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Abstract. We consider an optimal control problem of tracking type governed
by a time-discrete phase-field fracture or damage, respectively, propagation
model. Pointwise inequality constraints on the phase-field, that model an irre-
versibility condition for the fracture growth are first regularized by a smooth
regularization term, removing the inequality constraints from the lower level
problem and resulting in an Euler-Lagrange equation as optimality condition
for the lower level problem. We take the regularization limit in the first order
optimality conditions and prove convergence of first order necessary points of
the regularized control problem to certain limits satisfying an optimality sys-
tem of a limit problem governed by a variational inequality. Moreover, SQP
methods for the regularized problem and its limit are analyzed with respect
to solvability of the subproblems. In the case of convergence, it is proven that
the limit is a first order necessary point of the respective problem. Finally,
the finite element discretization and its convergence for the linear-quadratic
SQP subproblems are discussed.
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1. Introduction

In this survey, we consider the problem investigated in [18, 19], i.e., an optimal
control problem of tracking type for fracture or damage propagation, which is gov-
erned by the Euler-Lagrange equations of a regularized fracture propagation prob-
lem modeled by a phase-field approach, which has first been proposed in [3, 4, 7].
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This approach, which we will explain in more detail in Section 2, allows to treat
almost arbitrary fracture paths, as opposed to the first results on the control of
fractures with prescribed path [14], or fixed length [12]. In a first step, to circum-
vent the difficulties posed by a pointwise irreversibility condition, this inequality
constraint was regularized by a smooth penalization term. In [18], existence of
global solutions as well as first order KKT-like necessary optimality conditions
under a regularity assumption were proven for the regularized problem. Constraint
violation estimates as well as convergence of solutions with respect to taking this
penalization parameter to its limit were then shown in [19] for a problem formu-
lation with viscous regularization corresponding to a time-step restriction in the
spatially continuous but time-discrete model problem, cf. [13].

In Section 2, we will give a precise description of the model problem under
consideration. Then, building on the results from [19], we will prove convergence
of the optimality systems with respect to taking the limit in the penalty parameter
in Section 3. To elaborate, let us point out that the (uncontrolled) fracture propa-
gation problem is itself an energy minimization problem, the so-called lower level
problem. Adding an outer optimal control problem leads to a bilevel optimiza-
tion problem, where the lower level problem is usually replaced by its first order
necessary conditions. In case of the regularized problem, this is a system of Euler-
Lagrange equations, so that the control problem resembles a PDE-constrained
optimization problem without inequality constraints but a quasilinear PDE con-
straint. We formulate the optimality conditions for this problem, and then derive a
system satisfied by certain limit points when the penalization parameter tends to
infinity. In addition to the convergence results for the primal variables, i.e., control,
displacement, and phase-field towards a solution of the unregularized problem, we
now obtain a limit optimality system, which exhibits the presence of a variational
inequality as constraint of the outer optimal control problem.

In Section 4, we formulate the method of sequential quadratic programming
(SQP) for the regularized problem formulation and show that the limit point of
convergent sequences produced by the SQP method actually satisfies the first order
optimality system for the regularized problem. The results are combined with
convergence results for the finite element discretization of a linearized fracture
control problem, such as the SQP subproblems, from [17]. A key ingredient for
obtaining a priori error estimates is an improved regularity of the solutions giving
a gap between the norm in which the error is calculated and the regularity of the
approximated function. Such estimates have been shown only recently in [10].

Eventually, in Section 5, an SQP method for the unregularized problem is
formulated and convergence of the finite element method for the quadratic sub-
problems is derived.
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2. Problem Setting

We consider the problem investigated in [18, 19], i.e., an optimal control problem
of tracking type for fracture propagation, which is governed by the Euler-Lagrange
equations of a regularized fracture propagation problem modeled by a phase-field
approach.

Before presenting the precise control problem, let us elaborate on the frac-
ture propagation problem, which we want to control. The model goes back to
Griffith’s model of brittle fracture, [8], or more precisely, a variational formulation
by Francfort and Marigo in [7]. Within this model, fracture propagation occurs
when the elastic energy restitution rate reaches a critical value GC , leading to a
minimization problem where the total energy

E(u, C) =
1

2
(Ce(u), e(u))Ω\C − (τ, u)∂NΩ +GCHd−1(C)

is to be minimized. Here, u denotes a vector-valued displacement field, C denotes
the crack, assumed to be compactly contained in the domain Ω without reaching
the boundary, τ is a force applied to the part ∂NΩ of the boundary, which will
later be our optimization variable in the optimal control problem, and Hd−1 is the
d − 1 dimensional Hausdorff measure, when d ∈ {2, 3} denotes the dimension of
Ω. By means of C and e(u), a linear elasticity model is described.

This energy functional is to be minimized with respect to all kinematically
admissible displacements u, and any fracture set satisfying a fracture growth con-
dition, making sure that once a fracture has appeared it does not close again.
To avoid the difficulty introduced by the Hausdorff measure, we use a regulariza-
tion proposed by Bourdin et. al., [4, 3]. Precisely, we introduce a time-dependent
phase-field variable ϕ, defined on Ω× (0, T ), where ϕ = 1 describes non-fractured
regions, and ϕ = 0 fractured regions, with a smooth transition. Using such an
Ambrosio-Tortorelli regularization, cf. [1, 2], of the fracture function leads to a
regularized energy functional to be minimized:

Eε(u, ϕ) =
1

2

(
((1− κ)ϕ2 + κ)Ce(u), e(u)

)
− (τ, u)∂NΩ

+GC

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
, (2.1)

where ε is a positive parameter, which, when sent to zero leads to the Hausdorff
measure in the sense of a Γ-limit, and κ = o(ε) is a positive parameter used to
avoid degeneracy of the energy function when ϕ = 0.

