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1 Introduction

If asked why one should be interested in constructive (intuitionistic) logic besides
saying that it is a nice subject that makes a lot of fun I could give the following
two more serious reasons

(1) from proofs in constructive logic one may extract algorithms, bounds etc.1

(2) weakening the logic allows one to postulate axioms that are classically
false, e.g. all functions are computable or all functions are continuous.

The issues raised in (1) are typically dealt with by proof theory whereas those
raised in (2) are best treated via the methods of Categorical Logic and that’s
what these lectures are about: in other words the model theory of constructive
logic.

However, its flavour will be very different from classical model theory. The
essential difference is that for the purposes of constructive logic we can not re-
strict ourselves to 2-valued models (as 2-valued models automatically validate
the principle of excluded middle). Notice that even for classical logic and set the-
ory non-2-valued boolean models are important as e.g. in forcing models needed
for obtaining independence results in set theory. In any case 2-valuedness is an
illusion of naive Platonism as any reasonable theory T (containing a modicum of
arithmetic) will leave some propositions undecided (e.g. the Lindenbaum-Tarski
algebra of Peano arithmetic or ZF(C) is a highly non-trivial infinite boolean
algebra).

Non-2-valued models of propositional logic have already a long tradition.
We recall the basic notions here as they form the basic building blocks for an
extension to first and higher order predicate logic. The basic idea of algebraic
semantics is to view the collection of propositions (i.e. what sentences denote)
as a quasiorder or partial order (A,≤) where the elements of A are thought of
as propositions and a ≤ b as “a entails b”. Of course, it is not an arbitrary

1though to some extent this is also possible for classical logic!



poset as it has to satisfy certain structural requirements needed for interpreting
the propositional connectives. The true proposition > will be identified with
the greatest element of A and the false proposition ⊥ will be identified with the
least element of A. Conjunction and disjunction correspond to binary infima
and suprema in A which due to this analogy are denoted as ∧ and ∨ respectively.
Constructive implication is given by Heyting implication requiring that for all
a, b ∈ A there is an element a→ b in A such that

c ≤ a→ b iff c ∧ a ≤ b

for all c ∈ A. Notice that a → b is determined uniquely by this property as
the greatest element of {c ∈ A | c ∧ a ≤ b}. We call (A,≤) a Heyting algebra
or Heyting lattice iff (A,≤) is a lattice and a → b exists for all a, b ∈ A. In
a Heyting lattice negation is defined as ¬a = a → ⊥. A boolean lattice is
a Heyting lattice A where negation is involutive, i.e. ¬¬a ≤ a for all a ∈ A.2

Typical examples of (complete) Heyting lattices are those of the form (O(X),⊆)
where X is a topological space and O(X) stands for the collection of its open
sets. Notice that U → V is given as the union of all W with W ∩ U ⊆ V . The
traditional notion of Kripke models now appears as a particular instance: let P
be a poset and consider A = dcl(P ), the set of downward closed subsets of P
ordered by set inclusion. In this case Heyting implication is given by

x ∈ A→ B iff ∀y ≤ x. y ∈ A⇒ y ∈ B

which to check we leave as an exercise to the inclined reader.
One advantage of Heyting/boolean lattices is that they subsume “term mod-

els” obtained by factorizing syntax modulo provable entailment (traditionally
called Lindenbaum-Tarski algebras). Thus, w.r.t. general Heyting or boolean
algebras completeness is a triviality. Notice that we don’t consider this general-
ity as a great achievement. It rather happens accidently as there is no natural
way to tell “interesting” models form purely syntactic ones. Of course, mathe-
matically the non-term models are more interesting as the pay you more than
you have invested (syntactically).

2 Hyperdoctrines

The aim of this section is to solve the proportional equation

prop. logic : Heyt./bool. lattices = first/higher order predicate logic : ?

The problem we have to face is that in predicate logic we can’t simply deal with
one Heyting (or boolean algebra) but for every context Γ ≡ x1 : A1, . . . , xn : An
we have to consider the propositions in context Γ. Usually, the context of object
variables is not made explicit but we do for the moment for the sake of clarity.
We write Γ | ϕ if ϕ is a proposition whose free variables are all declared in

2this suffices as a ≤ ¬¬a holds in every Heyting lattice.
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Γ and we write Γ | ψ ` ϕ to state that (in context Γ) proposition ψ entails
proposition ϕ. Evidently, for fixed Γ the collection of Γ | ϕ modulo `Γ (where
ψ `Γ ϕ stands for Γ | ψ ` ϕ) forms a (quasi-)order P(Γ). Of course, the various
P(Γ) are not at all unrelated: for every substitution σ : ∆ → Γ (as given by a
tuple 〈t1, . . . , tn〉 with ∆ | ti : Ai) we have ∆ | ψ[σ] ` ϕ[σ] whenever Γ | ψ ` ϕ.
Moreover, substitution preserves the propositional connectives and, therefore, a
substitution σ : ∆ → Γ induces a map P(σ) = σ∗ : P(Γ) → P(∆) by sending
(the equivalence class of) ϕ to (the equivalence class of) ϕ[σ]. Thus, writing C
for the category of contexts and substitutions we have

