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Abstract. We consider the following class of polygon-constrained
motion planning problems: Given a set of k centrally controlled mobile
agents (say pebbles) initially sitting on the vertices of an n-vertex simple
polygon P , we study how to plan their vertex-to-vertex motion in order
to reach with a minimum (either maximum or total) movement (either in
terms of number of hops or Euclidean distance) a final placement enjoying
a given requirement. In particular, we focus on final configurations aim-
ing at establishing some sort of visual connectivity among the pebbles,
which in turn allows for wireless and optical intercommunication. There-
fore, after analyzing the notable (and computationally tractable) case
of gathering the pebbles at a single vertex (i.e., the so-called rendez-
vous), we face the problems induced by the requirement that pebbles
have eventually to be placed at: (i) a set of vertices that form a connected
subgraph of the visibility graph induced by P , say G(P ) (connectivity),
and (ii) a set of vertices that form a clique of G(P ) (clique-connectivity).
We will show that these two problems are actually hard to approxi-
mate, even for the seemingly simpler case in which the hop distance is
considered.

1 Introduction

In many practical applications a number of centrally controlled devices need to be
moved from an initial positioning towards a final configuration so that a desired
task can be completed. In particular, in settings like robotics and sensor network-
ing, the devices generally happen to have a limited transmission and reception
capability, and thus to establish some kind of reciprocal communication they need

This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-
noMedia”, funded by the Italian Ministry of Education, University, and Research.
Part of this work was developed while Guido Proietti was visiting ETH.

P. Flocchini et al. (Eds.): ALGOSENSORS 2013, LNCS 8243, pp. 67–82, 2014.
DOI: 10.1007/978-3-642-45346-5 6, c© Springer-Verlag Berlin Heidelberg 2014



68 D. Bilò et al.

to build an obstacle-free ad-hoc network. However, by any respects, movements are
expensive, and so this repositioning procedure should be accomplished in such a
way that some distance-related objective function is minimized.

In this paper, we assume the underlying environment is a simple polygon,
say P , and the moving devices (pebbles, in the sequel) are initially placed on
vertices of P . In our setting, pebbles can only move within the polygon through
a vertex-to-vertex polygonal path, and so they will reach a final position which
coincides with a polygon vertex. This restriction about the initial, intermediate,
and ending position of the pebbles is motivated by the fact that vertices are a
notable position in a polygon, for which several well-studied classes of computa-
tional geometry problems (e.g., art-gallery guarding, facility location, etc.) have
been considered. Moreover, from a more practical point of view, we point out
that recently there has been a growing attention towards limited-sensing robotic
devices, which are built in such a way that they are able to only detect very
minimal information about the surrounding environment. In particular, the so-
called combinatorial robots [12] are only able to move to visible corners of the
(planar) region they are embedded in, i.e., the vertices of a polygon. There-
fore, we study a set of motion planning (i.e., centrally managed) problems that
arise by the combination of three different final positioning goals and a pair of
movement optimization functions, which will be computed with respect to two
different distance concepts. More precisely, we first focus our study on a sce-
nario where we want the pebbles to be moved to a single vertex (RV, which
stands for rendez-vous) of P . In fact, gathering at a single vertex will enable
pebbles to exchange information in a setting where long-range communication
is not allowed. Then, we turn our attention to the more general case in which
pebbles have to form a connected subgraph (Con) of the visibility graph of P .
Recall that such a graph has a node for each polygon vertex, and an edge for
each pair of polygon vertices which can be joined by a straight line contained
in the interior or the boundary of polygon P . Thus, quite naturally, we focus
on the visibility graph of P , since intervisibility between polygon vertices turns
out to enable wireless or optical connection among devices. Finally, in order to
consider the plausible case in which a mutual direct connection among pebbles
is needed, we analyze the problem in which they have to form a clique (Clique)
in the visibility graph. For all these problems, we consider both the minimiza-
tion of the overall movement (Sum) and the maximum movement (Max) of the
pebbles. To this respect, these functions will be measured both in terms of the
classic Euclidean distance (ED) covered by the pebbles, and with regard to the
hop distance (HD) measure, i.e., that in which the distance between two vertices
in P is given by the minimum number of edges in any vertex-to-vertex polygonal
path in P connecting the two vertices. This latter type of distance is important
in many practical cases since it resorts to the number of turns that a device must
take all along the way.