The critical issue here is that the energy functional is not convex in both
solution variables simultaneously, but only in each single variable when the other
one is fixed. While the forward model problem is relatively well-studied, the control
of fractures remains to pose a lot of challenges. Controlling this energy functional
would lead to a bilevel minimization problem in function spaces, where the lower
level problem is nonconvex and subject to additional inequality constraints

ϕ(t2) ≤ ϕ(t1) ∀ t1 ≤ t2, (2.2)
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describing the irreversibility condition. Fixing the spatial dimension d = 2, we ob-
tain for a control space Q, to be specified later, the following problem formulation:

min
q,u

J(q,u) :=
1

2
‖u− ud‖2L2(Ω;R2) +

α

2
‖q‖2Q

subject to u solves (2.1) given τ = q

as well as (2.2).

(2.3)

We tackle the difficulties by the following adaptations to the model problem:

• We will consider a time-discrete, but spatially continuous problem formula-
tion.
• We regularize the inequality constraints in the lower level problem by a

penalty approach introduced by Meyer, Rademacher, and Wollner, [15], i.e.,
adding a term γ

4 ‖max(0, ϕi − ϕi−1)‖4L4 when ϕi denotes the value of the
phase field at time ti. One of our main goals is then to analyze the problem
with respect to considering the limit γ →∞.
• We will follow standard procedure and replace the lower level problem by its

Euler-Lagrange equations, leading to a PDE-constrained optimization prob-
lem with quasilinear PDE.
• For some of our results, it proved helpful to introduce a further viscous reg-

ularization of the energy functional with a regularization parameter η ≥ 0,
see below.

2.1. Model Problem, Notation and Assumptions

Following the before-mentioned steps, we arrive at the following short description
of the model problem. Note that while the original problem formulation is spatially
continuous, but time-discrete, for simplicity of notation we consider only one time-
step of the fracture evolution, giving us the regularized optimization problem for
finding qγ ∈ Q and uγ = (uγ , ϕγ) ∈ V solving

min
qγ ,uγ

J(qγ ,uγ) :=
1

2
‖uγ − ud‖2L2(Ω;R2) +

α

2
‖qγ‖2Q

subject to A(uγ) +R(γ;ϕ) = B(qγ).
(NLPγ)

Here, for spaces to be defined below, A : W 1,p(Ω;R2) × W 1,p(Ω) ⊂ V → V ∗

denotes a nonlinear phase-field operator, R : Vϕ → V ∗ϕ is a regularization operator
penalizing deviation from an irreversibility condition for the fracture growth, and
B : Q→ V ∗ is the control-action operator. They are defined by

〈A(u),v)〉 : =
(
g(ϕ)Ce(u), e(vu)

)
+ ε(∇ϕ,∇vϕ)− 1

ε
(1− ϕ, vϕ)

+ η(ϕ− ϕ−, vϕ) + (1− κ)(ϕCe(u) : e(u), vϕ),

〈R(γ;ϕ), vϕ〉 : = γ([(ϕ− ϕ−)+]3, vϕ),

〈Bq, (vu, vϕ)〉 : = (q, vu)Q
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for any v = (vu, vϕ) ∈ V . Here g is given as

g(x) := (1− κ)x2 + κ,

κ, ε, γ > 0 are given parameters as explained above, and η ≥ 0 is an additional
parameter which can be regarded as a viscous regularization, cf. [13]. Choosing
η sufficiently large serves two purposes: On the one-hand, it makes the lower-
level energy function strictly convex and hence uniquely solvable. On the other
hand, this helps to include damage problems in addition to pure fracture. It also
corresponds to choosing a sufficiently small time-step in the temporal discretization
of the problem. ϕ− is the given initial phase-field, and C is the rank-4 elasticity
tensor with the usual properties. The problem is defined on a polygonal domain
Ω ⊂ R2 with boundary ∂Ω = Γ∪̇ΓD, such that the union Ω∪Γ is Gröger regular [9].

Note that the term η(ϕ− ϕ−, vϕ) corresponds to a viscous regularization of
the problem for η > 0 that can also be interpreted as a restriction on the time-step
in the temporal discretization of the problem, cf. [13]. In [18], a setting with η = 0
was considered, requiring additional assumptions due to a lack of convexity.

We define

Vu = H1
D(Ω;R2) := {v ∈ H1(Ω;R2) | v = 0 on ΓD},

Vϕ = H1(Ω),

V = Vu × Vϕ,
Q = L2(Γ),

and denote the respective dual spaces with a superscript ∗, e.g., V ∗. For spaces
such as W s,p and Hs = W s,2, we understand that they are defined on the domain
Ω unless otherwise stated. We will further use the following notation for the scalar
product/norm: (·, ·) denotes the usual L2 scalar product with corresponding norm
‖ · ‖, and (·, ·)Q corresponds to the scalar product of Q. In addition, 〈·, ·〉 stands
for a duality pairing where the spaces are omitted if obvious from the context. In
what follows, we also define

W = Wu ×Wϕ = W 1,p
D ∩H1+s ×W 2,q

and the corresponding space for the right-hand side of the equation

W× = W−1,p ∩H−1+s × Lq,

where W−1,p = (W 1,p′)∗, and H−1+s = (H1−s)∗ are the respective dual spaces.
As common, for any p ∈ [1,∞] we denote the dual exponent by p′, i.e., 1

p + 1
p′ = 1.

Finally, we will implicitly rely on the following standing assumptions: For the
parameters p, q, and s, we require

p > 2, q = p/2 > 1, and s ∈ (0, 1/2).

Further, we assume, that p and s are chosen such that H1+s ⊂W 1,p.
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With this notation, we point out that taking the limit γ → ∞ in (NLPγ)
yields the MPCC

min
q,u

J(q,u)

subject to


A(u) + λ = B(q) in V ∗,

λ ≥ 0 in V ∗ϕ ,

ϕ ≤ ϕ− a.e. in Ω,

〈λ, ϕ− ϕ−〉 = 0,

(NLPVI)

where λ ∈ V ∗ϕ and we implicitly use the natural embedding V ∗ϕ 3 λ 7→ (0, λ) ∈ V ∗.
We remark, that if ϕ− ∈ Wϕ and qγ , q ∈ Q, by [10, Section 7], the solutions

uγ for the equality constraint in (NLPγ) and u for the constraints in (NLPVI)
satisfy uγ ,u ∈W for some p > 2.

