
Scheduling Maintenance Jobs in Networks

Fidaa Abed1, Lin Chen2, Yann Disser3, Martin Groß4, Nicole Megow5, Julie
Meißner4, Alexander T. Richter6, and Roman Rischke7

1 University of Jeddah, Saudi Arabia. fabed@uj.edu.sa
2 Hungarian Academy of Sciences, Budapest, Hungary. chenlin198662@gmail.com

3 TU Darmstadt, Germany. disser@mathematik.tu-darmstadt.de
4 TU Berlin, Germany. {gross,jmeiss}@math.tu-berlin.de

5 University of Bremen, Germany. nicole.megow@uni-bremen.de
6 TU München, Germany. rischke@ma.tum.de

7 TU Braunschweig, Germany. a.richter@tu-bs.de

Abstract. We investigate the problem of scheduling the maintenance
of edges in a network with the objective of preserving network connec-
tivity. This problem is motivated by the servicing and replacement in
transportation and telecommunication networks which requires a well-
planned schedule to minimize the performance loss through temporary
outages. We distinguish the two objectives of minimizing the total net-
work disruption time and maximizing the total time that the network is
connected. Our contribution consists of efficient algorithms as well as re-
sults on the computational complexity and approximability for different
variants of the problem and different graph classes. We show that the
preemptive problem can be solved optimally in polynomial time in arbi-
trary networks for both objectives. However, limiting the preemption to
integral points in time makes the problem NP-hard and even inapprox-
imable in the minimization version. Fully disallowing preemption only
increases the complexity further; here we give strong lower bounds on
the approximability. Furthermore, we give tight bounds on the power of
preemption, that is, the maximum ratio of the values of non-preemptive
and preemptive optimal solutions. Interestingly, the preemptive and the
non-preemptive problem are known to be efficiently solvable on paths,
whereas we show that mixing both leads to a weakly NP-hard problem
that allows for a simple 2-approximation in the minimization version.

1 Introduction

Transportation and telecommunication networks are important backbones of
modern infrastructure and have been a major focus of research in combinatorial
optimization and other areas. Research on such networks usually concentrates
on optimizing their usage, for example by maximizing throughput or minimizing
costs. In the majority of the studied optimization models it is assumed that the
network is permanently available, and our choices only consist in deciding which
parts of the network to use at each point in time.

Practical transportation and telecommunication networks, however, can gen-
erally not be used non-stop. Be it due to wear-and-tear, repairs, or moderniza-
tions of the network, there are times when parts of the network are unavailable.
We study how to schedule and coordinate such maintenance in different parts of
the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well
understood, the combination of both areas that results from scheduling network
maintenance has only recently received some attention [1, 2, 4, 11, 17] and is
theoretically hardly understood.

Problem Definition. In this paper, we study connectivity problems which are
fundamental in this context. In these problems, we aim to schedule the mainte-
nance of edges in a network in such a way as to preserve connectivity between
two designated vertices. Given a network and maintenance jobs with processing
times and feasible time windows, we need to decide on the temporal allocation
of the maintenance jobs. While a maintenance on an edge is performed, the
edge is not available. We distinguish between MINCONNECTIVITY, the prob-
lem in which we minimize the total time in which the network is disconnected,
and MAXCONNECTIVITY, the problem in which we maximize the total time in
which it is connected.

In both of these problems, we are given an undirected graph G = (V,E) with
two distinguished vertices s+, s− ∈ V . We assume w. l. o. g. that the graph is
simple; we can replace a parallel edge {u,w} by a new node v and two edges
{u, v} , {v, w}. Every edge e ∈ E needs to undergo pe ∈ Z≥0 time units of
maintenance within the time window [re, de] with re, de ∈ Z≥0, where re is
called the release date and de is called the deadline of the maintenance job for
edge e. An edge e = {u, v} ∈ E that is maintained at time t, is not available at t
in the graph G. We consider preemptive and non-preemptive maintenance jobs.
If a job must be scheduled non-preemptively then, once it is started, it must run
until completion without any interruption. If a job is allowed to be preempted,
then its processing can be interrupted at any time and may resume at any later
time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to
a single time interval (if non-preemptive) or a set of disjoint time intervals (if
preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with re ≤ ai ≤ bi ≤ de for i ∈ [k] and∑

[a,b]∈S(e)(b − a) = pe. If not specified differently, we define T := maxe∈E de
as our time horizon. We do not limit the number of simultaneously maintained
edges.

For a given maintenance schedule, we say that the network G is disconnected
at time t if there is no path from s+ to s− in G at time t, otherwise we call
the network G connected at time t. The goal is to find a maintenance schedule
for the network G so that the total time where G is disconnected is minimized
(MINCONNECTIVITY). We also study the maximization variant of the problem,
in which we want to find a schedule that maximizes the total time where G is
connected (MAXCONNECTIVITY).

2

Our Results. For preemptive maintenance jobs, we show that we can solve
both problems, MAXCONNECTIVITY and MINCONNECTIVITY, efficiently in
arbitrary networks (Theorem 1). This result crucially requires that we are free
to preempt jobs at arbitrary points in time. Under the restriction that we can
preempt jobs only at integral points in time, the problem becomes NP-hard.
More specifically, MAXCONNECTIVITY does not admit a (2− ε)-approximation
algorithm for any ε > 0 in this case, and MINCONNECTIVITY is inapprox-
imable (Theorem 2), unless P = NP. By inapproximable, we mean that it is
NP-complete to decide whether the optimal objective value is zero or positive,
leading to unbounded approximation factors. This is true even for unit-size jobs.
This complexity result is interesting and may be surprising, as it is in contrast
to results for standard scheduling problems, without an underlying network.
Here, the restriction to integral preemption typically does not increase the prob-
lem complexity when all other input parameters are integral. However, the same
question remains open in a related problem concerning the busy-time in schedul-
ing, studied in [7, 8].

For non-preemptive instances, we establish that there is no (c 3
√
|E|)-ap-

proximation algorithm for MAXCONNECTIVITY for some constant c > 0 and
that MINCONNECTIVITY is inapproximable even on disjoint paths between two
nodes s and t, unless P = NP (Theorems 3,4). On the positive side, we pro-
vide an (` + 1)-approximation algorithm for MAXCONNECTIVITY in general
graphs (Theorem 6), where ` is the number of distinct latest start times (dead-
line minus processing time) for jobs.

We use the notion power of preemption to capture the benefit of allowing
arbitrary job preemption. The power of preemption is a commonly used measure
for the impact of preemption in scheduling [6,10,19,20]. Other terms used in this
context include price of non-preemption [9], benefit of preemption [18] and gain
of preemption [12]. It is defined as the maximum ratio of the objective values
of an optimal non-preemptive and an optimal preemptive solution. We show
that the power of preemption is Θ(log |E|) for MINCONNECTIVITY on a path
(Theorem 7) and unbounded for MAXCONNECTIVITY on a path (Theorem 8).
This is in contrast to other scheduling problems, where the power of preemption
is constant, e. g. [10, 19].

On paths, we show that mixed instances, which have both preemptive and
non-preemptive jobs, are weakly NP-hard (Theorem 9). This hardness result
is of particular interest, as both purely non-preemptive and purely preemptive
instances can be solved efficiently on a path (see Theorem 1 and [14]). Fur-
thermore, we give a simple 2-approximation algorithm for mixed instances of
MINCONNECTIVITY (Theorem 10).

Notice that all missing proofs are deferred to the appendix.

Related Work. The concept of combining scheduling with network problems
has been considered by different communities lately. However, the specific prob-
lem of only maintaining connectivity over time between two designated nodes
has not been studied to our knowledge. Boland et al. [2–4] study the combina-
tion of non-preemptive arc maintenance in a transport network, motivated by

3

annual maintenance planning for the Hunter Valley Coal Chain [5]. Their goal is
to schedule maintenance such that the maximum s-t-flow over time in the net-
work with zero transit times is maximized. They show strong NP-hardness for
their problem and describe various heuristics and IP based methods to address
it. Also, they show in [3] that in their non-preemptive setting, if the input is
integer, there is always an optimal solution that starts all jobs at integer time
points. In [2], they consider a variant of their problem, where the number of
concurrently performable maintenances is bounded by a constant.

Their model generalizes ours in two ways – it has capacities and the objec-
tive is to maximize the total flow value. As a consequence of this, their IP-based
methods carry over to our setting, but these methods are of course not efficient.
Their hardness results do not carry over, since they rely on the capacities and
the different objective. However, our hardness results – in particular our ap-
proximation hardness results – carry over to their setting, illustrating why their
IP-based models are a good approach for some of these problems.

