)
Γ′ fold(t) : µα. σ.

viii) The arithmetic operations in FPC defined in Definition 3.14 are
realized by those of λ+Error:

0 0 : U n+ 1 n+ 1 : U
SUCC succ : U→U PRED pred : U→U

FST fst : U→U SND snd : U→U
PAIR pair : U→U→U IFR ifz : U→U→U→U

For any natural number n and any closed FPC-terms t, t0 . . . , tn
and closed λ+Error-terms M , M0, . . . , Mn such that M t:U and
Mi ti:U for all i ∈ {0,n} we get

CASEnM OF M0 . . . Mn casen t of t0 . . . tn : U

ix) ID Γ idτ : τ

x) If M Γ s:%×τ then FSTM Γ pl(s) and SNDM Γ pr(s).

xi) If M Γ s:% and N Γ t:τ then PAIR M N Γ 〈s, t〉.

xii) The λ+Error-constructs for case analysis realize the corresponding
FPC-constructs: if M Γ t:%i for some i ∈ {0, . . . ,m}, then

PAIR iM Γ ini t :
m∑
j=0

%j .

75

4 Equivalence of the languages

xiii) Assume Mj Γ tj : %j→τ and R%j r%j , for any j ∈ {0, . . . ,m}.
Then, for % :≡

∑m
j=0 %j and Γ′ :≡ Γ, y:%, we get

CASEm FST y OF M0

(
R%0(SND(y)

)
. . .

Mm

(
R%m(SND y)

)
Γ′ case y of in0w⇒ t0w . . . inmw⇒ tmw.

xiv) FIX YU : [U→U]→U

xv) Ω Ωτ

xvi) FIX Yτ : [τ→τ]→τ

The proof of this lemma can be found at the end of this section. To show how
to apply this lemma we discuss the following example in detail. We will use
this result in the proof of Theorem 4.7 to implement the retraction rσ→τ of a
function type in λ+Error.

4.4 Example Let Γ ≡ x:U, y:U . If R1 r1 : U→U and R2 r2 : U→U , then

λx, y.R2

(
x(R1y)

)
 λx:U. eU→U

(
λy:U. r2

(
pU→U x(r1y)

))
: U→U.

This can be proved as follows: From Lemma 4.3(ii) we know

x Γ pU→U x : U→U.

Applying Lemma 4.3(v) twice yields, since ID rU :U→U ,

x(R1y) Γ pU→U x(r1y) : U and

R2

(
x(R1y)

)
Γ r2

(
pU→U x(r1y)

)
: U.

Now we can apply Lemma 4.3(vi) to get

λy.R2

(
x(R1y)

)
Γ λy:U. r2

(
pU→U x(r1y)

)
: U→U.

From Lemma 4.3(iii) we conclude

λy.R2

(
x(R1y)

)
Γ eU→U

(
λy:U. r2

(
pU→U x(r1y)

))
: U.

Finally, application of Lemma 4.3(vi) yields the conclusion.

Proof of Lemma 4.3:

i) This is obvious.

ii) M Γ t:U implies |Γ| ` LMM = tU , since pU = idU .
Hence |Γ| ` (pτ t)U = pτ tU = pτ LMM.

76

4.1 Untyped terms as realizers

iii) We conclude from M Γ t:τ that |Γ| ` eτ tU = rτ LMM. Since
|Γ| ` LRτ MM = pU→U LRτ MLMM = rτ LMM we obtain |Γ| ` LRτ MM =
eτ tU .

iv) pU→U LRU→U M = λx:U. eU→U (λy:U.pU→U xy)
= λx:U. eU→U (pU→U x) = rU→U .

v) Since R% r% : U→U , we have |Γ| ` LR%NM = r%LNM. According
to the definition of p%→τ in the proof of Lemma 3.4 we obtain

|Γ| ` (st)U = sU tU = p%→τ LMM
(
p%LNM

)
= pτ

(
pU→U LMM

(
e%(p%LNM)

))
= pτ

(
pU→U LMM

(
r%LNM

))
= pτ

(
pU→U LMMLR%NM

)
= pτ

(
M(R%N)

)
vi) By hypothesis we have |Γ|, x:U ` pτ LMM = t [pσi xi / xi,pσ /x] and

hence

|Γ|, x:σ ` pτ LMM [eσ x / x] = t [pσi xi / xi] and
|Γ| ` λx:σ.pτ LMM [eσ x / x] = λx:σ. t [pσi xi / xi] .

We have to show |Γ| ` pσ→τ Lλx.MM = λx:σ. t [pσi xi / xi] . By defi-
nition, |Γ| ` pU→U Lλx.MM = pU→U

(
eU→U λx:U.LMM

)
= λx:U.LMM.

Hence

|Γ| ` pσ→τ Lλx.MM = λx:σ.pτ
(
pU→U Lλx.MM(eσ x)

)
= λx:σ.pτ

(
λx:U.LMM(eσ x)

)
= λx:σ.pτ LMM [eσ x / x]
= λx:σ. t [pσi xi / xi]

vii) This is an immediate consequence of Corollary 3.20.

viii) These relations are immediate consequences of Definition 3.14.

ix) This is trivial.

x) M Γ s:%×τ implies

|Γ| ` sU = p%×τ LMM =
〈
p%
(
fstLMM

)
,pτ
(
sndLMM

)〉
.

It follows |Γ| ` pl(sU) = p%
(
fstLMM

)
, hence FSTM Γ pl(s) and

the same for SNDM .

xi) |Γ| ` p%×τ LPAIR M NM = 〈p%LMM,pτ LNM〉 =
〈
sU , tU

〉

77

4 Equivalence of the languages

xii) From |Γ| ` LPAIR iMM = pair i LMM we obtain

|Γ| ` p∑m
j=0 τj

LPAIR iMM = ini
(
pτiLMM

)
= initU .

xiii) The proof is by induction on m.
Assume m = 0 and Γ ` M0 Γ t0 : %0→τ . Writing % :=

∑0
j=0 %j

and H :≡ IFR
(
FST y,M0

(
R%0(SND y)

)
,Ω
)

and h :≡ case%0,τ p% yof
in0w⇒ tU0 w : τ , we have to show

|Γ′| ` pτ LHM = h.

