

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reconstructing visibility graphs with simple robots

D. Bilò a, Y. Disser a,*, M. Mihalák a, S. Suri b, E. Vicari a, P. Widmayer a

ABSTRACT

We consider the problem of finding a minimalistic configuration of sensors that enable a simple robot inside an initially unknown polygon $\mathcal P$ on n vertices to reconstruct the visibility graph of $\mathcal P$. The robot can sense features of its environment through its sensors, and it is allowed to move from vertex to vertex.

We aim at understanding which sensorial capabilities are sufficient for the reconstruction of the visibility graph of \mathcal{P} . We are able to show that the *combinatorial visibilities* at every vertex do not contain enough information even when combined with the knowledge of the exact interior angle at each vertex. Using sensors that can put distant vertices into a spatial relation on the other hand can in some cases enable our robot to reconstruct the visibility graph of \mathcal{P} . We show that this is true for a sensor that can distinguish whether the angle between the lines toward two visible vertices is convex or reflex, as long as the robot is capable of identifying the vertex it last visited. We also show that measuring angles exactly is enough, if the robot has a compass.

© 2012 Published by Elsevier B.V.

1. Introduction

We aim at finding minimalistic motor and sensory capabilities that enable simple robots to explore an unknown environment. The exploration of environments is an important robotic task [9]. Recently, it has also been studied in the context of simple robots giving rise to different modeling approaches [5,11,12]. We model robots as points in an initially unknown polygonal environment \mathcal{P} whose number of vertices n is assumed to be known. We allow a robot to collect sensory input while it is located at a vertex, and to move from its current location to any vertex that it sees. In the spirit of keeping robots simple, our robots in particular cannot sense while they move. Our basic sensing capability allows each robot to see all vertices that are visible from its current position, in counter-clockwise (ccw) order, where a vertex is said to be visible by a robot sitting on another vertex if the line segment connecting both vertices lies entirely in \mathcal{P} . Vertices have no characteristics that identify them globally; they can be distinguished only in a local sense by the relative position in ccw order when looking from some other vertex. For a variety of configurations of additional sensory capabilities, we analyze whether a robot is capable to infer the visibility graph of \mathcal{P} . Recall that the visibility graph consists of a vertex for each polygon vertex, with an edge between two vertices if the polygon vertices are mutually visible. The characterization of visibility graphs and their reconstruction from polygon geometry have been studied extensively [6]. We are interested in the problem of deciding whether a given set of sensory and motor capabilities is powerful enough to allow a robot to reconstruct the visibility graph of its polygonal environment without any prior knowledge of the polygon's geometry.

An earlier study [11] assumes that robots have no notion of and no way of measuring coordinates, distances or angles. Instead, these robots are limited to distinguish whether any two visible vertices are neighbors on the polygon boundary. This

E-mail addresses: dbilo@inf.ethz.ch (D. Bilò), ydisser@inf.ethz.ch (Y. Disser), mmihalak@inf.ethz.ch (M. Mihalák), suri@cs.ucsb.edu (S. Suri), vicariel@inf.ethz.ch (E. Vicari), widmayer@inf.ethz.ch (P. Widmayer).

^a Institute of Theoretical Computer Science, ETH Zürich, Switzerland

^b Department of Computer Science, University of California, Santa Barbara, United States

^{*} Corresponding author.

concept is usually referred to as *combinatorial visibility* and will be defined more formally below. In a convex polygon, for instance, a robot located at any of the vertices sees all other vertices and sees that any two consecutive vertices in cyclic order are neighbors (this is obviously not true in a non-convex polygon). There was hope that the knowledge of all combinatorial visibilities might be enough for a robot to derive the visibility graph of \mathcal{P} . In this paper, we show that this knowledge alone is in fact not sufficient. In fact our result implies that a robot that senses combinatorial visibilities cannot reconstruct the visibility graph, if it only moves along the boundary. The question whether the robot is capable of reconstructing the visibility graph, if allowed to move to any vertex it sees remains open.

