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Abstract

Ishihara’s Boundedness Principle BD-N was introduced in [Ish92] and has turned
out to be most useful for constructive analysis, see e.g. [Ish01]. It is equivalent
to the statement that every sequentially continuous function from NN to N
is continuous w.r.t. the usual metric topology on NN. We construct models
for higher order arithmetic and intuitionistic set theory in which both every
function from NN to N is sequentially continuous and in which the axiom of
choice from NN to N holds. Since the latter is known to be inconsistent with the
statement that all functions from NN to N are continuous these models refute
BD-N.
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1. Introduction

In [Ish92] H. Ishihara introduced the so-called boundedness principle BD-N
which claims that every countable pseudobounded subset of N is bounded. Here
S ⊆ N is called pseudobounded iff for every sequence a ∈ SN there exists
an n ∈ N such that ak < k for all k ≥ n.1 Obviously, the principle BD-N
is classicaly valid. Moreover, it is a most useful amendment to Bishop style
constructive mathematics in the sense that it is equivalent to a lot of useful
mathematical theorems over a basic theory BISH of (predicative) constructive
mathematics.2 In [Ish01] it is shown that BD-N is equivalent (over BISH) to
each of the following prominent mathematical principles
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1In [Ish92] a subset S of N was called pseudobounded iff for every sequence (an) in S
it holds that lim

n→∞
an
n

= 0. But both notions of pseudoboundedness give rise to equivalent

boundedness principles as shown in [Ish01].
2As a codification of BISH one may take some variant of HAω or even P. Aczel’s constructive

set theory CZF, a predicative version of intuitionistic set theory IZF, together with number
choice.
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1) Every sequentially continuous mapping from a complete separable metric
(csm) space to a metric space is continuous.

2) Banach’s inverse mapping theorem.
3) The open mapping theorem.
4) The closed graph theorem.
5) The Banach-Steinhaus theorem.
6) The sequential completeness of the space D of test functions (in the sense

of L. Schwartz’s theory of distributions).

In [Bee85, TvD88] it is shown that both Constructive Recursive Mathematics
CRM and Brouwerian Intuitionism INT allow one to prove that all functions
between complete separable metric spaces are continuous and thus, in particular,
also BD-N. Both CRM and INT are extensions of BISH postulating a classically
inacceptable principle together with a classically valid principle stronger than
BISH. From this point of view it “fits into the pattern” that BISH is in need
of a further classically valid principle which exceeds basic constructivism (as
represented e.g. by HAω or CZF) but which is still sufficiently constructive in
nature. Ishihara’s BD-N is a natural candidate for such a principle since it is
equivalent to each of the most desirable principles 1)-6) above and, moreover,
constructively plausible since it holds both in

• number realizability combined with truth

• function realizability combined with truth

The reason is that number realizability validates CRM, function realizability
validates INT and BD-N is classically valid and thus preserved when combining
these realizability interpretations with truth (see e.g. [Tro99]).

The aim of this note is to present in detail some very natural realizability
models refuting BD-N but validating even intuitionistic Zermelo Fraenkel set
theory IZF. These models have been sketched in section 2.3 of the first au-
thor’s PhD Thesis [Lie04]. The presentation there has been found moderately
accessible by constructive mathematicians with little background in categorical
logic. The current note is intended to make the result more widely accessible
by reducing categorical logic to the bare minimum.

In the first section we observe that in presence of number choice AC0,0 a fairly
weak continuity principle CP0(N+) suffices to show (in BISH) that all functions
from NN to N are sequentially continuous. In section 2 we construct various
realizability models which validate AC for finite types over N and CP0(N+) but
nevertheless refute Brouwer’s continuity principle claiming that all functions
from NN to N are continuous. Thus, these models will refute BD-N since it
entails that all sequentially continuous functions from NN to N are continuous.
We conclude in section 3 with a discussion of related work.

2. Some Theorems in Constructive Mathematics

Let N+ be the one point compactification of N consisting of all α ∈ 2N such
that n = m whenever α(n) = α(m) = 1. Obviously N+ is a retract of 2N and
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thus also of NN. Let CP0(N+) be the principle

∀F : NN+

.∃n : N.∀α : N+.(∀k < n.α(k) = 0)→ F (α) = F (0∞)

where 0∞ stands for the constant function with value 0. The following theorem
is inspired by Prop. 4.4 of [BS03].

Theorem 2.1. From CP0(N+) it follows (in BISH) using number choice AC0,0

that all functions from NN to N are sequentially continuous.