By definition,

|Γ′| ` pτ LHM = pτ
(

casevoid,U→U,U fst y of

in0w⇒ pU→U LM0M
(
r%0(snd y)

)
in1w⇒ ΩU

)
= casevoid,U→U,U fst y of

in0w⇒ pτ
(
pU→U LM0M

(
e%0(p%0(snd y))

))
in1w⇒ Ωτ

= casevoid,U→U,U fst y of in0w⇒ tU0
(
p%0(snd y)

)
in1w⇒ Ωτ

On the other hand,

|Γ′| ` p% y = casevoid,U→U,% fst y of in0w⇒ in%0
0

(
p%0(snd y)

)
in1w⇒ Ω%.

and hence

|Γ′| ` h = casevoid,U→U,τ fst y of in0w⇒ tU0
(
p%0(snd y)

)
in1w⇒ Ωτ .

We leave it to the reader to verify the inductive step, which is quite
similar.

xiv) Let Γ :≡ f :U→U and Γ′ :≡ Γ, x:U . Define K :≡ λx. f(xx) in
λ+Error and k :≡ λx:U. f(pU→U xx) in FPC. Then Γ ` k : U→U is
an FPC-term-in-context and the term fix : [U→U]→U introduced

78

4.1 Untyped terms as realizers

in Lemma 3.21 is just fix ≡ λf :U→U. k(eU→U k). We conclude

x Γ′ x:U from Example 4.2,
x Γ′ pU→U x : U→U from Lemma 4.3(ii),
xx Γ′ pU→U xx : U from Lemma 4.3(v),

f(xx) Γ′ f(pU→U xx) : U from Lemma 4.3(v),
K Γ k : U→U from Lemma 4.3(vi),

RU→U K Γ eU→U k : U from Lemma 4.3(iii),
λy.Ky Γ eU→U k : U from Lemma 4.3(iv),

since Γ ` LRU→U KM = Lλy.KyM
K(λy.Ky) Γ k(eU→U k) : U from Lemma 4.3(v),

FIX fix : [U→U]→U from Lemma 4.3(vi).

Lemma 3.21 shows fix =obs YU . Hence FIX also realizes YU .

xv) This is obvious.

xvi) We have to show

Yτ = λf : τ→τ.pτ
(
pU→U LFIXM

(
eU→U λx:U. eτ (f(pτ x))

))
.

According to Lemma 4.3(xiv),

YU = λg : U→U.pU→U LFIXM(eU→U g).

Hence it suffices to show

Yτ =obs λf :τ→τ.
(
YU

(
λx:U. eτ (f(pτ x))

))
.

Similarly to Lemma 3.21 we may consider the SD-interpretations of
these terms. For these we have to show

Yτ f = YU

(
x 7→ eτ ◦f ◦ pτ (x)

)
for any morphism f : τ → τ . Since Yτ f =

∨
n f

n⊥τ and the same
for YU , the observation

pτ
((
x 7→ eτ ◦f ◦ pτ (x)

)n⊥U) = (pτ ◦ eτ ◦f)n(pτ ⊥U) = fn⊥τ

for any n ∈ N proves the claim.

�

79

4 Equivalence of the languages

4.2 Representability of retractions

As we have seen in the previous section, realizability of retractions is necessary
to implement FPC functional abstraction in λ+Error. Hence this section aims
at proving the following theorem:

4.5 Theorem For any closed type σ, the canonical retraction rσ : U→U can
be implemented in λ+Error, i. e. there is a closed λ+Error-term Rσ such that

Rσ rσ.

According to Lemma 3.4, the definition of the canonical retraction pairs of
recursive types involves the FPC-implementation of the corresponding syntac-
tic functors. Thus to implement the retractions in λ+Error we hence have
to implement the corresponding syntactic functors as well. Hence we define
an FPC-type-in-context to be representable in λ+Error iff both its canonical
retraction and the FPC-implementation of the corresponding syntactic functor
are implementable in λ+Error. Then we prove the above theorem by showing
that any FPC-type-in-context is representable.

4.6 Definition (representable types) Let Θ :≡ α1, . . . , αn be a type con-
text and let ~τ := τ1, . . . , τn be a sequence of closed types with λ+Error-
implementable retractions, i. e. for any i ∈ {1, . . . , n}, there exists a closed
λ+Error-term Rτi satisfying Rτi rτi : U→U .

Write σ~τ for the closed type σ
[
τi / αi

]
and let FΘ`σ : (Dop × D)n → D denote

the syntactic functor corresponding to the type Θ ` σ. For any i ∈ {1, . . . , n}
let πi := [τi→τi]×[τi→τi] and let

t~τ,iΘ`σ : πi →
[
σ~τ→σ~τ

]
denote a closed FPC-term according to Proposition 2.41 such that, for all
closed terms k−, k+ : τi→τi, we get

FΘ`σ
(
id, . . . , id,

[
k−
]
obs

,
[
k+
]
obs

, id, . . . , id
)

=
[
t~τ,iΘ`σk

−k+
]

obs
.

Under these assumptions we say that the type-in-context Θ ` σ has a λ+Error
representation iff, for any such sequence ~τ and any i ∈ {1, . . . , n}, there are
closed λ+Error-terms Rσ~τ and M~τ,i

Θ`σ such that

Rσ~τ rσ~τ : U→U and M~τ,i
Θ`σ t

~τ,i
Θ`σ : πi → [σ~τ→σ~τ].