For certain robotic tasks, such as the rendezvous of two robots in an unknown polygon, a visibility graph might not be needed, for instance if the simple polygon looks non-periodic to the robot(s). For periodic-looking polygons, there was hope that the vertices seen from a given vertex and those seen from a "periodic partner" of the given vertex (details follow in Section 3) would themselves be periodic partners; this property would have allowed a variety of tasks to be solved. We show that this, unfortunately, is not the case.

The question arises of what kind of minimal information a robot needs to make the derivation of the visibility graph possible. We show that adding the knowledge of all the inner polygon angles to the knowledge of combinatorial visibilities is still not enough. Instead, we equip the robot with sensors that are able to put the vertices a robot sees into a certain spatial relation. One example of such a sensor distinguishes whether the angle between the lines towards any two visible vertices is convex or reflex. We show that if we add the ability of the robot to know where it came from when moving from vertex to vertex, this simple sensor is already sufficient. We also show that sensing exact angles is sufficient as long as we add a compass that provides a global reference direction.

Related work. The capabilities of robots and strategies for different robotic tasks have been studied in a broad variety of settings [9]. Our setting of simple robots in a polygonal environment was first introduced in [11].

While we focus on mapping unknown environments, other robotic tasks have been studied using simple robots. One example is the gathering problem in the plane with multiple robots [4]. Examples in polygonal environments include localization problems [8] and the construction of competitive watchman tours [7]. In contrast to our approach, the models used mostly allow robots to sense continuously while moving.

There have also been other results in the field of mapping unknown environments, again many focus on robots that perceive their surroundings continuously [10]. Mostly the aim is not to reconstruct combinatorial properties of the surroundings, but rather the exact geometrical layout. More strongly related to our setting is the mapping of graphs [2,3], where robots have discrete motion and sensing capabilities similar to our model. But while this problem is more general than the task of reconstructing the visibility graph, it was shown to be unsolvable for general environments without the ability to mark visited vertices.

2. Notation

In this work we consider simple polygons only. We denote the n vertices of a (simple) polygon \mathcal{P} by $V = \{v_0, v_1, \ldots, v_{n-1}\}$, ordered along the boundary in counterclockwise (ccw) order. The polygon has a set of n edges $E = \{e_0, e_1, \ldots, e_{n-1}\}$, where $e_i = (v_i, v_{i+1})$, $i = 0, \ldots, n-1$. Note that from now on all primitive operations on vertex and edge indices are modulo n.

Definition 1. Two vertices v_i , $v_j \in V$ form a visible pair in \mathcal{P} , if the line segment $\overline{v_i v_j}$ lies entirely within \mathcal{P} (in particular, v_i forms a visible pair with itself for any i). We say v_i and v_j see each other and write $v_i \leftrightarrow_{\mathcal{P}} v_j$. We drop the index \mathcal{P} and simply write ' \leftrightarrow ', if the corresponding polygon \mathcal{P} is clear from the context. We say a robot at vertex u sees vertex v_i , if $u \leftrightarrow v_i$.

Definition 2. We define view(v_i) of vertex v_i in \mathcal{P} , the *view* of vertex v_i , to be the set of vertices that v_i sees in \mathcal{P} . Formally,

$$\mathsf{view}(v_i) := \left\{ \left. v_j \in V \,\middle|\, v_i \leftrightarrow v_j \right\}.$$

We write $\text{view}_j(v_i)$ to denote the j-th vertex, $j \geq 0$, that v_i sees in ccw order along the boundary, starting at v_i itself, both $\text{view}_0(v_i)$ and $\text{view}_{|\text{view}(v_i)|}(v_i)$ denoting v_i . The view of a robot at vertex v_r is the view of v_r and we simply write view if the corresponding robot and its position are clear from the context. Similarly, we write view_i to denote $\text{view}_i(v_r)$.

