
Universality Results for
Models in Locally Boolean Domains

Tobias Löw and Thomas Streicher

TU Darmstadt, Schloßgartenstraße 7, D-64289 Darmstadt

Abstract. In [6] J. Laird has shown that an infinitary sequential exten-
sion of PCF has a fully abstract model in his category of locally boolean
domains (introduced in [8]). In this paper we introduce an extension
SPCF∞ of his language by recursive types and show that it is universal
for its model in locally boolean domains.
Finally we consider an infinitary target language CPS∞ for (the) CPS
translation (of [16]) and show that it is universal for a model in locally
boolean domains which is constructed like Dana Scott’s D∞ where D =
{⊥,>}.

1 Introduction

In [4] Cartwright, Curien and Felleisen have shown that for SPCF, an extension
of PCF with error elements and a catch construct, one can construct extensional
fully abstract models whose induced theory in the finitary case (i.e. over base
type boolean) is still decidable and thus much simpler than the fully abstract
models for PCF (see [1, 5, 13]) as demonstrated by Loader’s result [9]. The model
of [4] consists of error-propagating sequential algorithms between concrete data
structures (with errors). About a decade later in [8] J. Laird has arrived at
a reformulation of this model in terms of a category LBD of locally boolean
domains (lbds) and sequential maps between them.

In the current paper we show that in LBD one can interpret an infinitary
variant SPCF∞ of the language SPCF of [4]. Roughly speaking, the language
SPCF∞ is an extension of simply typed λ-calculus by countable sums and prod-
ucts, error elements > for each type, a control construct catch and recursive
types. For SPCF∞ without recursive types it has been shown in [6] that the
LBD model is fully abstract, i.e. that all finite elements arise as denotations
of programs. We show that actually all elements of (possibly recursive) SPCF∞
types can be denotes by SPCF∞ terms, i.e. that SPCF∞ is universal for its LBD
model. In the proof we first show that every SPCF∞ type can be obtained as an
SPCF∞ definable retract of the first order type U = N→N (adapting an anal-
ogous result in [10] for ordinary sequential algorithms without error elements)
and then conclude by observing that every element of U is (trivially) SPCF∞
definable.

In [16] it has been observed that 0∞, i.e. Scott’s D∞ with D = 0 = {⊥,>},
can be obtained as bifree solution of D = [Dω→0]. Since solutions of recursive

2

type equations are available in LBD (see section 2) we may consider also the
bifree solution of the equation for D in LBD. Canonically associated with this
type equation is the language CPS∞ whose terms are given by the grammar

M ::= x | λ~x.M〈 ~M〉 | λ~x.>

where ~x ranges over infinite lists of pairwise disjoint variables and ~M over infinite
lists of terms. Notice that CPS∞ is more expressive than (untyped) λ-calculus
with an error element > in the respect that one may apply a term to an infinite
list of arguments. Consider e.g. the term λ~x.x0〈~⊥〉 whose interpretation retracts
D to 0 (i.e. sends > to > and everything else to ⊥) whereas this retraction is not
expressible in λ-calculus with a constant >. We show that CPS∞ is universal for
its model in D. For this purpose we proceed as follows.

We first observe that the finite elements of D all arise from simply typed
λ-calculus over 0. Since the latter is universal for its LBD model (as shown in
[6]) and all retractions of D to finite types are CPS∞ definable it follows that all
finite elements of D are definable in CPS∞. Then borrowing an idea from [7] we
show that the supremum of stably bounded elements of D is CPS∞ definable.
Using this we show that the supremum of every chain of finite elements increasing
w.r.t. ≤s is CPS∞ and thus every element of D is CPS∞ definable as well.

Although interpretation of CPS∞ in D is surjective it happens that inter-
pretation in D may identify terms with different infinite normal form, i.e. the
interpretation is not faithful. Finally, we discuss a way how this shortcoming can
be avoided, namely to extend CPS∞ with a parallel construct ‖ and refining the
observation type 0 to 0̃ ∼= List(0̃). This amounts to a “qualitative” reformulation
of a “quantitative” method introduced by F. Maurel in his Thesis [12].

2 Locally Boolean Domains

This section contains a short introduction to the theory of lbds and sequential
maps (cf. [8]).

Definition 1. A locally boolean order (lbo) is a triple A = (|A|,v,¬) where
(A,v) is a partial order and ¬ : |A| → |A| is antitonic and an involution (i.e.
x v y ⇒ ¬y v ¬x and ¬¬x = x for all x, y ∈ |A|) such that

(1) for every x ∈ A the set {x,¬x} has a least upper bound x> = x t ¬x (and,
therefore, also a greatest lower bound x⊥ = ¬(x>) = x u ¬x)

(2) whenever x v y> and y v x> (notation x ↑ y) then {x, y} has a supremum
x t y and an infimum x u y.

