
Tight Analysis of the Smartstart Algorithm for
Online Dial-a-Ride on the Line
Alexander Birx
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
birx@gsc.tu-darmstadt.de

Yann Disser
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

Abstract
The online Dial-a-Ride problem is a fundamental online problem in a metric space, where trans-
portation requests appear over time and may be served in any order by a single server with unit
speed. Restricted to the real line, online Dial-a-Ride captures natural problems like controlling a
personal elevator. Tight results in terms of competitive ratios are known for the general setting and
for online TSP on the line (where source and target of each request coincide). In contrast, online
Dial-a-Ride on the line has resisted tight analysis so far, even though it is a very natural online
problem.

We conduct a tight competitive analysis of the Smartstart algorithm that gave the best known
results for the general, metric case. In particular, our analysis yields a new upper bound of 2.94 for
open, non-preemptive online Dial-a-Ride on the line, which improves the previous bound of 3.41
[Krumke’00]. The best known lower bound remains 2.04 [SODA’17]. We also show that the known
upper bound of 2 [STACS’00] regarding Smartstart’s competitive ratio for closed, non-preemptive
online Dial-a-Ride is tight on the line.

2012 ACM Subject Classification Theory of computation → Online algorithms; Mathematics of
computing → Combinatorial optimization

Keywords and phrases dial-a-ride on the line, elevator problem, online algorithms, competitive
analysis, smartstart, competitive ratio

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.15

Related Version http://arxiv.org/abs/1901.04272

Funding This work was supported by the “Excellence Initiative” of the German Federal and State
Governments and the Graduate School CE at TU Darmstadt.

1 Introduction

Online optimization deals with settings where algorithmic decisions have to be made over
time without knowledge of the future. A typical introductory example is the problem of
controlling an elevator/conveyor system, where requests to transport passengers/goods arrive
over time and the elevator needs to decide online how to adapt its trajectory along the real
line. In terms of competitive analysis, the central question in this context is how much longer
our trajectory will be in the worst-case, relative to an optimum offline solution that knows
all requests ahead of time, i.e., we ask for solutions with good competitive ratio.

While the elevator problem is a natural online problem, even simplified versions of it have
long resisted tight analysis. Online TSP on the line is such a simplification, where a single
server on the real line needs to serve requests that appear over time at arbitrary positions by
visiting their location, i.e., requests do not need to be transported. We distinguish the closed
and open variants of this problem, depending on whether the server needs to eventually
return to the origin or not. Determining the exact competitive ratios for either variant

© Alexander Birx and Yann Disser;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:birx@gsc.tu-darmstadt.de
mailto:disser@mathematik.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.STACS.2019.15
http://arxiv.org/abs/1901.04272
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Tight Analysis of the Smartstart Algorithm

had been an open problem for more than two decades [3, 5, 12, 13, 15, 16], when Bjelde et
al. [4] were finally able to conduct a tight analysis that established competitive ratios of
roughly 1.64 for the closed case and 2.04 for the open case.

The next step towards formally capturing the intuitive elevator problem is to allow
transportation requests that appear over time; and to fix a capacity c ∈ N ∪ {∞} of the
server that limits the number of transportation requests that can be served simultaneously.
The resulting online Dial-a-Ride problem on the line has received considerable attention in
the past [1, 4, 8, 13, 14, 16], but still resists tight analysis. The best known (non-preemptive)
bounds put the competitive ratio in the range [1.75, 2] for the closed variant (see [4, 1]). For
the open variant the best known (non-preemptive) bounds put the competitiv ratio in the
range [2.04, 3] for c = 1 and in the range [2.04, 3.41] for c > 1 (see [4, 13]). In this paper, we
show an improved upper bound of (roughly) 2.94 for open online Dial-a-Ride on the line
for arbitrary capacity c ∈ N ∪ {∞}.

