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Abstract. We consider the problem of finding a minimalistic configu-
ration of sensors that enable a simple robot inside an initially unknown
polygon P on n vertices to reconstruct the visibility graph of P . The
robot can sense features of its environment through its sensors, and it is
allowed to move from vertex to vertex.

We aim at understanding which sensorial capabilities are sufficient
for the reconstruction of the visibility graph of P . We are able to show
that the combinatorial visibilities at every vertex do not contain enough
information even when combined with the knowledge of the exact interior
angle at each vertex. Using sensors that can put distant vertices into a
spatial relation on the other hand can in some cases enable our robot
to reconstruct the visibility graph of P . We show that this is true for a
sensor that can distinguish whether the angle between two vertices the
robot sees is convex or reflex, as long as the robot is capable of identifying
the vertex it last visited. We also show that measuring angles exactly is
enough, if the robot has a compass.

1 Introduction

We aim at finding minimalistic motor and sensory capabilities that enable simple
robots to explore an unknown environment. The exploration of environments is
an important robotic task [8]. Recently, it has also been studied in the context of
simple robots giving rise to different modelling approaches [4,10,11]. We model
robots as points in an initially unknown polygonal environment P whose number
of vertices n is assumed to be known. We allow a robot to collect sensory input
while it is located at a vertex, and to move from its current vertex to any vertex
that it sees. In the spirit of keeping robots simple, our robots in particular can-
not sense while they move. Our basic sensing capability allows each robot to see
all vertices that are visible from its current position, in counter-clockwise (ccw)
order, where a vertex is said to be visible by a robot sitting on another vertex
if the line segment connecting both vertices lies entirely in P . Vertices have no
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characteristics that identify them globally; they can be distinguished only in a
local sense by the relative position in ccw order when looking from some other
vertex. For a variety of configurations of additional sensory capabilities, we an-
alyze whether a robot is capable to infer the visibility graph of P . Recall that
the visibility graph consists of a vertex for each polygon vertex, with an edge
between two vertices if the polygon vertices are mutually visible. The charac-
terization of visibility graphs and their reconstruction from polygon geometry
have been studied extensively [5]. We are interested in the problem of deciding
whether a given set of sensory and motor capabilities is powerful enough to allow
a robot to reconstruct the visibility graph of its polygonal environment without
any prior knowledge of the polygon’s geometry.

An earlier study [10] assumes that robots have no notion of and no way of
measuring coordinates, distances or angles. Instead, these robots are limited
to distinguish whether any two visible vertices are neighbors on the polygon
boundary. This concept is usually referred to as combinatorial visibility and will
be defined more formally below. In a convex polygon, for instance, a robot at any
of the vertices sees all other vertices and sees that any two consecutive vertices
in cyclic order are neighbors (this is obviously not true in any other polygon).
There was hope that the knowledge of all combinatorial visibilities might be
enough for a robot to derive the visibility graph of P . In this paper, we show
that this knowledge alone is in fact not sufficient. In fact our result implies that
a robot that senses combinatorial visibilities cannot reconstruct the visibility
graph, if it only moves along the boundary. The question whether the robot is
capable of reconstructing the visibility graph, if allowed to move to any vertex
it sees remains open.

For certain robotic tasks, such as the rendezvous of two robots in an unknown
polygon, a visibility graph might not be needed, for instance if the simple poly-
gon looks non-periodic to the robot(s). For periodic-looking polygons, there was
hope that the vertices seen from a given vertex and those seen from a "peri-
odic partner" of the given vertex (details follow in Section 3) would themselves
be periodic partners; this property would have allowed a variety of tasks to be
solved. We show that this, unfortunately, is not the case.