A is complete if (|A|,v) is a cpo, i.e. every directed subset X has a supremum⊔
X. A is pointed if it has a least element ⊥ (and thus also a greatest element

> = ¬⊥). �

We write x ↓ y as an abbreviation for ¬x ↑ ¬y, and x l y for x ↑ y and
x ↓ y. Notice that x l y iff x⊥ = y⊥ iff x> = y>. A subset X ⊆ A is called

3

stably coherent (notation ↑X) iff x ↑ y for all x, y ∈ X. Analogously, X is called
costably coherent (notation ↓X) iff x ↓ y for all x, y ∈ X. Finally, X is called
bistably coherent (notation lX) iff ↑X and ↓X.

Definition 2. For a lbo A and x, y ∈ A we define

stable order: x ≤s y iff x v y and x ↑ y
costable order: x ≤c y iff x v y and x ↓ y (iff ¬y ≤s ¬x)
bistable order: x ≤b y iff x ≤s y and x ≤c y �

For the definition of locally boolean domains we introduce the notion of finite
and prime elements.

Definition 3. Let A be a lbo.
An element p ∈ |A| is called prime iff

∀x, y∈A. ((x ↑ y ∨ x ↓ y) ∧ p v x t y) → (p v x ∨ p v y)

We write P(A) for the set {p ∈ |A| | p is prime} and P(x) for the set {p ∈
P(A) | p ≤s x}.
An element e ∈ |A| is called finite iff the set {x ∈ A | x ≤s e} is finite. We put

F (A) := {e ∈ |A| | e is finite} and F (x) := {e ∈ F (A) | e ≤s x} .

For handling finite primes, i.e. elements that are finite and prime, we define
FP(A) := P(A) ∩ F (A) and FP(x) := P(x) ∩ F (A). �

Definition 4. A locally boolean domain (lbd) is a pointed, complete lbo A such
that for all x ∈ A

(1) x =
⊔

FP(x) and
(2) all finite primes in A are compact w.r.t. v , i.e. for all p ∈ FP(A) and

directed sets X with p v
⊔

X there is an x ∈ X with p v x. �

One can show that stably coherent subsets X of a lbd A have a supremum⊔
X which is a supremum also w.r.t. ≤s. Moreover, if X is also nonempty then

X has an infimum
d

X which is an infimum also w.r.t. ≤s. For costably coherent
subsets the dual claims hold. Further, we have the following property of maximal
bistably coherent subsets.

Lemma 5. Let A be a lbd and x ∈ A. Then [x]l := {y ∈ A | y l x} with u, t
and ¬ restricted to [x]l forms a complete atomic boolean algebra.

The following lemma is needed for showing that our definition of locally
boolean domain is equivalent with the original one given by J. Laird in [8].

Lemma 6. Let x and y be elements of a lbd A then the following are equivalent

(1) x v y
(2) ∀p∈FP(x).∃q∈FP(y). p v q
(3) ∀c∈F (x).∃d∈F (y). c v d

4

Thus A is a coherently complete dI-domain (cf. [2]) w.r.t. the stable order ≤s.

Next we define an appropriate notion of sequential map between lbds.

Definition 7. Let A and B be lbds. A sequential map from A to B is a Scott
continuous function f : (|A|,v) → (|B|,v) such that for all x l y it holds that
f(x) l f(y), f(x u y) = f(x) u f(y) and f(x t y) = f(x) t f(y). �

We denote the ensuing category of lbds and sequential maps by LBD. The
category LBD is cpo-enriched w.r.t. v and ≤s and order extensional w.r.t. v,
i.e. in particular well-pointed. In [8] J. Laird has shown that the category LBD
is equivalent to the category OSA of observably sequential algorithms which has
been introduced in [4] where it was shown that it gives rise to a fully abstract
model for the language SPCF, an extension of PCF by error elements and a
control operator catch.

The category LBD enjoys all the properties required for interpreting the
language SPCF∞ introduced subsequently in Section 3, namely that LBD is
cartesian closed, has countable products and bilifted sums and inverse limits of
ω-chains of projections. We just give the construction of these lbds, for a detailed
verification of their characterising properties see [11].

Cartesian Products. For each family of lbds (Ai)i∈I the cartesian product∏
i∈I Ai is constructed as follows: (

∏
i∈I |Ai|,v,¬) with v and ¬ defined

pointwise.
Exponentials. For lbds A, B the function space [A→B] is constructed as fol-

lows: |[A→B]| = LBD(A,B), the extensional order is defined pointwise and
negation is given by (¬f)(x) :=

⊔
{¬f(¬c) | c ∈ F (x)}.

Terminal Object. The object 1 is given by ({∗},v,¬).
Bilifted Sum. For each family of lbds (Ai)i∈I the bilifted sum

∑
i∈I Ai is con-

structed as follows: (
⋃

i∈I{i} × |Ai| ∪ {⊥,>},v,¬) with

x v y ⇔ x=⊥ ∨ y=> ∨ (∃i∈I.∃x′, y′∈Ai. x=(i, x′) ∧ y=(i, y′) ∧ x′viy
′)

and negation given by ¬⊥ = > and ¬(i, x) = (i,¬ix).
Natural Numbers. The data type N =

∑
i∈ω 1 will serve as the type of bilifted

natural numbers. More explicitly N can be described as the lbd (N∪{⊥,>},v
,¬) with x v y iff x = ⊥ or y = > or x = y, and negation is given by ¬⊥ = >
and ¬n = n for all n ∈ N.