P : Cop → pHa

where pHa is the category of pre-Heyting lattices and their morphisms.
Now let us turn to quantification. The crucial rule for universal quantifica-

tion is
ψ ` ϕ iff ψ ` ∀x:A.ϕ

where, most importantly, the variable x must not appear freely in ψ. In our
notation making contexts explicit this reads as follows

Γ, x : A | ψ ` ϕ iff Γ | ψ ` ∀x:A.ϕ

where Γ, x : A | ϕ and Γ | ψ (the latter bringing the variable condition to the
point!). Even more pedantically we could write

Γ, x : A | ψ[π] ` ϕ iff Γ | ψ ` ∀x:A.ϕ

from which we see that ∀x:A. is right adjoint to [π]. Similarly, one can convince
oneself that ∃x:A. is left adjoint to [π]. These observations made by F. W. Law-
vere at the end of the 1960ies were his motivation to define hyperdoctrines as a
categorical notion of model for predicate logic.

Definition 2.1 (posetal hyperdoctrine)
A (posetal) hyperdoctrine is a functor P : Cop → pHa such that C has finite
limits and for every f : J → I in C the functor f∗ = P(f) : P(I) → P(J) has
both adjoints, i.e.

∃f a f∗ a ∀f ,

satisfying the so-called Beck-Chevalley condition (BC) requiring that for every
pullback diagram in C

·
q- K

J

p
?

f
- I

g
?
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and every ϕ ∈ P(J) it holds that the canonical morphism g∗∀fϕ → ∀qp∗ϕ
(obtained by transposing q∗g∗∀fϕ ∼= p∗f∗∀fϕ

p∗ε→ p∗ϕ where ε : f∗∀fϕ → ϕ is
the counit of f∗ a ∀f at ϕ) is an isomorphism and similarly for ∃f .3

A posetal hyperdoctrine P : Cop → pHa is called a tripos iff for every object
I in C there are P (I) in C and ∈I in P(I×P (I)) such that for every ρ ∈ P(I×J)
there is a morphism χ = χρ : J → P (I) with ρ equivalent to P(I×χ)(∈I) in
P(I×J). ♦

The purpose of BC is to guarantee that substitution commutes with quan-
tification in the appropriate way. Consider for example the pullback

∆×A
σ × idA- Γ×A

(I)

∆

π
?

σ
- Γ

π
?

in which case BC states the equivalence of (∀x:A.ϕ)[σ] and ∀x:A.ϕ[σ×idA].
Remarkably an equality predicate on I ∈ C can be obtained as

EqI = ∃δ>

where δ = δI = 〈idI , idI〉. Thus EqI is characterised by EqI ≤I×I ρ iff > ≤I
δ∗ρ. On the syntactical level this amounts to the proof rule

Eq(x, y) ` R(x, y) iff ` R(x, x)

from which it is an easy exercise to derive reflexivity and substitutivity of Eq .
Of course, this should also hold in presence of some parameters as given by a
context Γ amounting on the semantic side to the requirement that left adjoints
exists to substitution along Γ×δA and that these satisfy BC for pullbacks of the
form

∆×A
σ ×A - Γ×A

(II)

∆×A×A

∆× δA
?

σ ×A×A
- Γ×A×A

Γ× δA
?

Thus, for the sake of interpreting first order logic (FOL) in a posetal hyper-
doctrines it would suffice to require adjoints only along projections and mor-
phisms of the form Γ× δ and BC only for pullbacks of the form (I) and (II) as
considered above. Thus, in our definition of hyperdoctrine we have required a

3more explicitly, we require that the canonical map ∃qp∗ϕ→ g∗∃fϕ (obtained as transpose

of p∗ϕ
p∗η→ p∗f∗∃fϕ ∼= q∗g∗∃fϕ where η : ϕ → f∗∃fϕ is the unit of ∃f a f∗ at ϕ) is an

isomorphism
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bit more than needed for interpreting predicate logic. However, in most inter-
esting examples (not including term models) we do have quantification along
arbitrary morphisms in the base and BC for all pullbacks in the base.