A straight-forward algorithm for online Dial-a-Ride on the line is the algorithm
Ignore [1]: Whenever the server is idle and unserved requests Rt are present at the
current time t, compute an optimum schedule to serve these requests from the current
location, and follow this schedule while ignoring newly incoming requests. Ignore has
a competitive ratio of exactly 4.† This competitive ratio can be improved by potentially
waiting before starting the optimum schedule, in order to protect against requests that come
in right after we decide to start. Ascheuer et al. [1] proposed the algorithm Smartstart
(see Algorithm 1) that delays the execution of the optimum schedule until a certain time t
relative to the length L(t, p, Rt) of this schedule (formal definitions below).

Smartstart is parameterized by a factor Θ > 1 that scales this waiting period. In
this paper, we conduct a tight analysis of the best competitive ratio of Smartstart for
open/closed online Dial-a-Ride on the line, over all parameter values Θ > 1.

Results and techniques. The Smartstart algorithm is of particular importance for online
Dial-a-Ride, since, on arbirary metric spaces, it achieves the best possible competitive
ratio of 2 for the closed variant [1, 3], and the best known competitive ratio of 2 +

√
2 ≈ 3.41

for the open variant [13]. We provide a conclusive treatment of this algorithm for online
Dial-a-Ride on the line in terms of competitive analysis, both for the open and the closed
variant.

Regarding the open case, we show that Smartstart attains a competitive ratio of
ρ∗ ≈ 2.94 for parameter value Θ∗ ≈ 2.05 (Section 3). To show this, we derive two separate
upper bounds depending on Θ (cf. Figure 1): an upper bound f1(Θ) for the case that
Smartstart has a waiting period before starting its last schedule (Proposition 3.3), and
an upper bound f2(Θ) for the case that Smartstart begins its final schedule immediately
(Proposition 3.4). The resulting general upper bound of max{f1(Θ), f2(Θ)} has its minimum
precisely at the intersection point (Θ∗, ρ∗) of f1 and f2.

On the other hand, we show that for Θ ∈ (2, 3) there are instances where Smartstart
waits before starting its final schedule and has competitive ratio at least f1(Θ) (Proposi-
tion 4.2). Similarly, we show that for Θ ∈ [2, 2.303] there are instances where Smartstart
does not wait before starting its final schedule and has competitive ratio at least f2(Θ)
(Proposition 4.3). Together, this implies that the general upper bound of max{f1(Θ), f2(Θ)}
is tight for Θ ∈ (2, 2.303], and thus for Θ = Θ∗ (cf. Figure 1).

† The full proof can be found at http://arxiv.org/abs/1901.04272.

http://arxiv.org/abs/1901.04272

A. Birx and Y. Disser 15:3

To complete our analysis of Smartstart, we give lower bound constructions for different
domains of Θ (g1 through g4 in Figure 1) that establish that Θ∗ is indeed the best parameter
choice for Smartstart in the worst-case (Lemma 4.4). The key ingredient to all our lower
bounds is a way to lure Smartstart away from the origin (Lemma 4.1).

1 2 3 4
2

3

4

f1 f2

g1

g2

g3

g4

Θ∗ ≈ 2.05

ρ∗ ≈ 2.94

Θ

ρ

Figure 1 Overview over our bounds for Smartstart. The functions f1 (green) / f2 (red) are
upper bounds for the cases where Smartstart waits / does not wait before starting the final
schedule, respectively. The upper bounds are drawn solid in the domains where they are tight for
their corresponding case. The functions g1 through g4 (blue) are general lower bounds; dashed
continuations indicate how far these bounds could be extended.

Finally, for the closed variant of the problem, we provide a lower bound of 2 on the best-
possible competitive ratio of Smartstart over all possible choices of the parameter Θ > 1
(Section 5). This tightly matches the known upper bound for general metric spaces [1].