4.7 Theorem Any FPC-type-in-context has a λ+Error representation.

80

4.2 Representability of retractions

This theorem is proved by induction over the type structure of FPC.

Proof: Let Θ :≡ α1, . . . , αn be a type context and let ~τ := τ1, . . . , τn be a
sequence of closed types with λ+Error-implementable retractions.

Case 1: The FPC-type Θ ` void has a λ+Error representation.

By definition, void~τ ≡ void and by Proposition 2.41 we have

rvoid = ΩU→U and t~τ,iΘ`void = Ωπi→[void→void]

We put Rvoid :≡ M~τ,i
Θ`void :≡ Ω. Since Ω Ωπi→[void→void] by Lemma

4.3(xv), we conclude

rvoid = pU→U LRvoidM and t~τ,iΘ`void = pπi→[σ~τ→σ~τ]LM
~τ,i
Θ`voidM.

Case 2: For any j ∈ {1, . . . , n}, the FPC-type Θ ` αj has a λ+Error repre-
sentation.

For σ :≡ αj we get σ~τ ≡ τj which, by hypotheses, has a λ+Error-imple-
mentable retraction. Hence Rσ~τ :≡ Rτj rσ~τ .

Further FΘ`σ
(
f−1 , f

+
1 , . . . , f

−
n , f

+
n

)
= f+

j . Hence, for i ∈ {1, . . . , n}, we
have t~τ,iΘ`αj = idτj , for i 6= j, and t~τ,jΘ`αj = λx : πj .prx, which, as an
immediate consequence of Lemma 4.3(ix) and (x), are implemented in
λ+Error by M~τ,i

Θ`αj :≡ ID and M~τ,j
Θ`αj :≡ SND.

Case 3: If FPC-types Θ ` σ1 and Θ ` σ2 have λ+Error representations, so
does Θ ` σ1×σ2.

Let σ :≡ σ1×σ2. Since σ~τ ≡ σ~τ1×σ~τ2 , we get from Lemmas 3.4 and 3.15
and from Proposition 2.41:

rσ~τ = λx:U.pair
(
rσ~τ1 (fstx)

) (
rσ~τ2 (sndx)

)
t~τ,iΘ`σ = λx:πi. λy:σ~τ .

〈
t~τ,iΘ`σ1

x
(
pl(y)

)
, t~τ,iΘ`σ2

x
(
pr(y)

)〉
We choose

Rσ~τ :≡ λx.PAIR
(
Rσ~τ1

(FSTx)
) (

Rσ~τ2
(SNDx)

)
M~τ,i

Θ`σ :≡ λx. λy.PAIR
(
Rσ~τ1

(
M~τ,i

Θ`σ1
x(FST y)

))(
Rσ~τ2

(
M~τ,i

Θ`σ2
x(SND y)

))
.

Applying Lemma 4.3(viii), (v) and (vi) we obtain ` Rσ~τ rσ~τ : U→U .

Let Γ :≡ x:πi, y:σ~τ . Applying Lemma 4.3(x) and (v) to the hypothesis,
we obtain

M~τ,i
Θ`σ1

x(FST y) Γ t
~τ,i
Θ`σ1

x
(
pl(y)

)
: σ~τ1

M~τ,i
Θ`σ2

x(SND y) Γ t
~τ,i
Θ`σ2

x
(
pr(y)

)
: σ~τ2

Application of Lemma 4.3(xi), (v) and (vi) completes the proof.

81

4 Equivalence of the languages

Case 4: If FPC-types Θ ` σ1 and Θ ` σ2 have λ+Error representations, so
does Θ ` [σ1→σ2].

Putting σ :≡ σ1→σ2, we get σ~τ ≡ [σ~τ1→σ~τ2]. Lemmas 3.4 and 3.15 and
Proposition 2.41 yield

rσ~τ =λx:U. eU→U
(
λy:U. rσ~τ2

(
pU→U x(rσ~τ1 y)

))
t~τ,iΘ`σ1→σ2

=λx:πi. λy : [σ~τ1→σ~τ2]. λz:σ~τ1 . t
~τ,i
Θ`σ2

x
(
y
(
t~τ,iΘ`σ1

〈
pr(x),pl(x)

〉
z
))
.

According to Example 4.4, rσ~τ is realized by

Rσ~τ :≡ λx, y.Rσ~τ2

(
x(Rσ~τ1

y)
)

By Case 3 it follows that, for π :≡ [τi→τi]×[τi→τi], there is a closed
λ+Error-term Rπi such that Rπi rπi . Letting Γ :≡ x:πi, z:σ~τ1 we thus
obtain, according to Lemma 4.3(x) and (xi) and (v),

H :≡M~τ,i
Θ`σ1

(
Rπi

(
PAIR (SNDx) (FSTx)(Rσ~τ1

z)
))

Γ t
~τ,i
Θ`σ1

〈
pr(x),pl(x)

〉
z

Lemma 4.3(v) and (vi) now yields

M~τ,i
Θ`σ1→σ2

:≡ λx, y, z.M~τ,i
Θ`σ2

x

(
Rσ~τ2

(
y
(
Rσ~τ1

H
)))

 t~τ,iΘ`σ1→σ2
.

Case 5: Let m ∈ N. If FPC-types Θ ` σj , for j ∈ {0, . . . ,m}, have λ+Error
representations, so does Θ `

∑m
j=0 σj .