Just as posetal hyperdoctrines provide a notion of model for FOL triposes
provide a notion of model for higher order logic (HOL) as they allow one to
quantify over P (I), the type of predicates on I. We leave it as an exercise to
show that in triposes the equality predicate EqI(i, j) is equivalent to Leibniz
equality ∀P : P (I). (i∈IP )→ (j∈IP ). Although triposes allow one to interpret
the comprehension schema of HOL they do not in general validate extensionality
for predicates. The reason is that different morphism χ1, χ2 : J → P (I) may
induce equivalent predicates (I×χ1)∗ ∈I and (I×χ2)∗ ∈I in P(I×J) (as we shall
see later). Notice that if the base category C of a hyperdoctrine P is cartesian
closed then for being a tripos it suffices4 to postulate the existence of a so-called
generic predicate Tr ∈ P(Ω) satisfying the requirement that for all ϕ ∈ P(I)
there exists a morphism χ = χϕ : I → Ω such that ϕ is equivalent to χ∗Tr in
P(I). As most triposes considered subsequently will be based on Set (which is
cartesian closed) the existence of a generic (truth) predicate will suffice.

Triposes were introduced under the name formal topos by J. Bénabou already
beginning of the 1970ies and later reinvented by Hyland, Johnstone and Pitts
around 1980.

Finally notice that one may also consider non-posetal hyperdoctrines where
not all proofs of entailments between predicates are identified. Then one has to
consider so-called pseudo-functors from Cop to the category of, say, (bi)cartesian
closed categories. To make things precise would require some knowledge about
fibred categories. However, as for the purpose of the current course we are
not interested in modeling proofs and their equality it will be sufficient to con-
sider only posetal hyperdoctrines which just capture the notion of constructive
validity.

Now it’s time to come to examples.
As (it should have become) evident from our motivation of hyperdoctrines

factorizing syntax modulo provable equivalence gives rise to (almost) hyperdoc-
trines where existence of quantifiers is guaranteed only along projections and
morphisms of the form Γ× δ and BC is only required for pullbacks of the form
(I) and (II).

The tripos corresponding to the usual set-theoretic semantics of HOL (with
predicate types interpreted as full power sets) is provided by P : Setop → pHa
sending I to the powerset P(I) and f : J → I to the map P(f) = f−1 : P(I)→
P(J) : A 7→ f−1[A] = {j ∈ J | f(j) ∈ A}.

More interesting, however, are triposes of Heyting-valued sets and realizabil-
ity triposes which will be discussed next.

4from a generic predicate Tr ∈ P(Ω) one can define P (I) as ΩI and ∈I as ε∗Tr where
ε : ΩI × I → Ω is the evaluation map in C
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Heyting-valued Sets

Let A be a complete Heyting algebra, i.e. a Heyting algebra having arbitrary
suprema (and infima). Then we may define a Set-based tripos P = PA by
assigning to every set I the (complete) Heyting algebra PA(I) = AI (ordered
pointwise) and to every f : J → I in Set the function PA(f) : P(I) → P(J) :
ϕ 7→ ϕ ◦ f which, obviously, preserves the Heyting algebra structure (and all
suprema and infima as well).

Quantification along f : J → I is given by

∃f (ϕ)(i) =
∨
j∈J

Eq(i, f(j)) ∧ ϕ(j)

and
∀f (ϕ)(i) =

∧
j∈J

Eq(i, f(j))→ ϕ(j)

where Eq(x, y) =
∨
{> | x = y}.5 We verify that ψ `I ∀f (ϕ) if and only if

f∗ψ `J ϕ. We have
ψ `I ∀f (ϕ)

iff
for all i ∈ I, j ∈ J it holds that ψ(i) ` Eq(i, f(j))→ ϕ(j)

which due to the definition of Eq is equivalent to

for all j ∈ J it holds that ψ(f(j)) ≤ ϕ(j)

i.e. iff
f∗ψ ≤ ϕ

as required. We leave it as an exercise to the reader to verify that these quan-
tifiers do satisfy BC.

Finally, a generic predicate for PA is given by Ω = A and Tr(a) = a thus
establishing the claim that PA actually is a tripos.

Realizability Triposes

In this section we will construct triposes from an arbitrary partial combinatory
algebra (pca) A.6 Such a pca is thought of as a model of untyped computation,
i.e. the elements of A are considered as (sort of possibly abstract) algorithms.

5Notice that, actually, it holds that ∃δ(>)(i1, i2) = Eq(i1, i2) as suggested by notation.
6Recall that a pca is given by a set (also called A) together with a binary partial operation

· on it such that there exists k, s ∈ A satisfying

k·x·y = x s·x·y ↓ s·x·y·z ' x·y·(y·z)

for all x, y, z ∈ A. Typical examples of pcas are natural numbers with Kleene application
(n·m = {n}(m)) or models of untyped λ-calculus. As in untyped λ-calulus in pca’s one can
encode pairing, projections, natural numbers and all partial recursive functions on them of
which fact we will make essential use in the sequel.
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The ensuing realizability tripos PA : Setop → pHa will be constructed as fol-
lows: for every set I we define PA(I) as the set P(A)I of all functions from I
to the powerset of A (pre-)ordered as follows

ϕ ≤I ψ iff ∃e ∈ A.∀i ∈ I.∀a ∈ ϕ(i). e·a ↓ ∧ e·a ∈ ψ(i)

i.e. ϕ entails ψ (over I) iff there is an algorithm e that uniformly in i sends
realizers (i.e. elements) of ϕ(i) to realizers of ψ(i).