Significance. The main contribution of this paper is a conclusive treatment of the algorithm
Smartstart for online Dial-a-Ride on the line in terms of competitive analysis. Addition-
ally, our analysis yields an improved upper bound of (roughly) 2.94 for non-preemptive, open
online Dial-a-Ride on the line. This is the first bound below 3 and narrows the gap for
the competitive ratio to [2.04, 2.94]. Our work is likely to serve as a starting point towards
devising better algorithms (preemptive or non-preemptive) that narrow the gaps for both
the open and closed setting by avoiding critical “mistakes” of Smartstart, as evidenced by
our lower bound constructions

Further related work. In this paper, we focus on the non-preemptive variant of online
Dial-a-Ride on the line, where requests cannot be unloaded on the way in reaction to
the arrival of new requests. For the case where preemption is allowed, the best known
bounds for the closed version are [1.64, 2] (see [3, 1]), which is slightly worse than the gap
of [1.75, 2] in the non-preemptive case. On the other hand, the best bounds for the open,
preemptive variant are [2.04, 2.41] (see [4]), which is better than the gap of [2.04, 2.94] in the
non-preemptive case. In particular, the preemptive and non-preemptive cases can currently
not be separated in terms of competitive ratios.

STACS 2019

15:4 Tight Analysis of the Smartstart Algorithm

A variant of the online Dial-a-Ride problem where the objective is to minimize the
maximal flow time, instead of the makespan, has been studied by Krumke et al. [14, 15].
They established that in many metric spaces no online algorithm can be competitive with
respect to this objective. Hauptmeier et al. [11] showed that a competitive algorithm is
possible if we restrict ourselves to instances with “reasonable” load, which roughly means
that requests that appear over a sufficiently large time period T can always be served in time
at most T .

Lipmann et al. [17] studied a natural variant of closed, online Dial-a-Ride where
the destinations of requests are only revealed upon collection by the server. For general
metric spaces and server capacity c, they showed a tight competitive ratio of 3 in the
preemptive setting, and lower/upper bounds of max{3.12, c} and 2c+ 2, respectively, in the
non-preemptive setting.

Yi and Tian [18] considered the online Dial-a-Ride problem with deadlines, with
the objective of serving the maximum number of requests. They provided bounds on the
competitive ratio depending on the diameter of the metric space. In [19] they further studied
this setting when the destination of requests are only revealed upon collection by the server.

The offline version of Dial-a-Ride on the line has been studied in various settings, for
an overview see [7]. For the closed, non-preemptive case without release times, Gilmore and
Gomory [9] and Atallah and Kosaraju [2] gave a polynomial time algorithm for a server with
unit capacity c = 1, and Guan [10] showed that the problem is hard for c = 2. Bjelde et
al. [4] extended this result to any finite c ≥ 2 and both the open and closed case. They
further showed that with release times the problem is already hard for finite c ≥ 1. On the
other hand, the complexity of the case c = ∞ has not yet been established. The closed,
preemptive case without release times was shown to be polynomial time solvable for c = 1 by
Atallah and Kosaraju [2], and for c ≥ 2 by Guan [10].

For the closed, non-preemptive case with finite capacity, Krumke [13] provided a 3-approxi-
mation algorithm. Finally, Charikar and Raghavachari [6] gave approximation algorithms
for the closed case without release times, both preemptive and non-preemptive, on general
metric spaces. They also claimed to have a 2-approximation for the line, but this result
appears to be incorrect (personal communication).

2 Preliminaries

Formally, an instance of Dial-a-Ride on the line is given by a set of requests denoted by
σ = {(a1, b1; r1), (a2, b2; r2), . . . , (an, bn; rn)} that need to be served by a single server with
capacity c ∈ N ∪ {∞}, travelling with unit speed and starting at the origin on the real
line. Request σi appears at time ri > 0 at position ai ∈ R of the real line and needs to be
transported to position bi ∈ R. The objective of the Dial-a-Ride problem on the line is to
find a shortest schedule for the server to transport all requests without carrying more than c
requests at once, where the length of a schedule is the length of the resulting trajectory. In
the closed version of the problem, the server eventually needs to return to the origin, in the
open version it does not. In the online Dial-a-Ride problem on the line, each request σi is
revealed only at time ri, and n is only revealed implicitly by the fact that no more requests
appear. In contrast, in the offline problem, all requests are known ahead of time (but release
times still need to be respected).