Bley, Karch and D’Andreagiovanni [1] study how to upgrade a telecommuni-
cation network to a new technology employing a bounded number of technicians.
Their goal is to minimize the total service disruption caused by downtimes. A
major difference to our problem is that there is a set of given paths that shall be
upgraded and a path can only be used if it is either completely upgraded or not
upgraded. They give ILP-based approaches for solving this problem and show
strong NP-hardness for a non-constant number of paths by reduction from the
linear arrangement problem.

Nurre et al. [17] consider the problem of restoring arcs in a network after a
major disruption, with restoration per time step being bounded by the available
work force. Such network design problems over time have also been considered
by Kalinowski, Matsypura and Savelsbergh [13].

In scheduling, minimizing the busy time refers to minimizing the amount
of time for which a machine is used. Such problems have applications for in-
stance in the context of energy management [16] or fiber management in optical
networks [11]. They have been studied from the complexity and approximation
point of view in [7,11,14,16]. The problem of minimizing the busy time is equiv-
alent to our problem in the case of a path, because there we have connectivity
at a time point when no edge in the path is maintained, i. e., no machine is busy.

Thus, the results of Khandekar et al. [14] and Chang, Khuller and Mukher-
jee [7] have direct implications for us. They show that minimizing busy time can
be done efficiently for purely non-preemptive and purely preemptive instances,
respectively.

2 Preemptive Scheduling

In this section, we consider problem instances where all maintenance jobs can
be preempted.

Theorem 1. Both MAXCONNECTIVITY and MINCONNECTIVITY with pre-
emptive jobs can be solved optimally in polynomial time on arbitrary graphs.

4

Proof. We establish a linear program (LP) for MAXCONNECTIVITY.
Let TP = {0} ∪ {re, de : e ∈ E} = {t0, t1, . . . , tk} be the set of all relevant

time points with t0 < t1 < · · · < tk. We define Ii := [ti−1, ti] and wi := |Ii| to
be the length of interval Ii for i = 1, . . . , k.

In our linear program we model connectivity during interval Ii by an (s+, s−)-
flow x(i), i ∈ {1, . . . , k}. To do so, we add for every undirected edge e = {u, v}
two directed arcs (u, v) and (v, u). Let A be the resulting arc set. With each
edge/arc we associate a capacity variable y(i)

e , which represents the fraction of
availability of edge e in interval Ii. Hence, 1 − y

(i)
e gives the relative amount

of time spent on the maintenance of edge e in Ii. Additionally, the variable fi
expresses the fraction of availability for interval Ii.

max
∑k

i=1
wi · fi

s.t.
∑

u:(v,u)∈A

x
(i)
(v,u) −

∑
u:(u,v)∈A

x
(i)
(u,v) =

fi ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},
−fi ∀ i ∈ [k], v = s−,∑

i:Ii⊆[re,de]
(1− y(i)

e)wi ≥ pe ∀ e ∈ E,

x
(i)
(u,v), x

(i)
(v,u) ≤ y

(i)
{u,v} ∀ i ∈ [k], {u, v} ∈ E,

fi ≤ 1 ∀ i ∈ [k],

x
(i)
(u,v), x

(i)
(v,u), y

(i)
{u,v} ∈ [0, 1] ∀ i ∈ [k], {u, v} ∈ E.

Notice that the LP is polynomial in the input size, since k ≤ 2|E|. In Lemmas 3
and 4 in the Appendix, we show that the above LP is a relaxation of preemptive
MAXCONNECTIVITY, and that any optimal solution to it can be turned into
a feasible schedule with the same objective function value in polynomial time,
which proves the claim for MAXCONNECTIVITY. For MINCONNECTIVITY, no-
tice that any solution that maximizes the time in which s and t are connected
also minimizes the time in which s and t are disconnected – thus, we can use
the above LP there as well. ut

The statement of Theorem 1 crucially relies on the fact that we may preempt
jobs arbitrarily. However, if preemption is only possible at integral time points,
the problem becomes NP-hard even for unit-size jobs. This follows from the proof
of Theorem 3 for t1 = 0, t2 = 1, and T = 2.

Theorem 2. MAXCONNECTIVITY with preemption only at integral time points
is NP-hard and does not admit a (2 − ε)-approximation algorithm for any ε >
0, unless P = NP. Furthermore, MINCONNECTIVITY with preemption only at
integral time points is inapproximable.

3 Non-Preemptive Scheduling

We consider problem instances in which no job can be preempted. We show
that there is no (c 3

√
|E|)-approximation algorithm for MAXCONNECTIVITY for

5

some c > 0. We also show that MINCONNECTIVITY is inapproximable, unless
P = NP. Furthermore, we give an (` + 1)-approximation algorithm, where ` :=
| {de − pe | e ∈ E} | is the number of distinct latest start times for jobs.

Before we show the strong hardness of approximation forMAXCONNECTIVITY,
we give a weaker result which provides us with a crucial gadget.

Theorem 3. Non-preemptive MAXCONNECTIVITY does not admit a (2 − ε)-
approximation algorithm, for any ε > 0, and non-preemptive MINCONNECTIVITY
is inapproximable, unless P = NP. This holds even for unit-size jobs.

Proof (Sketch). This is shown by a reduction from 3SAT. We construct a network
such that connectivity is possible only within two disjoint time slots [t1, t1 +
1] and [t2, t2 + 1]. We show that this network admits a schedule with total

s+
c1

through variable
gadgets according
to clause literals

c2 . . . cm

x1 Gadget x2 Gadget . . . xn Gadget
s−

Fig. 1. High-level view of the construction for Theorem 3.

connectivity time greater than one if and only if the 3SAT-instance is a YES-
instance. Furthermore, we show that if the total connectivity time is greater than
one, then there is a schedule with maximum total connectivity time of two. For
this, we distinguish between variable paths and clause paths. By construction,
variable paths exist only in [t2, t2 + 1] and clause paths only in [t1, t1 + 1]. These
paths walk through variable gadgets which encapsulate the decision whether to
set a variable to TRUE or FALSE. A variable path ensures that we have a valid
variable assignment, and a clause path sets literals in a clause to TRUE. If and
only if both types of paths exist, then the 3SAT-instance is a YES-instance.

For t1 = 0, t2 = 1, and T = 2, this construction uses only unit-size jobs, and
in the MINCONNECTIVITY case YES-instances have an objective value of 0 and
NO-instances a value of 1. ut

We reuse the construction in the proof of Theorem 3 repeatedly to obtain
the following improved lower bound.

Theorem 4. Unless P = NP, there is no (c 3
√
|E|)-approximation algorithm for

non-preemptive MAXCONNECTIVITY, for some constant c > 0.

Proof (Sketch). We show this by reduction from 3SAT. Let n be the number
of variables in the given 3SAT instance. Using the construction from Theorem 3
repeatedly allows us to construct a network that has maximum connectivity
time n if the given 3SAT instance is a YES-instance and maximum connectivity
time 1 otherwise. This implies that there cannot be an (n − ε)-approximation
algorithm for non-preemptive MAXCONNECTIVITY, unless P = NP. Notice that
the construction in the proof of Theorem 3 has Θ(n) maintenance jobs and we
will introduce Θ(n2) copies of the construction, yielding |E| ≤ c · n3 for some
c > 0. Hence, we have n ≥ c′ 3

√
|E| for some c′ > 0.

6

For the construction, we use n2 − n copies of the 3SAT-network from the
proof of Theorem 3, where each copy uses different (t1, t2)-combinations with
t1, t2 ∈ {0, . . . , n − 1} and t1 6= t2. These copies are connected by n paths
as depicted in Figure 2. The path with label k allows connectivity only during
[k, k+1], k = 0, . . . , n−1, and passes through every 3SAT-network with t1 = k or
t2 = k. Notice that within a 3SAT-network we have connectivity during both time
slots if and only if the corresponding 3SAT-instance is a YES-instance. Also, we
know due to [3] that there is an optimal solution which starts all jobs at integral
times. Now, if the 3SAT-instance is a YES-instance, there is a global schedule
such that its restriction to every 3SAT-network allows connectivity during both
intervals. Thus each path with label k ∈ {0, . . . , n−1} allows connectivity during
[k, k + 1]. This implies that the maximum connectivity time is n. Conversely,

3-SAT
0

0

0

0

3-SAT
0

1

0

1

3-SAT
0

2

0

2

3-SAT
0

3

0

3

3-SAT
0

n-1

0

n-1

3-SAT
1

0

1

0

3-SAT
1

1

1

1

3-SAT
1

2

1

2

3-SAT
1

3

1

3

3-SAT
1

n-1

1

n-1

3-SAT
2

0

2

0

3-SAT
2

1

2

1

3-SAT
2

2

2

2

3-SAT
2

3

2

3

3-SAT
2

n-1

2

n-1

3-SAT
3

0

3

0

3-SAT
3

1

3

1

3-SAT
3

2

3

2

3-SAT
3

3

3

3

3-SAT
3

n-1

3

n-1

3-SAT
n-1

0

n-1

0

3-SAT
n-1

1

n-1

1

3-SAT
n-1

2

n-1

2

3-SAT
n-1

3

n-1

3

3-SAT
n-1

n-1

n-1

n-1

. . .

s+ s−

...