When presenting algorithms for a robot we make use of specific operations: the operation 'move to i' moves the robot to the vertex $view_i$. If the robot is equipped with the corresponding sensor, it may also support the operation 'look back' in which the robot determines the index b such that $view_b$ is the vertex it came from during the previous move to operation. For other sensors we do not define operations explicitly, but rather let the robot access the measured information directly.

In the next section we introduce "combinatorial visibility" which allows a robot to sense, whether two vertices are neighbors on the boundary of \mathcal{P} , for every pair of vertices of the polygon \mathcal{P} in its view. We show that the knowledge of all combinatorial visibilities is not sufficient for the reconstruction of the visibility graph of \mathcal{P} , even when combined with the knowledge of the exact interior polygon angle at every vertex.

In Section 4 we focus on sensors that can put distant vertices into spatial relation. One such sensor is able to measure the exact angle between the lines connecting the position of the robot with any two vertices in sight. Even when the angle measurement is not precise and the sensor can only distinguish between convex and reflex angles, we show that the visibility graph can be inferred, if we allow the robot to look back. In addition, we show that measuring exact angles is enough, if we give the robot a compass that provides a global reference direction.

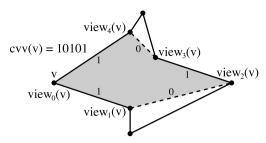


Fig. 1. Illustration of a combinatorial visibility vector.

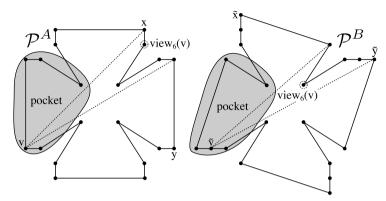


Fig. 2. Two polygons \mathcal{P}^A and \mathcal{P}^B with identical cvs and different visibility graphs.

3. Combinatorial sensors

The combinatorial visibility of a vertex v_i is given by a binary vector whose j-th element encodes whether the j-th visible vertex and the (j+1)-th visible vertex form an edge of $\mathcal P$ or not; we call this a combinatorial visibility vector $\text{cvv}(v_i)$. The following definitions capture this more formally. Consult Fig. 1 along with the definitions.

Definition 3. The *combinatorial visibility vector* $\text{cvv}(v_i) \in \{0, 1\}^{|\text{view}(v_i)|}$ of vertex $v_i \in V$ is a binary vector with the j-th element, $j \geq 0$, given by

$$cvv_{j}(v_{i}) = \begin{cases} 1, & \text{if } (view_{j}(v_{i}), view_{j+1}(v_{i})) \in E, \\ 0, & \text{else.} \end{cases}$$

Note that $\mathsf{view}_1(v_i) = v_{i+1}$ and $\mathsf{view}_{|\mathsf{view}(v_i)|-1}(v_i) = v_{i-1}$ as every vertex sees its neighboring vertices on the polygon boundary. Therefore $\mathsf{cvv}_0(v_i) = \mathsf{cvv}_{|\mathsf{view}(v_i)|-1}(v_i) = 1$ for all $v_i \in V$.

Definition 4. The *combinatorial visibility sequence* cvs of \mathcal{P} lists all combinatorial visibility vectors of the individual vertices of \mathcal{P} in ccw order:

$$cvs := (cvv(v_0), \ldots, cvv(v_{n-1})).$$

The following result implies that a robot constrained to moving along the boundary of the polygon and to sensing combinatorial visibilities can in general not reconstruct the visibility graph of a polygon.

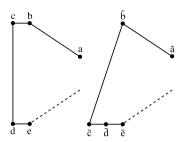
Theorem 1. The cvs of a polygon \mathcal{P} does not uniquely define its visibility graph.

Proof. In Fig. 2 we present two polygons \mathcal{P}^A and \mathcal{P}^B which share the same cvs, yet have different visibility graphs. The proof is by inspection of the polygons together with the list of cvvs and view sequences of the relevant vertices in Fig. 3.