2.2. The Phase-Field Equation

This section provides a short analysis of the linearized operators A′(u) : V → V ∗

and R′(γ, ϕ) : Vϕ → V ∗ϕ , which for u ∈ V ∩W , are defined via

〈A′(u)du,v〉 :=
(
g(ϕ)Ce(du), e(vu)

)
+ 2(1− κ)(ϕCe(u) : e(du), vϕ)

+ ε(∇dϕ,∇vϕ) +
1

ε
(dϕ, vϕ) + η(dϕ, vϕ) (2.4)

+ (1− κ)(dϕCe(u) : e(u), vϕ) + 2(1− κ)(ϕCe(u)dϕ, e(vu)),

〈R′(γ;ϕ)dϕ, vϕ〉 := 3γ([(ϕ− ϕ−)+]2dϕ, vϕ),

for any v = (vu, vϕ), introducing the notation du := (du, dϕ).
A quick calculation shows two properties of importance for the following

calculations. Firstly, coercivity of A′, i.e., for η ≥ 0 sufficiently large there exists a
βη > 0 such that

〈(A′(u))v,v〉 ≥βη‖v‖2V ∀v ∈ V, (2.5)

and, secondly, the following non-negativity statement for R′ for all vϕ ∈ Vϕ:

〈R′(γ;ϕ)vϕ, vϕ〉 = 3γ([(ϕ− ϕ−)+]2vϕ, vϕ) ≥ 0. (2.6)

Following the results of [10], A′(u) : V 7→ V ∗ is well-defined and an isomor-
phism if η ≥ 0 is sufficiently large. In particular, for u ∈ V ∩W , the operator

du 7→ A′(u)du +R′(γ, ϕ)dϕ : V → V ∗ (2.7)

is invertible. In a similar way to [18, Lemma 5.2], we can establish the following
improved regularity result for data in W× ↪→ V ∗.

Proposition 2.1. Let u ∈ V ∩W , ϕ− ∈ Wϕ and b ∈ W× ↪→ V ∗, recalling p > 2.
Then the solution du = (du, dϕ) ∈ V of

A′(u)du +R′(γ, ϕ)dϕ = b

has improved regularity du ∈ V ∩W .
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Further, for regular u ∈ W , we can define the second derivative operators
A′′(u) : V × V → (V ∩W 1,p)∗ and R′′(γ, ϕ) : Vϕ × Vϕ → V ∗ϕ by

〈A′′(u)[du
1 ,d

u
2 ],v〉 = 2(1− κ)(dϕ2Ce(u)dϕ1 , e(v

u))

+ 2(1− κ)(dϕ2Ce(d
u
1 )ϕ, e(vu))

+ 2(1− κ)(dϕ2Ce(u) : e(du1 ), vϕ)

+ 2(1− κ)(ϕCe(du2 )dϕ1 , e(v
u))

+ 2(1− κ)(dϕ1Ce(d
u
2 ) : e(u), vϕ)

+ 2(1− κ)(ϕCe(du2 ) : e(du1 ), vϕ),

〈R′′(γ;ϕ)[dϕ1 , d
ϕ
2 ], vϕ〉 = 6γ([(ϕ− ϕ−)+]dϕ1 d

ϕ
2 , v

ϕ).

We note, that for regular data u,v the second derivatives are continuous on V in
the following sense:

Lemma 2.2. Let u,v ∈ V ∩W 1,p be given. Then there exists a constant c depending
on ‖u‖1,p, ‖v‖1,p such that

|〈A′′(u)[du
1 ,d

u
2 ],v〉| ≤ c‖du

1 ‖V ‖du
2 ‖V .

Analogue estimates hold if any two of the four variable u,v,du
1 ,d

u
2 are in V ∩W 1,p.

Following the regularity results of [10] any solution uγ to the equation in (NLPγ)
satisfies the additional regularity uγ ∈ W and thus A′(u), and A′′(u) are well-
defined for all points u of the same regularity. Further, by (2.5) A′(u) is an iso-
morphism if η is sufficiently large.

To simplify the following arguments, we assume throughout

Assumption 2.3. Let η ≥ 0 be chosen such that A′(u) : V 7→ V ∗ is coercive,
i.e., (2.5) holds.

3. The Limiting First Order Necessary Conditions

We see that for a local minimizer (qγ ,uγ) of (NLPγ) there exists zγ ∈ V , λγ , µγ ∈
V ∗ϕ , θγ ∈ Vϕ such that the following system is satisfied:

A(uγ) + λγ = Bqγ in V ∗,

λγ = R(γ;ϕγ) in V ∗ϕ ,

(A′(uγ))∗zγ = uγ − ud − µγ in V ∗,

B∗zγ + αqγ = 0 in V ∗,

zϕγ − θγ = 0 in Vϕ,

µγ −R′(γ;ϕγ)θγ = 0 in V ∗ϕ .

(FONγ)

Clearly, the variables λγ , µγ , and θγ can easily be eliminated, but they are useful
as separate quantities as they have a meaning as multipliers for the limit, cf. [15]
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as well as (FONVI). Moreover, improved regularity for uγ ∈ W and λγ ∈ Lq(Ω)
hold as remarked at the end of Section 2.

We will see, that certain limits (q̄, ū, λ̄, θ̄, µ̄) of first order necessary points
of (NLPγ) satisfy the system (C-stationarity)

A(ū) + λ̄ = Bq̄ in V ∗,

λ̄ ≥ 0 in V ∗ϕ ,

ϕ̄ ≤ ϕ− a.e. in Ω,

〈λ̄, ϕ̄− ϕ−〉 = 0,

(A′(ū))∗z̄ = ū− ud − µ̄ in V ∗,

B∗z̄ + αq̄ = 0 in V ∗,

z̄ϕ − θ̄ = 0 in Vϕ,

〈θ̄, λ̄〉 = 0,

〈µ̄, ϕ̄− ϕ−〉 = 0,

〈θ̄, µ̄〉 ≥ 0.