The question arises what kind of minimal information a robot needs to make
the derivation of the visibility graph possible. We show that adding the knowl-
edge of all the inner polygon angles to the knowledge of combinatorial visibilities
is still not enough. Instead, we equip the robot with sensors that are able to put
the vertices a robot sees into a certain spatial relation only. One example of
such a sensor distinguishes whether the angle between any pair of vertices the
robot sees is convex or reflex. We show that if we add the ability of the robot to
know were it came from when moving from vertex to vertex, this simple sensor
is already sufficient. We also show that sensing exact angles is sufficient as long
as we add a compass that provides a global reference direction.

Related Work. The capabilities of robots and strategies for different robotic tasks
have been studied in a broad variety of settings [8]. Our setting of simple robots
in a polygonal environment was first introduced in [10].
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While we focus on mapping unknown environments, other robotic tasks have
been studied using simple robots. One example is the gathering problem in
the plane with multiple robots [3]. Examples in polygonal environments include
localisation problems [7] and the construction of competitive watchman tours
[6]. In contrast to our approach, the models used mostly allow robots to sense
continuously while moving.

There have also been other results in the field of mapping unknown environ-
ments, again many focus on robots that perceive their surroundings continu-
ously [9]. Mostly the aim is not to reconstruct combinatorial properties of the
surroundings, but rather the exact geometrical layout. More strongly related to
our setting is the mapping of graphs [1,2], where robots have discrete motion
and sensing capabilities similar to our model. But while this problem is more
general than the task of reconstructing the visibility graph, it was shown to be
unsolvable for general environments without the ability to mark visited vertices.

2 Notation

In this work we consider simple polygons only. We denote the n vertices of a (sim-
ple) polygon P by V ={v0, v1, · · · , vn−1}, ordered along the boundary in counter-
clockwise (ccw) order. The polygon has a set of n edges E = {e0, e1, . . . , en−1},
where ei = (vi, vi+1), i = 0, . . . , n− 1. Note that from now on all primitive oper-
ations on vertex and edge indices are modulo n. In addition we assume general
position, i.e. no three vertices are allowed to lie on a line.

Definition 1. Two vertices vi, vj ∈ V form a visible pair in P, if the line
segment vivj lies entirely within P (in particular, vi forms a visible pair with
itself for any i). We say vi and vj see each other and write vi ↔P vj. We drop
the index P and simply write ’↔’, if the corresponding polygon P is clear from
the context. We say a robot at vertex u sees vertex vi, if u ↔ vi.

Definition 2. We define view(vi) of vertex vi in P, the view of vertex vi, to be
the set of vertices that vi sees in P. Formally,

view(vi) := {vj ∈ V | vi ↔ vj} .

We write viewj(vi) to denote the j-th vertex, j ≥ 0, that vi sees in ccw order,
starting at vi itself, both view0(vi) and view|view(vi)|(vi) denoting vi. The view
of a robot at vertex vr is the view of vr and we simply write view if the corre-
sponding robot and its position are clear from the context. Similarly, we write
viewi to denote viewi(vr).

When presenting algorithms for a robot we make use of a specific operation:
The operation ’move to i’ moves the robot to the vertex viewi. If the robot is
equipped with the corresponding sensor, it may also support the operation ’look
back’ in which the robot determines the index b such that viewb is the vertex
it came from during the previous move to operation. For other sensors we do
not define operations explicitly, but rather let the robot access the measured
information directly.
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In the next section we introduce “combinatorial visibility” which allows robots
to sense for every pair of vertices of the polygon P in its view, whether those
vertices are neighbors on the boundary of P . We show that the knowledge of all
combinatorial visibilities is not sufficient for the reconstruction of the visibility
graph of P , even when combined with the knowledge of the exact interior polygon
angle at every vertex.

In Section 4 we focus on sensors that can put distant vertices into spatial
relation. One such sensor is able to measure the exact angle between the lines
connecting the position of the robot with any two vertices in sight. Even when
the angle measurement is not precise and the sensor can only distinguish between
convex and reflex angles, we show that the visibility graph can be inferred, if we
allow the robot to look back. In addition, we show that measuring exact angles is
enough, if we give the robot a compass that provides a global reference direction.