Proof: Suppose F : NN → N. In order to show that F is sequentially con-
tinuous suppose (αn) is a sequence in NN converging to β. We will show that
lim

n→∞
F (αn) = F (β).

First observe that by AC0,0 there exists f ∈ NN such that αk(n) = β(n)
whenever k ≥ f(n). Next we define a functional H : N+ × N→ NN as follows

H(γ, k)(n) =

{
β(n) if ∀` < k.γ(`) = 0

αm(n) if m < k and γ(m) = 1

We will show now that there exists a functional G : N+ → NN with G(γ)(n) =
lim
k→∞

H(γ, k)(n). Let n ∈ N and k0 = f(n). If there exists an m < k0

with γ(m) = 1 then for all k ≥ k0 we have H(γ, k)(n) = αm(n) and thus
lim
k→∞

H(γ, k)(n) = αm(n). On the other hand if ∀` < k0.γ(`) = 0 then for all

k ≥ k0 we have H(γ, k)(n) = β(n) or H(γ, k)(n) = αm(n) for some m ≥ k0 and
thus also H(γ, k)(n) = αm(n) = β(n) and accordingly lim

k→∞
H(γ, k)(n) = β(n).

Thus, we have shown that lim
k→∞

H(γ, k) = G(γ) where

G(γ)(n) =

{
β(n) if ∀` < f(n).γ(`) = 0

αm(n) if m < f(n) and γ(m) = 1

Obviously, we have G(0∞) = β and G(0m10∞) = αm.
Now applying assumption CP(N+) to the functional F ◦ G : N+ → N we

obtain an n ∈ N such that F (G(γ)) = F (G(0∞)) = F (β) whenever γ(k) = 0
for all k < n. Thus for all m ≥ n we have F (αm) = F (G(0m10∞)) = F (β), i.e.
lim

n→∞
F (αn) = F (β) as desired. 2

Let CP(NN) be Brouwer’s Continuity principle claiming

∀F : NN → N.∀α : NN.∃n : N.∀β ∈ ᾱ(n).F (α) = F (β)

i.e. that all functionals from NN to N are continuous. The following theorem is
a direct consequence of Cor. 9.6.11 in [TvD88].

Theorem 2.2. In HAω with extensionality and axiom of choice for all finite
types one can prove ¬CP(NN).
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The following corollary will be crucial subsequently.

Corollary 2.1. In HAω with extensionality and axiom of choice the principles
CP0(N+) and BD-N are inconsistent.

Proof: Using BD-N from CP0(N+) one can derive CP(NN). But by Th. 2.2 one
can prove ¬CP(NN). 2

In the next section we will construct strong and natural realizability models
which will validate HAω with extensionality and axiom of choice for finite types
together with CP0(N+) and thus refute BD-N.

3. Natural Realizability Models Refuting BD-N

A comprehensive account of realizability models can be found in J. van
Oosten’s book [vOo08]. There it is explained how every partial combinatory
algebra (pca) A – thought of as an untyped model of computation3 – gives rise
to the realizability topos RT(A) and the extensional realizability topos Ext(A).

The full subcategory of RT(A) on ¬¬-separated objects is much easier to
work with since it is equivalent to the category Asm(A) of “assemblies” which
can be described very briefly as follows. An assembly (over A) is a pair X =(
|X|, || · ||X

)
where |X| is a set and || · ||X is a function sending elements of

|X| to nonempty subsets of A and a morphism from X to Y is a function
f : |X| → |Y | which is realized by some e ∈ A, i.e. whenever a ∈ ||x||X then ea↓
and ea ∈ ||f(x)||Y . For assemblies X and Y we may construct their exponential
Y X whose underlying set is Asm(A)(X,Y ) and where ||f ||Y X consists of all
realizers of f . As explained in [vOo08] in every pca A one can do arithmetic by
associating with every n ∈ N an element n ∈ A in such a way that every partial
recursive function gets tracked by some element of A. In particular, the category
Asm(A) hosts a natural numbers object also denoted by N whose underlying
set is N and where ||n||N = {n}. The underlying set of NN consists of functions
from N to N and contains at least all total recursive functions.4 The one point
compactification N+ of N will be the regular5 subobject of NN whose underlying
set consists of all functions from N to 2 which assume the value 1 at most once.
The category Asm(A) has a lot of other useful properties. In particular, it gives
rise to a model of (even impredicative) Martin-Löf type theory as described in
e.g. [Str91, Jac99].