Type of Observations. The type of observations 0 =
∑

i∈∅. More explicitly 0
can be described as the lbd ({⊥,>},v,¬) with ⊥ v > and ¬⊥ = >. Notice
that [A→0] separates points in A for any lbd A.

The exponential transpose of functions is defined as usual and since evalua-
tion is sequential it follows that the category LBD is cartesian closed.

Notice that for exponentials we cannot simply define negation of a sequential
map by (¬f)(x) = ¬f(¬x) as the following example shows that sequentiality
does not imply cocontinuity w.r.t. ≤c.

5

Example 8. Let F : [N→00] → 0 be defined recursively as

F (f) = f(0)(F (λn.f(n+1))) .

Let f = λn.id0 and fn(k) = id0 for k < n and f(k) = λn.> for k ≥ n. Obviously,
the set X := {fn |n ∈ N} is costably coherent, codirected w.r.t. ≤c and f =

d
X.

As f is a minimal solution of its defining equation we have F (f) = ⊥ and
F (fn) = > for all n. Thus, we have f(

d
X) = ⊥ whereas

d
f [X] = >, i.e. F

fails to be cocontinuous w.r.t. ≤c.

Nevertheless we always have

Lemma 9. Let f : A → B be a LBD morphism and x ∈ A. Then (¬f)(x) v
¬f(¬x)

Proof. For all c ∈ F (x) we have ¬x v ¬c, thus, f(¬x) v f(¬c) and ¬f(¬c) v
¬f(¬x). Hence, it follows that (¬f)(x) =

⊔
{¬f(¬c) | c ∈ F (x)} v ¬f(¬x).

For the construction of recursive types in LBD we have to introduce an
appropriate notion of embedding/projection pairs for lbds.

Definition 10. An embedding/projection pair (ep-pair) from X to Y in LBD
(notation (ι, π) : X → Y) is a pair of LBD morphisms ι : X → Y and π : Y →
X with π ◦ ι = idX and ι ◦ π ≤s idY .

If (ι, π) : X → Y and (ι′, π′) : Y → Z then their composition is defined
as (ι′, π′) ◦ (ι, π) = (ι′ ◦ ι, π ◦ π′). We write LBDE for the ensuing category of
embedding/projection pairs in LBD. �

Notice that this is the usual definition of ep-pair when viewing LBD as order
enriched by the stable and not by the extensional order.

Next we describe the construction of inverse limits of ω-chains of ep-pairs
in LBD. The underlying cpos are constructed as usual. However, it needs some
care to define negation appropriately (since in general projections do not preserve
negation).

Theorem 11. Given a functor A : ω → LBDE its inverse limit of the projec-
tions is given by (A∞,v,¬) where

A∞ = {x ∈
∏
n∈ω

An | xn = πn,n+1(xn+1) for all n ∈ ω}

the extensional order v is defined pointwise and

(¬x)n =
l

k≥n
πn,k(¬xk)

for all n ∈ ω.

Notice that the full subcategory of countably based lbds, i.e. lbds A where FP(A)
is countable, is closed under the above constructions as long as products and
bilifted sums are assumed as countable.

6

3 The Language SPCF∞

The language SPCF∞ is an infinitary version of SPCF as introduced in [4]. More
explicitly, it is obtained from simply typed λ-calculus by adding (countably) in-
finite sums and products, error elements, a control operator catch and recursive
types. For a detailed presentation of SPCF∞ see Table 1.

The operational semantics of SPCF∞ is given in Table 2. Notice that each
SPCF∞ term t which is not already a value has a unique decomposition into an
evaluation context E and a redex t′ with E[t′] ≡ t.

The interpretation of SPCF∞ in locally boolean domains can be found in
Table 3. The interpretation of recursive types is done as usual via inverse limits
whose existence is guaranteed by Theorem 11. One can prove adequacy of the
model like in [14, 15].

Since by definition sequential maps preserve infima and suprema of bistably
coherent arguments a sequential map from 0ω to 0 is either constant (with value
⊥ or>) or is a projection πi : 0ω → 0. For this reason there exists an isomorphism
catch : [0ω→0]

∼=→ N with

catch(f) = i iff f is i-strict, i.e. f(x) = ⊥ ⇔ πi(x) = ⊥

which will serve as interpretation of the control operator catch of SPCF∞.

4 Universality for SPCF∞

In this section we show that the first order type U = N→N is universal for the
language SPCF∞ by proving that every type is a SPCF∞ definable retract of U.
Since all elements of the lbd JUK can be defined syntactically we get universality
of SPCF∞ for its model in LBD.