For σ :=
∑m
j=0 σj we have σ~τ =

∑m
j=0 σ

~τ
j . Hence we get, according to

Lemmas 3.4 and 3.15 and Proposition 2.41,

rσ~τ =λx:U. casem fstx of pair 0
(
rσ~τ0 (sndx)

)
. . .

pair m
(
rσ~τm(sndx)

)
t~τ,iΘ`σ =λx:πi. λy : σ~τ . case y of in0w⇒ in0(t~τ,iΘ`σ0

xw) . . .

inmw⇒ inm(t~τ,iΘ`σmxw)

We choose

Rσ~τ :≡λx.CASEm FSTx OF PAIR 0
(
Rσ~τ0

(SNDx)
)

. . .

PAIR m
(
Rσ~τm

(SNDx)
)

M~τ,i
Θ`σ :≡λx, y. CASEm FST y OF PAIR 0

(
M~τ,i

Θ`σ0
x(SND y)

)
. . .

PAIR m
(
M~τ,i

Θ`σmx(SND y)
)

82

4.2 Representability of retractions

Let Γ :≡ x:U and assume j ∈ {0, . . . ,m}. By assumption, Rσ~τj
 rσ~τj .

Hence Rσ~τj
(SNDx) Γ rσ~τj (sndx) : U according to Lemma 4.3(viii) and

(v). Since j j:U , the same lemma yields

PAIR j
(
Rσ~τj

(SNDx)
)
Γ pair j

(
rσ~τj (sndx)

)
:U.

Application of Lemma 4.3(viii) leads to Rσ~τ rσ~τ : U→U .

Now let k ∈ {0, . . . ,m} and put Γ :≡ x:πi and Γ′ :≡ Γ, z:σk. Application
of Lemma 4.3(iii) and (v) to the assumption M~τ,i

Θ`σk t~τ,iΘ`σk : πi →
[σ~τk→σ~τk] leads to

H :≡M~τ,i
Θ`σk (Rπi x)

(
Rσ~τk

z
)
Γ′ t

~τ,i
Θ`σkxz : σ~τk .

Lemma 4.3(xii) and (vi) yields

λz.PAIR kH Γ λx:σk. inkt
~τ,i
Θ`σkxz : σk→

m∑
j=0

σ~τj .

Hence Lemma 4.3(xiii) and (vi) shows the desired conclusion M~τ,i
Θ`σ

t~τ,iΘ`σ : πi → [σ~τ→σ~τ].

Case 6: If the FPC-type Θ ` σ has a λ+Error representation, so does the type
α2, . . . , αn ` µα1. σ.

Let τ2, . . . , τn be closed FPC-types with λ+Error-implementable retrac-
tions and define

τ1 := µα1. σ
[
τi / αi

]
~τ := τ1, . . . , τn σ~τ := σ

[
τi / αi

]
~τU := U, τ2, . . . , τn σU :=

[
U / α1, τi / αi where i > 1

]
Due to Remark 3.5, the canonical retraction of τ1 (cf. Diagram 4.2) is

rτ1 :≡ YU→U λf :U→U. λx:U. eσU
(
t~τU ,1Θ`σ〈f, f〉(pσU x)

)
.

We claim that rτ1 is λ+Error-implementable. Let Γ :≡ f :U→U, x:U .
According to Lemma 4.3(xi) we obtain

PAIR f f Γ 〈f, f〉 : [U→U]×[U→U].

By Lemma 4.3(ii), (v) and (vi) we conclude

λf. λx.M~τU ,1
Θ`σ

(
Rπ1 (PAIR f f)

)
x

 λf :U→U. λx:U. t~τU ,1Θ`σ〈f, f〉(pσU x) : U.

83

4 Equivalence of the languages

σU

t
~τU ,1
Θ`σ 〈rτ1 ,rτ1 〉

��

U
p
σUoo

rτ1

��

σU e
σU

// U

Diagram 4.2: The universal property of rτ1

Applying Lemma 4.3(xvi) and Lemma 4.3(v) we get Rτ1 rτ1 for

Rτ1 :≡ FIXλf. λx.M~τU ,1
Θ`σPAIR (RU→Uf)(RU→U f)(RσUx).

The task is now to find, for any number i ∈ {2, . . . , n}, a closed λ+Error-
term M~τ2,i

Θ′`µα1. σ
which implements the closed FPC-term t~τ2,iΘ′`µα1. σ

. Here
Θ′ stands for the type context Θ′ ≡ α2, . . . , αn and ~τ2 stands for the
sequence (τ2, . . . , τn).

Writing π1 := [τ1→τ1]×[τ1→τ1] and πi := [τi→τi]×[τi→τi] and

l :≡ λx:τ1. fold
(
t~τ,1Θ`σ

〈
pr(q),pl(q)

〉(
t~τ,iΘ`σp

(
unfold(x)

)))
r :≡ λx:τ1. fold

(
t~τ,iΘ`σ

〈
pr(p),pl(p)

〉(
t~τ,1Θ`σq

(
unfold(x)

)))
we obtain

t~τ2,iΘ′`µα1. σ
≡ λp:πi.pl

(
Yπ1 λq:π1.〈l, r〉

)
.

Let Γ :≡ p:πi, Γ′ :≡ Γ, q:π1 and Γ′′ :≡ Γ′, x:τ1. Lemma 4.3(vii) yields
RσU x unfold(x) : σ~τ . By hypothesis, M~τ,1

Θ`σ t~τ,1Θ`σ : π1→[σ~τ→σ~τ]
and M~τ,i

Θ`σ t
~τ,i
Θ`σ : πi→[σ~τ→σ~τ]. Lemma 4.3(x), (xi) and (v) leads to

L1 Γ′ l1 : σ~τ→σ~τ and Li Γ′′ li : σ~τ for

L1 :≡M~τ,1
Θ`σ

(
Rπ1

(
PAIR (SND q) (FST q)

))
l1 :≡ t~τ,1Θ`σ

〈
pr(q),pl(q)

〉
Li :≡M~τ,i

Θ`σ (Rπi p)
(
Rσ~τ (RσU x)