3 Combinatorial Sensors

The combinatorial visibility of a vertex vi is given by a binary vector who’s j-th
element encodes whether the j-th visible vertex and the (j +1)-th visible vertex
form an edge of P or not; we call this a combinatorial visibility vector cvv(vi).
The following definitions capture this more formally. Consult Fig. 1 along with
the definitions.

Definition 3. The combinatorial visibility vector cvv(vi) ∈ {0, 1}|view(vi)| of
vertex vi ∈ V is a binary vector with the j-th element, j ≥ 0, given by

cvvj(vi) =
{

1, if (viewj(vi) , viewj+1(vi)) ∈ E,
0, else.

Note that view1(vi) = vi+1 and view|view(vi)|−1(vi) = vi−1 as every vertex
sees its neighboring vertices on the polygon boundary. Therefore cvv0(vi) =
cvv|view(vi)|−1(vi) = 1 for all vi ∈ V .

Definition 4. The combinatorial visibility sequence cvs of P lists all combina-
torial visibility vectors of the individual vertices of P in ccw order:

cvs := (cvv(v0) , . . . , cvv(vn−1)) .

Fig. 1. Illustration of a combinatorial visibility vector
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Fig. 2. Two polygons PA and PB with identical cvs and different visibility

The following result implies that a robot constrained to moving along the bound-
ary of the polygon and to sensing combinatorial visibilities can in general not
reconstruct the visibility graph of a polygon.

Theorem 1. The cvs of a polygon P does not uniquely define its visibility graph.

Proof. In Fig. 2 we present two polygons PA and PB which share the same cvs,
yet have different visibility graphs. The proof is by inspection of the polygons
together with the list of cvv’s and view sequences of the relevant vertices in Fig. 3.
Note that our construction is not in general position, however the polygons can
easily be modified accordingly without changing visibilities or cvv’s.

The idea behind the construction of the polygons is to use multiple copies of
a “pocket” of vertices (cf. Fig. 2 for an illustration). Each pocket forms a convex
curve, but the vertices connecting the pockets form reflex angles, resulting in a

vertex cvv view sequence
a
ã

1111101111011111
abcdeadeabcabcde
ãb̃c̃d̃ẽãc̃d̃ẽãb̃ãb̃c̃d̃ẽ

b
b̃

11110111101
bcdeadeabca
b̃c̃d̃ẽãc̃d̃ẽãb̃ã

c
c̃

11101111011
cdeadeabcab
c̃d̃ẽãc̃d̃ẽãb̃ãb̃

d
d̃

11011110111
deadeabcabc
d̃ẽãc̃d̃ẽãb̃ãb̃c̃

e
ẽ

10111101111
eadeabcabcd
ẽãc̃d̃ẽãb̃ãb̃c̃d̃

Fig. 3. The cvv and view sequence of every vertex within a pocket of PA and PB,
where a, b, c, d, e each refer to all four vertices at the corresponding position within
their pocket in PA and ã, b̃, c̃, d̃, ẽ refer to their counterparts in PB
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non-convex polygon P . The vertices inside a pocket thus do not see all vertices
of P , they see (apart from their own pocket) only parts of exactly two pockets.
We use the fact that the vertices have no way to distinguish what pockets they
are “looking into” and we modify the polygon PA by shifting the vertex c (cf.
Fig. 2) so that in PB the shifted vertex c̃ looks into different pockets, while not
changing the cvv of any vertex. %&

The polygons PA and PB have twenty vertices each, however we were also able
to construct similar polygons for n = 12. We were able to show that no examples
exist for n ≤ 10. We do not expect there to be examples with n < 12, we have
however not been able to prove this. We did not present the polygons with twelve
vertices as their construction is more involved.