The idea behind the construction of the polygons is to use multiple copies of a "pocket" of vertices (cf. Fig. 2 for an illustration). Each pocket forms a convex curve, but the vertices connecting the pockets form reflex angles, resulting in a non-convex polygon \mathcal{P} . The vertices inside a pocket thus do not see all vertices of \mathcal{P} , they see (apart from their own pocket) only parts of exactly two pockets. We use the fact that the vertices have no way to distinguish what pockets they are "looking into" and we modify the polygon \mathcal{P}^A by shifting the vertex c (cf. Fig. 3) so that in \mathcal{P}^B the shifted vertex \tilde{c} looks into different pockets, while not changing the cvv of any vertex. \Box

The polygons \mathcal{P}^A and \mathcal{P}^B have twenty vertices each, however we were also able to construct similar polygons for n=12. We were able to show computationally that no examples exist for $n\leq 10$. The two polygons with n=12 are shown in Fig. 4.

Theorem 1 shows that the knowledge of the cvs is not sufficient to reconstruct the visibility graph of a polygon. A natural question is how to extend this information "minimally" in order to make the reconstruction possible. In the following we show that adding the knowledge of all interior angles of the polygon is still not enough. We prove the following theorem.



vertex	CVV	view
а	a 11111011110111111	abcdeadeabcabcde
ã		ãbcdeãcdeãbãbcde
b	11110111101	bcdeadeabca
\tilde{b}		pcdeacdeaba
c c	11101111011	cdeadeabcab
		ĉd̃eãĉd̃eãbãb
d	11011110111	deadeabcabc
\tilde{d}		ãeãcãeãbãbc
е	10111101111	eadeabcabcd
ẽ		ẽãc đẽã bã bc đ

Fig. 3. The cvv and view of every vertex within a pocket of \mathcal{P}^A and \mathcal{P}^B , where a, b, c, d, e each refer to a set of four vertices, one in each pocket of \mathcal{P}_A and at corresponding positions. Similarly, $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}, \tilde{e}$ refer to the counterparts in \mathcal{P}_B .

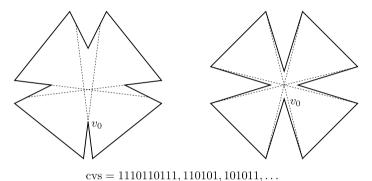


Fig. 4. Two polygons with twelve vertices each that have identical cvs and different visibility graphs.

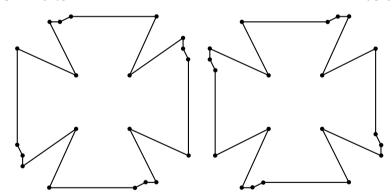


Fig. 5. Two polygons with identical cvs and identical interior angles but different visibility graphs. The visibilities are similar to those of \mathcal{P}^A and \mathcal{P}^B .

Theorem 2. The cvs and all interior angles of a polygon \mathcal{P} do not uniquely determine the visibility graph of \mathcal{P} .

Proof. Fig. 5 shows a modified version of the polygons \mathcal{P}^A and \mathcal{P}^B of Fig. 2. As one can easily check, the polygons still have the same cvs and different visibility graphs. In addition, they also have the same set of inner angles at the vertices. The existence of such polygons proves the theorem. \Box

Note that Theorems 1 and 2 do not imply that a robot that is not constrained to move along the boundary and is equipped with sensors for measuring cvvs and/or inner angles cannot reconstruct the visibility graph. Such a robot would be able to distinguish \mathcal{P}^A and \mathcal{P}^B by moving to a specific vertex of a distant pocket and inspecting its cvv. However it seems difficult for such a robot to reconstruct the visibility graph in general – the proof that this indeed is not possible remains open.

