
Conference on Type Theory, Homotopy Theory and Univalent Foundations

How Intensional is Homotopy Type Theory?

Thomas Streicher

Fachbereich 4 Mathematik, TU Darmstadt, Schloßgartenstr. 7, Darmstadt D-64289 Germany
streicher@mathematik.tu-darmstadt.de

Martin-Löf’s Extensional Type Theory (ETT) has a straighforward semantics in the
category Set of sets and functions and actually in any locally cartesian closed category
with a natural numbers object (nno), e.g. in any elementary topos with a nno. Dependent
products are interpreted by right adjoints to pullback functors and extensional identity
types are interpreted as diagonals in slice categories as explained e.g. in [Stre1].

Despite its intuitive flavour ETT has the defect that type checking for it is not
decidable for the following reason. Since ETT identifies propositional and judgemental
equality for closed terms t of type N→N the proposition(al type) Πx:N.IdN (t(x), 0)
is provably inhabited in ETT if and only if ETT proves the judgemental equality t =
λx:N.0 ∈ N→N . Moreover, ETT proves λx:N.rN (0) ∈ Πx:N.IdN (t(x), 0) iff ETT proves
t = λx:N.0 ∈ N→N . Thus, if type checking for ETT were decidable one could decide
which Π0

1-sentences are derivable in ETT. But for every consistent recursively enumerable
extension T of primitive recursive arithmetic (PRA) the set of Π0

1 sentences provable in
T is not decidable1. For this reason interactive theorem provers based on type theory
(like the systems Coq or ALF) are based on Martin-Löf’s Intensional Type Theory (ITT)
with its characteristic separation of propositional and judgemental equality.

After having investigated the semantics of ETT in [Stre1], an extended version of
my PhD Thesis from 1989, it became generally accepted that ITT is the appropriate
kind of type theory for computer assisted interactive theorem proving. For this reason
in my subsequent Habilitation Thesis [Stre2] I constructed models for ITT validating
the following Criteria of Intensionality

(I1) A : Set, x, y : A, z : IdA(x, y) 6` x = y : A
(I2) A : Set, B : A→ Set, x, y : A, z : IdA(x, y) 6` B(x) = B(y) : Set
(I3) ` p : IdA(t, s) implies ` t = s : A

for some universe Set. Moreover, these models refuted most of those propositions which
trivially hold in ETT but cannot be derived in ITT as e.g. the function extensionality
principle

Πx:A.IdB(f(x), g(x))→ IdA→B(f, g)

for A,B ∈ Set and f, g ∈ A→B even when A and B are base types like the type N of
natural numbers or the type N2 of booleans.

Unfortunately, the models constructed in [Stre2] do not refute the principle UIP

A : Set, x, y : A, u, v : IdA(x, y) ` IdIdA(x,y)(u, v)

1Since otherwise one could recursively separate the r.e. sets A0 = {n ∈ N | {n}(n) = 0} and
A1 = {n ∈ N | {n}(n) = 1} which can be seen as follows. For natural numbers n consider the primitive
recursive predicate Pn(k) ≡ T (n, n, k) → U(k) = 0. If n ∈ A0 then T ` ∀k.Pn(k) and if n ∈ A1 then
T ` ¬∀k.Pn(k) and thus T 6` ∀k.Pn(k). Now let f be a total recursive function with f(n) = 0 iff
T ` ∀k.Pn(k) which exists since the set of Π0

1 sentences provable in T is assumed to be decidable. But
then f(n) = 0 if n ∈ A0 and f(n) 6= 0 if n ∈ A1, i.e. f recursively separates the sets A0 and A1, which is
known to be impossible
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of Uniqueness of Identity Proofs which can be easily derived in ETT. To overcome this
shortcoming Martin Hofmann and I in 1993 introduced the groupoid model, see [HS98]
for a detailed account, within which we identified a universe U of small discrete groupoids
where A,B ∈ U were propositionally equal iff they were isomorphic. This observation
was the precursor of Voevodsky’s Univalence Axiom (UA) lying at the heart of Homotopy
Type Theory (HoTT) an introduction to which can be found in [HoTT].