(FONVI)

Indeed, the following theorem holds:

Theorem 3.1. Let qγ → q̄ be a convergent sequence of local minimizers of (NLPγ)
for γ →∞. Then, up to selecting a subsequence, the following convergence

uγ → ū in V,

uγ → ū in Wu,

ϕγ ⇀ ϕ̄ in Wϕ,

λγ → λ̄ in V ∗ϕ ,

zγ ⇀ z̄ in V,

µγ ⇀ µ̄ in V ∗ϕ ,

θγ ⇀ θ̄ in Vϕ

holds. Further, any such limit satisfies (FONVI).

Proof. By [19, Corollary 3.10], we obtain the first three convergence claims as well
as the satisfaction of the first four lines of (FONVI). Further, from this convergence,
the convergence of λγ in V ∗ϕ follows from the first equation.

It remains to show the convergence of the dual variables and the limits in the
adjoint equation, the gradient equation, as well as the complementary slackness
conditions. We start with the weak convergence of zγ in V . To this end, we replace
µγ and θγ in the equation for zγ = (zuγ , z

ϕ
γ ) in (FONγ) and obtain

(A′(uγ))∗zγ +R′(γ, ϕγ)zϕγ = uγ − ud.
Testing with zγ , we arrive at

〈(A′(uγ))∗zγ , zγ〉+ 〈R′(γ;ϕγ)zϕγ , z
ϕ
γ 〉 = 〈uγ − ud, zuγ 〉, (3.1)
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and using (2.5) and (2.6), from (3.1) we receive

‖zγ‖V ≤
1

βη
‖uγ − ud‖H−1 . (3.2)

Since uγ is bounded independently of γ in Wu ↪→ Vu ↪→ H−1 as proven in [19,
Lemma 3.1], zγ is bounded in V and we deduce the existence of a subsequence
that converges weakly to some z̄ in V .

Next, we want to take the limit in the adjoint equation, so we have to establish
weak convergence of (A′(uγ))∗zγ in V ∗ first. Using the already shown convergence
uγ → ū in Wu and ϕγ ⇀ ϕ̄ in Wϕ we obtain A′(uγ) − A′(u) → 0 in L(V, V ∗)
showing

(A′(uγ))∗zγ ⇀ (A′(ū))∗z̄ in V ∗.

Since uγ converges strongly in Wu ↪→ V ∗ϕ , the convergence of µγ and the limit in

the adjoint equation (A′(ū))∗z̄ = ū− ud − µ̄ in (FONVI) follow by

µγ = uγ − ud − (A′(uγ))∗zγ ⇀ ū− ud − (A′(ū))∗z̄ =: µ̄ in V ∗ϕ .

Since θγ = zϕγ , the weak convergence of θγ to θ̄ = z̄ϕ is an immediate consequence.
Next, we can pass to the limit in the gradient equation B∗zγ + αqγ = 0

in (FONγ), to obtain

B∗z̄ + αq̄ = 0.

We have shown the convergence results for all functions as stated in the
theorem, and established the limits in the first seven lines of (FONVI). We can
now verify the complementary slackness conditions given by the last three lines
of (FONVI). By definition of λγ := R(γ, ϕγ) = γ[(ϕγ − ϕ−)+]3 and introducing
the set A := {x ∈ Ω |ϕγ > ϕ−}, we find that

|〈λγ , θγ〉| =
∣∣∣ ∫
A
γ[(ϕγ − ϕ−)+]3θγ dx

∣∣∣ ≤ ‖λγ‖Lq(A)‖θγ‖Lq′ (A) (3.3)

is true. By [19, Lemma 3.8], we know that ‖λγ‖q ≤ C holds independently of
γ, which implies a uniform bound for ‖λγ‖Lq(A). For the second term of (3.3),

exploiting (3.2), we receive a uniform bound on the subsequence θγ in H1 ↪→ Lq
′

noting that q′ ∈ (1,∞). By the convergence result for the primal variables, it has
already been proven that ϕγ → ϕ̄ in Vϕ as well as ϕ̄ ≤ ϕ−, hence for γ → ∞ it
holds |A| → 0 and thus

‖θγ‖Lq′ (A) → 0 for γ → 0.

So overall, from (3.3) we obtain:

|〈λγ , θγ〉| ≤ C‖θγ‖Lq′ (A) → 0 for γ →∞. (3.4)

We already know that λγ converges strongly in V ∗ϕ . In combination with the
weak convergence of θγ in Vϕ, (3.4) yields

〈λ̄, θ̄〉 = lim
γ→∞

〈λγ , θγ〉 = 0,
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which is the third-to-last line of (FONVI).

Next, by definition of µγ := R′(γ;ϕγ)θγ = 3γ[(ϕγ −ϕ−)+]2θγ , using (3.4), it
holds

〈µγ , ϕγ − ϕ−〉 = 3

∫
Ω

γ[(ϕγ − ϕ−)+]2θγ(ϕγ − ϕ−) dx

= 3γ

∫
Ω

[(ϕγ − ϕ−)+]3θγ dx

= 3〈λγ , θγ〉 → 0.

Since µγ ⇀ µ̄ in V ∗ϕ and ϕγ → ϕ̄ in Vϕ, this proves 〈µ̄, ϕ̄− ϕ−〉 = 0.