3.1. Periodical polygons

As soon as the robot is able to uniquely recognize vertices, it becomes easy to reconstruct the visibility graph. Intuitively, polygons that are difficult to explore are "symmetrical" in the sense that for every vertex there is another vertex that "looks" similar. We now consider highly symmetrical polygons with periodical cvs. We start by defining periodicity formally:

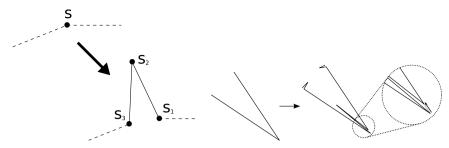


Fig. 6. Left: the concept of inserting spikes at vertices. Right: illustration of how the spikes are inserted at reflex vertices. We chose our modification such that the right neighbor of the spike tip retains the visibility of the original vertex.

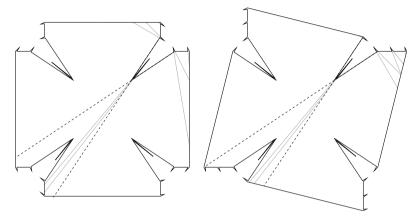


Fig. 7. The two polygons from Fig. 2 equipped with spikes and still with identical cvs. The areas visible from the different spike-tips are indicated.

Definition 5. We say that a cvs $C = (C_0, C_1, \dots, C_{n-1})$ with $C_i = \text{cvv}(v_i)$ is periodical with period $p \ge 2$, if $C_i = C_{i+k \cdot \frac{n}{p}}$ for all $0 \le i < n$ and all $1 \le k < p$. For each $0 \le i < n$ we say $\{v_{i+k \cdot \frac{n}{p}} | 0 \le k < p\}$ are periodical partners.

The question is whether, in a polygon with periodical cvs, two vertices visible from periodical partners at the same local position have to be periodical partners themselves. A positive answer to this question would have an impact on various interesting problems in the field of simple robots. One example is the *weak rendezvous* problem in symmetrical polygons in which two identical, deterministic robots try to gain sight of each other. The rendezvous problem is a core problem for robotic coordination, like the coordinated exploration of a polygon with multiple robots. We show that, unfortunately, symmetrical polygons do not necessarily have the above property.

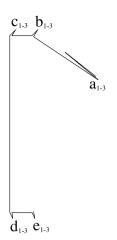
Theorem 3. There is a polygon \mathcal{P} with a periodical cvs of period $p \geq 2$ for which we have

$$\exists v_i \in V \ \exists j \in \{1, \dots, |\mathsf{view}(v_i)| - 1\} : \mathsf{cvv}\big(\mathsf{view}_j(v_i)\big) \neq \mathsf{cvv}\big(\mathsf{view}_j\big(v_{i+\frac{n}{n}}\big)\big).$$

Proof. We construct a polygon \mathcal{P} with period p=2 with the aforementioned property from the two polygons \mathcal{P}^A and \mathcal{P}^B in Fig. 2. The construction can easily be generalized to p>2.

The idea of the construction is to "glue" \mathcal{P}^A and \mathcal{P}^B together at vertices v and \tilde{v} of \mathcal{P}^A and \mathcal{P}^B , respectively, where v and \tilde{v} are as depicted in Fig. 2. We want to glue the polygons such that every two corresponding vertices w and \tilde{w} of the two polygons form periodical partners in \mathcal{P} . Thus, we need to glue the polygons such that the cvvs of corresponding vertices w and \tilde{w} are the same. We can then use the result of Theorem 1 which guarantees the existence of vertices w and \tilde{w} with the same cvv but different views. Formally, if w from \mathcal{P}^A is a vertex v_i in \mathcal{P} and \tilde{w} from \mathcal{P}^B is a vertex $v_{i+n/2}$ in \mathcal{P} (where n is the number of vertices of \mathcal{P}), there is a position j in their views such that $\mathrm{view}_j(v_i) = v_k$ and $\mathrm{view}_j\left(v_{i+\frac{n}{2}}\right) = v_l \neq v_{k+\frac{n}{2}}$. Because of the structure of the two polygons, we will have $\mathrm{cvv}(v_k) \neq \mathrm{cvv}(v_l)$ which proves the theorem.