Related Work. Although movement problems were deeply investigated in a dis-
tributed setting (see [11] for a survey), quite surprisingly the centralized coun-
terpart has received attention from the scientific community only very recently.
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The first paper which defines and studies these problems in this latter setting
is [6]. In their work, the authors study the problem of moving the pebbles on a
graph G of n vertices so that their final positions form any of the following con-
figurations: connected component, path (directed or undirected) between two
specified nodes, independent set, and matching. Regarding connectivity prob-
lems, the authors show that both variants are hard and that the approximation
ratio of Con-Max is between 2 and O(1 +

√
k/Opt), where k is the number of

pebbles and Opt denotes the measure of an optimal solution. This result has been
improved in [3], where the authors show that Con-Max can be approximated
within a constant factor, more precisely 136. In [6] it is also shown that Con-
Sum is not approximable within O(n1−ε) (for any positive ε), while it admits an
approximation algorithm with ratio of O(min{n log n, k}) (where k is the num-
ber of pebbles). Moreover, they also provide an exact polynomial-time algorithm
for Con-Max on trees.

More recently, in [7], a variant of the classical facility location problem has
been studied. This variant, called mobile facility location, can be modelled as a
motion planning problem and is approximable within (3+ε) (for any positive ε) if
we seek to minimize the total movement [1]. On the other hand, a variant where
the maximum movement has to be minimized admits a tight 2-approximation
[1,6].

Finally, for Con and Clique, in [4] the authors present a set of improved
(in)approximability results both for general and special classes of graphs, and
moreover they also study the problem of moving pebbles to an independent set.

Our Problems and Results. More formally, our problems can be stated as follows.
Let P be a simple polygon delimited by the set of vertices V (P ) = 〈v1, . . . , vn〉,
in this order. Let A = {p1, . . . , pk} be a set of pebbles. Each pebble initially sits
on a polygon vertex (multiple pebbles can occupy the same position). Thus, by
S = (s1, . . . , sk) we denote the initial configuration of the pebbles. Given a target
vertex vi ∈ P , we denote by d(si, vi) the length of a shortest path in P starting at
si and ending at vi. Such a shortest path is actually a vertex-to-vertex polygonal
path, which is in compliance with our setting. Let U = (u1, . . . , uk), with ui ∈ V ,
denote the final configuration of the pebbles, and let |d(S,U)| =

∑k
i=1 d(si, ui),

and ||d(S,U)|| = maxi=1,...,k{d(si, ui)}. With a small abuse of notation, when in
the final configuration all the pebbles sit on a same vertex u, we denote these
quantities by |d(S, u)| and ||d(S, u)||. Finally, let G(P ) be the visibility graph of
P . We study the following problems:

1. Rendez-vous: The questions we address are:
(i) RV-Max: find u∗ = arg minu∈V (P ){||d(S, u)||};
(ii) RV-Sum: find u∗ = arg minu∈V (P ){|d(S, u)|}.

2. Connectivity: Let C denote the set of subsets of vertices of P which induce a
connected subgraph in G(P ). Then, the questions we address are:
(i) Con-Max: find U∗ = arg minU∈C{||d(S,U)||};
(ii) Con-Sum: find U∗ = arg minU∈C{|d(S,U)|}.

3. Clique: Let K denote the set of subsets of vertices of P which induce a clique
in G(P ). Then, the questions we address are:



70 D. Bilò et al.

(i) Clique-Max: find U∗ = arg minU∈K{||d(S,U)||};
(ii) Clique-Sum: find U∗ = arg minU∈K{|d(S,U)|}.

Besides the above problems, we also define the corresponding ones associated
with the hop distance in P between vi and vj , say h(vi, vj). An example of
solutions for our problems w.r.t. both distance models is given in Fig. 1, while
the results we present in the paper are summarized in Table 1, where by p and
m we denote the size of the set of vertices of P initially occupied by pebbles and
of the set of edges of G(P ), respectively.

Table 1. New (in bold) and old (with the reference therein) results for the various
motion problems, where ρ denotes the best approximation ratio for the corresponding
problem. All the inapproximability results hold under the assumption that P �= NP.

Max Sum

RV HD: solvable in O(pm) time HD: solvable in O(pm+k) time

ED: solvable in O(n log n) time ED: solvable in O(pn + k) time

Con HD: NP-hard; ρ ≥ 2; ρ ≤ 136 [3] HD: NP-hard; ρ ≥ n1−ε; ρ ≤ 1 + O(nk/Opt)

ED: polyAPX-hard ED: polyAPX-hard

Clique HD: NP-hard; ρ ≥ 3/2; ρ ≤ 1 + 1/Opt [4] HD: NP-hard; ρ ≤ 2 [4]

ED: open ED: open

2 Rendez-vous

As far as the hop distance is concerned, RV-Max and RV-Sum have a näıve
O(pm) and O(pm+ k) time solution, respectively, whose improvement is a chal-
lenging open problem. Indeed, let V (S) be the set of vertices of P initially
occupied by the pebbles. Observe that a shortest hop-distance path is just a
shortest path in the visibility graph G(P ) of P . Then, first of all we compute
G(P ) in O(n + m) time [9]. After, and only for RV-Sum, in O(n + k) time we
associate with each vertex v of P the multiplicity of pebbles initially sitting on
it, say μ(v). Then, in O(pm) time we find the p breadth-first search trees of
G(P ) rooted at the vertices of V (S). From these trees, it is easy to see that we
are able in O(pn) time to solve both problems, by computing for RV-Max and
for RV-Sum respectively

x∗ = arg min
x∈V (P )

{max{h(x, v)|v ∈ V (S)}},

x∗ = arg min
x∈V (P )

{ ∑

v∈V (S)

h(x, v) · μ(v)
}

.