. . .

...

. . .

...

. . .

...

. . .

. . .

Fig. 2. Schematic representation of the network of 3SAT-gates.

suppose there exists a global schedule with connectivity during two time slots.
Then there must exist two paths P1, P2 from s+ to s− with two distinct labels,
each realizing connectivity during one of both intervals. By construction there is
one 3SAT-network they both use. This implies by the proof of Theorem 3, that
the global schedule restricted to this 3SAT-network corresponds to a satisfying
truth assignment for the 3SAT-instance. ut

The results above hold for general graph classes, but even for graphs as simple
as disjoint paths between s and t, the problem remains strongly NP-hard.

Theorem 5. Non-preemptive MAXCONNECTIVITY is strongly NP-hard, and
non-preemptive MINCONNECTIVITY is inapproximable even if the given graph
consists only of disjoint paths between s and t.

We give an algorithm that computes an (` + 1)-approximation for non-
preemptive MAXCONNECTIVITY, where ` ≤ |E| is the number of different time
points de−pe, e ∈ E. The basic idea is that we consider a set of `+1 feasible main-
tenance schedules, whose total time of connectivity upper bounds the maximum

7

total connectivity time of a single schedule. Then the schedule with maximum
connectivity time among our set of `+ 1 schedules is an (`+ 1)-approximation.

The schedules we consider start every job either immediately at its release
date, or at the latest possible time. In the latter case it finishes exactly at the
deadline. More precisely, for a fixed time point t, we start the maintenance of all
edges e ∈ E with de− pe ≥ t at their latest possible start time de− pe. All other
edges start maintenance at their release date re. This yields at most `+1 ≤ |E|+1
different schedules St, as for increasing t, each time point where de−pe is passed
for some edge e defines a new schedule. Algorithm 1 formally describes this
procedure, where E(t) := {e ∈ E : e is not maintained at t}.

Algorithm 1 Approx. Algorithm for Non-preemptive MAXCONNECTIVITY
1: Let t1 < · · · < t` be all different time points de − pe, e ∈ E, t0 = 0 and t`+1 = T .
2: Let Si be the schedule, where all edges e with de− pe < ti start maintenance at re

and all other edges at de − pe, i = 1, . . . , `+ 1.
3: For each Si, initialize total connectivity time c(ti)← 0, i = 1, . . . , `+ 1.
4: for i = 1 to `+ 1 do
5: Partition the interval [ti−1, ti] into subintervals such that each time point re, re+

pe, de, e ∈ E, in this interval defines a subinterval bound.
6: for all subintervals [a, b] ⊆ [ti−1, ti] do
7: if (V,E(1/2 · (a+ b))) contains an (s+, s−)-path for Si then
8: Increase c(ti) by b− a.
9: return Schedule Si for which c(ti), i = 1, . . . , `+ 1, is maximized.

Algorithm 1 considers finitely many intervals, as all (sub-)interval bounds are
defined by a time point re, re + pe, de− pe or de of some e ∈ E. As we can check
the network for (s+, s−)-connectivity in polynomial time, and the algorithm does
this for each (sub-)interval, Algorithm 1 runs in polynomial time.

Theorem 6. Algorithm 1 is an (` + 1)-approximation algorithm for non-pre-
emptive MAXCONNECTIVITY on general graphs, with ` ≤ |E| being the number
of different time points de − pe, e ∈ E.
Proof. By construction, all schedules Si, i = 1, . . . , ` + 1, are feasible and the
solution returned has a connectivity time of maxi=1,...,`+1 c(ti), with c(ti) being
the connectivity time of schedule Si.

The schedule Si, i = 1, . . . , `+ 1 is choosen in such a way that the connected
time in the interval [ti−1, ti] is maximized. To see this, we need to consider two
types of jobs. First, all jobs on edges e ∈ E with de − pe ≥ ti can be scheduled
outside of [ti−1, ti], which is definitely a correct choice in order to maximize the
connectivity time in [ti−1, ti]. Second, for all edges e ∈ E with de − pe < ti, we
know due to the definition of ti−1 that re ≤ de − pe ≤ ti−1. Thus, scheduling
these jobs at re guarantees the least reduction in connectivity time in [ti−1, ti].
More precisely, this scheduling disrupts connectivity in the interval [ti−1, re+pe]
if ti−1 ≤ re+pe, and otherwise not at all. However, all other feasible schedulings
must also disrupt connectivity in this interval – scheduling the job earlier than
re is not possible, and neither is scheduling the job later than de − pe ≤ ti−1.
Thus, schedule Si has the maximal connectivity time in [ti−1, ti].

8

Since the intervals [ti−1, ti], i = 1, . . . , ` + 1 partition the complete time
window [0, T], this allows us to bound the value of the optimal solution OPT by

OPT ≤
`+1∑
i=1

c(ti) ≤ (`+ 1) max
i=1,...,`+1

c(ti) = (`+ 1)ALG

with ALG being the value of a solution returned by Algorithm 1. This gives us
an approximation guarantee of `+ 1 and completes our proof. ut

4 Power of Preemption

We first focus on MINCONNECTIVITY on a path and analyze how much we
can gain by allowing preemption. First, we show that there is an algorithm that
computes a non-preemptive schedule whose value is bounded by O(log |E|) times
the value of an optimal preemptive schedule. Second, we argue that one cannot
gain more than a factor of Ω(log |E|) by allowing preemption.

Theorem 7. The power of preemption is Θ(log |E|) for MINCONNECTIVITY
on a path.

Observe that if at least one edge of a path is maintained at time t, then the
whole path is disconnected at t. We give an algorithm for MINCONNECTIVITY
on a path that constructs a non-preemptive schedule with cost at most O(log |E|)
times the cost of an optimal preemptive schedule.

We first compute an optimal preemptive schedule. This can be done in poly-
nomial time by Theorem 1. Let xt be a variable that is 1 if there exists a job j
that is processed at time t and 0 otherwise. We shall refer to x also as the main-
tenance profile. Furthermore, let a :=

∫ T
0
xt dt be the active time, i.e., the total

time of maintenance. Then we apply the following splitting procedure. We com-
pute the time point t̄ where half of the maintenance is done, i.e.,

∫ t̄
0
xt dt = a/2.

Let E(t) := {e ∈ E | re ≤ t ∧ de ≥ t} and pmax := maxe∈E(t) pe. We reserve the
interval [t̄− pmax, t̄+ pmax] for the maintenance of the jobs in E(t̄), although we
might not need the whole interval. We schedule each job in E(t̄) around t̄ so that
the processing time before and after t̄ is the same. If the release date (deadline)
of a jobs does not allow this, then we start (complete) the job at its release date
(deadline). Then we mark the jobs in E(t̄) as scheduled and delete them from
the preemptive schedule.

Initial
Recursion 1
Recursion 2

t̄

Fig. 3. A sketch of the splitting procedure and the reserved intervals.

This splitting procedure splits the whole problem into two separate instances
E1 := {e ∈ E | de < t̄} and E2 := {e ∈ E | re > t̄}. Note that in each of these

9

sub-instances the total active time in the preemptive schedule is at most a/2.
We apply the splitting procedure to both sub-instances and follow the recursive
structure of the splitting procedure until all jobs are scheduled.

Lemma 1. For MINCONNECTIVITY on a path, the given algorithm constructs
a non-preemptive schedule with cost O(log |E|) times the cost of an optimal pre-
emptive schedule.

Proof. The progression of the algorithm can be described by a binary tree in
which a node corresponds to a partial schedule generated by the splitting pro-
cedure for a subset of the job and edge set E. The root node corresponds to the
partial schedule for E(t̄) and the (possibly) two children of the root correspond
to the partial schedules generated by the splitting procedure for the two sub-
problems with initial job sets E1 and E2. We can cut a branch if the initial set
of jobs is empty in the corresponding subproblem. We associate with every node
v of this tree B two values (sv, av) where sv is the number of scheduled jobs in
the subproblem corresponding to v and av is the amount of maintenance time
spent for the scheduled jobs.