The problem when gluing at v/\tilde{v} is that these vertices have to be split in the process, which makes them distinguishable from all other vertices. By inserting spikes (cf. Fig. 6) at all vertices, 'we can again make vertices indistinguishable while still maintaining equal cvs'. Spikes can easily be inserted at convex vertices such that no distant vertex is visible from the spike tip and the spike tip's neighbors retain the vision of the original vertex (except for seeing the former vertices as gaps and seeing the new spike tip). It is however not generally clear how to do that for reflex vertices, Fig. 6 shows how this can be done with the four reflex vertices in our case. Fig. 7 shows the spiked versions of \mathcal{P}^A and \mathcal{P}^B before gluing. Fig. 8 lists how the cvvs change with the introduction of spikes.



vertex	CVV
a_1	1100101010100101010101
a_2	101
a_3	10101010100010101010101010101111
b_1	1110101010001010101001
b_2	101
b_3	101010100010101010111
c_1	1110101000101010100101
c_2	101
<i>c</i> ₃	1010100010101010010111
d_1	1110100010101010010101
d_2	101
d_3	1010001010101001010111
e_1	1110001010101001010101
e_2	101
e_3	1000101010100101010111

Fig. 8. The combinatorial visibilities of each vertex in a pocket of \mathcal{P}^A after adding spikes (the same cvvs arise for \mathcal{P}^B). We write v_{1-3} to denote the group of vertices v_1, v_2, v_3 .

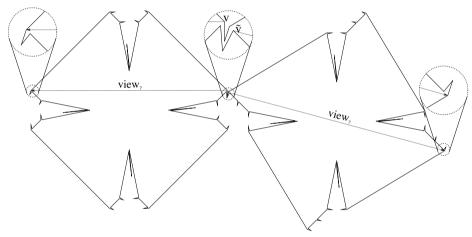


Fig. 9. The polygon with n = 120 that proves Theorem 3.

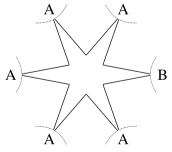


Fig. 10. Illustration of how to glue multiple copies of two spiked polygons in order to obtain a polygon with periodical cvs.

Once we have spiked versions of \mathcal{P}^A and \mathcal{P}^B , we can glue them together in a straightforward way by simply splitting the spike tip of v and \tilde{v} and attaching the open ends. It can easily be seen that the gluing does not break the periodicity of the cvs of \mathcal{P} . Fig. 9 shows the resulting polygon \mathcal{P} . The extension to p>2 is easily made, as we can attach more than two copies of the two spiked polygons around a common center (cf. Fig. 10). \square

4. Geometrical sensors

In the previous section we saw that the simple combinatorial information we used is not enough to infer global properties of a polygon \mathcal{P} , namely its visibility graph. We now focus on geometrical sensors for measuring angles between distant

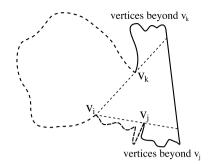


Fig. 11. Visualization of the procedure for inferring the global index of v_k if the previous vertex v_j has already been identified. It is enough to count the number of vertices beyond v_i and v_k as those are the ones between v_i and v_k in ccw order.

vertices and show two sets of capabilities that enable a robot to reconstruct the visibility graph. We start by defining the two notions of angle sensors we consider.

Definition 6. Let $v_r \in V$ be the vertex of polygon \mathcal{P} which the robot is located at. We write $\operatorname{angle}(i,j)$ with i < j for the angle between the lines $\overline{v_r \operatorname{view}_i}$ and $\overline{v_r \operatorname{view}_j}$ in ccw direction. A sensor capable of determining $\operatorname{angle}(i,j)$ for all i,j is called angle sensor. The type of the angle $\operatorname{angle}(i,j)$ ('reflex' or 'convex' depending on whether the angle is larger than π or not) is denoted by $\operatorname{angle}(i,j)$. A sensor capable of determining $\operatorname{angle}(i,j)$ for all i,j is called an $\operatorname{angle}(i,j)$ and $\operatorname{angle}(i,j)$ for all i,j is called an $\operatorname{angle}(i,j)$ and $\operatorname{angle}(i,j)$ for all $\operatorname{angle}(i,j$

While it is clear that the angle sensor is stronger than the angle-type sensor, the angle-type sensor has the advantage that it is very robust with respect to measurement imprecision.