Concerning the Euclidean distance, once again RV-Max and RV-Sum have
a trivial O(pn) and O(pn+k) time solution, respectively, which work as follows.
First, for RV-Sum only, in O(n + k) time we associate with each vertex v of P
the multiplicity μ(v). Then, for each vertex v ∈ V (S) we can find its distance
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Fig. 1. An example of our studied problems for both HD and ED. Polygon P and its
visibility graph G(P ) are shown in (a) and (b), respectively. Black vertices are occupied
by pebbles, whose movement is depicted with directed paths. Optimal solutions for RV-
Max and RV-Sum w.r.t. ED are shown in (c) and (d), respectively, while (e) and (f)
show optimal solutions for the corresponding problems w.r.t. HD, respectively. Optimal
solutions for Con-Max and Con-Sum w.r.t. ED are shown in (g) and (h), respectively,
while an optimal solution for the corresponding problems w.r.t. HD is shown in (i).
Finally, in (j) it is shown an optimal solution for Clique-Max w.r.t. to both ED and
HD and Clique-Sum w.r.t. ED, while an optimal solution for Clique-Sum w.r.t. HD
is shown in (k). Notice that dashed lines in (g–k) show the subgraph of G(P ) induced
by the final position of the pebbles.
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to all the other polygon vertices in O(n) time [5,8]. Finally, similarly to the hop
distance, in O(pn) time we solve both problems. However, we now show that as
far as the RV-Max problem is concerned, it is possible to provide an efficient
O(n log n) time solution:

Theorem 1. The RV-Max problem can be solved in O(n log n) time.

Proof. Observe that in O(n log n) time (see [2]) we can compute the so-called
furthest-site geodesic Voronoi diagram of V (S) w.r.t. the Euclidean distance in
P , i.e., a partition of P into a set of regions such that each region remains
associated with the farthest point (in terms of Euclidean distance within P ) in
V (S). Moreover, it can be shown [2] that the size of such a diagram is O(n),
and that given the diagram, for each vertex of P we can find in O(1) time the
farthest point in V (S), i.e., the farthest pebble. Finally, we select the vertex for
which the farthest pebble is closest, and we gather the pebbles there. ��

3 Connectivity

3.1 Con-Max

Concerning Con-Max, let us start by focusing on the hop distance. Then, we
are able to prove the following.

Theorem 2. The Con-Max problem w.r.t. the hop distance is NP-hard.

Proof. We show the NP-hardness by reduction from the NP-complete 3-Sat
problem. In 3-Sat, we are given a set X = {x1, . . . , xη} of η variables, a set
Y = {c1, . . . , cm} of m disjunctive clauses over X, each containing exactly three
literals (i.e., a variable or its negation), and we want to find a truth assignment
τ : X → {0, 1} satisfying the conjunction of the clauses in Y . For a given
instance I of 3-Sat, we build an instance I ′ for the Con-Max problem as
follows: we build a simple polygon P , illustrated in Fig. 2, consisting of 2η literal
vertices VL = {x1, x̄1, . . . , xη, x̄η}, η assignment vertices VA = {a1, . . . , aη},
2η + 2m gate vertices VG = {g1, g

′
1, . . . , gη+m, g′

η+m}, and 5m clause vertices
VC = {c11, c12, c13, p1, q1, . . . , cm1, cm2, cm3, pm, qm}. Polygon P is so constructed
such that, among the others, the following visibility constraints hold:

– literal vertices see each other reciprocally;
– each assignment vertex ai can see only gi, g

′
i, xi, x̄i;

– each clause vertex cij can see only gη+i, g
′
η+i, pi, qi, the other two clause ver-

tices in its clause, and the literal vertex corresponding to the jth literal of its
clause;

– each clause vertex pi can see only ci1, ci2, ci3, qi.

Then, we put a pebble in each assignment vertex, and a pebble in each pi,
i = 1, . . . , m, so the number of pebbles is k = η + m.