Due to the coding capacities of pca’s we can define propositional connectives
on the set Ω = P(A) of propositions as follows

⊥ = ∅ > = A

A→ B = {e ∈ A | ∀a ∈ A. a ∈ A⇒ e·a ↓ ∧ e·a ∈ B}

A ∧B = {〈a, b〉 | a ∈ A, b ∈ B}

A ∨B = A+B =
(
{0}×A

)
∪
(
{1}×B

)
which in a sense can be understood as an “implementation” of the Brouwer-
Heyting-Kolmogoroff interpretation of constructive logic where a proposition is
identified with the collection of its “proofs”, here more neutrally referred to as
realizers.

Now we come to quantification. For π : I×J → I and ϕ ∈ PA(I×J)
existential and universal quantification along π are given by

∃π(ϕ)(i) =
⋃
j∈J

ϕ(i, j) and ∀π(ϕ)(i) =
⋂
j∈J

ϕ(i, j)

respectively. For constructing quantifiers along along arbitrary maps we first
have to introduce an equality predicate

EqI(i1, i2) = {a ∈ A | i1 = i2}

for every set I. Now for f : J → I in Set quantification along f is given by

∃f (ϕ)(i) =
⋃
j∈J

EqI(i, f(j))∧ϕ(j) and ∀f (ϕ)(i) =
⋂
j∈J

Eq(i, f(j))→ ϕ(j)

respectively. Showing hat these are actually left and right adjoints to f∗, respec-
tively, and satisfy BC for arbitrary pullbacks in the base we leave as a lengthy,
but straightforward exercise to the inclined reader.

For seeing that PA is a tripos put Ω = P(A) and Tr = idΩ. The latter is a
generic predicate as for every ϕ ∈ PA(I) = P(A)I we have ϕ∗Tr = idΩ ◦ϕ = ϕ.

The following exercise might be instructive: show that for every ϕ ∈ PA(I×J)
and ψ ∈ PA(I) the predicates

(
∀j:J.ϕ(i, j)

)
∨ ψ(i) and ∀j:J.

(
ϕ(i, j) ∨ ψ(i)

)
are

equivalent predicates over I provided J is not empty.7

7The reason is that in Set for non-empty I we have
⋂
i∈I(B + Ai) = B +

⋂
i∈I Ai where

+ stands for disjoint union.
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3 Elementary Toposes

One might have got the impression that triposes are fairly complicated struc-
tures. Actually, there is something much simpler, namely elementary toposes.8

We shall see soon that every topos can be considered as a hyperdoctrine in a
canonical way and that with any tripos P : Cop → pHa one may associate an
elementary topos C[P]. Thus, elementary toposes can be considered as abstrac-
tions of triposes.

Probably the simplest definition of an elementary topos is the following one.

Definition 3.1 (Elementary Topos)
An (elementary) topos is a category E with finite limits, exponentials and a
subobject classifier > : 1→ Ω. ♦

Recall that an exponential of B by A is given by an object BA together with
an evaluation map ev : BA × A → B such that for every f : C × A → B there
exists a unique map g : C → BA, denoted as λ(f), such that ev ◦ (C × g) = f ,
i.e.

BA BA ×A
ev- B

C

g
6
.........

C ×A

C × g 6

f

-

and that a subobject classifier is a map> : 1→ Ω such that for every mono(morphism)
m : P � A there exists a unique map χ = χm : A→ Ω (called classifying map
for m) such that

P - 1

A

m
?

?

χm
- Ω

>
?

is a pullback.
Notice that exponentials are uniquely determined up to isomorphism by the

requirement that
E(C×A,B) ∼= E(C,BA)

naturally in C. Similarly, one can see that subobject classifiers are determined
uniquely up to isomorphism by the requirement that

SubE(A) ∼= E(A,Ω)

naturally in A where SubE : Eop → PoSet is the functor sending A ∈ E to the
poset SubE(A) of subobjects of A (as given by equivalence classes of monos into
A) and for f : B → A the mapping SubE(f) sends (the equivalence class of)

8introduced by F. W. Lawvere and M. Tierney in 1969-70
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m to (the equivalence class of) f∗m, i.e. the pullback of m along f as in the
diagram

f∗P - P

B

f∗m
?

?

f
- A

m
?

?

Using exponentials together with the subobject classifier we can define now
predicate types P (A) = ΩA and an “element relation” between A and P (A) by
taking the following pullback

∈A - 1

A×P (A)
?

?

ev ◦ tw
- Ω

>
?

?

where the bottom map is twisting, i.e. tw = 〈π2, π1〉, followed by the evaluation
map ev : P (A)×A→ Ω. One readily checks that for every r : R� A×B there
exists a unique χr : B → P (A) such that

R - ∈A

A×B

r
?