The binary tree B has the following properties. First, sv ≥ 1 holds for all
v ∈ B, because the preemptive schedule processes some job at the midpoint
t̄v which means that there must be a job e ∈ E with re ≤ t̄v ∧ de ≥ t̄v. This
observation implies that the tree B can have at most |E| nodes and since we
want to bound the worst total cost we can assume w.l.o.g. that B has exactly
|E| nodes. Second, ∑v∈B av =

∫ T
0
yt dt where yt is the maintenance profile of

the non-preemptive solution.
The cost av of the root node (level-0 node) is bounded by 2pmax ≤ 2a. The

cost of each level-1 node is bounded by 2 · a/2 = a, so the total cost on level 1
is also at most 2a. It is easy to verify that this is invariant, i.e., the total cost at
level i is at most 2a for all i ≥ 0, since the worst node cost av halves from level
i to level i + 1, but the number of nodes doubles in the worst case. We obtain
the worst total cost when B is a complete balanced binary tree. This tree has
at most O(log |E|) levels and therefore the worst total cost is a ·O(log |E|). The
total cost of the preemptive schedule is a. ut
We now provide a matching lower bound for the power of preemption on a path.

Lemma 2. The power of non-preemption is Ω(log |E|) for MINCONNECTIVITY
on a path.

Proof. We construct a path with |E| edges and divide the |E| jobs into ` levels
such that level i contains exactly i jobs for 1 ≤ i ≤ `. Hence, we have |E| =
`(`+ 1)/2 jobs. Let P be a sufficiently large integer such that all of the following
numbers are integers. Let the jth job of level i have release date (j − 1)P/i,
deadline (j/i)P , and processing time P/i, where 1 ≤ j ≤ i. Note that now no
job has flexibility within its time window, and thus the value of the resulting
schedule is P .

We now modify the instance as follows. At every time point t where at least
one job has a release date and another job has a deadline, we stretch the time

10

Level 1
Level 2
Level 3

Fig. 4. A rough sketch of the instance for 3 levels.

horizon by inserting a gap of size P. This stretching at time t can be done by
adding a value of P to all time points after the time point t, and also adding
a value of P to all release dates at time t. The deadlines up to time t remain
the same. Observe that the value of the optimal preemptive schedule is still P ,
because when introducing the gaps we can move the initial schedule accordingly
such that we do not maintain any job within the gaps of size P . Figure 4 shows
a rough sketch of this construction.

We now consider the optimal non-preemptive schedule. The cost of scheduling
the only job at level 1 is P . In parallel to this job we can schedule at most one
job from each other level, without having additional cost. This is guaranteed by
the introduced gaps. At level 2 we can fix the remaining job with additional cost
P/2. As before, in parallel to this fixed job, we can schedule at most one job from
each level i where 3 ≤ i ≤ `. Applying the same argument to the next levels, we
notice that for each level i we introduce an additional cost of value P/i. Thus
the total cost is at least

∑`
i=1 P/i ∈ Ω(P log `) with ` ∈ Θ(

√
|E|). ut

For MAXCONNECTIVITY, the power of preemption can be unbounded.

Theorem 8. For non-preemptive MAXCONNECTIVITY on a path the power of
preemption is unbounded.

5 Mixed Scheduling

We know that both the non-preemptive and preemptive MAXCONNECTIVITY
and MINCONNECTIVITY on a path are solvable in polynomial time by Theo-
rem 1 and [14, Theorem 9], respectively. Notice that the parameter g in [14] is
in our setting∞. Interestingly, the complexity changes when mixing the two job
types – even on a simple path.

Theorem 9. MAXCONNECTIVITY and MINCONNECTIVITY with preemptive
and non-preemptive maintenance jobs is weakly NP-hard, even on a path.

Proof (Sketch). We reduce from PARTITION; the gadgets necessary for the
reduction are shown in Figure 5. Given n numbers in the PARTITION instance,
we create n gadgets with non-preemptive jobs that encapsule the assignment of a
number to one of the two sets of the partition. Then we add two preemptive jobs
that can be aligned perfectly with the jobs in the gadgets if the numbers in each
partition set sum up to the same value. This is only possible if the underlying
PARTITION instance is a YES-instance, otherwise we get a lower objective value
due to an imperfect alignment. ut

11

40B 40B

40B + an

Gadget for an
Good solutions have to align
the green job of each gadget
with one of the two red jobs.

41B 41B

41B + an−1

Gadget for an−1

...
B +

∑n−1
i=0 4iB B +

∑n−1
i=0 4iB

Tight jobs
Non-preemptive jobs
Preemptive jobs

Fig. 5. Instance created from a PARTITION instance a1, . . . , an, B.

For MINCONNECTIVITY, running the optimal preemptive and non-preemp-
tive algorithms on the respective job sets individually gives a 2-approximation.

Theorem 10. There is a 2-approximation algorithm for MINCONNECTIVITY
on a path with preemptive and non-preemptive maintenance jobs.

6 Conclusion

Combining network flows with scheduling aspects is a very recent field of re-
search. While there are solutions using IP based methods and heuristics, exact
and approximation algorithms have not been considered extensively. We pro-
vide strong hardness results for connectivity problems, which is inherent to all
forms of maintenance scheduling, and give algorithms for tractable cases. In
particular, the absence of c 3

√
|E|-approximation algorithms for some c > 0 for

general graphs indicates that heuristics and IP-based methods [2–4] are a good
way of approaching this problem. An interesting open question is whether the
inapproximability results carry over to series-parallel graphs, as the network mo-
tivating [2–4] is series-parallel. Our results on the power of preemption as well as
the efficient algorithm for preemptive instances show that allowing preemption
is very desirable. Thus, it could be interesting to study models where preemption
is allowed, but comes at a cost to make it more realistic.

On a path, our results have implications for minimizing busy time, as we want
to minimize the number of times where some edge on the path is maintained.
Here, an interesting open question is whether the 2-approximation for the mixed
case can be improved, e.g. by finding a pseudo-polynomial algorithm, a better
approximation ratio, or conversely, to show an inapproximability result for it.

References

1. A. Bley, D. Karch, and F. D’Andreagiovanni. WDM fiber replacement scheduling.
Electronic Notes in Discrete Mathematics, 41:189–196, 2013.

2. N. Boland, T. Kalinowski, and S. Kaur. Scheduling arc shut downs in a network to
maximize flow over time with a bounded number of jobs per time period. Journal
of Combinatorial Optimization, pages 1–21, 2015.

12

3. N. Boland, T. Kalinowski, and S. Kaur. Scheduling network maintenance jobs with
release dates and deadlines to maximize total flow over time: Bounds and solution
strategies. Computers & Operations Research, 64:113–129, 2015.

4. N. Boland, T. Kalinowski, H. Waterer, and L. Zheng. Scheduling arc maintenance
jobs in a network to maximize total flow over time. Discrete Applied Mathematics,
163:34–52, 2014.

5. N. L. Boland and M. W. P. Savelsbergh. Optimizing the hunter valley coal chain.
In H. Gurnani, A. Mehrotra, and S. Ray, editors, Supply Chain Disruptions: Theory
and Practice of Managing Risk, pages 275–302. Springer, 2012.

6. R. Canetti and S. Irani. Bounding the power of preemption in randomized schedul-
ing. SIAM Journal on Computing, 27(4):993–1015, 1998.

7. J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combinatorial algorithms
for minimizing active and busy time. In G. E. Blelloch and P. Sanders, editors,
Proc. of the 26th SPAA, pages 118–127, 2014.

8. J. Chang, S. Khuller, and K. Mukherjee. Active and busy time minimization. In
Proc. of the 12th MAPSP, pages 247–249, 2015.

9. V. Cohen-Addad, Z. Li, C. Mathieu, and I. Milis. Energy-efficient algorithms for
non-preemptive speed-scaling. In E. Bampis and O. Svensson, editors, Proc. of the
12th WAOA, volume 8952 of LNCS, pages 107–118. Springer, 2015.

10. J. R. Correa, M. Skutella, and J. Verschae. The power of preemption on unre-
lated machines and applications to scheduling orders. Mathematics of Operations
Research, 37(2):379–398, 2012.

11. M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, and
S. Zaks. Minimizing total busy time in parallel scheduling with application to
optical networks. Theoretical Computer Science, 411(40–42):3553–3562, 2010.

12. S. Ha. Compile-time scheduling of dataflow program graphs with dynamic con-
structs. PhD thesis, University of California, Berkeley, 1992.

13. T. Kalinowski, D. Matsypura, and M. W. Savelsbergh. Incremental network design
with maximum flows. European Journal of Oper. Res., 242(1):51–62, 2015.

14. R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time scheduling to
minimize machine busy times. Journal of Scheduling, 18(6):561–573, 2015.