We now show that the 3-Sat instance I has a satisfying truth assignment iff
there exists a solution for I ′ having maximum hop distance of 1. One direction
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Fig. 2. The polygon P used for proving the NP-hardness of Con-Max problem w.r.t.
the hop distance. Pebbles sit initially on black vertices.

is immediate. Given a satisfying assignment τ , we indeed define the following
movement: each pebble in an assignment vertex moves to the appropriate literal
verified by τ , while each pebble in a clause moves to any clause vertex seeing a
verified literal. In this way, the pebbles originally sitting on assignment vertices
will form a clique in the visibility graph G(P ), while the remaining pebbles are
connected to (i.e., see) exactly an occupied literal vertex.

Concerning the other direction, suppose that there is a solution for I ′ having
value at most 1. We show that such a solution can be transformed in polynomial
time into a satisfying assignment for I. First of all, notice that by construction of
P , each assignment pebble must be moved to either an associated gate vertex or
to an associated literal vertex to guarantee mutual visibility among assignment
pebbles. Then, observe that in a single hop a pebble in a clause can see a literal
vertex only if it moves to either of the three clause vertices that can see the
respective literal vertices. Thus, to guarantee connectedness among assignment
and clause pebbles, it is required that at least one of these three literals is
occupied by an assignment pebble. Hence, the satisfying assignment for I is
given exactly by the placement onto these literal vertices of the assignment
pebbles that will guarantee the connectedness with the clause pebbles. Notice
that some of the assignment pebbles may need not move to any literal vertex
(i.e., the corresponding variable is not instrumental to guarantee the satisfiability
of I), and so they could simply move to an associated gate vertex in order to be
connected to the assignment pebbles which moved towards the literal vertices.
For these pebbles, we arbitrarily assign a value to the associated variables.

It remains to prove that P can be constructed in polynomial time. It suffices
to show that P can be embedded on integer grid points with polynomial area
and using a polynomial number of algebraic operations, similarly to the approach
used in [10]. Let r = η +m. W.l.o.g., assume that m = Θ(η), and so r = Θ(η) =
Θ(m). Consider a circle C with radius Θ(r2) centered at a point o. We position
the literal vertices x1, x̄1, . . . , xη, x̄η on the upper side of C, regularly spaced.
Let the angle (in radians) from o to any two contiguous vertices be Θ(1/r), and
so the angle ∠x1ox̄η can be less than a fraction of π (i.e., all the vertices stay on
the upper side). Observe that in this way, the distance between two contiguous
vertices is Θ(r). Now, position the assignment spikes on the lower-left side of C,
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so that the angle ∠gjajg
′
j is Θ(1/r) and the distance between aj and gj , g

′
j is

Θ(r) (i.e., the distance between gj and g′
j is Θ(1), and so we can actually put

these vertices on the grid), and the visibility cone from aj towards the upper
side of C includes only the literal vertices xj , x̄j (indeed, the projection of the
cone on the upper side of C has length Θ(r)). Notice that each spike has area
Θ(r). Moreover, again we can guarantee that the angle ∠g1og

′
η is less than a

fraction of π. Let us now consider the set of vertices in a clause, along with the
associated gate vertices. Let {gη+t, g

′
η+t, ct1, ct2, ct3, pt, qt} be this set of vertices

for the tth clause. We will embed these points on an r × r grid drawn at the
lower-right side of C. Let ot be the center of such a grid. We draw a circle
Ct centered at ot of radius Θ(r), and we append it to C by the gate vertices
gη+t, g

′
η+t. We let the angle ∠gη+totg

′
η+t be Θ(1/r). Observe now that it is not

hard to see that the angle ∠gη+txg′
η+t is less than ∠gη+totg

′
η+t, for any point

x on the semi-circumference of Ct opposite to the gate vertices, since any such
point is farther from gη+t, g

′
η+t than ot. So, the visibility cone from any such

point towards the upper side of C has an angle O(1/r) and then a projection
on C of length O(r). Thus, it includes a portion of C which is in the order of
the distance between two contiguous literal vertices. Then, we place ct1, ct2, ct3

on the projection through the midpoint of gη+t, g
′
η+t of the respective associated

literal vertex. Finally, we suitably deform Ct so as to put pt, qt in such a way
that pt can only see ct1, ct2, ct3 and qt. Again, the angle ∠gη+1og

′
η+m is less than

a fraction of π. It can now be verified that this construction gives the desired
polygon, and its area is Θ(r4). ��

Thus, since the problem is hard already when the optimal solution costs 1,
we immediately have the following:

Corollary 1. For any ε > 0, the Con-Max problem w.r.t. the hop distance
cannot be approximated within 2 − ε, unless P = NP.

Moreover, the following implication is also easy to prove:

Corollary 2. Deciding whether Con-Max admits a solution with at most h
hops is NP-complete, for any h ≥ 1.