?

A× χr
- A× P (A)

?

?

Actually, one may axiomatize toposes in terms of power objects P (A) and the
element relations ∈A by requiring for it the universal property just described.

Thus, more abstractly, one may define toposes as categories E with finite
limits such that for all objects A of E we have

SubE(A×B) ∼= E(B,P (A))

naturally in B, i.e. that the presheaf SubE(A×−) is representable for all A.
In any case the definition of elementary topos is surprisingly simple and,

more importantly, absolutely syntax-free. It might come as a surprise that
nevertheless these axioms imply sufficient structure for interpreting constructive
higher order logic.

We now sketch a proof why this actually is the case.
Conjunction on Ω is given as the classifying map for the subobject 〈>,>〉 :

1 � Ω×Ω as exhibited in the diagram

1 - 1

Ω×Ω

〈>,>〉
?

?

∧
- Ω

>
?

?

9



Logical equivalence is given as the classifying map for the subobject δΩ =
〈idΩ, idΩ〉 : Ω→ Ω×Ω as in the diagram

Ω - 1

Ω×Ω

δΩ
?

?

↔
- Ω

>
?

?

Notice that ↔ is the equality predicate on Ω which for arbitrary objects A is
constructed similarly, namely as the classifying map for δA. Now from ↔ we
can define implication →: Ω×Ω → Ω as9 the composite ↔ ◦ 〈∧, π1〉. Finally,
universal quantification over A is provided by the classifying map ∀A : ΩA → Ω
for the subobject 1 → ΩA obtained as the exponential transpose of > ◦ π1 :
1×A→ Ω.

We suggest it as a lengthy, but straightforward exercise to show that the
gadgets just defined are actually behaving as expected. If you need any hints
I recommend to look at the respective chapter in [MLM]. Typically, what one
has to show is that

• for f, g : X → A it holds that = ◦ 〈f, g〉 factors through > : 1 � Ω iff
f = g

• if p, q : A→ Ω and a : X → A then→ ◦〈p, q〉◦a factors through > : 1 � Ω
iff for all f : Y → X if p ◦ a ◦ f factors through > then so does g ◦ a ◦ f

• for arbitrary r : B×A → Ω and b : X → B it holds that ∀A ◦ λ(r) ◦ b
factors through > iff r ◦ (b×A) factors through >

and a few more other things like that. Having done this one may define ⊥,
disjunction and existential quantification à la Prawitz, i.e. ⊥ = ∀p:Ω.p, p ∨ q =
∀r:Ω.(p→ r) ∧ (q → r)→ r and ∃x:A.p(x) = ∀r:Ω.(∀x:A.p(x)→ r)→ r.

After having performed this lengthy exercise it is evident that for every topos
E the subobject functor SubE : Eop → PoSet is a tripos (over E).

Now some examples are more than due.
Of course, the category Set of sets and functions is trivially a topos. But

also for small categories C the category Ĉ = SetC
op

of Set-valued functors on
C, the so-called presheaves over C, are typical examples of toposes. In presheaf
toposes limits (and also colimits) exist and are constructed pointwise, i.e. they
are inherited from Set. Exponentials and subobject classifiers are constructed
following the advice of the Yoneda lemma as follows. If BA exists then by
Yoneda we know that

BA(I) ∼= Ĉ(YC(I), BA) ∼= Ĉ(YC(I)×A,B))

naturally in I ∈ C thus suggesting us how BA has to look like provided it exists.
Then proving the existence of BA simply amounts to checking that putting

BA(I) = Ĉ(YC(I)×A,B) and BA(α) = Ĉ(YC(α)×A,B)

9the idea is that x ≤ y iff x ∧ y = x
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actually does the job.10 Similarly, the subobject classifier Ω has to satisfy
according to Yoneda that

Ω(I) ∼= Ĉ(YC(I),Ω) ∼= SubĈ(YC(I))

naturally in I ∈ C. Thus Ω(I) consists of all subobjects of YC(I), i.e. so-called
sieves which are defined as collections of morphisms in C with codomain I and
closed under composition (with arbitary morphisms) from the right. As SubĈ
sends f : B → A to the pullback functor f∗ : SubĈ(B) → SubĈ(A) it is clear
that for α : J → I we have Ω(α) = YC(α)∗ which in terms of sieves amounts to

Ω(α)(S) = {β | α ◦ β ∈ S}

The map > : 1 → Ω simply selects for all I ∈ C the maximal sieve on I
consisting of all morphisms to I. One readily checks that for m : P � A in Ĉ
its classifying morphism χ : A→ Ω is given by

χI(a) = {α : J → I | A(α)(a) ∈ P (J)}

and we leave it as an exercise to show that χ is unique with the property
m ∼= χ∗>.

One could say a lot more about presheaf toposes as they encompass a lot of
mathematical structures occuring “in nature” such as monoid and group actions
(including dynamical systems), graphs, trees etc. (see [LS]).