Finally, it remains to show the last line in (FONVI), 〈θ̄, µ̄〉 ≥ 0. We test both
(A′(uγ))∗zγ + µγ = uγ − ud and (A′(ū))∗z̄+ µ̄ = ū− ud with zγ − z̄ and subtract
the equations to arrive at

〈µγ − µ̄, θγ − θ̄〉 =〈µγ − µ̄, zϕγ − z̄ϕ〉
= 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ))∗zγ − (A′(ū))∗z̄, zγ − z̄〉
= 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ))∗(zγ − z̄), zγ − z̄〉
− 〈(A′(uγ)−A′(ū))∗z̄, zγ − z̄〉

≤ 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ)−A′(ū))∗z̄, zγ − z̄〉,

(3.5)

where the last inequality follows from coercivity of A′, i.e., Assumption 2.3. As
before, convergence of uγ provides

〈(A′(uγ)−A′(ū))∗z̄, zγ − z̄〉 → 0 for γ →∞. (3.6)

By definition of µγ we also find that

〈µγ , θγ〉 = 3

∫
Ω

γ[(ϕγ − ϕ−)+]2θ2
γ dx ≥ 0. (3.7)

We thus arrive at

〈µ̄, θ̄〉 = 〈µ̄, θγ〉+ 〈µγ , θ̄〉 − 〈µγ , θγ〉+ 〈µγ − µ̄, θγ − θ̄〉
≤ 〈µ̄, θγ〉+ 〈µγ , θ̄〉+ 〈uγ − ū, zuγ − z̄u〉 − 〈(A′(uγ))∗z̄− (A′(ū))∗z̄, zγ − z̄〉,

where we used the non-negativity of 〈µγ , θγ〉 from (3.7) in the second line as well
as (3.5). Because uγ → ū in Vu, θγ ⇀ θ̄ in Vϕ and µγ ⇀ µ̄ in V ∗ϕ , the first two

terms of the right-hand side converge to 2〈µ̄, θ̄〉 and the third term converges to
zero. By (3.6), also the last term converges to zero, and the desired sign condition
in the last line of (FONVI) follows.

�
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4. An SQP-Method for (NLPγ)

In this section, we introduce the sequential quadratic programming method for
the regularized problem (NLPγ). Towards a complete convergence analysis of this
algorithm, we are interested in the following tasks: After introducing the algo-
rithm, we discuss solvability of the SQP-subproblem (QPγ) in the spaces provided
by the regularity of the prior iterates, relying on a typical coercivity condition on
the second derivative of the Lagrangian which is expected to be used when de-
riving second order sufficient optimality conditions. Typically, conditions like that
allow to prove local convergence of the algorithm. For the purpose of this chapter,
we assume the existence of a convergent sequence and show that the limit satis-
fies (FONγ), i.e., in case of convergence the limit is in fact a critical point of the
problem under consideration. Last, we are interested in the convergence behavior
of finite element discretizations of the SQP subproblems.

4.1. The SQP Algorithm

Let us start by defining the Lagrangian L corresponding to (NLPγ) via

L(q,u, z) := J(q,u)− 〈A(u) +R(γ, ϕ)−B(q), z〉.

Let (qk,uk) = (qk, uk, ϕk) ∈ Q × V ∩W with associated zk ∈ V ∩W denote a
given iterate of the solution algorithm, and define the notation

d := (dq,du) := (dq, du, dϕ) = (q − qk,u− uk) = (q − qk, u− uk, ϕ− ϕk)

for the update directions. We note first that the second derivative of the La-
grangian, twice with respect to (q, u) for directions [d,d] at the current iterate as
linearization point, is given and denoted by

L′′(q,u),(q,u)(q
k,uk, zk)[d,d] = ‖du‖2 + α‖dq‖2Q − 〈A′′(uk)[du,du], zk〉

− 〈R′′(γ, ϕk)[dϕ, dϕ], zϕ,k〉.
Together with the first order derivative of the objective function J with respect to
(q, u) at point (qk,uk) in direction d, denoted by

J ′(q,u)(q
k,uk)d,

we formulate for given ϕ− ∈Wϕ the linear-quadratic subproblem (QPγ) as follows:
Find the solution d = (dq,du) ∈ Q× V ∩W of

min
d

J ′(q,u)(q
k,uk)d +

1

2
L′′(q,u),(q,u)(q

k,uk, zk)[d,d] (QPγ)

s. t. A′(uk)du +R′(γ;ϕk)dϕ = B(dq) +B(qk)−A(uk)−R(γ;ϕk). (4.1)

The local SQP algorithm for solving (NLPγ) then reads as:

Algorithm 4.1. Sequential quadratic programming method for (NLPγ):

0. Choose (q0,u0, z0) ∈ Q × V ∩W × V ∩W , sufficiently close to the optimal
triple (q̄, ū, z̄) and set k = 0.

1. STOP, if (qk,uk, zk) is a KKT point of (NLPγ), i.e., satisfies (FONγ).
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2. Solve (QPγ) to receive d with associated adjoint z.
3. Set (qk+1,uk+1) := (qk,uk) + d, zk+1 = z, k := k + 1 and go to step 1.

Solvability of (QPγ) will be shown in Proposition 4.3 and the optimality con-
ditions to be satisfied in the second step of Algorithm 4.1 are stated in (4.3). To
derive these results, we need the solvability of (4.1), which follows from Proposi-
tion 2.1 and the properties of A′(u) in Section 2.2.

Corollary 4.2. Assuming (qk,uk, zk) ∈ Q ×W ×W , the linearized partial differ-
ential equation given in (4.1) has a solution du ∈ V ∩W for data dq ∈ Q.

Proof. By the regularity assumptions on (qk,uk) ∈ Q ×W , one can see that all
terms of A(uk)−R(γ, ϕk) are at least in W×. Also, by assumption on the data it
holds dq, qk ∈ Q ↪→ W×. Thus the right-hand side of (4.1) is an element of W×,
and the desired result follows by Proposition 2.1. �

Next, we discuss solvability of the quadratic subproblem (QPγ):

Proposition 4.3. Let (q̄, ū) be a locally optimal solution to (NLPγ) and let the
linearization triple (qk,uk, zk) ∈ Q×V ∩W ×V ∩W be given. Assume there exists
an α′′ > 0 such that

L′′(q,u),(q,u)(q
k,uk, zk)[(dq,du), (dq,du)] ≥ α′′‖(dq,du)‖2Q×L2(Ω;R3) (4.2)

holds for all (dq,du) ∈ Q× V ∩W that satisfy

A′(uk)du +R′(γ, ϕk)dϕ = B(dq).