The following theorem considers a related question about polygons with pe-
riodical cvs. We start by defining periodicity formally:

Definition 5. We say that a cvs C = (C0, C1, . . . , Cn−1) with Ci = cvv(vi) is
periodical with period p ≥ 2, if Ci = Ci+k· n

p
for all 0 ≤ i < n and all 1 ≤ k < p.

For each 0 ≤ i < n we say {vi+k·n
p
|0 ≤ k < p} are periodical partners.

The question is whether two vertices visible from periodical partners at the
same local position in a polygon with periodical cvs have to be periodical part-
ners themselves. A positive answer to this question would have an impact on
various interesting problems in the field of simple robots; for example, on a weak
version of the rendezvous problem in symmetrical polygons in which two identi-
cal, deterministic robots try to gain sight of each other. We show that it is not
the case; we even show a stronger result.

Theorem 2. There is a polygon P with a periodical cvs of period p ≥ 2 for
which we have

∃vi ∈ V ∃j ∈ {1, . . . , |view(vi)|− 1} : cvv(viewj(vi)) )= cvv
(
viewj

(
vi+ n

p

))
.

Proof. We construct a polygon P with period p = 2 with the aforementioned
property from the two polygons PA and PB in Fig. 2. The construction can
easily be generalized to p > 2.

The idea of the construction is to “glue” PA and PB together at vertices v
and ṽ of PA and PB, respectively, where v and ṽ are as depicted in Fig. 2. We
want to glue the polygons such that every two corresponding vertices w and w̃
of the two polygons form periodical partners in P . Thus, we need to glue the
polygons such that the cvv’s of corresponding vertices w and w̃ are the same. We
can then use the result of Theorem 1 which guarantees the existence of vertices
w and w̃ with the same cvv but different views. Formally, if w from PA is a
vertex vi in P and w̃ from PB is a vertex vi+n/2 in P (where n is the number of
vertices of P), there is a position j in their views such that viewj(vi) = vk and
viewj

(
vi+ n

2

)
= vl )= vk+ n

2
. Because of the structure of the two polygons, we will

have cvv(vk) )= cvv(vl) which proves the theorem.
The problem when gluing at v/ṽ is that these vertices have to be split in the

process, which makes them distinguishable from all other vertices. By inserting
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Fig. 4. Left: The concept of inserting spikes at vertices. Right: Illustration of how the
spikes are inserted at reflex vertices. We chose our modification such that the right
neighbor of the spike tip retains the visibility of the original vertex.

Fig. 5. The two polygons from Fig. 2 equipped with spikes and still with identical cvs.
The areas visible from the different spike-tips are indicated.

spikes (cf. Fig. 4) at all vertices, we can again make vertices indistinguishable
while still maintaining equal cvs’. Spikes can easily be inserted at convex vertices
such that no distant vertex is visible from the spike tip and the spike tip’s
neighbors retain the vision of the original vertex (except for seeing vertices as
gaps and seeing the spike tip). It is however not generally clear how to do that
for reflex vertices, Fig. 4 shows how this can be done with the four reflex vertices
in our case. Fig. 5 shows the spiked versions of PA and PB before gluing. Fig. 6
lists how the cvv’s change with the introduction of spikes.

Once we have spiked versions of PA and PB, we can glue them together in a
straightforward way by simply splitting the spike tip of v and ṽ and attaching
the open ends. It can easily be seen that the gluing does not break the periodicity
of the cvs of P . Fig. 7 shows the resulting polygon P . The extension to p > 2 is
easily made, as we can attach more than two copies of the two spiked polygons
around a common center. %&

Theorem 1 shows that the knowledge of the cvs is not sufficient to reconstruct the
visibility graph of a polygon. A natural question is how to extend this information
“minimally” in order to make the reconstruction possible. In the following we
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vertex cvv
a1 1100101010100101010101
a2 101
a3 10101010100010101010010101010111
b1 1110101010001010101001
b2 101
b3 1010101000101010100111
c1 1110101000101010100101
c2 101
c3 1010100010101010010111
d1 1110100010101010010101
d2 101
d3 1010001010101001010111
e1 1110001010101001010101
e2 101
e3 1000101010100101010111

Fig. 6. The combinatorial visibilities of each vertex in a pocket of PA after adding
spikes (the same cvv’s arise for PB). We write v1−3 to denote the group of vertices
v1, v2, v3.