15. B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 4th edition, 2007.

16. G. B. Mertzios, M. Shalom, A. Voloshin, P. W. H. Wong, and S. Zaks. Optimizing
busy time on parallel machines. In Proc. of the 26th IPDPS, pages 238–248, 2012.

17. S. G. Nurre, B. Cavdaroglu, J. E. Mitchell, T. C. Sharkey, and W. A. Wallace.
Restoring infrastructure systems: An integrated network design and scheduling
(INDS) problem. European Journal of Operational Research, 223(3):794–806, 2012.

18. E. W. Parsons and K. C. Sevcik. Multiprocessor scheduling for high-variability
service time distributions. In D. G. Feitelson and L. Rudolph, editors, Proc. of the
JSSPP, volume 949 of LNCS, pages 127–145. Springer, 1995.

19. A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized round-
ing. SIAM Journal on Discrete Mathematics, 15(4):450–469, 2002.

20. A. J. Soper and V. A. Strusevich. Power of preemption on uniform parallel ma-
chines. In Proc. of the 17th APPROX, volume 28 of LIPIcs, pages 392–402, 2014.

13

A Proofs of Section 2 (Preemptive Scheduling)

The LP considered is:

max

k∑
i=1

wi · fi (1)

s.t.
∑

u:(v,u)∈A

x
(i)
(v,u) −

∑
u:(u,v)∈A

x
(i)
(u,v) =

fi ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},
−fi ∀ i ∈ [k], v = s−,

(2)∑
i:Ii⊆[re,de]

(1− y(i)
e)wi ≥ pe ∀ e ∈ E, (3)

x
(i)
(u,v), x

(i)
(v,u) ≤ y

(i)
{u,v} ∀ i ∈ [k], {u, v} ∈ E, (4)

fi ≤ 1 ∀ i ∈ [k], (5)

x
(i)
(u,v), x

(i)
(v,u), y

(i)
{u,v} ∈ [0, 1] ∀ i ∈ [k], {u, v} ∈ E. (6)

Lemma 3. The given LP is a relaxation of preemptive MAXCONNECTIVITY
on general graphs.

Proof. Given a feasible maintenance schedule, consider an arbitrary interval Ii,
i ∈ {1, . . . , k}, and let [ai1, b

i
1] ∪̇ . . . ∪̇ [aimi

, bimi
] ⊆ Ii be all intervals where s+

and s− are connected in interval Ii. We set fi =
∑mi

`=1(bi` − ai`)/wi ≤ 1 and set
y

(i)
e ∈ [0, 1] to the fraction of time where edge e is not maintained in interval Ii.
Note that (3) is automatically fulfilled, since we consider a feasible schedule. It
is left to construct a feasible flow x(i) for the fixed variables fi and y(i) for all
i = 1, . . . , k.

Whenever the given schedule admits connectivity we can send one unit of
flow from s+ to s− along some directed path in G. Moreover, in intervals where
the set of processed edges does not change we can use the same path for sending
the flow. Let [a, b] ⊆ Ii be an interval where the set of processed edges does
not change and in which we have connectivity. Let Ci be the collection of all
such intervals in Ii. Then, we send a flow x

(i)
[a,b] from s+ to s− along any path

of total value (b− a)/wi using only arcs for which the corresponding edge is not
processed in [a, b]. The flow x(i) =

∑
[a,b]∈Ci x

(i)
[a,b], which is a sum of vectors,

gives the desired flow. The constructed flow x(i) respects the flow conservation
(2) and non-negativity constraints (6), uses no arc more than the corresponding
y

(i)
e , since flow x(i) is driven by the schedule. ut

Lemma 4. Any feasible LP solution can be turned into a feasible maintenance
schedule at no loss in the objective function value in polynomial time.

14

Proof. Let (x, y, f) be a feasible solution of the given LP. Let Pi := (P i1, . . . , P
i
λi

)

be a path decomposition [15] of the (s+, s−)-flow x(i) for an arbitrary interval
Ii := [ai, bi], i ∈ {1, . . . , k}, after deleting all flow from possible circulations.
Furthermore, let x(P i`) be the value of the (s+, s−)-flow x(i) sent along the
directed path P i` . For each arc a ∈ A we have that

∑
`∈[λi]:a∈P i

`
x(P i`) = x

(i)
a by

the definition of Pi. Hence, we get
∑
`∈[λi]

x(P i`) = fi ≤ 1 by using (5). We now
divide the interval Ii into disjoint subintervals to allocate connectivity time for
each path in our path decomposition. More precisely, we do not maintain any
arc (u, v) (resp. edge {u, v}) contained in P i` , ` = 1, . . . , λi, in the time interval[

ai +

`−1∑
m=1

wi · x(P im), ai +
∑̀
m=1

wi · x(P im)

]
of length wi · x(P i`).

Inequality (4) and
∑
`∈[λi]:a∈P i

`
x(P i`) = x

(i)
a thereby ensure that by now the total

time where edge e does not undergo maintenance in interval Ii equals at most
wi ·y(i)

e time units. By Inequality (3), we can thus distribute the processing time
of the job for edge e among the remaining slots of all intervals Ii, i = 1, . . . , k.
For instance, we could greedily process the job for edge e as early as possible in
available intervals. Note that arbitrary preemption of the processing is allowed.
By construction, we have connectivity on path P i` , ` = 1, . . . , λi, for at least
wi · x(P i`) time units in interval Ii. Thus, the constructed schedule has total
connectivity time of at least

∑k
i=1 wi

∑λi

`=1 x(P i`) =
∑k
i=1 wi · fi. Since the path

decomposition can be computed in polynomial-time and the resulting number
of paths is bounded by the number of edges [15], we can obtain the feasible
schedule in polynomial-time. ut

For unit-size jobs we can simplify the given LP by restricting to the first
|E| slots within every interval Ii. This, in turn, allows to consider intervals of
unit-size, i.e., we have wi = 1 for all intervals Ii, which affects constraint (3).
However, one can show that the constraint matrix of this LP is generally not
totally unimodular. We illustrate the behaviour of the LP with the help of the
following exemplary instance in Figure 6, in which all edges have unit-size jobs
associated and the label of an edge e represents (re, de). It is easy to verify that
a schedule that preempts jobs only at integral time points, has maximum con-
nectivity time of one. However, the following schedule with arbitrary preemption
has connectivity time of two. We process {s+, v2} in [0, 0.5]∪ [1, 1.5], {s+, v3} in
[0.5, 1] ∪ [1.5, 2], {v4, s

−} in [0, 0.5] ∪ [1.5, 2], {v5, s
−} in [0.5, 1.5], and the other

edges are fixed by their time window. This instance shows that the integrality
gap of the LP is at least two.

B Proofs of Section 3 (Non-Preemptive Scheduling)

Theorem 3. Non-preemptive MAXCONNECTIVITY does not admit a (2 − ε)-
approximation algorithm, for any ε > 0, and non-preemptive MINCONNECTIVITY
is inapproximable, unless P = NP. This holds even for unit-size jobs.

15

s+

v2

v3

v4

v5

s−

(0
, 2

)

(0, 2)

(1, 2)

(0, 1)

(0
, 1

)

(1, 2)

(0, 2)

(0
, 2

)

Fig. 6. Example for the difference between arbitrary preemption and preemption only
at integral time points.

Proof. We show that the existence of a (2− ε)-approximation algorithm for non-
preemptive MAXCONNECTIVITY allows to distinguish between YES- and NO-
instances of 3SAT in polynomial time. Given an instance of 3SAT consisting of m
clauses C1, C2, . . . , Cm each of exactly three variables in X = {x1, x2, . . . , xn},
we construct the following instance of non-preemptive MAXCONNECTIVITY.
We pick two arbitrary but distinct time points t1 + 1 ≤ t2 and a polynomially
bounded time horizon T ≥ t2 + 1. We construct our instance such that connec-
tivity is impossible outside [t1, t1 + 1] and [t2, t2 + 1]. For this, s+ is followed
by a path P from s+ to a vertex s′ composed of three edges that disconnect s+

from s− in the time intervals [0, t1], [t1 + 1, t2], and [t2 + 1, T]. These edges e
have pe = de − re. Furthermore, we construct the network such that the total
connectivity time is greater than one if and only if the 3SAT-instance is a YES-
instance. And we show that if the total connectivity time is greater than one,
then there is a schedule with maximum total connectivity time of two.

Let Y (xi) be the set of clauses containing the literal xi and Z(xi) be the set
of clauses containing the literal ¬xi, and set set ki = 2|Y (xi)| and `i = 2|Z(xi)|.
We define the following node sets

– V1 := {y1
i , . . . , y

ki
i | i = 1, . . . , n},

– V2 := {z1
i , . . . , z

`i
i | i = 1, . . . , n},

– V3 := {cr | r = 1, . . . ,m+ 1},
– V4 := {vi | i = 1, . . . , n+ 1}
– and set V =

⋃4
j=1 Vj ∪ {v : v ∈ P} ∪ {s−}.