Then, there exists a unique global solution (dq,du) ∈ Q× V ∩W to (QPγ).

Proof. For every dq ∈ Q, the linearized partial differential equation (4.1) in (QPγ)
has a unique solution du ∈ V ∩W by Corollary 4.2. Let Mfeas denote the feasible
set, i.e.,

Mfeas := {(dq,du) ∈ Q× V ∩W satisfying (4.1)}.

It is immediate that Mfeas is nonempty, closed, and convex. Due to (4.2), the cost
functional of (QPγ) is strictly convex and continuous, hence weakly lower semi-
continuous, as well as radially unbounded, so (QPγ) is uniquely solvable in Q×V .
Due to Corollary 4.2, du is an element of W . �

4.2. First Order Optimality Conditions for (QPγ) and its Limit

In order to prove that any limit point of sequences generated by Algorithm 4.1 is
in fact a first order necessary point for (NLPγ) let us point out that for (qk,uk, zk)
be given as in Algorithm 4.1, in the (k + 1)st-step, the functions

du = (du, dϕ) = (uk+1 − uk, ϕk+1 − ϕk)
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with associated adjoint zk+1, satisfy the first-order optimality conditions of (QPγ),
which are given by:

A′(uk)du +R′(γ;ϕk)dϕ =B(dq) +B(qk)−A(uk)−R(γ;ϕk), (4.3a)

(A′(uk))∗zk+1 +R′(γ, ϕk)zϕ,k+1 = −A′′(uk)[du, · ]∗zk −R′′(γ, ϕk)[dϕ, · ]zϕ,k

+ du + uk − ud, (4.3b)

B∗zk+1 + α(dq + qk) = 0. (4.3c)

These optimality conditions are necessary and sufficient, since (QPγ) is a convex
linear-quadratic problem due to (4.2). These properties allow to prove our desired
convergence result.

Theorem 4.4. Assume that Algorithm 4.1 generates an infinite sequence (qk,uk, λk,

zk, θk, µk) with a limit point (q̂, û, λ̂, ẑ, θ̂, µ̂) in the sense that

qk → q̂ in Q, uk → û in V,

uk → û in Wu, ϕk ⇀ ϕ̂ in Wϕ,

λk → λ̂ in V ∗ϕ , zk ⇀ ẑ in V,

µk ⇀ µ̂ in V ∗ϕ , θk ⇀ θ̂ in Vϕ.

Then, the limit satisfies (FONγ).

Proof. We examine the limit for k →∞ in the equations (4.3a), (4.3b), and (4.3c)
separately, starting with (4.3a):

By definition, we have du = uk+1 − uk = (uk+1 − uk, ϕk+1 − ϕk). Thus,
by the given convergence and regularity assumptions, there exists a limit point

d̂u = (d̂u, d̂ϕ) = 0 in V and d̂q = 0 in Q.
Analogous to the proof of Theorem 3.1, convergence of uk in (4.3a) shows

that this limit solves

0 = A′(û)d̂u +R′(γ; ϕ̂)d̂ϕ −B(d̂q) = B(q̂)−A(û)−R(γ; ϕ̂).

Defining λ̂ = R(γ; ϕ̂) gives the first two lines of (FONγ).

Taking the limit in (4.3b), and defining θ̂ = ẑϕ and µ̂ = R′(γ; ϕ̂)θ̂, shows the
the third, fifth, and sixth line of (FONγ).

Finally, convergence in (4.3c) gives the fourth line of (FONγ). �

4.3. Approximation of (QPγ) by Finite Elements

For a practical implementation of Algorithm 4.1, the QP-step cannot be performed
exactly. Instead, an approximate solution of (QPγ) is needed, where the PDE (4.1)
is discretized by finite elements. To this end, let Th be a sequence of shape regular
and quasi uniform meshes with element diameter hT ≤ h → 0 for all T ∈ Th. We
assume, for simplicity, that the elements T are open triangles, pairwise disjoint,
and provide a decomposition of the domain Ω, i.e., Ω =

⋃
T∈Th T . Further, we

assume that the elements match the splitting of the boundary into Γ and ΓD.
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Now, we define the finite element space of piecewise linear finite elements

Vh = {v ∈ V | v
∣∣
T
∈ P1(T ), ∀T ∈ Th}.

Then, for uk ∈ V ∩ H1+s and qk ∈ Q, we can define the discretized QP-
subproblem

min
d∈Q×Vh

J ′(q,u)(q
k,uk)d +

1

2
L′′(q,u),(q,u)(q

k,uk, zk)[d,d]

s. t. 〈A′(uk)du,vh〉+ 〈R′(γ;ϕk)dϕ, vϕh 〉

= 〈B(dq) +B(qk)−A(uk),vh〉

− 〈R(γ;ϕk), vϕh 〉 ∀vh ∈ Vh.

(QPγh)

Note that, although no discretization is enforced for dq, the optimality conditions
immediately induce a natural discretization, see, e.g., [11].

Under the growth condition (4.2), the analysis of [17, Theorem 3.3, Corol-
lary 3.8] can be transferred to this situation and yields the following

Proposition 4.5. Given (qk,uk, zk) satisfying (4.2) and let η be such that Assump-
tion 2.3 holds. Then there exists h0 > 0, depending on ‖qk‖Q, ‖uk‖1+s only, such
that for any h ≤ h0 problem (QPγh) has a unique solution (dqh,d

u
h) and for the

solution (dq,du) of (QPγ) it holds the error estimate

α′′
(
‖dq − dqh‖

2
Q + ‖du − duh‖2

)
+ ‖du − duh‖2V + ‖z− zh‖2V ≤ ch2s.

The constant c depends on ‖uk‖1+s and R′(γ;ϕk).