)
li :≡ t~τ,iΘ`σp

(
unfold(x)

)
Further application of Lemma 4.3(v), (vi) and (vii) yields

L1(Rσ~τ Li) Γ′′ l1li : σ~τ

RσU

(
Rσ~τ

(
L1(Rσ~τ Li)

))
Γ′′ fold(l1li) : τ1

L :≡ λx.RσU

(
Rσ~τ

(
L1(Rσ~τ Li)

))
Γ′ l : τ1→τ1

84

4.3 Implementation of terms

Similarly one shows R :≡ λx.RσU

(
Rσ~τ

(
Ri(Rσ~τ R1)

))
Γ′ r : τ1→τ1

where

Ri :≡M~τ,i
Θ`σ

(
Rπi

(
PAIR (SND p) (FST p)

))
and

R1 :≡M~τ,1
Θ`σ (Rπ1 q)

(
Rσ~τ (RσU x)

)
.

The proof is completed by applying Lemma 4.3(xi), (vi), (v) and (xvi)
to obtain

H :≡ PAIR LR Γ′ 〈l, r〉 : π1

λq.H Γ λq:π1. 〈l, r〉 : π1→π1

FIX(Rπ1→π1 λq.H) Γ Yπ1 λq:π1. 〈l, r〉 : π1

FST
(
Rπ1

(
FIX(Rπ1→π1 λq.H)

))
Γ pl

(
Yπ1 λq:π1. 〈l, r〉

)
: τ1

M~τ2,i
Θ′`µα1. σ

 t~τ2,iΘ′`µα1. σ
: π1→τ1

where M~τ2,i
Θ′`µα1. σ

:≡ λp.FST
(
Rπ1

(
FIX(Rπ1→π1 λq.H)

))
. �

4.3 Implementation of terms

In the light of the previous two sections it is clear that any FPC-term-in-context
can be implemented in λ+Error.

4.8 Theorem For any FPC-term-in-context Γ ` t:τ there is a λ+Error-term
|Γ| `M in the corresponding untyped context such that M Γ t:τ.

Proof: Since the retraction rσ is implementable in λ+Error for any FPC-
type σ, Lemma 4.3(v) yields Γ ` M(R%N) Γ mn:τ for any terms satisfying
M Γ m : %→τ and N Γ n:%.

Hence Lemma 4.3 can be applied to show by induction on the structure of
FPC-terms that any FPC-term-in-context Γ ` t:τ is implemented by some
λ+Error-term |Γ| `M , where |Γ| := x1, . . . , xn is the corresponding λ+Error-
context. �

4.4 The universal λ+Error-model

We define an untyped combinatory algebra L of classes of closed λ+Error-terms
and show that it is applicatively equivalent to the combinatory algebra T of
observational classes of closed FPC-terms. Thus we conclude that the canoni-
cal realizability model for FPC is isomorphic to the realizability model over L

85

4 Equivalence of the languages

and hence the latter is universal. Using this result we prove a variant of the
Longley-Phoa Conjecture.

4.9 Proposition Let |L| denote the set of all observational equivalence classes
of closed λ+Error-terms. Further let [K] and [S] be the classes of the closed
terms

K :≡ λx. λy. x S :≡ λx. λy. λz. xz(yz)

By defining an application operation on classes in |L| to be functional appli-
cation of their representatives we obtain an untyped combinatory algebra L.

The proof is straightforward.

For untyped (total) combinatory algebras, Definition 2.3 yields the following
sufficient criterion for equivalence.

4.10 Lemma Two untyped combinatory algebras A and B are equivalent if
there are mutually inverse bijections f : |A| → |B| and g : |B| → |A| such that
for any a, a′ ∈ |A| and b, b′ ∈ |B|

f(aa′) = f(a)f(a′) and g(bb′) = g(b)g(b′).

The following proposition is a special case of [LS02, Prop. 2.3].

4.11 Proposition The universal type U in the typed combinatory algebra T
gives rise to an untyped combinatory algebra U as in particular U→U is a
retract of U . The combinatory algebra U is applicatively equivalent to the
typed combinatory algebra T .

The underlying set of U is |U |, the set of observational classes of closed FPC-
terms of type U . For [s], [t] ∈ |U |, application is defined as [pU→Us t], where
pU→U is the canonical projection from U to U→U .

The proof is a straightforward exercise. Thus we obtain the following theorem:

4.12 Theorem The untyped combinatory algebra L of closed λ+Error-terms
is equivalent to the typed combinatory algebra T of closed FPC-terms. Hence
Mod(L) and Mod(T) are equivalent as cartesian closed categories.

Proof: Due to Proposition 4.11 it suffices to prove that L is equivalent to U ,
which can be shown using Lemma 4.10. For any closed FPC-term t:U define
M := f

(
[t]obs

)
to be a closed λ+Error-term realizing t, i. e. M t:U , which

is equivalent to LMM =obs t. In particular the realizers for t are unique up to
observational equivalence.

86

4.5 A variant of the Longley-Phoa Conjecture

For any closed λ+Error-term M we define g(M) := [LMM]obs to be the inter-
pretation of M in D. It is obvious that f and g are mutually inverse. Now let
s, t:U be closed FPC-terms and let M and N be closed λ+Error-terms such
that LMM =obs s and LNM =obs t. Then pU→U LMMLNM =obs LMNM implies
g(MN) = pU→U g(M)g(N) and f

(
[pU→U s t]obs

)
= f

(
[s]obs

)
f
(
[t]obs

)
, which

completes the proof. �

Since the applicative equivalence is easily seen to respect the obvious dom-
inances on T and L, we obtain the following corollary, which expresses the
main result of this thesis.

4.13 Theorem The realizability toposes over the typed combinatory alge-
bra T and the untyped combinatory algebra L are equivalent. In particular
the model for FPC in ModL is universal and logically fully abstract.