Proof. Case h = 1 follows directly from Theorem 2. For h > 1, it suffices to
suitably modify the polygon P in Fig. 2 in such a way that the pebbles need to
move for h − 1 steps in order to see the literal and the clause vertices. ��
Concerning the approximability, we recall that in [3] the authors provide a 136-
approximation for the very same problem on general unweighted graphs, which
can therefore be applied to visibility graphs as well.

The above NP-hardness proof can be modified in order to show that the
general Con-Max problem with Euclidean distances is NP-hard as well.

Theorem 3. The Con-Max problem is NP-hard.
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Proof. We show the NP-hardness again by reduction from 3-Sat. For a given
instance I of 3-Sat, we build an instance I ′ for Con-Max as follows: we build
a simple polygon P with 2η literal vertices VL = {x1, x̄1, . . . , xη, x̄η}, η assign-
ment vertices VA = {a1, . . . , aη}, 2m gate vertices VG = {g1, g

′
1, . . . , gm, g′

m},
and 3m clause vertices VC = {c11, c12, c13, . . . , cm1, cm2, cm3}. Polygon P is so
constructed such that, among the others, the following visibility constraints hold
(see Fig. 3):

– literal and assignment vertices see each other reciprocally;
– each clause vertex cij can see only gη+i, g

′
η+i, the other two clause vertices in

its clause, and the literal vertex corresponding to the jth literal of its clause.

Then, we put a pebble in each assignment vertex, and a pebble in each clause
vertex, so the number of pebbles is k = η + 3m. Let us see how polygon P is
actually constructed in polynomial time and with polynomial area. Let r = η+m.
W.l.o.g., assume that m = Θ(η), and so r = Θ(η) = Θ(m). Consider a circle
C with radius Θ(r3) centered at a point o. We position each triple of vertices
xi, ai, x̄i on the upper side of C, regularly spaced at a distance Θ(r). Then, we
let the angle (in radians) from o to any two contiguous triplets be Θ(1/r) (i.e.,
the distance between two contiguous triplets is Θ(r2)). In this way, the angle
∠x1ox̄η can be less than a fraction of π, and then assume that all these vertices
lie in the [π/4, 3π/4] sector. Let us now consider the set of vertices in a clause,
along with the associated gate vertices. Let {gt, g

′
t, ct1, ct2, ct3} be this set of

vertices for the tth clause. We will embed these points on an r2 × r2 grid drawn
at the lower side of C, in the [5π/4, 7π/4] sector. Let ot be the center of such
a grid. We draw a circle Ct centered at ot of radius Θ(r2), and we append it
to C by the gate vertices gt, g

′
t. We let the angle ∠gtotg

′
t be Θ(1/r2) (i.e., the

distance between gt and g′
t is Θ(1), and so we can actually put these vertices

on the grid). Then, the visibility cone from any point on the semi-circumference
of Ct opposite to the gate vertices towards the upper side of C has an angle of
O(1/r2) and then a projection on C of length O(r). Thus, it sees a portion of
C including a single literal vertex. Then, we place ct1, ct2, ct3 on the projection
through the midpoint of gt, g

′
t of the respective associated literal vertex. Notice

that by construction, these vertices will lie in the lower side of Ct, and so they
will be at Θ(r2) distance from the respective gate vertices. It can now be verified
that this construction gives the desired polygon, and its area is Θ(r6).

Then, it is not hard to see that the 3-Sat instance I has a satisfying truth
assignment iff there exists a solution for I ′ having maximum distance Θ(r). One
direction is immediate. Given a satisfying assignment τ , we indeed define the
following movement: each pebble in an assignment vertex moves to the appro-
priate literal verified by τ , while each pebble in a clause stands still. In this way,
the pebbles originally sitting on assignment vertices will form a clique in the
visibility graph G(P ), while for each clause there is at least a pebble connected
to a literal vertex satisfying the clause, and so the other pebbles in the clause
will remain connected to it. Notice that the maximum movement is Θ(r).

Concerning the other direction, suppose that there is a solution for I ′ having
value Θ(r). We show that such a solution can be transformed in polynomial
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Fig. 3. The polygon P used for proving the NP-hardness of Con-Max, along with a
specification of distances among vertices. Pebbles sit initially on black vertices.

time into a satisfying assignment for I. First of all, notice that by construction
of P , no assignment pebble can move beyond the adjacent literal vertices, and
similarly no pebble in a clause can move to the associated gate vertices. Then,
in order to guarantee connectedness, we have that each assignment vertex must
move to a literal vertex, and moreover there must be at least a pebble in each
clause seeing a literal vertex occupied by a pebble. Thus, this corresponds to a
satisfying assignment for I. ��

The above result has a very strong implication:

Corollary 3. Con-Max is not approximable within any polynomial, unless P =
NP.