3Typical examples of pca’s are the first and second Kleene algebra corresponding to
Kleene’s number and function realizability, respectively. The first Kleene algebra K1 is given
by the set N on which application is defined as nm ' {n}(m) where {n} is the partial recursive
function with Gödel number n. The second Kleene algebra K2 is given by the set NN on which
application αβ is defined as {α}(β) where {α} : NN ⇀ NN is the partial continuous functional
as represented by the neighbourhood function α as conceived by L. Brouwer (see [TvD88] and
[vOo08] for background information).

4In case of K1 it contains precisely the total recursive functions and in case of K2 is contains
all functions from N to N.

5meaning that it inherits realizability from NN
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The topos RT(A) is obtained from Asm(A) by “adding quotients” and
Ext(A) is obtained from Asm(A) via the so-called “setoid construction”, i.e.
adding quotients of “proof-relevant” equivalence relations. For the purposes
of this paper it is enough to consider the full subcategory of Ext(A) on ¬¬-
separated objects which is equivalent to the much simpler category ExtAsm(A).
The latter differs from Asm(A) only in the following respects: || · ||X sends el-
ements of |X| to nonempty partial equivalence relations on A which have to be
respected by realizers e of morphims f : X → Y , i.e. whenever a ||x||X b then
ea and eb are both defined and ea ||f(x)||Y eb.

Notice that all realizability and extensional realizability toposes also inter-
pret IZF (see e.g. [vOo08]).

For readers who can’t make any sense of the previous paragraph and don’t
want to get too deeply into [vOo08] we can offer the following alternative view.
The Ext(A) model of type theory can be seen as a generalization of Beeson’s
realizability model for type theory (see section 20 of Ch. XI of [Bee85]) which
is based on the first Kleene algebra K1 to the arbitrary pca A. The RT(Pω)
model of HAω coincides with the one defined and studied in sections 4.9-4.14
in Chapter 9 of [TvD88] where it is also shown that it validates extensionality
and choice for all finite types.6 The same applies to RT(N⇀N) since N⇀N
is a coherently complete countably algebraic domain containing all other such
domains as retracts (see [Plo78]).

Thus all extensional realizability toposes Ext(A) and the domain realizabil-
ity toposes RT(Pω) and RT(N⇀N) gives rise to models of extensional HAω

satisfying AC at all finite types.
We will now show that Ext(K1) and Ext(K2) and the domain realizability

toposes RT(Pω) and RT(N⇀N) validate CP0(N+) and thus by Cor. 2.1 refute
the boundedness principle BD-N.

Theorem 3.1. Both Ext(K1) and Ext(K2) validate CP0(N+) and thus refute
BD-N.

Proof: The finite types over N in RT(K1) coincide with the hereditary effective
operations (see [TvD88]). By the Kreisel-Lacombe-Shoenfield theorem there
exists an m ∈ N which for every e realizing a type 2 functional F over N and
every Gödel number n of a total recursive function f the computation men
terminates and for all total recursive functions g with ∀k < men.f(k) = g(k)
it holds that F (f) = F (g), i.e. men provides a modulus of continuity for F at
f . From m one obtains a Gödel number m̃ of an algorithm which for every e
realizing F : NN → N gives rise to a number m̃e which is the least n such that
F (0∞) = F (α) for all α ∈ N+ with α(k) = 0 for k < n.7 Apparently m̃ realizes

6The reason why choice holds for finite types is that for every finite type σ the realizers
for an element a ∈ [[σ]] are closed under union (see 4.11 of Chapter 9 of [TvD88]).

7One uses m to compute a in general not minimal n′ such that F (0∞) = F (α) for all
α ∈ N+ with α(k) = 0 for k < n′. Since there are only finitely many α ∈ N+ with α(k) = 0 for
k < n′ and one can decide effectively whether F (α) coincides with F (0∞) one can effectively
determine the minimal n from n′. This explains how one gets m̃ effectively from m.
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a functional M : NN+ → N which computes a minimal modulus of continuity of
functionals of type NN+

at 0∞. Using this M one easily obtains a realizer for
CP0(N+) in Ext(K1).

For Ext(K2) the argument is similar. One just uses instead of the Kreisel-
Lacombe-Shoenfield theorem the fact that one can continuously choose a mod-
ulus of continuity at 0∞ from realizers of type 2 functionals over N. 2

Let CP(2N) be the principle claiming

∀F : 2N → N.∀α : 2N.∃n : N.∀β ∈ ᾱ(n).F (α) = F (β)

i.e. that all functionals from 2N to N are continuous. Since N+ is a (definable)
retract of 2N it entails continuity of all functions from N+ to N and thus in
particular CP0(N+).