Combining these estimates with the convergence in Theorem 4.4, we see that
convergence can be asserted as long as h→ 0 sufficiently fast for k →∞. Of course,
to assert global convergence of the sequence, suitable globalization strategies are
needed. In these, additional requirements on the accuracy of the iterates need to
be required to reliably evaluate sufficient descent conditions, cf. [21, 20].

However, our results [19] only show that it is reasonable to assert bounds on
R(γ;ϕk) but not on R′(γ;ϕk). Hence it is not clear, whether a uniform bound on
the constant in Proposition 4.5 can be proven throughout a globalized SQP-type
method. Thus we will also discuss an alternative SQP-like algorithm in which the
regularization is not used when building subproblems. However a detailed analysis
of this alternative is beyond the scope of this paper.

5. An SQP-Method for (NLPVI)

Along the lines of the last section, we would now like to consider an SQP algorithm
for the problem (NLPVI) and briefly discuss solvability of the SQP subproblems.
Instead of investigating the convergence analysis, we place special emphasis on the
finite element discretization of the quadratic problem governed by complementarity
conditions.
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It should be noted that in this setting, the quadratic subproblems contain
the linearized operator, while the feasible set is not linearized, similar to the way
Newton’s method is utilized for generalized equations, e.g., in [6]. This means, our
resulting QP still is an MPEC in function space. However, in contrast to Propo-
sition 4.5 we will be able to provide uniform discretization error estimates for the
resulting QP problems. Note, again, that in Proposition 4.5 uniform finite element
estimates are only true under the assumption that R′(γ;ϕk) remains bounded,
a property which up to now is not even proven for the central path where ϕγ
solves (NLPγ).

5.1. SQP Algorithm for (NLPVI)

Similar as before, we consider the Lagrangian

L(q,u, λ, z) := J(q,u)− 〈A(u) + λ−B(q), z〉

and point out that we have

L′′(q,u)(q,u)(q,u, λ, z)[d,d] = ‖du‖2 + α‖dq‖2Q − 〈A′′(u)[du,du]; z〉.

Based on this, we can define the QP-approximation to (NLPVI) in a given point
(qk,uk, λk, zk) for d = (dq,du) ∈ Q× V as

min
d∈Q×V

J ′(q,u)(q
k,uk)(dq,du) +

1

2
L′′(q,u)(q,u)(q

k,uk, λk, zk)[d,d]

s. t.


A(uk) +A′(uk)du + λk+1 −B(qk)−B(dq) = 0,

λk+1 ≥ 0,

ϕ− − ϕk − dϕ ≥ 0,

〈λk+1, ϕk − ϕ− + dϕ〉 = 0.

(QPVI)

Indeed, this problem corresponds to the linearization of the PDE operator
in (NLPVI) while keeping the inequality constraint. Thus the step dϕ needs to be
found in

Kk := {v = (vu, vϕ) ∈ V | vϕ ≤ ϕ− − ϕk a.e. in Ω}
to assert ϕk+1 = ϕk + dϕ ≤ ϕ−. Thus, the constraint in (QPVI) can equivalently
be written as

〈A(uk) +A′(uk)du,v − du〉 ≥ 〈B(qk + dq), vu − du〉, ∀v ∈ Kk (5.1)

and λk+1 is the corresponding Lagrange-multiplier.
With this, we obtain the following local SQP-type iteration:

Algorithm 5.1. Sequential Quadratic Programming method for (NLPVI):

0. Choose (q0,u0, λ0, zk) ∈ Q× V × V ∗ϕ × V , and set k = 0.

1. If (qk,uk, λk, zk) is a KKT point of (NLPVI), STOP.
2. Derive a KKT point (d, λk+1, zk+1) of the problem (QPVI).
3. Set (qk+1,uk+1) = (qk,uk) + d, k := k + 1, and go to step 1.
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Similar as in the previous section, we need to assume a growth condition to
have well-posedness of the QP-subproblem, the analogue to (4.2) is now:

Assumption 5.2. Let us assume, that for given (qk,uk, λk, zk) there exists α′′ such
that for all d = (dq,du) ∈ Q× V ∩W satisfying (5.1) it holds

L′′(q,u),(q,u)(q
k,uk, λk, zk)[d,d] ≥ α′′‖d‖2Q×L2(Ω;R3).

Once this assumption holds it follows by standard arguments, that (QPVI)
has a global solution, noting that coercivity of A′(u) implies that the variational
inequality (5.1) is the necessary and sufficient optimality condition for a strictly
convex energy minimization.

5.2. Convergence of FE approximation to (QPVI)

In fact, the subproblem (QPVI) is a quadratic minimization problem with inequal-
ity constraints. To analyze its approximation by finite elements, we can proceed
similarly as in [16], with the slight complication that the linear second order op-
erator in the obstacle problem (5.1) is not H2-regular.

We abbreviate the objective function of the QP problem by

Jk(d) := J ′(q,u)(q
k,uk)(dq,du) +

1

2
L′′(q,u)(q,u)(q

k,uk, λk, zk)[d,d].

By Assumption 5.2 for any dq ∈ Q there exists a unique solution du ∈ Kk of the
constraint (5.1). Therefore, we can define the solution operator S : Q→ Kk which
maps dq to du, and thus we can define the reduced objective function

jk : Q→ R

jk(dq) := Jk(dq, S(dq))

with which we can equivalently write (QPVI) as

min
dq∈Q

jk(dq). (5.2)

Moreover, if ϕ− ∈ Wϕ and uk ∈ W , then (5.1) implies the additional regular-
ity du = S(dq) ∈ W , cf., [10, Remark 7]. As a consequence, the corresponding
multiplier λk+1 satisfies λk+1 ∈ H−1+s.

For the discretization, we proceed as in Section 4.3; except now solutions
need to be found in the set

Kk
h := {vh ∈ Vh : vϕh ≤ Ih(ϕ− − ϕk) in Ω}.