We introduce three edge types

– E1 := {e ∈ E : re = t1, de = t2 + 1, pe = t2 − t1},
– E2 := {e ∈ E : re = t1, de = t1 + 1, pe = 1},
– and E3 := {e ∈ E : re = t2, de = t2 + 1, pe = 1}.

The graph G = (V,E) consists of variable gadgets, shown in Figure 7, to
which we connect the clause nodes cr, r = 1, . . . ,m+ 1. We define the following
edge sets for the variable gadgets, namely,

– E1 := {{s′, v1}, {vn+1, s
−}} of type E2,

– E2 := {{vi, y1
i }, {vi, z1

i }, {ykii , vi+1}, {z`ii , vi+1} : i = 1, . . . , n} of type E2,

16

– E3 := {{yqi , yq+1
i } : i = 1, . . . , n; q = 1, 3, . . . , ki − 3, ki − 1} of type E1,

– E4 := {{zqi , zq+1
i } : i = 1, . . . , n; q = 1, 3, . . . , `i − 3, `i − 1} of type E1,

– E5 := {{yqi , yq+1
i } : i = 1, . . . , n; q = 2, 4, . . . , ki − 4, ki − 2} of type E2,

– and E6 := {{zqi , zq+1
i } : i = 1, . . . , n; q = 2, 4, . . . , `i − 4, `i − 2} of type E2.

Notice that a variable xi may only appear positive (`i = 0) or only negative
(ki = 0) in our set of clauses. In this case, we also have an edge of type E2
connecting vi and vi+1 besides the construction for the negative (z nodes) or
positive part (y nodes). Finally, we add edges to connect the clause nodes to
the graph. If some positive literal xi appears in clause Cr and Cr is the q-th
clause with positive xi, we add the edges {cr, y2q−1

i } and {y2q
i , cr+1} both of

type E3. Conversely, if some xi appears negated in Cr and Cr is the q-th clause
with ¬xi, we add the edges {cr, z2q−1

i } and {z2q
i , cr+1} both of type E3. We also

connect c1 and cm+1 to the graph by adding {s′, c1} and {cm+1, s
−} of type E3.

We define E to be the union of all introduced edges. Observe that the network
G has O(n+m) nodes and edges.

vi

y1i

z1i

y2i

z2i

y3i

z3i

yki
i

z`ii

vi+1

cr cr+1 cr+2 cr+3.

E1 E2

E3

Fig. 7. Schematic representation of the gadget for variable xi, which appears negated
in clause Cr and positive in clause Cr+2 among others.

We call an (s+, s−)-path that contains no node from V3 a variable path and an
(s+, s−)-path with no node from V4 a clause path. An (s+, s−)-path containing
edges of type E2 and E3 does not connect s+ with s− in [t1, t1 +1] or in [t2, t2 +1].
Therefore, all paths other than variable paths and relevant clause paths are
irrelevant for the connectivity of s+ with s−.

When maintaining all edges of type E1 in [t1, t2], we have connectivity in
[t2, t2 + 1] exactly on all variable paths. Conversely, maintaining all edges of
type E1 in [t1 + 1, t2 + 1] yields connectivity in [t1, t1 + 1] exactly on all relevant
clause paths. On the other hand, any clause path can connect s+ with s− only
in [t1, t1 + 1] and any variable path only in [t2, t2 + 1]. We now claim that there

17

is a schedule with total connectivity time greater than one if and only if the
3SAT-instance is a YES-instance.

Let S be a schedule with total connectivity time greater than one. Then there
is a variable path P v with positive connectivity time in [t2, t2 + 1] and a clause
path P c with positive connectivity time in [t1, t1 + 1]. As the total connectivity
time is greater than one, P c cannot walk through both the positive part (y
nodes) and the negative part (z nodes) of the gadget for any variable xi. This
allows to assume w.l.o.g. that P v and P c are disjoint between s′ and s−. Say P v
and P c share an edge on the negative part (z nodes) of the gadget for variable
xi. Then we can redirect the variable path P v to the positive part (y nodes)
without decreasing the total connectivity time. The same works if they share an
edge on the positive part.

Now set xi to FALSE if P v uses the nodes y1
i , . . . , y

ki
i , that is the upper part

of the variable gadget, and to TRUE otherwise. With this setting, whenever P c
uses edges of a variable gadget, e.g. the sequence cr, z

2q−1
i , z2q

i , cr+1 for some
r, q, disjointness of P v and P c implies that clause Cr is satisfied with the truth
assignment of variable xi. Since every node pair cr, cr+1 is only connected with
paths passing through variable gadgets, and at least one of them belongs to P c
we conclude that every clause Cr is satisfied.

Consider a satisfying truth assignment. We define a schedule that admits a
variable path P v with connectivity in [t2, t2 + 1]. This path P v uses the upper
part (yi-part) if xi is set to FALSE and the lower part (zi-part) if xi is set to
TRUE. That is, we maintain all edges of type E1 on the upper path (yi-path) of
the variable gadget for xi in [t1, t2] if xi is FALSE and in [t1 + 1, t2 + 1] if xi is
TRUE. Conversely, edges of type E1 on the lower path (zi-path) of the variable
gadget for xi are maintained in [t1, t2] if xi is TRUE and in [t1 + 1, t2 + 1] if
xi is FALSE. This implies for the part of the gadget for xi that is not used by
P v that the corresponding edges of type E1 are scheduled to allow connectivity
during [t1, t1 + 1]. These edges can be used in a clause path to connect node cr
with cr+1 for some clauses Cr that is satisfied by the truth assignment of xi.
Since all clauses are satisfied by some variable xi there exists a clause path P c
admitting connectivity in [t1, t1 + 1]. Therefore, the constructed schedule allows
connectivity during both intervals [t1, t1 + 1] and [t2, t2 + 1].

To show the inapproximability of MINCONNECTIVITY, we reduce 3SAT to
this problem. We construct an instance of MINCONNECTIVITY exactly the same
way as we did above for MAXCONNECTIVITY and set t1 = 0, t2 = 1, and T = 2.
By definition of the jobs, this results in a instance with only unit-sized jobs.
As we discussed above, YES-instances of 3SAT result in a MAXCONNECTIVITY
instance with an objective value of 2. For T = 2, that means we have connectivity
at all time points, and therefore an objective value of 0 for MINCONNECTIVITY.
NO-instances of 3SAT on the other result in MAXCONNECTIVITY instance with
an objective value of 1 – for T = 2, this results in MINCONNECTIVITY objective
value of 1 as well. Due to the gap between 1 and 0, any approximation algorithm
that outputs a solution within a factor of the optimum solution needs to decide
3SAT. ut

18

Theorem 4. Unless P = NP, there is no (c 3
√
|E|)-approximation algorithm for

non-preemptive MAXCONNECTIVITY, for some constant c > 0.

Proof. We reuse the construction in the proof of Theorem 3 to construct a
network that has maximum connectivity time n if the given 3SAT instance
is a YES-instance and maximum connectivity time 1 otherwise. This implies
that there cannot be an (n − ε)-approximation algorithm for non-preemptive
MAXCONNECTIVITY, unless P = NP. Here, n is again the number of variables
in the given 3SAT instance. Note that the construction in the proof of Theorem 3
has Θ(n) maintenance jobs and thus there exists a constant c1 > 0 such that
|E| ≤ c1 · n. In this proof, we will introduce Θ(n2) copies of the construction
and thus |E| ≤ c2 · n3 for some c2 > 0, which gives that n ≥ c3

3
√
|E| for some

c3 > 0. This gives the statement.
For the construction, we use n2 − n copies of the 3SAT-network from the

proof of Theorem 3, where each one uses different (t1, t2)-combinations with
t1, t2 ∈ {0, . . . , n − 1} and t1 6= t2. We use these copies as 3SAT-gates and
mutually connect them as depicted in Figure 2. Recall that for one such 3SAT-
network we have the freedom of choosing the intervals [t1, t1 + 1] and [t2, t2 + 1],
which are relevant for connectivity. This choice now differs for every 3SAT-gate.