Fig. 7. The polygon with n = 120 that proves Theorem 2
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show that adding the knowledge of all interior angles of the polygon is still not
enough. We prove the following theorem.

Theorem 3. The cvs and all interior angles of a polygon P do not uniquely
determine the visibility graph of P.

Proof. Figure 8 shows a modified version of the polygons PA and PB of Fig. 2. As
one can easily check, the polygons still have the same cvs and different visibility
graphs. In addition, they also have the same set of inner angles at the vertices.
The existence of such polygons proves the theorem. %&

Fig. 8. Two polygons with identical cvs and identical interior angles but different vis-
ibility graphs. The visibilities are similar to those of PA and PB.

Note that Theorems 1 and 3 do not imply that a robot equipped with sensors
for measuring cvv’s and/or inner angles cannot reconstruct the visibility graph,
as such a robot would be able to distinguish PA and PB by moving to a vertex
of the most distant corner and inspecting its cvv. However it seems difficult for
such a robot to reconstruct the visibility graph - to prove that this indeed is not
possible remains open.

4 Geometrical Sensors

In the previous section we saw that the simple combinatorial information we
used is not enough to infer global properties of a polygon P , namely its visibility
graph. We now focus on geometrical sensors for measuring angles between distant
vertices and show two sets of capabilities that enable a robot to reconstruct the
visibility graph. We start by defining the two notions of angle sensors we consider.

Definition 6. Let vr ∈ V be the vertex of polygon P which the robot is located at.
We write angle(i, j) with i < j for the angle between the lines vrviewi and vrviewj

in ccw direction. A sensor capable of determining angle(i, j) for all i, j is called
angle sensor. The type of the angle angle(i, j) (’reflex’ or ’convex’ depending
on whether the angle is larger than π or not) is denoted by angle_type(i, j). A
sensor capable of determining angle_type(i, j) for all i, j is called angle-type
sensor.
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While it is clear that the angle sensor is stronger than the angle-type sensor,
the angle-type sensor has the advantage that it is very robust with respect to
measurement imprecision.

We have preliminary results that suggest that an angle sensor alone suffices
for the reconstruction of the visibility graph. It is however not clear whether the
angle-type sensor alone is sufficient, even when combined with the combinatorial
sensor of Section 3. For a robot equipped with an angle-type sensor that is
allowed to look back (cf. Section 2) however, we are able to prove the following
result:

Theorem 4. A robot with an angle-type sensor and with the ability to look back
can uniquely reconstruct the visibility graph of any polygon P.

Proof. We prove this by presenting an algorithm for the robot to construct the
visibility graph.

The robot moves from vertex to vertex along the boundary of P in ccw order.
At each vertex vi it iteratively identifies all visible vertices. It starts by identifying
the vertices view1, view|view|−1 which trivially have the global index i + 1, i− 1.
Further vertices can be identified as follows:

Let vk be the first visible vertex in ccw order that has not yet been identified
and vj be the previous vertex that is visible, so that j is known to the robot and
it needs to find k. The robot does this by counting all vertices “beyond” vj and
those “beyond” vk. In order to understand the notion of vertices lying beyond
some vertex vb, consider the intersection x of the ray from vi to vb with the
boundary of P . The vertices between (either in ccw order or in clockwise order)
x and vb are said to lie beyond vb. The total number of the vertices beyond vj

and vk (in ccw order and clockwise order, respectively) then simply needs to be
added to j + 1 in order to obtain k (cf. Fig. 9).