Definition 12. A closed SPCF∞ type σ is called a SPCF∞ definable retract of
a SPCF∞ type τ (denoted σ�τ) iff there exist closed terms e : σ→τ and p : τ→σ
with JpK ◦ JeK = idJσK. �

Theorem 13. Every SPCF∞ type appears as SPCF∞ definable retract of the
type U := N→N.

Proof. It suffices to show that for all n ∈ ω + 1 the types

U→U Πi∈nU Σi∈nU

are SPCF∞ definable retracts of U.
The SPCF∞ programs exhibiting Πi∈nU as definable retract of U are given

in Table 5. Using this we get Σi∈nU � U since obviously Σi∈nU � U×Σi∈n1.
By currying we have U→U ∼= (U×N)→N. As U×N�U×U�U it suffices

to construct a retraction U→N�U for showing that U→U�U holds. For this
purpose we adapt an analogous result given by J. Longley in [10] for ordinary
sequential algorithms without error elements. The programs establishing the

7

retraction are given in Table 6. The function p interprets elements of U as
sequential algorithms for functionals of type U→N as described in [10]. For a
given F : U→N the element JeK(F) : N→N is a strategy / sequential algorithm
for computing F . This is achieved by computing sequentiality indices iteratively
using catch. ut

Since all sequential function from N to N can be programmed using a (count-
ably infinite) case analysis (available by the case-construct for index set ω) it
follows that

Theorem 14. The language SPCF∞ is universal for its model in LBD.

5 Universality for an infinitary untyped CPS target
language CPS∞

The interpretation of the SPCF∞ type δ := µα.(αω→0) (where for arbitrary
types σ we henceforth write σω as an abbreviation for Πi∈ωσ) is the minimal
solution of the domain equation D ∼= [Dω→0]. Obviously, we have D ∼= [D→D].
Moreover, it has been shown in [16] that D is isomorphic to 0∞, i.e. what one
obtains by performing D. Scott’s D∞ construction in LBD when instantiating
D by 0.

We now describe an untyped infinitary language CPS∞ canonically associated
with the domain equation D ∼= [Dω→0]. The precise syntax of CPS∞ is given
in Table 4. We interpret CPS∞ terms in context Γ, i.e. a set of variables, as
sequential maps from DΓ to D in the obvious way.

The language CPS∞ is an extension of pure untyped λ-calculus since applica-
tions MN can be expressed by λ~x.M〈N,~x〉 with fresh variables ~x and abstraction
λx.M by λx~y.M〈~y〉 with fresh variables ~y. Thus, CPS∞ allows for recursion and
we can define recursion combinators in the usual way.

Notice that CPS∞ is more expressive than pure untyped λ-calculus since the
latter does not contain a term semantically equivalent to

λ~x.x0〈~⊥〉

which sends >D to >D and all other elements of D to ⊥D. Since the retraction
of D to 0 is CPS∞ definable all other retractions to the finite approximations of
D (which are isomorphic to simple types over 0) are definable as well.

Lemma 15. The lbds N and U are both CPS∞ definable retract of the lbd D.

Proof. Since we can retract the lbd D to the lbd 0 and [0ω→0] ∼= N it follows
that N is a CPS∞ definable retract of D. As [D→D] is a CPS∞ definable retract
of D it follows that U = [N→N] is a CPS∞ definable retract of D. ut

Thus, we can do arithmetic within CPS∞. Natural numbers are encoded by
n ≡ λ~x.xn〈~⊥〉 and a function f :N→N by its graph, i.e. f ≡ λx~y.x〈λ~z.f(i)〈~y〉〉i∈ω.
Notice that CPS∞ allows for the implementation of an infinite case construct.

8

Universality for CPS∞ will be shown in two steps. First we argue why all
finite elements of D are CPS∞ definable. Then adapting a trick from [7] we show
that suprema of chains increasing w.r.t. ≤s are CPS∞definable, too.

Lemma 16. All finite elements of the lbd D are CPS∞ definable.

Proof. In [6] Jim Laird has shown that the language Λ>⊥, i.e. simply typed λ-
calculus over the base type {⊥,>} is universal for its model in LBD. Thus, since
all retractions of D to its finitary approximations are CPS∞ definable it follows
that all finite elements of D are CPS∞ definable. ut

Next we show that for all f : A → 0 in LBD the map f̃ : A → [0→0] with

f̃(a)(u) :=

{
u if f(a>) = ⊥0 and
f(a) otherwise

(1)

is an LBD morphism as well.

Lemma 17. If f : A → 0 is a sequential map between lbds then the function
f̃ : A → [0→0] given by (1) is sequential.