We define L(t, p, R) to be the length of a shortest schedule that starts at position p at
time t and serves all requests in R ⊆ σ after they appeared (i.e., the schedule must respect

A. Birx and Y. Disser 15:5

release times). Observe that, for all 0 ≤ t ≤ t′, p, p′ ∈ R, and R ⊆ σ, we have

L(t, p, R) ≥ L(t′, p, R), (1)
L(t, p, R) ≤ |p− p′|+ L(t, p′, R). (2)

By x− := min{0,mini=1,...,n{ai},mini=1,...,n{bi}} we denote the leftmost and by x+ :=
max{0,maxi=1,...,n{ai},maxi=1,...,n{bi}} the rightmost position that needs to be visited by
the server. Here and throughout, we orient the real line from left to right. Obviously, there
is an optimum trajectory that only visits points in [x−, x+], and we let Opt be such a
trajectory and Opt(σ) := L(0, 0, σ) be its length.

Algorithm 1: Smartstart.
p1 ← 0
for j = 1, 2, . . . do

while t ≤ L(t, pj , Rt)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

For the description of online algorithms, we denote by t the current time and by Rt the
set of requests that have appeared until time t but have not been served yet. The algorithm
Smartstart is given in Algorithm 1. Essentially, Smartstart waits before starting an
optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, p, Rt′)

Θ− 1

}
, (3)

where p is the current position of the server and Θ > 1 is a parameter of the algorithm
that scales the waiting time. Importantly, Smartstart ignores incoming requests while
executing a schedule. Whenever we need to distinguish the behavior of Smartstart for
different values of Θ > 1, we write SmartstartΘ to make the choice of Θ explicit. The
length of Smartstart’s trajectory is denoted by Smartstart(σ). Note that the schedules
used by Smartstart are NP-hard to compute for 1 < c <∞, see [4].

We let N ∈ N be the number of schedules needed by Smartstart to serve σ. The j-th
schedule is denoted by Sj , its starting time by tj , its starting point by pj , its ending point
by pj+1 (cf. Algorithm 1), and the set of requests served in Sj by σSj

. For convenience, we
set t0 = p0 = 0. Finally, we denote by ySj

− the leftmost and by ySj

+ the rightmost position
that occurs in the requests σSj

. Note that ySj

− and ySj

+ need not lie on different sides of the
origin, in contrast to x−/+.

3 Upper Bound for the Open Version

In this section, we give an upper bound on the completion time

Smartstart(σ) = tN + L(tN , pN , σSN
) (4)

of Smartstart, relative to Opt(σ). To do this, we consider two cases, depending on
whether or not Smartstart waits after finishing schedule SN−1 and before starting the final

STACS 2019

15:6 Tight Analysis of the Smartstart Algorithm

schedule SN . If Smartstart waits, the starting time of schedule SN is given by

tN = 1
Θ− 1L(tN , pN , σSN

), (5)

otherwise, we have

tN = tN−1 + L(tN−1, pN−1, σSN−1). (6)

We start by giving a lower bound on the starting time of a schedule.†

I Lemma 3.1. Algorithm Smartstart does not start schedule Sj earlier than time |pj+1|
Θ ,

i.e., we have tj ≥ |pj+1|
Θ .

Proof sketch. Since Smartstart at least has to move from pj to pj+1, we have

L(tj , pj , σSj) ≥ |pj − pj+1|.

Note however that Smartstart needs at least time |pj | to reach pj . Therefore, we have

tj ≥ min{t ≥ |pj | : t+ |pj − pj+1| ≤ Θt}

= min
{
t ≥ |pj | :

|pj − pj+1|
Θ− 1 ≤ t

}
= max

{
|pj |,

|pj − pj+1|
Θ− 1

}
.

The claims now follows by showing max
{
|pj |, |pj−pj+1|

Θ−1

}
≥ |pj+1|

Θ . J

The following bound on the length of Smartstart’s schedules is an essential ingredient
in our upper bounds.

I Lemma 3.2. For every schedule Sj of Smartstart, we have

L(tj , pj , σSj) ≤
(

1 + Θ
Θ + 2

)
Opt(σ).