Proof. Observe that the construction of the polygon P given in Theorem 3 can be
inflated as follows: for any integer k > 2, we let the circle C have radius Θ(rk+1),
we let the distance between two contiguous triplets be Θ(rk), we embed each
clause on an rk × rk grid, and we finally let the angle ∠gtotg

′
t be Θ(1/rk). It

can now be verified that this construction gives a polygon of area Θ(r2(k+1)) for
which an optimal solution of cost Θ(r) exists iff there is a satisfying assignment,
while any approximate solution will require a pebble to be moved by Ω(rk).
Hence, since r = Θ(n), the claim follows. ��

3.2 Con-Sum

Concerning Con-Sum, the reduction shown in Theorem 2 can be modified to
prove the following two results:

Theorem 4. The Con-Sum problem w.r.t. the hop distance is NP-hard.

Proof. We use the same construction as in Theorem 2. The claim is that the
instance I of 3-SAT is satisfiable iff there is a solution for the instance I ′ of
Con-Sum of cost at most η + m. Given a truth assignment, the existence of a
solution of cost η + m is immediate, since we have shown how to move every
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pebble at most by one to obtain connectedness. Now assume that we have a
solution U with total movement of h := ||d(S,U)|| ≤ η +m. First of all, we show
that h < η + m is unfeasible, and so it must be h = η + m.

For the sake of contradiction, assume that h < η + m hops are enough. This
means that there is at least a pebble that does not move. But then observe that
the distance in the visibility graph G(P ) of P between any two initial positions of
pebbles is at least 3, and so to be visually connected to other pebbles, a pebble
that stands still asks for (at least) another pebble being moved by at least 2
hops. Moreover observe that each vertex of P guards at most a single vertex on
which pebbles initially sit, and so no pebble which moves for at least 2 hops can
be visually connected to more than one pebble which remained still. From this,
we have that to guarantee connectedness, it must be h ≥ η +m, a contradiction.

Then, let h = η+m. If each pebble has moved, we are done, since this implies
that each clause pebble is connected in G(P ) to a literal pebble, and therefore
we can compute (in polynomial time) a truth assignment for I by using the
same arguments used in Theorem 2. Otherwise, assume this is not the case, and
so there is at least one pebble that remained still. We will show that U can
be modified into another solution U ′ such that (i) U ′ still has total movement
h, and (ii) every pebble moves exactly one step in U ′. The modification of the
solution U is quite simple. Let H be the (connected) subgraph of the visibility
graph induced by the final positions of the pebbles in U . Moreover, let p be a
pebble sitting in the node v and which did not move in U . Consider a node v′

which is adjacent to v in H onto which a pebble p′ sits. In order to reach v′,
as explained before pebble p′ moved by t ≥ 2 hops. Moreover, observe that by
construction the set of vertices which are visible from v is a subset of the set
of vertices which are visible from v′. Then, we modify U as follows. We move p
from v to v′, and we move p′ backwards by one step w.r.t. its path towards v′.
In this way, the movement of p′ is now t − 1 ≥ 1, all the vertices which where
guarded by p′ are now guarded by p, and p and p′ are connected. So the new
pebble configuration is still connected and the total movement remains h. By
proceeding in this way, we will arrive to the aimed configuration U ′. ��
Corollary 4. For any 0 < ε < 1, the Con-Sum problem w.r.t. the hop distance
cannot be approximated within n1−ε, unless P=NP.

Proof. We adapt the reduction of Theorem 2 as follows: we modify the gadgets
of the assignment vertices and of the clauses by adding 2N vertices and N + 1
pebbles for each gadget, where N = (η + m)2/ε−1 (see Fig. 4).

Then, it can be shown that (see also the proof of Theorem 4):

(i) if there exists a satisfying truth assignment for I, then there exists a solution
for I ′ having total movement of η + m;

(ii) if there exists a solution for I ′ with total movement less than or equal to
N , then there exists a satisfying truth assignment for I. Indeed, as the total
movement is less than or equal to N , a pebble placed on vertex aj or vertex
pt has been moved by at most 1 (otherwise, all the other N pebbles placed
in the same gadget would have been moved by at least 1).



78 D. Bilò et al.

Fig. 4. The assignment and clause gadgets for proving the inapproximability of Con-
Sum w.r.t. the hop distance. Pebbles sit initially on black vertices. Vertex aj and vertex
pt contain two pebbles each.

Since 3-SAT is NP-complete and n = Θ
(
(η + m)2/ε

)
, the approximation ratio of

any polynomial time algorithm for the Con-Sum problem must be at least

N

η + m
=

(η + m)2/ε−1

η + m
= (η + m)2/ε−2 = Ω(nε/2)2/ε−2 = Ω(n1−ε).

��
On the positive side, we have the following:

Theorem 5. The Con-Sum problem w.r.t. the hop distance can be solved opti-
mally up to an additive term of O(nk).