Proof. For showing monotonicity suppose a1, a2 ∈ A with a1 v a2 and u ∈ 0.
We proceed by case analysis on f(a>1).
Suppose f(a>1) = ⊥0. Thus, f̃(a1)(u) = u. If f(a>2) = ⊥0 then f̃(a2)(u) = u,
and we get f̃(a1)(u) = u = f̃(a2)(u). If f(a>2) = >0 then f̃(a2)(u) = f(a2). As
f(a>1) = ⊥0 it follows that f(¬a1) = ⊥0 and f(¬a2) = ⊥0 (because ¬a2 v ¬a1).
As >0 = f(a>2) = f(a2) t f(¬a2) it follows that f(a2) = >0 as desired.
If f(a>1) = >0 then f̃(a1)(u) = f(a1). W.l.o.g. assume f(a1) = >0. Then >0 =
f(a1) v f(a2) v f(a>2). Hence, f(a2) = >0 = f(a>2) and we get f̃(a2)(u) =
f(a2) = >0.
Next we show that f̃ is bistable. Let a1 l a2, thus (†) a>1 = a>2 = (a1 u a2)>.
If f(a>1) = f(a>2) = ⊥0 then f̃(a1) = id0 = f̃(a2). If f(a>1) = f(a>2) = >0 then
f̃(ai) = λx:0. f(ai) for i ∈ {1, 2}. Since λx:0. ⊥0 l λx:0. >0 it follows that f̃
preserves bistable coherence.
Finally we show that f̃ preserves bistably coherent suprema. If f((a1 u a2)>) =
⊥0 then f̃(a1 u a2)(u) = u = f̃(a1)(u) u f̃(a2)(u) (since f(a>1) = f(a>2) = ⊥0

by (†)). Otherwise, if f((a1 u a2)>) = >0 then f̃(a1 u a2)(u) = f(a1 u a2) =
f(a1)uf(a2) = f̃(a1)(u)u f̃(a2)(u) (since f is bistable and f(a>1) = f(a>2) = >0

by (†)).
Analogously, it follows that f̃ preserves bistably coherent suprema. ut

The following observation is useful when computing with functions of the
form f̃ .

Lemma 18. If f : A → 0 is a LBD morphism then f̃(a)(⊥0) = f(a).

9

Proof. If f(a) = ⊥0 then f̃(a)(⊥0) = ⊥0 = f(a) since ⊥ and f(a) are the only
possible values of f̃(a)(⊥0). If f(a) = >0 then f(a>) = >0 and thus f̃(a)(⊥0) =
f(a) as desired.

If f ∈ D ∼= [Dω→0] the we write f̂ for that element of D with

f̂(d, ~d) =

f̃(~d)(>0) if d 6= ⊥

f̃(~d)(⊥0) if d = ⊥

Lemma 19. For every finite f in D the element f̂ is also finite and thus CPS∞
definable.

Proof. If A is a finite lbd then for every f : A → 0 the LBD map f̃ : A → [0→0]
is also finite. This holds in particular for f in the finite type hierarchy over 0.

Since embeddings of lbds preserves finiteness of elements we conclude that
for every finite f in D the element f̂ is finite as well. Thus, by Lemma 16 the
element f̂ is CPS∞ definable. ut

Lemma 20. For f, g : A → 0 with f ≤s g it holds that g̃ = λa:A. f̃(a) ◦ g̃(a).

Proof. Suppose f ≤s g. Let a ∈ A and u ∈ 0. We have to show that g̃(a)(u) =
f̃(a)(g̃(a)(u)).
If g(a>) = ⊥0 then f(a>) = ⊥0 (since f ≤s g) and thus g̃(a)(u) = f̃(a)(g̃(a)(u)).
Thus, w.l.o.g. suppose g(a>) = >0. Then g̃(a)(u) = g(a).
If f(a) = >0 then f(a>) = >0 = g(a) and, therefore, we have f̃(a)(g̃(a)(u)) =
f(a) = >0 = g(a) = g̃(a)(u).
Now suppose f(a) = ⊥0.
If g(a) = ⊥0 then we have f̃(a)(g̃(a)(u)) = f̃(a)(g(a)) = f̃(a)(⊥0) = ⊥0 where
the last equality holds by Lemma 18.
Now suppose g(a) = >0. We proceed by case analysis on the value of f(a>). If
f(a>) = ⊥0 then f̃(a)(g̃(a)(u)) = g̃(a)(u). We show that f(a>) = >0 cannot
happen.
Suppose f(a>) = >0 holds. Then by bistability we have >0 = f(a>) = f(a) t
f(¬a) = ⊥0 t f(¬a) = f(¬a) and thus also ¬f(¬a) = ⊥0. Since f ≤s g we
have g v f>. Moreover, by Lemma 9 we have (¬f)(a) v ¬f(¬a). Thus, we have
>0 = g(a) v f>(a) = f(a)t (¬f)(a) = (¬f)(a) v ¬f(¬a) = ⊥0 which clearly is
impossible. ut

Now we are ready to prove our universality result for CPS∞.

Theorem 21. All elements of the lbd D are CPS∞ definable.

Proof. Suppose f ∈ D. Then f =
⊔

fn for some increasing (w.r.t. ≤s) chain
(fn)n∈ω of finite elements. Since by Lemma 19 all f̂n are CPS∞ definable there
exists a CPS∞ term F with JFnK = f̂n for all n ∈ ω.