As it turns out, an angle sensor alone suffices for the reconstruction of the visibility graph [1]. It is however not clear whether the angle-type sensor alone is sufficient, even when combined with the combinatorial sensor of Section 3. For a robot equipped with an angle-type sensor that is allowed to look back (cf. Section 2) however, we are able to prove the following result:

Theorem 4. A robot with an angle-type sensor and with the ability to look back can uniquely reconstruct the visibility graph of any polygon \mathcal{P} .

Proof. We prove this by presenting an algorithm for the robot to construct the visibility graph.

The robot moves from vertex to vertex along the boundary of \mathcal{P} in ccw order. At each vertex v_i it iteratively identifies all visible vertices. It starts by identifying the vertices view₁, view_{|view|-1} which trivially have the global index i+1, i-1. Further vertices can be identified as follows:

Let v_k be the first visible vertex in ccw order that has not yet been identified and v_j be the previous vertex that is visible, so that j is known to the robot and it needs to find k. The robot does this by counting all vertices "beyond" v_j and those "beyond" v_k . In order to understand the notion of vertices lying beyond some vertex v_b , consider the intersection x of the ray from v_i through v_b with the boundary of \mathcal{P} . The vertices between (either in ccw order or in clockwise order) x and v_b are said to lie beyond v_b . The total number of vertices beyond v_j and v_k (in ccw order and clockwise order, respectively) then simply needs to be added to j+1 in order to obtain k (cf. Fig. 11).

It remains to be seen how the robot situated at v counts the number of vertices beyond another vertex with local index b. The first step is moving to b. By looking back, the robot can identify v in its new view. Therefore it can decide which of the now visible vertices form a reflex angle with v and are thus behind the current vertex b when looking from v. All these vertices have to be counted as well as the number of vertices beyond them (which in turn are not visible to b). This is done recursively, so that at the end the robot sums up all vertices that are directly or indirectly behind b. The following listing shows the procedure for counting the vertices behind b in pseudocode.

```
function beyond(b,o) input: local index b, order o that specifies on which side of vision_b to count output: count of vertices beyond vision_b w.r.t. the current position of the robot 1. count \leftarrow 0 2. move to b 3. i \leftarrow look back 4. for each j \in [1, \ldots, |\text{view}| - 1] with (o = \mathbf{ccw} \land j < i) \lor (o = \mathbf{cw} \land j > i) do 5. if type(j, i) = reflex 6. count \leftarrow count + 1 + beyond(j, ccw) + beyond(j, cw) 7. move to i
```

In order to prove the correctness of our algorithm, we need to show that no vertex is counted twice when counting the vertices beyond v_j and beyond v_k . The two calls of beyond() for v_j and v_k consider distinct sets of vertices as the first considers those to the right of the line to v_j and the second considers those on the left of the line to v_k . As v_k by definition lies left of v_j , there is no overlap. We show that a single call to beyond() does not count vertices twice either; it is obvious that the recursive calls in line 6 consider distinct sets of vertices, as one considers only vertices on the left and the other

only on the right of view_j. The only possible overlap could be between two calls of the form beyond(x, **ccw**), beyond(y, **cw**) with x < y. Again, because by definition view_y lies to the right of view_x, there can be no overlap. The entire algorithm is at no point ambiguous, so that the solution found has to be unique. \Box

We can enable a robot with angle sensor to emulate the robot from Theorem 4 by giving it a *compass*. A compass provides the robot with a global reference direction. The angle sensor combined with a compass can measure the global direction to each vertex in sight.