Proof. It suffices to observe that any solution which will bring all the pebbles to
sit on a same vertex cannot require more than n additional hops for each of the
k pebbles w.r.t. an optimal solution. ��

On the other hand, when we consider the Euclidean distance, Con-Sum
becomes much harder, as the following two results show:

Theorem 6. The Con-Sum problem is NP-hard.

Proof. The NP-hardness follows again by reduction from 3-Sat, by slightly mod-
ifying the construction given in Theorem 3. More precisely, we let the circle C
have radius Θ(r4), we let the distance between two contiguous triplets be Θ(r3),
we embed each clause on an r3 × r3 grid, and we finally let the angle ∠gtotg

′
t

be Θ(1/r3). It can now be verified that this construction gives a polygon of area
Θ(r8), for which it can be shown that there exists a satisfying assignment for
3-Sat iff there exists a solution for Con-Sum of costs Θ(r2). ��
Corollary 5. Con-Sum is not approximable within any polynomial, unlessP=NP.

Proof. Observe that the construction of the polygon P given in Theorem 6 can be
inflated as follows: for any integer k > 3, we let the circle C have radius Θ(rk+1),
we let the distance between two contiguous triplets be Θ(rk), we embed each
clause on an rk × rk grid, and we finally let the angle ∠gtotg

′
t be Θ(1/rk). It

can now be verified that this construction gives a polygon of area Θ(r2(k+1)) for
which an optimal solution costs Θ(r2) (and can be found in polynomial time iff
P=NP), while any approximate solution will require a pebble to me moved by
Ω(rk). Hence, since r = Θ(n), the claim follows. ��
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4 Clique-Connectivity

As far as the clique-connectivity problems are concerned, we are able to provide
results only for the hop distance case, while the Euclidean case remains open.

4.1 Clique-Max

Concerning Clique-Max, it is easy to see that the problem can be solved opti-
mally up to an additive term of 1, by just guessing a vertex belonging to an
optimal solution onto which all the pebbles are moved (see [4]). In spite of that,
the problem is hard, as proven in the following:

Theorem 7. The Clique-Max problem w.r.t. the hop distance is NP-hard.

Proof. We suitably modify the reduction of Theorem 2. So, the reduction is
still from the 3-Sat problem. For a given instance I of 3-Sat, we build an
instance I ′ for the Clique-Max problem as follows: we build a simple polygon
P consisting of 3η literal vertices VL = {x1, x̌1, x̄1, . . . , xη, x̌η, x̄η}, 5m clause
vertices VC = {c11, c12, c13, p1, q1, . . . , cm1, cm2, cm3, pm, qm}, 2m gate vertices
VG = {g1, g

′
1, . . . , gm, g′

m}, 3 obstacle vertices y1, y2, y3, and finally five auxiliary
vertices z1, z2, z3, z4, p̄. Polygon P is so constructed that, among the others, the
following visibility constraints hold (see Fig. 5):

– every literal vertex xi sees all the other literal vertices but x̄i, and vice versa;
– each clause vertex cij can see only gη+i, g

′
η+i, pi, qi, the other two clause ver-

tices in its clause, and the literal vertex corresponding to the jth literal of its
clause;

– each clause vertex pi can see only ci1, ci2, ci3, qi;
– gate vertices cannot see auxiliary vertices due to the obstacle made up by

y1, y2, y3;
– p̄ can see only z3 and z4, z3 and z4 see each other and can see only z1, z2, p̄,

while z1 and z2 can see all the literal vertices but not the gate vertices.

Then, we put a pebble in each clause vertex pi, i = 1, . . . , m, and a pebble
in p̄.

We now show that the 3-Sat instance I has a positive answer iff there exists a
solution for I ′ having maximum hop distance of 2. One direction is simple. Given
a satisfying assignment τ , we indeed define the following movement: each pebble
in a clause moves first (with a single hop) to any clause vertex seeing a verified
literal, and then it reaches the corresponding literal vertex with an additional
hop. Moreover, we move the pebble in p̄ to z1. In this way, the assignment vertex
will form a clique in the visibility graph G(P ), and each pebble makes 2 hops.

Concerning the other direction, suppose that there is a solution for I ′ having
value at most 2. We show that such a solution can be transformed in polynomial
time into a satisfying assignment for I. First of all, notice that the pebble in p̄
must be either in z1 or z2. Moreover, by construction, since the final positions of
the pebbles induce a clique, it must be the case that every pebble is on a literal



80 D. Bilò et al.

Fig. 5. The polygon P used for proving the NP-hardness of Clique-Max w.r.t. the
hop distance. Pebbles sit initially on black vertices.

vertex. Indeed, the only vertices that can be reached by 2 hops from pt and
which are visible by z1 or z2 are the literal vertices associated with the tth clause.
Moreover, we cannot have two pebbles on xi and x̄i, because these two vertices
cannot see each other. Hence, the final positions of the clause pebbles define a
truth assignment for the formula. Notice that it can be the case that there is
no pebble in xj nor in x̄j (i.e., the corresponding variable is not instrumental to
guarantee the satisfiability of I). In this case we assign an arbitrary value to xj .