Where Ih : C(Ω) 7→ Vh is the nodal interpolation operator satisfying

‖w − Ihw‖V ≤ CIhs‖w‖1+s, ‖w − Ihw‖1−s ≤ Ch2s‖w‖1+s, (5.3)

for any w ∈ H1+s.
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From the discrete analog of (5.1), we get the linearized solution operator
Sh : Q→ Kk

h ⊂ Vh, dq 7→ du
h and the discretized reduced objective

jkh : Q→ R

jkh(dq) := Jk(dq, Sh(dq))

and the discretized problem

min
dqh∈Q

jkh(dqh). (5.4)

Lemma 5.3. Let Assumption 2.3 be satisfied. Let (qk,uk, λk, zk) ∈ Q×W×V ∗ϕ ×W
and dq ∈ Q be given.

Then there exists c > 0 such that du = S(dq) and du
h = Sh(dq) satisfy

‖du − du
h‖V ≤ chs(‖dq‖Q + 1)

where c = c(‖λk+1‖−1+s) depends on the H−1+s-norm of the multiplier for the
variational inequality (5.1).

Proof. We follow [5] and derive the best-approximation result

〈A′(uk)(du − duh),du − duh〉 ≤ 〈A′(uk)(du − duh),du − vh〉

− 〈λk+1,vh − duh〉 ∀vh ∈ Kk
h .

(5.5)

Indeed, the result shows the claim using continuity and coercivity of A′(uk) as well
as the following simple calculation using the complementarity and sign relations
of (QPVI):

−〈λk+1,vh − duh〉 = − 〈λk+1,vh − Ih(ϕ− − ϕk)− du + ϕ− − ϕ+〉

− 〈λk+1,du − ϕ− + ϕk〉

− 〈λk+1, Ih(ϕ− − ϕk)− duh〉

≤ − 〈λk+1, Ih(vh − ϕ− + ϕk)− (du − ϕ− + ϕ+)〉

≤ ‖λk+1‖−1+s‖Ih(vh − ϕ− + ϕk)− (du − ϕ− + ϕ+)‖1−s.

Taking vh = Ihd
u in (5.5) thus yields

βη‖du − duh‖2V ≤C‖du − duh‖V ‖du − Ihdu‖V
+ ‖λk+1‖−1+s‖Ih(duh − ϕ− + ϕk)− (du − ϕ− + ϕ+)‖1−s

and the interpolation error estimate (5.3) yields the assertion.
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To show (5.5), we calculate for arbitrary vh ∈ Kk
h

〈A′(uk)(du − duh),du − duh〉 = 〈A′(uk)(du − duh),du − vh〉

+ 〈A′(uk)(du − duh),vh − duh〉

= 〈A′(uk)(du − duh),du − vh〉

− 〈λk+1 +A(uk)−B(qk + dq),vh − duh〉

− 〈A′(uk)duh,vh − duh〉

≤ 〈A′(uk)(du − duh),du − vh〉 − 〈λk+1,vh − duh〉

where we utilized the Lagrange-multiplier λk+1 for the variational inequality (5.1)
for the second equation, and the discretized variational inequality for (5.1) in the
last step; showing (5.5). �

With this we obtain a discretization error estimate for the reduced cost func-
tional.

Lemma 5.4. Let (qk,uk, λk, zk) ∈ Q×W ×V ∗ϕ ×V be given. Then it holds for any
dq ∈ Q

|jk(dq)− jkh(dq)| ≤ chs‖dq‖Q.

Proof. By definition, it holds

jk(dq)− jkh(dq) = J ′(qk,uk)(0, (S − Sh)dq)

+
1

2

(
L′′(q,u),(q,u)(q

k,uk, λk, zk)[(dq, Sdq), (dq, Sdq)]

− L′′(q,u),(q,u)(q
k,uk, λk, zk)[(dq, Shd

q), (dq, Shd
q)]
)

= J ′(qk,uk)(0, (S − Sh)dq) +
1

2

(
‖Sdq‖2 − ‖Shdq‖2

− 〈A′′(uk)[Sdq, Sdq], zk〉+ 〈A′′(uk)[Shd
q, Shd

q], zk〉
)

= J ′(qk,uk)(0, (S − Sh)dq) +
1

2

(
‖Sdq‖2 − ‖Shdq‖2

+ 〈A′′(uk)[(S + Sh)dq, (S − Sh)dq], zk〉
)
.

Using, that (S + Sh)dq ∈W 1,p we get from Lemma 2.2

|jk(dq)− jkh(dq)| ≤ c‖(S − Sh)dq‖V
and Lemma 5.3 shows the assertion. �

In order to derive error estimates for the optimal arguments, we need to
rely on the following quadratic growth condition. Let d̄q ∈ Q be a local solution
to (5.2). We assume the following:

Assumption 5.5. (Quadratic growth condition). There exists δ > 0 such that

jk(d̄q) ≤ jk(dq)− δ‖dq − d̄q‖2Q, ∀ dq ∈ Q. (5.6)
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In many cases, it can be shown that such a condition is a direct consequence
of Assumption 5.2. Whether this holds in the given situation is currently being
investigated.

From the quadratic growth condition a standard argument gives the following
convergence estimate

Theorem 5.6. Let d̄q and d̄qh be the optimal solutions to the problems (5.2) and (5.4),
respectively. Then there exists a constant c > 0, independent of the mesh size h,
such that the following holds

‖d̄q − d̄qh‖
2
Q ≤ chs.

Proof. From Assumption 5.5 we get, using the optimality of d̄qh

δ ‖d̄qh − d̄
q‖2Q ≤ jk(d̄qh)− jk(d̄q)

= jk(d̄qh)− jkh(d̄qh) + jkh(d̄q)− jk(d̄q) + jkh(d̄qh)− jkh(d̄q)

≤ |jk(d̄qh)− jkh(d̄qh)|+ |jk(d̄q)− jkh(d̄q)|
≤ chs(‖d̄q‖Q + ‖d̄qh‖Q)

where the last inequality follows from Lemma 5.4. �
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