Definition 7. Let $p = (0, \infty)$. Let v_r be the position of the robot and view' be the view of the robot, if p was a vertex of \mathcal{P} visible to v_r . A *compass* enables a robot to determine the index i for which $p = \text{view}_i'$. When combined with an angle sensor, a compass also provides the angles between the lines $\overline{v_r \text{view}_i'}$ and $\overline{v_r \text{view}_i'}$ in the ccw direction, for all indices j.

The next theorem follows immediately from Theorem 4.

Theorem 5. A robot with an angle sensor and a compass can uniquely reconstruct the visibility graph of any polygon $\mathcal P$ that does not have any three collinear vertices.

Proof. The angle sensor can obviously emulate an angle type sensor. It therefore suffices to show that the robot can imitate the capability of looking back and thus apply the strategy described in the proof of Theorem 4. Assume the robot moves from a vertex v to a

Note that the last two results do not rely on the knowledge of *n* and that in fact the corresponding robots are capable of inferring *n*.

5. Conclusion

We have studied the problem of reconstructing the visibility graph of a polygon \mathcal{P} using simple robots. In this context, we have discussed different configurations of sensors for simple robots. We have proven that the two configurations based on geometrical sensors enable the robot to infer the visibility graph of a polygon while purely combinatorial knowledge, in terms of the cvs of the polygon, does not suffice. In addition we have shown a property of symmetric polygons which makes combinatorial visibility even weaker in that case.

It is clear that a robot with one of the two geometrical sensor configurations is stronger than a robot equipped with the combinatorial sensor, as combinatorial visibilities can be derived from the visibility graph. The task of finding the weakest configuration that allows reconstructing the visibility graph remains unsolved.

Acknowledgement

This author wishes to acknowledge the support provided by the National Science Foundation under grants CNS-0626954 and CCF-0514738.

References

- [1] Y. Disser, M. Mihalák, P. Widmayer, A polygon is determined by its angles, Computational Geometry: Theory and Applications 44 (2011) 418–426.
- [2] G. Dudek, P. Freedman, S. Hadjres, Mapping in unknown graph-like worlds, Journal of Robotic Systems 13 (8) (1998) 539–559.
- [3] G. Dudek, M. Jenkins, E. Milios, D. Wilkes, Robotic exploration as graph construction, IEEE Transactions on Robotics and Automation 7 (6) (1991) 859–865.
- [4] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots, in: Proceedings of the 10th International Symposium on Algorithms and Computation, 1999, pp. 93–102.
- [5] A. Ganguli, J. Cortés, F. Bullo, Distributed deployment of asynchronous guards in art galleries, in: Proceedings of the American Control Conference, 2006, pp. 1416–1421.
- [6] S.K. Ghosh, Visibility Algorithms in the Plane, 1st edn, Cambridge University Press, 2007.
- [7] F. Hoffmann, C. Icking, R. Klein, K. Kriegel, The polygon exploration problem, SIAM Journal on Computing 31 (2) (2001) 577-600.
- [8] J.M. O'Kane, S. LaValle, Localization with limited sensing, IEEE Transactions on Robotics 23 (4) (2007) 704-716.
- [9] S. LaValle, Planning Algorithms, Cambridge University Press, 2006.
- [10] B. Oommen, S. Iyengar, N. Rao, R. Kayshap, Robot navigation in unknown terrains using learned visibility graphs. Part I: The Disjoint Convex Obstacle Case, IEEE Journal of Robotics and Automation RA-3(6) (1987) 672–681.
- [11] S. Suri, E. Vicari, P. Widmayer, Simple robots with minimal sensing: from local visibility to global geometry, International Journal of Robotics Research 27 (9) (2008) 1055–1067.
- [12] A. Yershova, B. Tovar, R. Ghrist, S. LaValle, Bitbots: simple robots solving complex tasks, in: Proceedings of the Twentieth National Conference on Artificial Intelligence, 2005, pp. 1336–1341.