It remains to show that P can be constructed in polynomial time. Actually,
the construction is similar to that used in Theorem 2, and so we leave it to the
reader. We just point out that the angle ∠x̄ixix̌i must be Θ(1/r2), in order to
hide only x̄i to xi (i.e., the distance between x̌i and the ray passing through
xi, x̄i will be Θ(1)). ��

Since the problem is hard already when the optimal solution costs 2, we have:

Corollary 6. For any ε > 0, Clique-Max w.r.t. the hop distance cannot be
approximated within 3/2 − ε, unless P = NP.

Moreover, the following implication is also easy to prove:

Corollary 7. Deciding whether Clique-Max admits a solution with at most h
hops is NP-complete, for any h ≥ 2.

Proof. Case h = 2 follows directly from Theorem 7. For h > 2, it suffices to
suitably modify the polygon P used in Theorem 7 in such a way that the pebbles
need to move for h − 1 steps in order to see the literal and the clause vertices. ��

4.2 Clique-Sum

Concerning Clique-Sum, once again we restrict ourselves to the hop distance
case. First of all, notice that in this case the problem is 2-approximable [4].
However, it turns out that a slight modification of the reduction used for Clique-
Max yields the following:
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Theorem 8. The Clique-Sum problem w.r.t. the hop distance is NP-hard.

Proof. We use the same construction as in Theorem 7. W.l.o.g. we assume that
in the instance of 3-SAT the mth clause cm contains only the variable xη (either
negate or not), and that xη occurs only in cm. We claim that I is satisfiable
iff I ′ admits a solution of total movement at most 2(m + 1). One direction is
immediate, since we have proved that if I has a satisfying truth assignment then
we can move the pebbles towards a clique with maximum movement of 2. Now,
assume that we have a solution of total movement of at most 2m + 2. We will
show that every pebble must move by at least 2 hops to guarantee the clique
constraint (and so actually at least 2m + 2 hops are needed). This immediately
implies the claim, since this means that each pebble moves exactly 2 steps, and
so we can compute (in polynomial time) a truth assignment for I by using the
same arguments used in Theorem 7. First of all, observe that the hop distance
between any two pt and pt′ is at least 4 (i.e., it is 4 if ct and ct′ share a literal,
otherwise is 5). Moreover, the hop distance between any pt and p̄ is 5. Finally,
for our assumption about instance I, the hop distance between pt and pm is 5,
for every t 
= m. Let h be the movement of a pebble p. In order to move all the
pebbles in a feasible configuration, we have that two pebbles have been moved
by at least 4 − h hops, and the remaining m − 2 pebbles have been moved by
at least 3 − h hops. Summing up over all the pebbles, the total movement is
at least 3m + 2 − (m − 1)h, which is less than or equal to 2m + 2 only when
h ≥ �m/(m − 1)�, i.e., h ≥ 2. ��

5 Discussion and Open Problems

Motion planning in a constrained environment is susceptible of a deep investi-
gation in several respects. Here we have limited our attention to planar vertex-
to-vertex motion in a simple polygon and with the objective of achieving very
basic configurations, but it is easy to imagine more challenging scenarios. For
instance, notice that relaxing the assumption that pebbles have to start, turn,
and stop at vertices only will make the planning task substantially more difficult.
On the other hand, a simplifying yet very interesting setting is that in which the
constraining polygon is orthogonal.

As far as the problems in our setting are concerned, we point out that it
remains open to understand the computational properties of Clique (both
Max and Sum) w.r.t. the Euclidean distance. Moreover, establishing whether
Clique-Max for the hop distance is hard already when an optimal solution
costs 1 is very intriguing: indeed, such a case retains a strong connection with
the Clique Dominating Set (CDS) problem (i.e., deciding whether a graph
has a dominating clique). For general graphs, it is known that this problem
is NP-complete, while it is unknown whether CDS is NP-complete for visibility
graphs. Notice that if CDS was NP-complete for visibility graphs, we would have
the NP-hardness of Clique-Max already restricted to instances where an opti-
mal solution costs 1 (indeed, it suffices to consider instances with a pebble in
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each vertex). Conversely, if we prove that Clique-Max is polynomially solvable
for h = 1, then this implies that CDS for visibility graphs is also decidable in
polynomial time. Finally, we feel that an improvement of the 136-approximation
algorithm for Con-Max w.r.t. the hop distance might be possible, by exploiting
the special nature of visibility graphs.
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