We just mention that there is an important wider class of toposes than merely
presheaf toposes, namely the so-called Grothendieck toposes, which appear as
localizations of presheaf toposes, i.e. full subcategories E of some presheaf topos
Ĉ such that the inclusion functor i : E ↪→ Ĉ has a left adjoint a which preserves
finite limits. Such an E can be described as the category of sheaves over the
site (C,J ) where a sieve of I ∈ C is a J –cover if the so-called sheafification
functor a sends the inclusion S ↪→ YC(I) to an isomorpism. More abstractly,
Grothendieck toposes can be characterised as those elementary toposes E which
have small sums and a small set of generators11. Toposes of Heyting-valued sets
are precisely those Grothendieck toposes E which are localic in the sense that
the subobjects of 1E form a small generating family.

But coming back to our main thread I will next show how every tripos
P : Cop → pHa induces an associated topos C[P]. Applying this construction
to the triposes PA and PA will give rise to the topos of A-valued sets and the
realizability topos over A, respectively.

From Triposes to Toposes

Let P : Cop → pHa be a tripos. Then the topos C[P] associated with P is
constructed as follows.12

10The evaluation map ev : BA×A→ B is given as evI(ϕ, a) = ϕI(idI , a) and we leave it as
an exercise to construct λ-abstraction.

11i.e. there exists a family of objects (Gi)i∈I such that for all distinct f, g : X → Y in E
there is a map h : Gi → X with f ◦ h 6= g ◦ h

12This construction is due to A. M.Pitts from his PhD Thesis in 1981.
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The objects of C[P] are pairs X = (|X|,∼X) where |X| is an object of C and
∼X ∈ P(|X|×|X|), i.e. a binary predicate on X in the sense of P, satisfying the
following conditions

(symm) x1 ∼X x2 ` x2 ∼X x1

(trans) x1 ∼X x2 ∧ x2 ∼X x3 ` x1 ∼X x3

when interpreted in P (where the xi range over |X|). In the following let us
write EX(x) as an abbreviation for x ∼X x (read “x exists”). Morphism from
X to Y in C[P] are defined as predicates F ∈ P(|X|×|Y |) modulo (logical)
equivalence satisfying the following conditions

(strict) F (x, y) ` EX(x) ∧ EY (y)

(congr) x ∼X x′ ∧ y ∼Y y′ ∧ F (x, y) ` F (x′, y′)

(sv) F (x, y) ∧ F (x, y′) ` y ∼Y y′

(tot) EX(x) ` ∃y:|Y |.F (x, y)

where x, x′ range over |X| and y, y′ range over |Y |.13 The identity morphism
on X is given by ∼X and if F and G represent morphism from X to Y and
from Y to Z, respectively, then their composite is represented by the predicate
∃y:|Y |.F (x, y) ∧ G(y, z) in P(|X|×|Z|). One easily checks that this defines a
category (using condition (congr) all the time).

The category C[P] has finite products which are constructed as follows: for
objects X,Y in C[P] their product X×Y is given by |X×Y | = |X|×|Y | and
〈x, y〉 ∼X×Y 〈x′, y′〉 ≡ x ∼X x′ ∧ y ∼Y y′ and first and second projection are
given by P1(z, x) ≡ π1(z) ∼X x and P2(z, y) ≡ π2(z) ∼Y y where π1 and π2 are
the projections in C.

Subobjects of X in C[P] are given by predicates A ∈ P(|X|) satisfying the
conditions

A(x) ` EX(x) and A(x) ∧ x ∼X x′ ` A(x′)

with which one may associate the predicate X|A ∈ P(|X|×|X|) which is defined
as X|A(x1, x2) ≡ A(x1) ∧ x1 ∼X x2, the corresponding subobject is (|X|, X|A)
and its embedding into X is represented by X|A as well. If F,G ∈ P(|X|×|Y |)
represent morphism from X to Y then their equaliser is represented by the
predicate A(x) ≡ ∃y:|Y |.F (x, y) ∧G(x, y).

Now we come to the construction of power objects. Let X be an object in
C[P]. Then the underlying object of P (X) is given by P (|X|). For defining
∼P (X) we first have to define the following existence predicate

EP (X)(A) ≡
(
∀x:|X|.A(x)→ EX(x)

)
∧
(
∀x, x′:|X|.A(x) ∧ x ∼X x′ → A(x′)

)
13Notice the analogy with the usual set-theoretic explanation of a function as a total and

single valued relation! We just have added (strict) for guaranteeing that the relation holds only
for “existing” elements, we have added (congr) for guaranteeing compatibility with equality
in the sense of ∼X and ∼Y and required in (tot) definedness only for “existing” arguments.
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saying that “A represents a subobject of X”. Now the equality predicate of
P (|X|) is defined as