10

Since recursion is available in CPS∞ one can exhibit a CPS∞ term Ψ such
that

Ψg = λx. g(0)(Ψ(λn. g(n+1))x) =
⊔
n∈ω

(g(0) ◦ · · · ◦ g(n))(⊥)

Thus, the term Mf ≡ λ~x.Ψ(λy.λz.F 〈y, z, ~x〉) denotes f since

Mf (~d) = Ψ(λy.λz.F (y, z, ~d))

=
⊔
n∈ω

((λz.F0(z, ~d)) ◦ · · · ◦ (λz.Fn(z, ~d)))(⊥)

=
⊔
n∈ω

((λz.f̂0(z, ~d)) ◦ · · · ◦ (λz.f̂n(z, ~d)))(⊥)

=
⊔
n∈ω

((λz.f̃0(~d)(z)) ◦ · · · ◦ (λz.f̃n(~d)(z)))(⊥)

=
⊔
n∈ω

(f̃0(~d) ◦ · · · ◦ f̃n(~d))(⊥)

=
⊔
n∈ω

(f̃n(~d))(⊥) (by Lemma 20)

=
⊔
n∈ω

fn(~d) (by Lemma 18)

= f(~d)

for all ~d ∈ Dω. ut

6 Faithfulness of the interpretation

In the previous section we have shown that the interpretation of closed CPS∞
terms in the lbd D is surjective. There arises the question whether the interpre-
tation is also faithful. Recall that infinite normal forms for CPS∞ are given by
the grammar

N ::= x | λ~x.> | λ~x.x〈 ~N〉

understood in a coinductive sense.

Definition 22. We call a model faithful iff for all normal forms N1, N2 if
JN1K = JN2K then N1 = N2. �

We will show that the LBD model of CPS∞ is not faithful. For a closed
CPS∞ term M consider

M∗ ≡ λ~x.x0〈⊥, λ~y.x0〈M, ~⊥〉, ~⊥〉

Lemma 23. For closed CPS∞ terms M1,M2 it follows that JM∗
1 K = JM∗

2 K.

11

Proof. We will show that for all terms M the term M∗ is semantically equivalent
to λ~x.x0〈~⊥〉, i.e. for all ~d ∈ Dω we have JM∗K(~d) = > iff d0 = >. Suppose d0 6= >.
Then d0 = ⊥ or there is an n such that d0 evaluates the n-th argument first. If
n = 1 then d0〈M, ~⊥〉 = ⊥, thus

d0〈⊥, λ~y.d0〈M, ~⊥〉, ~⊥〉 = ⊥

which is also the case if n 6= 1. ut

Suppose N1 and N2 are different infinite normal forms. Then N∗
1 and N∗

2

have different infinite normal forms and we get JN∗
1 K = JN∗

2 K by the above
consideration. Thus, the LBD model of CPS∞ is not faithful.

Lemma 24. There exist infinite normal forms N1, N2 in CPS∞ that can not be
separated.

Notice that in pure untyped λ-calculus different normal forms can always be
separated. (cf. [3])

We think that the lack of faithfulness of CPS∞ can be overcome by extending
the language by a parallel construct and refining the observation type 0 to 0′ ∼=
List(0′). The language CPS

‖
∞ associated with the domain equation D ' DN → 0′

is given by

M ::= x | λ~x.t

t ::= > | M〈 ~M〉 | L t ‖ . . . ‖ t M

the syntactic values are given by the grammar V ::= > | LV ‖ . . . ‖V M operational
semantics of CPS

‖
∞ is the operational semantics of CPS∞ extended by the rule

(λ~x.ti)〈 ~M〉 ⇓ Vi for all i ∈ {1, . . . , n}

(λ~x.L t1‖ . . . ‖tn M)〈 ~M〉 ⇓ L V1‖ . . . ‖Vn M

and the normal forms of CPS
‖
∞ are given by the grammar

N ::= x | λ~x.t

t ::= > | x〈 ~N〉 | L t‖ . . . ‖t M

understood in a coinductive sense. Notice that there is no possibility to combine
the results of a parallel computation of L t1‖ . . . ‖tn M. Hence CPS

‖
∞ does not allow

for the definition of a parallel or operator.
Obviously, separation of normal forms can be shown for an affine version of

CPS∞ by substituting the respective projections for head variables. Using the
parallel construct L . . . ‖ . . . M of CPS

‖
∞ we can substitute for a head variable quasi

simultaneously both the respective projection and the head variable itself. Since
the interpretation of CPS

‖
∞ is faithful w.r.t. the parallel construct L . . . ‖ . . . M we

get separation for CPS
‖
∞ normal forms as in the affine case. This kind of argu-

ment can be seen as as a “qualitative” reformulation of a related “quantitative”
method introduced by F. Maurel in his Thesis [12] albeit in the somewhat more
complex context of J.-Y. Girard’s Ludics.