3-SAT
0

0

0

0

3-SAT
0

1

0

1

3-SAT
0

2

0

2

3-SAT
0

3

0

3

3-SAT
0

n-1

0

n-1

3-SAT
1

0

1

0

3-SAT
1

1

1

1

3-SAT
1

2

1

2

3-SAT
1

3

1

3

3-SAT
1

n-1

1

n-1

3-SAT
2

0

2

0

3-SAT
2

1

2

1

3-SAT
2

2

2

2

3-SAT
2

3

2

3

3-SAT
2

n-1

2

n-1

3-SAT
3

0

3

0

3-SAT
3

1

3

1

3-SAT
3

2

3

2

3-SAT
3

3

3

3

3-SAT
3

n-1

3

n-1

3-SAT
n-1

0

n-1

0

3-SAT
n-1

1

n-1

1

3-SAT
n-1

2

n-1

2

3-SAT
n-1

3

n-1

3

3-SAT
n-1

n-1

n-1

n-1

. . .

s+ s−

...

. . .

...

. . .

...

. . .

...

. . .

. . .

Fig. 8. Schematic representation of the network of 3SAT-gates.

Think of the construction as an (n× n)-matrix M with an empty diagonal.
Entry (i, j), i, j ∈ {0, . . . , n − 1}, in M corresponds to a 3SAT-gate in that

19

variable paths only exist in time slot [i, i + 1] and relevant clause paths exist
only in [j, j+ 1]. This is enforced by the edges of type E2, which prevent variable
paths in [j, j + 1], and edges of type E3, which prevent relevant clause paths in
[i, i+ 1]. Edges between the s+-copy and s′-copy of the 3SAT-gate(i, j) prevent
connectivity outside of [i, i+ 1] and [j, j+ 1]. Note that now E1 := {e ∈ E : re =
i, de = j+ 1, pe = j− i} if i < j, and E1 := {e ∈ E : re = j, de = i+ 1, pe = i− j}
if i > j.

The s+-copy of the 3SAT-gate(i, j) is connected to two paths, where one of
them allows connectivity only during [i, i + 1] and the other one only during
[j, j + 1]. The same is done for the s−-copy of the 3SAT-gate(i, j). In Figure 2,
this is illustrated by labels on the paths. A label i ∈ {0, . . . , n− 1} means, that
this path allows connectivity only during [i, i + 1]. The upper path connected
to a 3SAT-gate specifies the time slot, where variable paths may exist, and the
lower path specifies the time slot, where relevant clause paths may exist. When
following the path with label k ∈ {0, . . . , n− 1}, we pass the gadgets in column
j = 0, . . . , k − 1 on the lower path having j on the upper path. In column
k, we walk through all gadgets on the upper path and then we proceed with
column j = k+ 1, . . . , n−1 on the lower path having j again on the upper path.
Eventually, we connect the 3SAT-gate(n− 1, k) to the vertex s−.

Note that within 3SAT-gate(i, j) we have connectivity during [i, i + 1] and
[j, j + 1] if and only if the corresponding 3SAT-instance is a YES-instance. Also
notice that we can assume due to [3] that all jobs start at integral times, which
allows us to ignore schedules with fractional job starting times and therefore
fractional connectivity within a time interval [i, i+1]. Now, if the 3SAT-instance
is a YES-instance, there is a global schedule such that its restriction to every
gate 3SAT-gate(i, j) allows connectivity during both intervals. Thus for each
label k ∈ {0, . . . , n− 1} there exists a path with this label that has connectivity
during [k, k + 1]. This implies that the maximum connectivity time is n.

Conversely, suppose there exists a global schedule with connectivity during
[i, i+1] and [j, j+1] for some i 6= j. Then there must exist two paths P1, P2 from
s+ to s− with two distinct labels i and j, each realizing connectivity during one
of both intervals. By construction they walk through the 3SAT-gate(i, j). This
implies by the proof of Theorem 3, that the global schedule restricted to this
gate corresponds to a satisfying truth assignment for the 3SAT-instance. That is,
the 3SAT-instance is a YES-instance. With the previous observation, it follows
that an optimal schedule has maximum connectivity time of n. ut

Theorem 5. Non-preemptive MAXCONNECTIVITY is strongly NP-hard, and
non-preemptive MINCONNECTIVITY is inapproximable even if the given graph
consists only of disjoint paths between s and t.

Proof. We proof this result by reduction from the strongly NP-complete 3SAT
problem.

3SAT
Input: Clauses C1, . . . , Cm of exactly three variables in x1, . . . , xn.

20

Problem: Is there a truth assignment to the variables in x1, . . . , xn that
satisfies all clauses?

We construct a network with 2n paths from s+ to s−, two for each variable
of the 3SAT instance. Let Pi and P̄i denote the two paths for variable xi. We
will introduce several maintenance jobs for each path, understanding that each
new job is associated with a different edge of the path. Since the ordering of
these edges does not matter, we will directly associate each job with a path
without explicitly specifying the respective edge of the job. The network will
allow a schedule that maintains connectivity at all times if and only if the 3SAT
instance is satisfiable.

For convenience, assume that n ≥ m, otherwise we introduce additional
dummy variables. We define a time horizon T = 8n that we subdivide into five
intervals A = [0, 2n), B = [2n, 3n), C = [3n, 5n), D = [5n, 6n), E = [6n, 8n]. We
will use these intervals now when defining jobs.

Jobs representing variables. For each variable xi, we define a job each on paths Pi
and P̄i with the time window [0, T] and processing time 3n. We will ensure that
neither job is scheduled to cover the time interval C entirely in any feasible
schedule for the connectivity problem. This implies that a variable job either
covers B or D without intersecting the other. The job on Pi (resp. P̄i) covering
B will correspond to the literal xi (resp. x̄i) being set to TRUE. We will of
course ensure that not both literals can be set to TRUE simultaneously, but we
will allow both to be FALSE, which simply means that the truth assignment
remains satisfying, no matter how the variable is set.

Jobs needed to translate schedules into variable assignments. In the following,
we introduce blocking jobs that all have a time window of unit length and unit
processing time. In this way, introducing a blocking job at time t simply renders
the corresponding path unusable during the time interval [t, t+1). To ensure that
the variable jobs for variable xi do not cover C completely, we add a blocking
job at time ti = 3n + 2(i − 1) to all paths except Pi and a blocking job at
time t′i = 3n+2(i−1)+1 to all paths except P̄i. The first job forces the variable
job for the literal xi not to cover C completely, since otherwise connectedness is
interrupted during the time interval [ti, t

′
i). The second blocking job accomplishes

the same for the literal x̄i. Note that the blocking jobs for each literal occupy a
unique part of the time window C.

Jobs preventing variables from being 0 and 1 at the same time. In order to force
at most one literal of each variable xi to be set to TRUE, we introduce a blocking
job at time t′′i = 2n+ (i− 1) on all paths except Pi and P̄i. These blocking jobs
ensure that either path Pi or P̄i must be free during time [t′′i , t

′′
i + 1), which

means not both variable jobs may be scheduled to cover B (recall each variable
job either covers B or D without intersecting the other). Again, the blocking
jobs for each variable occupy a unique part of the time window B.

21

Jobs enforcing that at least one literal of each clause is true. For each clause Cj
we introduce a blocking job at time 5n+ j on each path except the three paths
that correspond to literals in Cj . Figure 9 shows this construction for variable
xi and paths Pi, P̄i.

0n 2n 3n 5n 6n 8n
A B C D E

Gaps depending on i Gaps depending on clauses containing xi

3n

xi := TRUE xi := FALSE

Pi

Gaps depending on i Gaps depending on clauses containing ¬xi

3n

¬xi := TRUE ¬xi := FALSE

P̄i

Fig. 9. The paths Pi, P̄i for variable xi. The axis marks the times from 0 to 8n.

These blocking jobs force that at least one of the literals of the clause has to be
set to TRUE, i.e., be scheduled to overlap B instead of D, otherwise connectivity
is interrupted during time [5n+ j, 5n+ j+ 1). Note again that the blocking jobs
for each clause occupy a unique part of the time window D.

It is now easy to verify that each satisfying truth assignment leads to a feasible
schedule without disconnectedness for the connectivity problem and vice versa.

We can use this instance construction for both MAXCONNECTIVITY and
MINCONNECTIVITY. On the one hand, we have that YES-instances of 3SAT
result in instances with a MAXCONNECTIVITY objective value of T and a
MINCONNECTIVITY objective value of 0, and on the other hand we have that
NO-instances of 3SAT result in instances with a MAXCONNECTIVITY objec-
tive value < T and a MINCONNECTIVITY objective value > 0. This gives us
the strong NP-hardness for MAXCONNECTIVITY and the inapproximability of
MINCONNECTIVITY, since the optimal objective value is 0 here, similar to The-
orem 3.

C Proofs of Section 4 (Power of Preemption)

Theorem 8. For non-preemptive MAXCONNECTIVITY on a path the power of
preemption is unbounded.