A ∼P (X) B ≡ EP (X)(A) ∧ EP (X)(B) ∧ ∀x:|X|.(A(x)↔ B(x))

where A(x) is a shorthand for ∈|X|(x,A) and similarly for B(x). The subobject
∈X� X×P(X) is represented by ∈|X| ∈ P(|X|×P (|X|)) as expected. It is now
a lengthy, but straightforward exercise left to the reader to show that every
subobject R� Y×X is isomorphic to (Y×χ)∗ for a unique χ : Y → P (X).14

Now the exponential Y X may be constructed as the subobject of single-
valued and total relations in P (X×Y ) either within the topos C[P] or directly
within the tripos P. If one does it directly in P then the underlying object of
Y X is P (|X|×|Y |) and R1 ∼Y X R2 takes the form

EY X (R1) ∧ EY X (R2) ∧ ∀x:|X|, y:|Y |.R1(x, y)↔ R2(x, y)

where EY X (R) is the conjunction of (the universal closures of) the conditions
(strict), (congr), (sv), (tot) in the definition of morphisms in C[P].

A partial combinatory algebra A provides some notion of untyped compu-
tation. The realizability topos RT(A) = Set[PA] can be considered as a very
organized synthesis of the world of sets and the world of algorithms as given by
A. The realizability topos RT(A) contains Set via the right adjoint ∇ : Set ↪→
RT(A) to the global sections functor Γ = RT(A)(1,−) : RT(A) → Set. More
concretely, the right adjoint ∇ sends a set I to ∇(I) = (I,EqI) and a function
f : I → J to the morphism ∇(f) : ∇(I) → ∇(J) represented by the relation
EqJ(f(i), j).

Notice further as a peculiarity that in realizability toposes the subobject
classifier Ω has just two global sections >,⊥ : 1 → Ω and thus in a sense its
logic is “2-valued”. This, however, does not mean that its logic is boolean (i.e.
that Ω ∼= 2 = 1+1) in general. For example in the effective topos, i.e. the
realizability topos over N with Kleene application (aka the 1st Kleene algebra),
for non-recursive predicates P on N it does not hold that ∀n:N.P (n) ∨ ¬P (n)
as a realizer for this proposition would give rise to a decision prodedure for P .
Actually, one can show by a similar simple (cardinality) argument that for all
non-trivial pca’sA (i.e. pca’s with more than one element) the realizability topos
RT(A) is not boolean. Thus, for nontrivial pca’s A the realizability topos RT(A)
can not be well-pointed as well-pointed toposes are boolean (and 2-valued) as
can be shown easily (see Ch. 6 of [MLM]).

14If ρ ∈ P(|Y |×|X|) represents a subobject of Y×X then its classifying map from Y to
P (X) is represented by the predicate χ ∈ P(|Y |×P (|X|)) defined as

χ(y,A) ≡ ∀x:|X|. ρ(y, x)↔ A(x) .
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4 Assemblies over Partial Combinatory Alge-
bras

For nontrivial pca’s A the realizability toposes RT(A) may look quite wild in the
sense that it is difficult to compute semantics in it. The reason essentially is that
RT(A) is not well-pointed. However, it does contain a most well-behaved full
subcategory, the category of so-called ¬¬-separated objects, i.e. those objects
A for which ∀x, y:A.¬¬x=y ⇒ x=y holds in RT(A). Equivalently, one may
characterise ¬¬-separated objects as subobjects of the ∇(I)’s (as A has ¬¬-
closed equality iff the unit ηA : A → ∇(Γ(A)) (for Γ a ∇) is monic). More
concretely, an object is ¬¬-separated iff it is isomorphic to an object X =
(|X|,∼X) of RT(A) where x1 ∼X x2 is inhabited iff x1 = x2. Thus, the full
subcategory Sep¬¬(RT(A)) of ¬¬-separated objects of RT(A) is equivalent to
the category Asm(A) of assemblies over A which we are going to define next.

An assembly (over A) is a pair X = (|X|, || · ||X) where |X| is a set and
|| · ||X : |X| → P(A) such that ||x||X 6= ∅ for all x ∈ |X|. We write e X x
for e ∈ ||x||X and say that e is a realizer for x. A morphism in Asm(A) from
X to Y is a function f : |X| → |Y | realizable by some e ∈ A meaning that
∀x ∈ |X|.∀a ∈ ||x||X . e·a ↓ ∧ e·a ∈ ||f(x)||Y . Obviously, the category Asm(A) is
well-pointed. One can show without pain that Asm(A) is also regular, locally
cartesian closed and has finite colimits. Moreover, it has got a generic mono
mTr : Tr � Prop where Prop = ∇(P(A)), |Tr | = P(A)\{∅}, ||A||Tr = A and
mTr is the inclusion from P(A)\{∅} into P(A). This mono mTr is generic in the
sense that for every subobject m : P � A there is a morphism χ : A → Prop
with m ∼= χ∗mTr , i.e.

P - Tr

A

m
?

?