In this abstract we will 1) give a simplified construction of a model for ITT satisfying
the above criteria for intensionality and 2) discuss to which extent HoTT is intensional.

1 Truly Intensional Models of ITT

i.e. models of ITT validating the criteria (I1), (I2) and (I3) above were constructed in
[Stre2]. In more modern terminology they may be described as living within the ¬¬-
separated objects of the topos Gl(Eff ) = Set↓Γ obtained by glueing the global elements
functor Γ = Eff (1,−) : Eff → Set. The book [vO08] is an excellent reference for all
things related to realizability models and, in particular, the effective topos Eff .

For sake of simplicity we replace Γ by the identity functor on Set giving rise to the
Sierpiński topos S = Set↓Set = Set2

op
. Up to isomorphism ¬¬-separated objects of S

are inclusions of subsets. We write LP for the ensuing category of logical predicates. Its
objects are pairs X = (|X|, PX) where |X| is a set and PX ⊆ |X|. Morphisms from X to
Y are functions f : |X| → |Y | such that f(x) ∈ PY whenever x ∈ PX . It is easy to see
that like Set the category LP gives rise to a model for ETT. However, for obtaining a
truly intensional model of ITT we have to choose an appropriate universe U within LP
which serves the purpose of interpreting the constant Set in (I1), (I2) and (I3). Let U
be a Grothendieck universe. Then U consists of all objects X ∈ LP with |X| ∈ U and
0 = ∅ ∈ |X|.

The intuition behind this definition of U is that for X ∈ U the set |X| is the set
of potential objects of X and PX is the subset of actual objects of X. Elements of
|X| \PX will serve the purpose of simulating the syntactic notion of free variables on the
level of semantics.

For showing that U in LP gives rise to a truly intensional model of ITT we next
describe the interpretation of identity types within U . As usual let 2 be the set {0, 1}.
For X ∈ U we define its identity type as

IdX(x, y) = (2, {1}) if x = y

IdX(x, y) = (2, ∅) if x 6= y

for x, y ∈ |X|. We interpret rX(x) as 1 for all x ∈ |X|. For C ∈ Πx, y:X. IdX(x, y)→ U
and d ∈ Πx:X.C(x, x, rX(x)) we put

J((x)d)(x, x, 1) = d(x) and J((x)d)(x, y, 0) = 0 ∈ C(x, y, 0)

for x, y ∈ |X|. Similarly one may interpret the eliminator K of [Stre2] allowing one to
prove UIP.

Theorem 1 For the above interpretation of identity types the universe U in LP validates
the criteria of intensionality (I1), (I2) and (I3) and refutes the principle of function
extensionality.
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Proof. For (I1) and (I2) the reason is that 0 ∈ IdX(x, y) even if x 6= y and (I3) holds
since the interpretation of ` t ∈ IdX(x, y) is necessarily 1 ∈ IdX(x, y) (since ({0}, {0}) is
terminal in LP) and thus x = y.

Notice that for X,Y ∈ U we have

(1) x:X ` f(x) = g(x) : Y iff f = g and
(2) x:X ` IdY (f(x), g(x)) iff f|PX

= g|PX

for f, g ∈ X→Y . There are types X and Y and different elements f and g in PX→Y

which, however, coincide on PX . For this reason the principle of function extensionality
fails for U in LP. �

Notice that when interpreting X→Y for X,Y ∈ U one has to replace λx.0 by 0 and
redefine the application function appropriately. But otherwise X→Y is interpreted as
the full function space in the sense of Set. Moreover, elements f of |X→Y | are actual,
i.e. f ∈ PX→Y , iff they preserve actual elements, i.e. f(x) ∈ PY whenever x ∈ PX . In
[Stre2] this kind of bureaucracy could be avoided since one was working in the category
of ¬¬-separated objects of the glueing of Γ : Eff → Set. There for U one took those
X where |X| is a modest set (see [vO08]) containing an element 0X realized by 0 and
PX still was an arbitrary subset of (the underlying set of) |X|. By appropriate choice of
Gödel numbering one has {0}(n) = 0 for all n ∈ N and, accordingly, the function 0X→Y

sends all elements of |X| to 0Y .
Finally, we discuss our interpretation of the types N and Nk in the universe U in LP.