4.5 A variant of the Longley-Phoa Conjecture

The Longley-Phoa Conjecture states that the category of modest sets over
a combinatory algebra consisting of equivalence classes of untyped closed λ-
terms is universal. This was implicitly conjectured by Phoa in [Pho91] and
explicitly stated by Longley in [Lon95, Section 7.4].

Let Λ0 denote the set of all closed terms of the untyped λ-calculus and let T
be a semi-sensible λ-theory, i. e. a λ-theory that does not equate a solvable
and an unsolvable term. (See [Bar84, Chapter 4] for details about λ-theories.)
Then the set Λ0/T of equivalence classes of closed terms with respect to the
theory T in a natural way carries the structure of a total combinatory algebra.
(cf. [Lon95])

4.14 Conjecture (Longley-Phoa) The model for PCF in Mod(Λ0/T) is
universal.

Although we do not see how to prove this very conjecture, it is easily seen
that Theorem 4.13 implies a variant of it, since observational equivalence for
λ+Error is a λ-theory.

4.15 Corollary The model for PCF in Mod(L) is universal.

Thus the Longley-Phoa Conjecture holds for our untyped language λ+Error,
which is an extension of the λ-calculus by a single constant ERR and a con-
ditional construct which distinguishes this constant from any other syntactic
value.

87

4 Equivalence of the languages

88

5 Remarks and future work

Although we have proved a variant of the Longley-Phoa Conjecture, we have
to admit that the original conjecture still remains unsettled. Further we do
not think that our methods can be generalized to solve it. Out proof strongly
depends on the fact that the ‘flat booleans’ are a definable retract of the
combinatory algebra U . This does not hold true if we replace the language
λ+Error by untyped call-by-name λ-calculus itself.

In an unpublished note [Lai01a], Jim Laird shows that the category of bido-
mains and stable continuous functions yields a fully abstract model for unary
call-by-value FPC, i. e. Plotkin’s FPC with the constructor for sum types being
restricted to its unary form, i. e. lifting. As a consequence, the canonical mod-
els in the category of bidomains for the untyped call-by-value λ-calculus and
for the untyped call-by-name λ-calculus extended by a sequential “convergence
test” construct are fully abstract. Note that the lack of binary sums in unary
FPC is a substantial restriction — in particular it rules out the standard repre-
sentation of ground types (containing more than one value) as “flat domains”.
However, booleans and numerals can, of course, be encoded in Church style in
the untyped λ-calculus.

One should investigate how this result relates to the material presented in this
thesis. However, simple restriction of our construction to unary FPC does
not suffice to show that the combinatory algebra of observational equivalence
classes of closed terms of the untyped call-by-name λ-calculus plus “conver-
gence test” gives rise to a fully abstract model for unary FPC. The reason for
this is that in our approach not only sum types in FPC but also product types
are implemented in λ+Error using the constant ERR and the conditional.

The most interesting open question is whether and how our results can be gen-
eralized to obtain a universal model for a language incorporating polymorphism
in the style of Girard’s system F . Of course, it is known as folklore that there
can be no universal realizability model for system F itself, since such a model
would contain all computable endofunctions of the type ∀X.X→(X→X)→X
of polymorphic integers, but not all of these functions can be defined in sys-
tem F . However, for system F extended by general recursion this problem
does not occur. Hence it makes sense to ask whether our main result general-
izes to an extension of call-by-name FPC by system F style polymorphism. So

89

5 Remarks and future work

the question is whether factorizing closed λ+Error-terms by a suitable equiv-
alence relation gives rise to a universal model for such an extension of FPC.
Anyway, we think that this problem is quite hard as it is related to questions
of parametricity of realizability models.

90

Bibliography

[Abr90] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Re-
search Topics in Functional Programming, pages 65–117. Addison
Wesley, 1990.

[AHM98] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game
semantics for general references. In Proceedings of the Thirteenth
International Symposium on Logic in Computer Science, pages 334–
344. Computer Society Press of the IEEE, 1998.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction
for PCF. Information and Computation, 163(2):409–470, December
2000.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, revised edition, 1984.

[BBS98] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Revised
February 2001. To appear in Theoretical Computer Science, Septem-
ber 1998.

[BC82] G. Berry and P.-L. Curien. Sequential algorithms on concrete data
structures. Theoretical Computer Science, 20:265–321, 1982.

[BE91] A. Bucciarelli and T. Ehrhard. Sequentiality and strong stability. In
6th Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press, 1991.

[Bel77] J.L. Bell. Boolean-valued Models and Independence Proofs in Set The-
ory. Clarendon Press, Oxford, 1977.

[Bel00] K.G. Belger. The combinatory algebras U and Awb,eff are not equiv-
alent. Master’s thesis, Technische Universität Darmstadt, September
2000. Available from http://www.mathematik.tu-darmstadt.de/
∼streicher/THESES/belger.ps.gz.

[Ehr96] T. Ehrhard. Projecting sequential algorithmes on strongly stable
functions. Annals of Pure and Applied Logic, 77(3):201–244, 1996.

91

Bibliography

[Fef75] S. Feferman. A language and axioms for explicit mathematics. In J.N.
Crossley, editor, Algebra and Logic, pages 87–139. Springer-Verlag,
1975.

[Fre91] P.J. Freyd. Algebraically complete categories. In A. Carboni, M.C.
Pedicchio, and G. Rosolini, editors, Category Theory, Proc. Int. Conf.
in Como, Italy, July 1990, volume 1488 of Lecture Notes in Mathe-
matics, pages 95–104. Springer Verlag, 1991.