χ
- Prop

mTr
?

?

Notice, however, that unlike in a topos χ is in most cases not uniquely deter-
mined by m.15 It can be shown that RT(A) can be obtained from Asm(A) as
its exact completion, i.e. by freely adding so-called exact16 quotients (e.g. Ω is
obtained as the quotient of Prop by logical equivalence ↔).

A further attractive feature of Asm(A) is that it contains a non-trivial small
full internal subcategory Mod(A) of so-called “modest sets” which is complete
internal to Asm(A). An assembly X is called modest iff

∀x1, x2:|X|.∀e:A. e ∈ ||x1||X ∩ ||x2||X ⇒ x1 = x2

i.e. iff every e ∈ A realizes at most one element of |X|. More generally, a
morphism a : A → X in Asm(A) is called a family of modest sets iff for all

15For example for id1 : 1→ 1 we have id1
∼= χ∗mTr if and only if χ(∗) 6= ∅.

16An exact quotient of an equivalence relation r = 〈r1, r2〉 : R � A×A is a coequalizer
q : A� Q of r1 and r2 for which (r1, r2) is a kernel pair (i.e. aRb iff q(a) = q(b) ∈ Q).
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x : 1→ X the object x∗A is a modest set, i.e. iff

∀a1, a2:|A|. a(a1) = a(a2)⇒ ∀e:A. e ∈ ||a1||A ∩ ||a2||A ⇒ a1 = a2

We write P for the collection of families of modest sets in Asm(A). One can
show that Πua ∈ P whenever a ∈ P and there is a generic family Prf → Prop
for P. This allows one to interpret the Calculus of Constructions in Asm(A)
with P providing a proof-relevant interpretation of the type of impredicative
propositions.

5 Toposes vs. Set Theory

In many books and papers on categorical logic or topos theory one often reads
that toposes provide models of “intuitionistic set theory”. In a sense that’s
right and in another sense that’s wrong. Certainly every topos with a natural
numbers object provides a model of constructive higher order arithmetic and
that’s a framework where most of mathematics can be performed. On the
other hand intuitionistic Zermelo-Fraenkel set theory (IZF) is definitely stronger
than higher order arithmetic as the former proves the consistency of the latter.
Moreover, there are mathematical theorems (like Borel determinacy etc.) which
can be proved in set theory but not in higher order arithmetic.

Thus, there arises the question whether one can strengthen the notion of
topos so that one arrives at a type theory as strong as IZF. The answer to this
question is to postulate in a topos E with natural numbers object N a so-called
universe, i.e. a collection S of maps in E such that

(1) S is stable under pullbacks along arbitrary morphisms in E , i.e. for every
pullback

B - A

J

b
?

f
- I

a
?

in E the map b is in S whenever a is in S

(2) S contains all monos in E

(3) S is closed under composition

(4) Πab is in S whenever a and b are in S

(5) there is a generic family for S, i.e. a map El : E → U in S such that for
every a : A→ I in S there is a χ : I → U with

A - E

I

a
?

χ
- U

El
?
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(6) the terminal projection N → 1 is in S

(7) the terminal projection Ω→ 1 is in S.

One should think of S as the collection of families of “small” types and El as a
universal family of small types where U is the “big” type of (codes of) small types
and El(a) is the small type associated with every a ∈ U . Necessarily families
of small types are closed under reindexing (condition (1)). Condition (2) says
that all subterminals are small types. Conditions (3) and (4) express that small
types are closed under disjoint sums and dependent products of families of small
types indexed over a small type. Conditions (6) and (7) say that N and Ω are
small types. It has been shown recently by the author that all Grothendieck
toposes and all realizability toposes do contain a universe in the above sense.

Notice that a universe in Set necessarily has strongly inaccessible cardinal-
ity as it is (a) closed under powersets and (b) regular (as it is closed under
disjoint unions of families whose index set is in the universe). In a sense a uni-
verse as above is something like a “non-set-theoretic” version of a Grothendieck
universe.17

Employing methods of [JM] from a universe S in a topos E with natural
numbers object one can construct18 a so-called initial ZF-algebra playing the
role of the cumulative hierarchy in ordinary set theory.

References

[Jac] B. Jacobs Categorical Logic and Type Theory North Holland (1999).

[Joh] Peter T. Johnstone Sketches of an Elephant. A Compendium of Topos
Theory 2 vols., Oxford Univ. Press (2002).

[JM] A. Joyal, I. Moerdijk Algebraic Set Theory Cambridge University Press
(1995).

[LS] F. W. Lawvere, S. H. Schanuel Conceptual Mathematics. A First Intro-
duction to Categories. Cambridge Univ. Press (1997).

[MLM] S. MacLane, I. Moerdijk Sheaves in Geometry and Logic. A First In-
troduction to Topos Theory Springer (1992).

[Str] T. Streicher Semantics of Type Theory Birkhäuser (1991).
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