Proof. First, we notice that by the triangle inequality we have

L(tj , pj , σSj) ≤ |pj |+ L(tj , 0, σSj) ≤ Opt(σ) + |pj |. (7)

Now, let σOpt
Sj

be the first request of σSj
that is picked up by Opt and let aOpt

j be its starting
point and rOpt

j be its release time. We have

L(tj , pj , σSj
) ≤ |aOpt

j − pj |+ L(tj , aOpt
j , σSj

), (8)

again by the triangle inequality. Since Opt serves all requests of σSj
starting at position

aOpt
j no earlier than time rOpt

j , we have

L(tj , aOpt
j , σSj)

rOpt
j ≤tj
≤ L(rOpt

j , aOpt
j , σSj) ≤ Opt(σ)− rOpt

j , (9)

which yields

L(tj , pj , σSj)
(8)
≤ |aOpt

j − pj |+ L(tj , aOpt
j , σSj)

(9)
≤ Opt(σ) + |aOpt

j − pj | − rOpt
j

tj−1 < rOpt
j

< Opt(σ) + |aOpt
j − pj | − tj−1. (10)

A. Birx and Y. Disser 15:7

Since pj is the destination of a request, Opt needs to visit it. In the case that Opt visits pj
before collecting σOpt

Sj
, Opt still has to collect and serve every request of σSj

after it has
visited position pj the first time, which directly implies(

1 + Θ
Θ + 2

)
Opt(σ) > Opt(σ) ≥ L(|pj |, pj , σSj

)
|pj |≤tj
≥ L(tj , pj , σSj

).

On the other hand, if Opt collects σOpt
Sj

before visiting the position pj , we have

tj−1 + |aOpt
j − pj |

tj−1<r
Opt
j

< rOpt
j + |aOpt

j − pj | ≤ Opt(σ), (11)

since Opt cannot collect σOpt
Sj

before time rOpt
j and then still has to visit position pj . Thus,

we have

L(tj , pj , σSj)
(10)
< Opt(σ) + |aOpt

j − pj | − tj−1

(11)
≤ 2Opt(σ)− 2tj−1

Lem 3.1
≤ 2Opt(σ)− 2 |pj |Θ . (12)

This implies

L(tj , pj , σSj
)

(7),(12)
≤ min

{
Opt(σ) + |pj |, 2Opt(σ)− 2

Θ |pj |
}
≤
(

1 + Θ
Θ + 2

)
Opt(σ),

since the minimum above is largest for |pj | = Θ
Θ+2Opt(σ). J

The following proposition uses Lemma 3.2 to provide an upper bound for the competitive
ratio of Smartstart, in the case, where Smartstart does have a waiting period before
starting the final schedule.

I Proposition 3.3. In the case that Smartstart waits before executing SN , we have

Smartstart(σ)
Opt(σ) ≤ f1(Θ) := 2Θ2 + 2Θ

Θ2 + Θ− 2 .

Proof. Assume Smartstart waits before starting the final schedule. Then we have

tN + L(tN , pN , σSN
) = ΘtN (13)

by definition of Smartstart. This implies

Smartstart(σ) (4)= tN + L(tN , pN , σSN
) (13)= ΘtN

(5)= Θ
Θ− 1L(tN , pN , σSN

).

Lemma 3.2 thus yields the claimed bound:

Smartstart(σ) = Θ
Θ− 1L(tN , pN , σSN

)

Lem 3.2
≤ Θ

Θ− 1

(
1 + Θ

Θ + 2

)
Opt(σ)

= 2Θ2 + 2Θ
Θ2 + Θ− 2Opt(σ). J

STACS 2019

15:8 Tight Analysis of the Smartstart Algorithm

It remains to examine the case, where the algorithm Smartstart has no waiting period
before starting the final schedule.†

I Proposition 3.4. If Smartstart does not wait before executing SN , we have

Smartstart(σ)
Opt(σ) ≤ f2(Θ) :=

(
Θ + 1− Θ− 1

3Θ + 3

)
.