[Fre92] P.J. Freyd. Remarks on algebraically compact categories. In M.P.
Fourman, P.T. Johnstone, and A.M. Pitts, editors, Applications of
Categories in Computer Science, volume 177 of L.M.S. Lecture Notes,
pages 95–106. Cambridge University Press, 1992.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
dans l’arithmétique d’ordre supérieur, 1972. Thèse d’Etat, Université
Paris VII.

[Gir89] J.-Y. Girard. Geometry of interaction I: Interpretation of system F.
In C. Bonotto, R. Ferro, S. Valentini, and A. Zanardo, editors, Logic
Colloquium ’88, pages 221–260. North-Holland, 1989.

[Gir90] J.-Y. Girard. Geometry of interaction II: Deadlock-free algorithms.
In P. Martin-Löf and G. Mints, editors, COLOG-88, pages 76–93.
Springer-Verlag LNCS 417, 1990.

[Gun92] C. Gunter. Semantics of Programming Languages. Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[HB34] D. Hilbert and P. Bernays. Grundlagen der Mathematik I. Springer
Verlag, 1934.

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math.
Proc. Camb. Phil. Soc., 88:205–232, 1980.

[HO00] J.M.E. Hyland and C.-H. L. Ong. On full abstraction for PCF. In-
formation and Computation, 163(2):285–408, December 2000.

[How80] W.A. Howard. The formulae-as-type notion of construction. In J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism, pages 479–490. Aca-
demic Press, 1980.

[Hyl82] J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van
Dalen, editors, The L.E.J. Brouwer Centenary Symposium, pages
165–216. North-Holland, 1982.

92

[Joh77] P.T. Johnstone. Topos Theory. Number 10 in LMS Mathematical
Monographs. Academic Press, London, 1977.

[JS93] A. Jung and A. Stoughton. Studying the fully abstract model of
PCF within its continuous function model. In M. Bezem and J.F.
Groote, editors, Typed Lambda Calculi and Applications, volume 664
of Lecture Notes in Computer Science, pages 230–244. Springer Ver-
lag, 1993.

[JT93] A. Jung and J. Tiuryn. A new characterization of lambda definability.
In M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and
Applications, volume 664 of Lecture Notes in Computer Science, pages
245–257. Springer Verlag, 1993.

[Kle45] S.C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109–124, 1945.

[Kle65] S.C. Kleene. Logical calculus and realizability. Acta Philosophica
Fennica, 18:71–80, 1965.

[Kle69] S.C. Kleene. Formalized Recursive Functionals and Formalized Reliz-
ability, volume 89 of Memoirs of the American Mathematical Society.
American Mathematical Society, 1969.

[Kle73] S.C. Kleene. Realizability: a retrospective survey. In A.R.D. Mathias
and H. Rogers, editors, Cambridge Summer School in Mathematical
Logic, volume 337 of Lecture Notes in Mathematics, pages 95–112.
Springer-Verlag, 1973.

[Kre59] G. Kreisel. Interpretation of analysis by means of functionals of finite
type. In Constructivity in Mathematics. North Holland, Amsterdam,
1959.

[KV65] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic Math-
ematics, especially in relation to recursive functions. North-Holland
Publishing Company, 1965.

[LA99] J.R. Longley and S. Abramsky. Realizability models based on history-
free strategies. Unpublished note, September 1999.

[Lai98] J. Laird. A semantic analysis of control. PhD thesis, University
of Edinburgh, 1998. Available from http://www.cogs.susx.ac.uk/
users/jiml/thesis.ps.gz.

[Lai01a] J. Laird. Fully abstract bidomain models of the λ-calculus. Un-
published manuscript. Available from http://www.cogs.susx.ac.
uk/users/jiml/ufpc.ps.gz, October 2001.

93

Bibliography

[Lai01b] J. Laird. Games and sequential algorithms. To appear in Theoretical
Computer Science. Available from http://www.cogs.susx.ac.uk/
users/jiml/seqa.ps.gz, August 2001.

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its “ω-
set” interpretation. Mathematical Structures in Computer Science,
1(2):215–254, 1991.

[Loa01] R. Loader. Finitary PCF is not decidable. Theoretical Computer
Science, 266(1–2):341–364, 2001.

[Lon95] J. Longley. Realizability Toposes and Language Semantics. PhD
thesis, University of Edinburgh, 1995. Published as Techni-
cal Report ECS-LFCS-95-332, available from http://www.lfcs.
informatics.ed.ac.uk/reports/95/ECS-LFCS-95-332.

[Lon98] J. Longley. Realizability models for sequential computation. Un-
finished draft, available from http://www.dcs.ed.ac.uk/home/jrl/
pisa.ps.gz, September 1998.

[Lon99a] J. Longley. Matching typed and untyped realizability. In
L. Birkedal, J. van Oosten, G. Rosolini, and D.S. Scott,
editors, Workshop on Realizability Semantics and Applica-
tions, volume 23 of Electronic Notes in Computer Science.
Elsevier, 1999. Available from http://www.elsevier.nl/gej-
ng/31/29/23/92/27/show/Products/notes/index.htt.

[Lon99b] J. Longley. Unifying typed and untyped realizability. Manuscript
(available from http://www.dcs.ed.ac.uk/home/jrl/unifying.
txt), 1999.

[LS97] J.R. Longley and A.K. Simpson. A uniform approach to domain
theory in realizability models. Mathematical Structures in Computer
Science, 7:469–506, 1997.

[LS02] P. Lietz and T. Streicher. Impredicativity entails untypedness. Math-
ematical Structures in Computer Science, 2002. To appear.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer
Verlag, Berlin, 1971.

[Mar00] M. Marz. A Fully Abstract Model for Sequential Computa-
tion. PhD thesis, Technische Universität Darmstadt, Fachbereich
Mathematik, January 2000. Logos Verlag, 2000. Available from
http://www.mathematik.tu-darmstadt.de/∼streicher/THESES/
famsc.ps.gz.