12

References

1. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Inf. Comput., 163(2):409–470, 2000.

2. Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi. Cam-
bridge University Press, New York, NY, USA, 1998.

3. H. P. Barendregt. The Lambda Calculus - its syntax and semantics. North Holland,
1981, 1984.

4. R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract models of observably
sequential languages. Information and Computation, 111(2):297–401, 1994.

5. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I. models, observ-
ables and the full abstraction problem, ii. dialogue games and innocent strategies,
iii. a fully abstract and universal game model. Information and Computation,
163:285–408, 2000.

6. J. Laird. Bistable biorders: a sequential domain theory. Submitted, 2005.
7. J. Laird. A semantic analysis of control. PhD thesis, University of Edinburgh,

1998.
8. J. Laird. Locally boolean domains. Theoretical Computer Science, 342:132 – 148,

2005.
9. Ralph Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2):341–

364, 2001.
10. John Longley. The sequentially realizable functionals. Ann. Pure Appl. Logic,

117(1-3):1–93, 2002.
11. T. Löw. Locally Boolean Domains and Universal Models for Infinitary Sequential

Languages. PhD thesis, Technical University of Darmstadt, 2006. available from
http://www.mathematik.tu-darmstadt.de/~streicher/THESES/loew.pdf.gz or
http://elib.tu-darmstadt.de/diss/000790/.

12. F. Maurel. Un cadre quantitatif pour la Ludique. PhD thesis, Université Paris 7,
Paris, 2004.

13. Peter W. O’Hearn and Jon G. Riecke. Kripke logical relations and PCF. Informa-
tion and Computation, 120(1):107–116, 1995.

14. Andrew M. Pitts. Relational properties of domains. Information and Computation,
127(2):66–90, 1996.

15. G. D. Plotkin. Lectures on predomains and partial functions. Course notes, Center
for the Study of Language and Information, Stanford, 1985.

16. B. Reus and T. Streicher. Classical logic, continuation semantics and abstract
machines. J. Funct. Prog., 8(6):543–572, 1998.

13

Table 1. The language SPCF∞

Types: σ ::= α | σ→σ | µα.σ | Σi∈Iσ | Πi∈Iσ with I countable,
1 := Π∅, 0 := Σ∅, N := Σi∈ω1, σω := Πi∈ωσ,
n := Σi∈n1 (for all n ∈ ω+1)

Environments: Γ ≡ x1 : σ1, . . . , xn : σn for closed types σi

Terms: t ::= x | (λx : σ.t) | (tt) | 〈ti〉i∈I | pri(t) | ini(t) | case tof (ini x ⇒ ti)i∈I |
fold(t) | unfold(t) | > | catch(t)

Values v ::= (λx : σ.t) | 〈ti〉i∈I | ini(t) | fold(t) | >
Abbreviations / Combinators: n := inn〈〉 for all n ∈ ω

catchσ1→...→σn→N := λf. catch(λx : 0ω. case
f(e1(pr1 x), . . . , en(prn x))of (ini y ⇒ pri+n x)i∈ω)

with ei := λx : 0. case0,σi xof () for all i ∈ {1, . . . , n}
Yσ := k(foldτ (k)) with τ := µα.(α→(σ→σ)→σ)

and k := λx : τ.λf : σ→σ.f(unfoldτ (x)xf)

Typing rules:

Γ, x : σ, ∆ ` x : σ Γ ` >Σi∈Iσi : Σi∈Iσi

Γ ` t : 0ω→0

Γ ` catch(t) : N

Γ, x : σ ` t : τ

Γ ` (λx : σ.t) : σ→τ

Γ ` t : σ→τ Γ ` s : σ

Γ ` (ts) : τ

Γ ` ti : σi for all i ∈ I

Γ ` 〈ti〉i∈I : Πi∈Iσi

Γ ` t : Πi∈Iσi

Γ ` pr
Πi∈Iσi
i (t) : σi

Γ ` t : σ[µα.σ/α]

Γ ` foldµα.σ(t) : µα.σ

Γ ` t : µα.σ

Γ ` unfoldµα.σ(t) : σ[µα.σ/α]

Γ ` t : Σi∈Iσi Γ, x : σi ` si : τ for all i ∈ I

Γ ` caseΣi∈Iσi,τ tof (ini x ⇒ si)i∈I : τ

Γ ` t : σi

Γ ` in
Σi∈Iσi
i (t) : Σi∈Iσi

Table 2. Operational semantics of SPCF∞

Evaluation contexts:
E ::= [] | Et | pri(E) | unfold(E) | caseE of (ini ⇒ t)i∈I | catch(λx : 0ω.E)

Redex reduction:
(λx : σ.t)s →red t[s/x] case ini sof (ini x ⇒ ti) →red ti[s/x]

pri(〈ti〉i∈I) →red ti unfold(fold(t)) →red t

Evaluation context reduction:
E[t] →op E[t′] if t →red t′

E[>] →op > if E 6= []