It remains to be seen how the robot situated at v counts the number of
vertices beyond another vertex with local index b. The first step is moving to
b. By looking back, the robot can identify v in its new view. Therefore it can
decide which of the now visible vertices form a reflex angle with v and are thus

Fig. 9. Visualization of the procedure for inferring the global index of vk if the previous
vertex vj has already been identified. It is enough to count the number of vertices
beyond vj and vk as those are the ones between vj and vk in ccw order.
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behind the current vertex b when looking from v. All these vertices have to be
counted as well as the number of vertices beyond them (which in turn are not
visible to b). This is done recursively, so that at the end the robot sums up all
vertices that are directly or indirectly behind b. The following listing shows the
procedure for counting the vertices behind b in pseudocode.

function beyond(b,o)
input: local index b, order o that specifies on which side of visionb to count
output: count of vertices beyond visionb w.r.t. the current position of the robot

1. count← 0

2. move to b

3. i← look back
4. for each j ∈ [1, . . . , |view|− 1] with (o = ccw ∧ j < i) ∨ (o = cw ∧ j > i) do
5. if type(j, i) = reflex

6. count← count + 1 + beyond(j, ccw) + beyond(j, cw)

7. move to i

In order to prove the correctness of our algorithm, we need to show that no
vertex is counted twice when counting the vertices beyond vj and beyond vk.
The two calls of beyond() for vj and vk consider distinct sets of vertices as the
first considers those to the right of the line to vj and the second considers those
on the left of the line to vk. As vk by definition lies left of vj , there is no overlap.
We show that a single call to beyond() does not count vertices twice either: It is
obvious that the recursive calls in line 6 consider distinct sets of vertices, as one
considers only vertices on the left and the other only on the right of viewj . The
only possible overlap could be between two calls of the form beyond(x, ccw),
beyond(y, cw) with x < y. Again, because by definition viewy lies to the right of
viewx, there can be no overlap. The entire algorithm is at no point ambiguous,
so that the solution found has to be unique. %&

We can enable a robot with angle sensor to emulate the robot from Theorem 4
by giving it a compass. A compass provides the robot with a global reference
direction. The angle sensor combined with a compass can measure the global
direction to each vertex in sight.

Definition 7. Let p = (0,∞). Let vr be the position of the robot and view′ be
the view of the robot if p was a vertex of P visible to vr. A compass enables
a robot to determine the index i for which p = view′

i. When combined with an
angle sensor, a compass also provides the angles between the lines vrview′

i and
vrview′

j in ccw direction, for all indices j.

The next theorem follows immediately from Theorem 4.
Theorem 5. A robot with an angle sensor and a compass can uniquely recon-
struct the visibility graph of any polygon P.

Proof. The angle sensor can obviously emulate an angle type sensor. It therefore
suffices to show that the robot can imitate the capability of looking back and
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thus apply the strategy described in the proof of Theorem 4. Assume the robot
moves from a vertex v to a vertex u that it sees in the global direction d. From
its new location u the robot knows that v lies in direction −d. Because of general
position, the robot is guaranteed to see only v in that direction and thus the
robot is capable of uniquely identifying the vertex it came from, in other words
the robot is capable of looking back. %&

Note that the last two results do not rely on the knowledge of n and that in fact
the corresponding robots are capable of inferring n.

5 Conclusion

We have studied the problem of reconstructing the visibility graph of a poly-
gon P using simple robots. In this context, we have discussed three different
configurations of sensors for simple robots. We have proven that the two con-
figurations based on geometrical sensor enable the robot to infer the visibility
graph of a polygon while purely combinatorial knowledge, in terms of the cvs of
the polygon, does not suffice. In addition we have shown a property of symmetric
polygons which makes combinatorial visibility even weaker in that case.

It is clear that a robot with one of the two geometrical sensor configurations is
stronger than a robot equipped with the combinatorial sensor, as combinatorial
visibilities can be derived from the visibility graph. The task of finding the
weakest configuration that allows reconstructing the visibility graph remains
unsolved.
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