Proof. Consider a path of four consecutive edges e1 = {s+, u}, e2 = {u,w}, e3 =
{w, v}, e4 = {v, s−}, each associated with a maintenance job as depicted in
Figure 10. That is, r1 = r2 = 0, d1 = r3 = p1 = p4 = 1, p2 = p3 = 2, r4 = d2 =
3, d3 = d4 = 4.

There is no non-preemptive schedule that allows connectivity at any point in
time, as the maintenance job of edge ei blocks edge ei in time slot [i− 1, i]. On

22

t

1 2 3 4

e1
e2
e3
e4

Fig. 10. Example for an unbounded power of preemption.

the other hand, when allowing preemptive schedules, we can process the job of
edge e2 in [0, 2] and the job of edge e3 in [1, 2] and [3, 4]. Then no maintenance
job is scheduled in the time interval [2, 3] and therefore we have connectivity for
one unit of time. ut

D Proofs of Section 5 (Mixed Scheduling)

Theorem 9. MAXCONNECTIVITY and MINCONNECTIVITY with preemptive
and non-preemptive maintenance jobs is weakly NP-hard, even on a path.

Proof. We reduce the NP-hard PARTITION problem to MAXCONNECTIVITY.
We will show that there is a gap in the objective value between instances derived
from YES- and NO-instances of PARTITION, respectively. This gap is same for
MINCONNECTIVITY, since maximizing the time in which we have connectivity
is the same as minimizing the time in which we do not have connectivity.

PARTITION
Input: A set of n natural numbers A = {a1, . . . , an} ⊂ N with

∑n
i=1 ai =

2B for some B ∈ N.
Problem: Is there a subset S ⊆ A with

∑
a∈S a = B?

Given an instance of PARTITION, we create a MAXCONNECTIVITY instance
based on a path consisting of 3n+ 2 edges between s+ and s− with preemptive
and non-preemptive maintenance jobs. We create three types of job sets de-
noted as J1, J2 and J3, where the first two job sets model the binary decision
involved in choosing a subset of numbers to form a partition, whereas the third
job set performs the summation over the numbers picked for a partition. The
construction is visualized in Figure 11.

The job set J1 := {1, 2, . . . , 2n − 1, 2n} contains 2n tight jobs, i.e., rj +
pj = dj for all j ∈ J1. For every element ai ∈ A we have two tight jobs i and
2n− (i− 1) both having processing time 4n−iB =: xi. The release date of a job
j ∈ {2, . . . , n} ⊂ J1 is rj =

∑j−1
k=1 2xk + ak and r1 = 0. Let τ :=

∑n
k=1 2xk + ak.

For j ∈ {n + 1, . . . , 2n} ⊂ J1 we have dj = τ +
∑j
k=n+1 2x2n−k+1 + a2n−k+1.

Note that the tight jobs in J1 are constructed in such a way that everything is
symmetric with respect to the time point τ .

The job set J2 := {2n + 1, . . . , 3n} contains n non-preemptive jobs. Let
ji := 2n + i. For every element ai ∈ A we introduce job ji with processing

23

n n+ 1

xn xnxn + anxn + an

jn

xn + an

n− 1 n+ 2

xn−1 xn−1xn−1 + an−1 xn−1 + an−1

jn−1

xn−1 + an−1

...
3n+ 1

B +
∑n

i=1 xi

3n+ 2

B +
∑n

i=1 xi
τ

J1 (tight)

J2 (non-preemptive)

J3 (preemptive)

Fig. 11. Schematic representation of the constructed MAXCONNECTIVITY instance.

time pji = xi + ai, release date rji = ri, and deadline dji = d2n−(i−1). Again,
everything is symmetric with respect to time point τ .

Finally, the set J3 := {3n + 1, 3n + 2} contains two preemptive jobs, where
each of them has processing time W := B +

∑n
i=1 xi. Furthermore, we have

r3n+1 = 0, d3n+1 = τ , r3n+2 = τ , d3n+2 = 2τ .
We now show that there is a feasible schedule for the constructed instance

that disconnects the path for at most 2W time units if and only if the given
PARTITION instance is a YES-instance.

Suppose there is a subset S ⊆ A with
∑
a∈S a = B. For each ai ∈ S, we start

the corresponding job ji ∈ J2 at its release date and the remaining jobs in J2

corresponding to the elements ai ∈ A \S are scheduled such that they complete
at their deadline. This creates B+

∑n
i=1 xi time slots in both intervals [0, τ] and

[τ, 2τ] with no connection between s+ and s−. The jobs 3n+1 and 3n+2 can be
preempted in [0, τ] and [τ, 2τ], respectively, and thus if we align their processing
with the chosen maintenance slots, we get a schedule that disconnects s+ and
s− for 2W = 2(B +

∑n
i=1 xi) time units.

Conversely, suppose that there is a feasible schedule for the constructed in-
stance that disconnects the path for at most 2W time units. By induction on i,
we show that every job ji = 2n+ i either starts at its release date or it completes
at its deadline in such a schedule.

Consider the base case of i = 1. We first observe that w.l.o.g. job j1 either
starts at its release date or completes at its deadline or is scheduled somewhere
in [x1, 2τ−x1]. Suppose it starts somewhere in (0, x1) or completes somewhere in
(τ−x1, τ). Then we do not increase the total time where the path is disconnected
if we push job j1 completely to the left or completely to the right. If we schedule

24

job j1 in [x1, 2τ − x1], then the total time where the path is disconnected is at
least 3x1 + a1 > 2x1 + x1. We will now show that x1 ≥ 2(B +

∑n
k=2 xk) for

n ≥ 2, which shows that the path is then disconnected for more than 2W time
units, and thus job j1 cannot be processed in [x1, 2τ −x1]. The inequality is true
for n ≥ 2, since

2B + 2

n∑
k=2

xk = 2B(1 +

n∑
k=2

4n−k)

= 2B(1 +

n−2∑
k=0

4k)

= 2B(1 + 1/3(4n−1 − 1))

≤ 4n−1B = x1.

This finishes the proof for i = 1.
Suppose, the statement is true for i = 1, . . . , ` − 1 with ` ∈ {2, . . . , n − 1}.

As in the base case, we can show that job j` either starts at its release date
or completes at its deadline or is scheduled somewhere in [rj` + x`, dj` − x`]. If
job j` is processed in [rj` + x`, dj` − x`], then the total time where the path is
disconnected is at least

`−1∑
k=1

(2xk + ak) + 3x` + a` >
∑̀
k=1

2xk + x`.

Again, we will show that x` ≥ 2(B +
∑n
k=`+1 xk) for ` ∈ {2, . . . , n − 1}, which

shows that the path is then disconnected for more than 2W time units, and
thus job j` cannot be processed in [rj` + x`, dj` − x`]. The inequality is true for
` ∈ {2, . . . , n− 1}, since

2B + 2

n∑
k=`+1

xk = 2B(1 +

n∑
k=`+1

4n−k)

= 2B(1 +

n−`−1∑
k=0

4k)

= 2B(1 + 1/3(4n−` − 1))

≤ 4n−`B = x`.

For i = n, we again use the fact that jn either starts at its release date or
completes at its deadline or is scheduled somewhere in [rjn +xn, djn −xn]. If the
latter case is true, then the total time where the path is disconnected is at least

n−1∑
k=1

(2xk + ak) + 3xn + an =

n∑
k=1

(2xk + ak) + xn

> 2(B +

n∑
k=1

xk) = 2W.

25

There is a feasible schedule for the constructed instance that disconnects the
path for at most 2(B+

∑n
k=1 xk) time units. This means that in both [0, τ] and

[τ, 2τ] the path is disconnected for exactly B +
∑n
k=1 xk time units. Consider

the set S := {i : ji starts at its release date}. We conclude that
∑n
k=1 xk +∑

k∈S ak =
∑n
k=1 xk +

∑
k/∈S ak =

∑n
k=1 xk +B. ut

Theorem 10. There is a 2-approximation algorithm for MINCONNECTIVITY
on a path with preemptive and non-preemptive maintenance jobs.

Proof. Consider an optimal schedule S∗ for the mixed instance and let |S∗| be
the total time of disconnectivity in S∗. Furthermore, let S∗np (resp. S∗p) be the
restriction of S∗ to only non-preemptive (resp. preemptive) jobs. Note that the
schedule S∗np (resp. S∗p) is feasible for the corresponding non-preemptive (resp.
preemptive) instance. We separate the preemptive from the non-preemptive jobs
and obtain two separate instances. Solving them individually in polynomial time
and combining the resulting two solutions Snp and Sp to a schedule S gives the
claimed result, because |S| ≤ |Snp|+ |Sp| ≤ |S∗np|+ |S∗p | ≤ 2|S∗|. ut

26