E[catch t] →op t〈E[n]〉n∈ω

14

Table 3. Interpretation of SPCF∞

Jx1 : σ1, . . . , xn : σn ` xi : σiK := πi

JΓ ` > : Σi∈IσiK := xJΓK 7→ >JΣi∈IσiK

JΓ ` (λx : σ.t) : σ→τK := curryJΓK,JσK(JΓ, x : σ ` t : τK)
JΓ ` ts : τK := eval ◦〈JΓ ` t : σ→τK, JΓ ` s : σK〉
JΓ ` 〈ti〉Πi∈Iσi

i∈I : Πi∈IσiK := 〈JΓ ` ti : σiK〉i∈I

JΓ ` pri(t) : σK := πi ◦ JΓ ` t : σK
JΓ ` caseΣi∈Iτi,σ tof (ini x ⇒ ti) : σK := case ◦〈JΓ ` tK, 〈JΓ ` (λx : τi.ti) : τi→σK〉i∈I〉
JΓ ` ini(t) : Σi∈IσiK := ιi ◦ JΓ ` t : σiK
JΓ ` catch(t) : NK := catch ◦JΓ ` t : 0ω→0K
JΓ ` foldµα.σ(t) : µα.σK := fold ◦JΓ ` t : σ[µα.σ/α]K
JΓ ` unfoldµα.σ(t) : σ[µα.σ/α]K := unfold ◦JΓ ` t : µα.σK

Table 4. The language CPS∞

Contexts: Γ ≡ [xi | i ∈ I] with I ∈ ω + 1

Terms: M ::= x | λ~x.t ~x ≡ (xi)i∈ω

t ::= > | M〈 ~M〉 ~M ≡ (Mi)i∈ω

Terms-in-context:

[xi | i ∈ I] ` xi Γ ` λ~x.>

Γ ∪ [xi | i ∈ I] ` M Γ ∪ [xi | i ∈ I] ` Ni

Γ ` λ~x.M〈 ~N〉

Operational semantics:

> ⇓ >

t[Mi/xi]i∈ω ⇓ >

(λ~x.t)〈 ~M〉 ⇓ >

Table 5. Retraction Πi∈nU � U

e := λf : Πi∈nU.λn : N. casepr0(π2(n))of in0 x ⇒ catchU(pri(f))

in1 x ⇒ casepr0(πn(pr1(π2(n))))of

(j ⇒ prj(f)(pr1(πn(pr1(π2(n))))))j∈n


p := λf : U.〈case f(ι2〈0, i〉)of

(
in0 x ⇒ λn : N.f(ι2〈1, ιn〈i, n〉〉)

inj+1 x ⇒ λn : N.j

)
j∈ω

〉i∈n

with ιn : (n×N)→N and πn : N→(n×N) satisfying Jπn(ιn〈i, m〉)K = J〈i, m〉K
for all i ∈ n and m ∈ ω

15

Table 6. Retraction U→N � U

e := λF : U→N.λn : N. caseα∗(n)of


in0 t ⇒ case catchU→N(F)of R

in1 t ⇒ α(in1(F (λx : N.t)))

in2 t ⇒ caseS of

(
in2i x ⇒ α(in1 i)

in2i+1 x ⇒ α(in2 i)

)
i∈ω


R :=

(
in0 x ⇒ α(in0〈〉)

ini+1 x ⇒ α(in1 i)

)
i∈ω

S := catch(λx : 0ω. caseF (λn : N.

case find(t, n)of

(
in0 s ⇒ s

in1 s ⇒ case0,N(casenof (inj u ⇒ pr2j+1 x)j∈ω)of ()

)
)

of (ini s ⇒ pr2i x)i∈ω)

p := λr : N→N.λf : N→N. caseα∗(r(α(in0〈〉)))of

 in0 t ⇒ T

in1 t ⇒ t

in2 t ⇒ ⊥


T := case catchN→N(f)of

 in0 t ⇒ U(nil)

ini+1 t ⇒ caseα∗(r(α(in1 i)))of

 in0 t ⇒ ⊥
in1 t ⇒ t

in2 t ⇒ ⊥




i∈ω

U := YN→N(λh : N→N.λg : N. caseα∗(r(α(in2 g)))

of

 in0 t ⇒ ⊥
in1 t ⇒ t

in2 t ⇒ h(cons(g, (t, f(t))))

)

with α : (1+N+N)→N and α∗ : N→(1+N+N) satisfying Jα∗(α(in0〈〉))K = Jin0〈〉K
and Jα∗(α(ini n))K = Jini nK for i = 1, 2 and n ∈ ω, and the following auxiliary
list-handling functions in Haskell-style where γ encodes lists (of pairs) of natural
numbers as natural numbers

nil := γ([])

cons(g, (x, y)) := γ((x, y) : γ−1(g))

find(g, x) := case γ−1(g) of

[] -> in1〈〉
((x, y) : r) -> in0 y
(: r) -> find(γ(r), x)