The type N of natural numbers is interpreted as (N,N \ {0}). We put 0N = 1 and the
successor operation succ is given by succN (0) = 0 and succN (n+1) = n+2. Similarly, one
interprets the finite types Nk. Thus, the principle of function extensionality fails already
for X = Y = N1 because if f is the identity on 2 and g is the constant map with value
1 ∈ 2 then f and g are different elements of PN1→N1 although x : N1 ` IdN1(f(x), g(x))
is witnessed (essentially) by the identity on 2 = {0, 1}.

2 How intensional is HoTT ?

Since the models of the previous section 1 and the groupoid model were both constructed
for the purpose of showing that certain propositions cannot be derived in ITT one might
dream of combining both ideas in order to construct a model of ITT which is truly
intensional and at the same time refutes UIP. The most immediate idea is to construct
a groupoid model inside one of the models described in section 1. However, as became
clear to me in discussion with S. Awodey for constructing a universe U of small discrete
groupoids in (a model of) ITT where IdU (A,B) is the set, i.e. discrete groupoid, of
isomorphisms from A and B one needs the principle of function extensionality in order
to organize U into a groupoid (bijections are equal iff they are pointwise equal).

Thus, since the groupoid model validates UA one might ask whether UA is compatible
with our criteria for intensionality. The answer to this question, however, is negative since
as shown in [HoTT] the univalence axiom UA allows one to derive from it the principle of
function extensionality. The latter, however, is in contradiction with condition (I3) since
together with function extensionality it has the consequence that for closed terms t of type
N→N the proposition Πx:N.IdN (t(x), 0) is derivable if and only if t = λx:N.0 ∈ N→N
is derivable which is impossible since the set of Π0

1 sentences provable in ITT + UA is
not decidable (since ITT + UA extends PRA).



4 How Intensional is Homotopy Type Theory?

Thus, adding UA to ITT is an extension which is not conservative w.r.t. Basic Type
Theory (BTT), i.e. ITT without universes, since this extension is not even conservative
w.r.t. to Π0

1 sentences.2 However, we have the following conservation result for ITT
extended by function extensionality.

Theorem 2 If a proposition of BTT can be proved in ITT + UA then it can be proved
in ITT with a universe, the principle Extfun of function extensionality and UIP in form
of the eliminator K.

Proof. In ITT + Extfun + K with a universe one can construct the groupoid model of
[HS94]. Notice that we need Extfun in the meta-theory for

(1) getting exponentials of groupoids right
(2) defining Id-types on the universe of discrete groupoids since we need extensional

equality of isomorphisms between types in the universe.

The eliminator K is needed for avoiding problems with intensional identity types. In
ITT + Extfun + K with a universe one can prove that all types of BTT are interpreted
by their corresponding discrete groupoid. Accordingly, in this theory one can prove for
every type A of BTT that if the interpretation of A is inhabited in the groupoid model
by some element a then the type A is inhabited actually by “stripping” the element a
from additional information. �

Thus, as far as BTT is concerned the univalence axiom does not contribute more than
the principle Extfun of function extensionality and the eliminator K. In [Hof97] using
“setoid” models M. Hofmann has investigated to which extent extensional concepts can
be interpreted within intensional type theory. Actually, he managed to interpret ITT
+ Extfun + K without universes in ITT (with a universe). If one could also interpret
universes this way Theorem 2 would give a positive answer to Voevodsky’s “no junk”
conjecture which claims that for every closed term t of type N (natural numbers) there
exists an n ∈ N such that HoTT proves t = n ∈ N where n stands for the numeral
succn(0). Thus, in light of Theorem 2 the problem rather is to prove this “no junk”
conjecture for ITT + Extfun + K.

Summarizing we observe that the answer to our question is twofold. HoTT is incon-
sistent with equality reflection and thus with ETT but on the other hand it is conservative
over ITT + Extfun + K w.r.t. basic type theory.
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2This has to be seen in sharp contrast with the fact that most known non-syntactic models for ITT
+ UA (as e.g. the groupoid and the simplicial sets model) validate the same propositions of BTT as the
model in Set does.