Proof sketch. If Smartstart starts SN without waiting, its completion time is given by

Smartstart(σ) (6)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tN , pN , σSN
). (14)

Let σOpt
SN

be the first request of σSN
that is picked up by Opt and let aOpt

N be its starting
point and rOpt

N be its release time. Then we have

Opt(σ) ≥ rOpt
N + L(rOpt

N , aOpt
N , σSN

). (15)

Using the triangle inequality as well as the definition of Smartstart, we obtain

Smartstart(σ) (14)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tOpt
N , pN , σSN

)
(3)
≤ ΘtN−1 + L(tOpt

N , pN , σSN
)

(1)
≤ ΘtN−1 + |pN − aOpt

N |+ L(tOpt
N , aOpt

N , σSN
)

(15)
≤ ΘtN−1 + |pN − aOpt

N |+ Opt(σ)− rOpt
N

rOpt
N > tN−1

< (Θ− 1)rOpt
N + |pN − aOpt

N |+ Opt(σ).

Clearly, Opt(σ) ≥ rOpt
N since σOpt

SN
cannot be served before this time, and Opt(σ) ≥

|pN − aOpt
N | since pN must be the source or destination of a request (or the origin if N = 1)

and must thus be visited by Opt. It follows from the above that Smartstart(σ) ≤
(Θ + 1)Opt(σ). To get a better bound, we use that not both inequalities for Opt(σ) can
be tight simultaneously: From Opt(σ) = rOpt

N it follows that Opt finishes at position aOpt
N .

Assume that Opt(σ) = |pN − aOpt
N | holds as well. Since Opt finishes at position aOpt

N , this
is only possible if pN = 0 and Opt(σ) = |aOpt

N |. Without loss of generality, there is no
request (0, 0; 0), hence Smartstart always waits before starting its first schedule, and thus
a schedule SN−1 must exist. Because of pN = 0, this schedule must end in the origin, which
implies that there is some request that needs to be delivered to the origin after time 0. But
this contradicts Opt(σ) = |aOpt

N |, since Opt needs to deliver this request, too. The bound
of the proposition is now obtained by carefully balancing rOpt

N and |pN − aOpt
N |. J

We combine the results of Proposition 3.3 and Proposition 3.4 to obtain the main result
of this section.

I Theorem 3.5. Let Θ∗ be the only positive, real solution of f1(Θ) = f2(Θ), i.e.,

Θ∗ + 1− Θ∗ − 1
3Θ∗ + 3 = 2Θ∗2 + 2Θ∗

Θ∗2 + Θ∗ − 2 .

Then, SmartstartΘ∗ is ρ∗-competitive with ρ∗ := f1(Θ∗) = f2(Θ∗) ≈ 2.93768.

A. Birx and Y. Disser 15:9

Proof. For the case, where Smartstart does wait before starting the final schedule, we
have established the upper bound

Smartstart(σ)
Opt(σ) ≤ 2Θ2 + 2Θ

Θ2 + Θ− 2 = f1(Θ)

in Proposition 3.3 and for the case, where Smartstart starts the final schedule immediately
after the second to final one, we have established the upper bound

Smartstart(σ)
Opt(σ) ≤ Θ + 1− Θ− 1

3Θ + 3 = f2(Θ)

in Proposition 3.4. Therefore the parameter for Smartstart with the smallest upper
bound is

Θ∗ = argmin
Θ>1

{max{f1(Θ), f2(Θ)}} .

We note that f1 is strictly decreasing for Θ > 1 and that f2 is strictly increasing for Θ > 1.
Therefore the minimum above lies at the intersection point of f1 and f2 that is larger than 1,
i.e., Θ∗ is the only positive, real solution of

Θ + 1− Θ− 1
3Θ + 3 = 2Θ2 + 2Θ

Θ2 + Θ− 2 .

The resulting upper bound for the competitive ratio is

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.93768. J

4 Lower Bound for the Open Version

In this section, we explicitly construct instances that demonstrate that the upper bounds
given in the previous section are tight for certain ranges of Θ > 1, in particular for Θ = Θ∗ (as
in Theorem 3.5). Further, we show that choices of Θ > 1 different from Θ∗ yield competitive
ratios worse than ρ∗ ≈ 2.94. Together, this implies that ρ∗ is exactly the best possible
competitive ratio for Smartstart.