94

[McC98] G. McCusker. Games and Full Abstraction for a Functional Metalan-
guage with Recursive Types. Distinguished Dissertations in Computer
Science. Springer Verlag, 1998. Ph.D. thesis, Department of Comput-
ing, Imperial College, University of London, 1996.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[MRS99] M. Marz, A. Rohr, and T. Streicher. Full abstraction and universality
via realisability. In Fourteenth Annual IEEE Symposium on Logic in
Computer Science, pages 174–182. IEEE Computer Society Press,
1999.

[Mul87] K. Mulmuley. Full Abstraction and Semantic Equivalence. The MIT
Press, 1987.

[Nic94] H. Nickau. Hereditarily sequential functionals. In Proceedings of the
Symposium on Logical Foundations of Computer Science: Logic at
St. Petersburg, Lecture Notes in Computer Science. Springer Verlag,
1994.

[Ong95] C.-H. L. Ong. Correspondence between operational and denotational
semantics: the full abstraction problem for PCF. In S. Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 4, pages 269–356. cp, 1995.

[OR95] P.W. O’Hearn and J.G. Riecke. Kripke logical relations and PCF.
Information and Computation, 120(1):107–116, 1995.

[Pho91] W. Phoa. Domain Theory in Realizability Toposes. PhD thesis, Uni-
versity of Cambridge, 1991.

[Pit81] A.M. Pitts. The Theory of Triposes. PhD thesis, Cambridge Univer-
sity, 1981.

[Pit96] A.M. Pitts. Relational properties of domains. Information and Com-
putation, 127:66–90, 1996.

[Plo73] G. D. Plotkin. Lambda-definability and logical relations. Memoran-
dum SAI-RM-4, University of Edinburgh, October 1973.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoret-
ical Computer Science, 5:223–255, 1977.

[Plo85] G.D. Plotkin. Lectures on predomains and partial functions. Notes
for a course given at the Center for the Study of Language and Infor-
mation, Stanford, 1985.

95

Bibliography

[Ros86] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, Ox-
ford University, 1986. Available from http://www.disi.unige.it/
ftp/person/RosoliniG/papers/coneit.dvi.gz.

[RS97a] B. Reus and T. Streicher. General synthetic domain theory – a logical
approach. In Category Theory and Computer Science, volume 1290 of
Lecture Notes in Computer Science, pages 293–313. Springer Verlag,
1997.

[RS97b] J.G. Riecke and A. Sandholm. A relational account of call-by-value
sequentiality. In Twelfth Annual IEEE Symposium on Logic in Com-
puter Science, LICS’97, pages 258–267, 1997.

[RS99a] B. Reus and T. Streicher. General synthetic domain theory – a logical
approach. Mathematical Structures in Computer Science, 9(2):177–
223, 1999.

[RS99b] J.G. Riecke and A. Sandholm. A relational account of call-by-value
sequentiality. Information and Computation, 1999. To appear.

[Sco93] D.S. Scott. A type theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science, 121:411–440, 1993. Reprint of a
manuscript written in 1969.

[Sie92] K. Sieber. Reasoning about sequential functions via logical relations.
In M.P. Fourman, P.T. Johnstone, and A.M. Pitts, editors, Proc.
LMS Symposium on Applications of Categories in Computer Science,
Durham 1991, volume 177 of LMS Lecture Note Series, pages 258–
269. Cambridge University Press, 1992.

[Sim92] A. K. Simpson. Recursive types in Kleisli categories. Manuscript,
available from http://www.dcs.ed.ac.uk/home/als/Research/
kleisli.ps.gz, 1992.

[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of re-
cursive domain equations. SIAM J. Computing, 11(4):761–783, 1982.

[Sta73] J. Staples. Combinator realizability of constructive finite type anal-
ysis. In A.R.D. Mathias and H. Rogers, editors, Cambridge Summer
School in Mathematical Logic, pages 253–273. Springer, 1973.

[Str02] T. Streicher. Mathematical foundations of functional programming.
Unpublished lecture notes, available from http://www.mathematik.
tu-darmstadt.de/∼streicher/MGFP/mgfp.ps.gz, February 2002.

[Tro73] A. S. Troelstra, editor. Metamathematical Investigation of Intuition-
istic Arithmetic and Analysis. Springer Verlag, 1973. With contri-
butions by A.S. Troelstra, C.A. Smoryński, J.I. Zucker and W.A.
Howard.

96

[Tro98] A.S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of Proof
Theory, pages 407–473. North-Holland, 1998.

[vO00] J. v. Oosten. Realizability: An historical essay. To appear in Mathe-
matical Structures in Computer Science. Available from http://www.
math.uu.nl/people/jvoosten/history.ps.gz, October 2000.

[vOS00] J. v. Oosten and A. Simpson. Axioms and (counter)examples in
synthetic domain theory. Annals of Pure and Applied Logic, 104(1-
3):233–278, 2000.

97

Bibliography

98

Curriculum Vitae

Alexander Rohr

geboren am 21. November 1967 in Wiesbaden

1987 Allgemeine Hochschulreife,
Stefan-George-Gymnasium in Bingen/Rhein

1989 – 1996 Studium der Mathematik mit Wahlpflichtfach Informatik,
Technische Universität Darmstadt

Schwerpunkte: topologische Algebra, dynamische Systeme,
Semantik von Programmiersprachen

1996 Hochschulabschluss als Diplom-Mathematiker, Diplomarbeit

”Chaotic Behaviour of General Semigroup Flows“

1996 – 2002 Doktorand am Fachbereich Mathematik der TU Darmstadt
Arbeitsgruppe Logik und mathematische Grundlagen der
Informatik

zeitweise gefördert durch ein Stipendium des Landes Hessen
zweitweise wissenschaftlicher Mitarbeiter

99