Theorem 3.2. The domain realizability toposes RT(Pω) and RT(N⇀N) val-
idate CP(2N) and thus refute BD-N.

Proof: It is a well known fact that the finite type hierarchy over N in both
toposes coincides with the Kleene-Kreisel continuous functionals (see e.g. [Nor99]).
But in the continuous functionals we have the Gandy-Berger functional which
computes a modulus of continuity for functionals from 2N to N (see e.g. [Nor99])
which can be used for realizing CP(2N). Since CP(2N) entails CP0(N+) it follows
by Cor. 2.1 that both toposes refute BD-N. 2

From Prop. 4.4 of [BS03] it follows that CP0(N) entails sequential continuity
for all functions between complete separable metric spaces. Thus the models
exhibited in the previous two theorems validate sequential continuity of all func-
tions between complete separable metric spaces though by Th. 2.2 continuity
for such functions doesn’t hold in general since our models validate ¬CP(NN).
Thus, we have constructed natural models for IZF where continuity is stronger
than sequential continuity. Finding such models was the original motivation for
our investigations and refutation of BD-N was sort of a byproduct.

In Ext(K2) and the domain realizability models of Th. 3.2 the principle
CP(2N) holds8 though they refute CP(NN). Thus continuity for functions be-
tween compact complete separable metric spaces does not entail continuity for
functions between complete separable metric spaces.

4. Discussion of Related Work

In [B+05] it has been observed that one can use Beeson’s fp-realizability
interpretation for showing that BD-N is not derivable in HA and some of its
extensions. In his PhD Thesis M. Beeson has come up with a model refuting

8For Ext(K2) this follows from the fact that the finite type hierarchy over N in Ext(K2)
coincides with the continuous functionals.
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BD-N based on his fp-realizability introduced for the purpose of showing that
the Kreisel-Lacombe-Shoenfield and the Myhill-Shepherdson Theorem are not
derivable in HA + ECT0 where ECT0 is “Extended Church’s Thesis” (see e.g.
[TvD88]). In [B+05] it has been observed that using a few purely mathematical
results of H. Ishihara one can prove in HA+ECT0 that BD-N is equivalent to the
Kreisel-Lacombe-Shoenfield theorem. Thus HA + ECT0 does not prove BD-N.

It is well known (see e.g. [Bee75] that in HA+ECT0 +MP (where MP stands
for Markov’s principle) one can prove the Kreisel-Lacombe-Shoenfield theorem.
Our realizability models, however, do validate MP and are thus essentially dif-
ferent. Moreover, Beeson’s fp-realizability interpretation is based on a formal
provability predicate Pr whereas our realizability models are purely semantical
and make no reference to formal provability, i.e. syntax.

We can adapt our extensional realizability models with Kreisel’s modified
realizability (see [vOo08] for a semantical account of the latter) and thus obtain
natural syntax-free models which refute both BD-N and MP.

In recent unpublished work [Lub10] R. Lubarsky has constructed a topolog-
ical model of IZF which refutes BD-N in a very strong sense. He considers a
topological space T whose underlying set are the bounded sequences in NN. In
Sh(T ) he exhibits a subset B of N which is pseudobounded but not bounded in
the internal logic of Sh(T ). For models based on realizability it is not known
whether such a set B exists. They rather fail to validate BD-N due to a lack of
uniformity, i.e. one cannot compute in a uniform way a bound for a set from a
realizer for its pseudoboundedness. However, in contrast to our realizability
models Lubarsky’s topological model does not validate number choice which is
usually considered as an intrinsic part of Bishop style constructive mathematics.

References

[BS03] A. Bauer, A. Simpson Two Constructive Embedding-Extension Theo-
rems with Applications to Continuity Principles and to Banach-Mazur
Computability . Mathematical Logic Quarterly, 50(4-5):351-369, 2004.

[Bee75] M. Beeson The Nonderivability in Intuitionistic Formal Systems of
Theorems on the Continuity of Effective Operators. Journal of Sym-
bolic Logic, 40(3):321-346, 1975.

[Bee85] M. Beeson Foundations of Constructive Mathematics Springer, 1985.

[B+05] D. Bridges, H. Ishihara, P. Schuster, L. Vı̂ţă Strong continuity im-
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