All our lower bounds rely on the following lemma that gives a way to lure Smartstart
away from the origin, with almost no time overhead. More specifically, the lemma provides a
way to make Smartstart move to any position p > 0 within time p + µ, where µ > 0 is
arbitrarily small.

I Lemma 4.1. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed, p > 0 be
any position on the real line and µ > 0 be any positive number. Furthermore, let δ > 0 be
such that p

δΘ = n ∈ N and δ < (Θ− 1)µ. Algorithm Smartstart finishes serving the set of
requests σ = {σ1, . . . , σn+1} with

σ1 = (δ, δ; 0),

σi =
(
iδ, iδ; 1

Θ− 1δ + (i− 1)δ
)

for i ∈ {2, . . . , n}

σn+1 = (p, p;µ+ nδ)

and reaches the position p at time p+ µ, provided that no additional requests appear until
time p

Θ + µ.

STACS 2019

15:10 Tight Analysis of the Smartstart Algorithm

Proof. We show via induction that every request σi with i ∈ {1, . . . , n} is served in a separate
schedule Si with starting position pi = (i− 1)δ and starting time

ti = 1
Θ− 1δ + (i− 1)δ.

This is clear for i = 1: By definition, Smartstart starts from p1 = 0. The schedule S1 to
serve σ1 is started at time

t1 = min
{
t ≥ 0

∣∣∣∣ L(t, 0, {σ1})
Θ− 1 ≤ t

}
= 1

Θ− 1δ,

and reaches position δ at time 1
Θ−1δ + δ = Θ

Θ−1δ. Note that the release time of every
request σi is larger than t1, ensuring that S1 indeed only serves σ1.

We assume the claim is true for some k ∈ {1, . . . , n−1}. Consider i = k+1. By reduction,
the server finishes schedule Sk at position pk+1 = kδ at time 1

Θ−1δ + kδ. Therefore, we have

tk+1 ≥
1

Θ− 1δ + kδ.

On the other hand, we have

L
(

δ
Θ−1 + kδ, kδ, {σk+1}

)
Θ− 1 = δ

Θ− 1 <
1

Θ− 1δ + kδ.

Since there are no other unserved requests at time 1
Θ−1δ + kδ, the schedule Sk+1 is started

at time tk+1 = 1
Θ−1δ + kδ and only serves σk+1 as claimed. It remains to examine the final

request σn+1. The above shows that in the schedule Sn is finished at time

tn + L(tn, pn, {σn}) = 1
Θ− 1δ + (n− 1)δ + δ = 1

Θ− 1δ + nδ < µ+ nδ

at position nδ = p
Θ , i.e., before the request σn+1 is released at time µ+ nδ. On the other

hand, we have

L
(
µ+ nδ, pΘ , {σn+1}

)
Θ− 1 =

Θ−1
Θ p

Θ− 1 = p

Θ = nδ < µ+ nδ.

Therefore the final schedule Sn+1 is started at time tn+1 = µ+ nδ = µ+ p
Θ , and we get

Smartstart((σi)i∈{1,...,n+1}) = tn+1 + L(tn+1, pn+1, {σn+1})

= µ+ p

Θ + Θ− 1
Θ p

= µ+ p.

Note that for every request the starting point is identical to the ending point. Thus, our
construction remains valid for every capacity c ∈ N ∪ {∞}. Furthermore, there is no
interference with requests that are released after time tn+1 = µ+ p

Θ . J

Equipped with this strategy to lure Smartstart away from the origin, we now move on
to establish lower bounds matching Propositions 3.3 and 3.4.†

I Proposition 4.2. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and
let 2 < Θ < 3. For every sufficiently small ε > 0, there is a set of requests σ such that
Smartstart waits before starting the final schedule and such that the inequality

Smartstart(σ)
Opt(σ) ≥ 2Θ2 + 2Θ

Θ2 + Θ− 2 − ε

holds, i.e., the upper bound established in Proposition 3.3 is tight for Θ ∈ (2, 3).

A. Birx and Y. Disser 15:11

Proof sketch. We start by luring Smartstart to position 1 via Lemma 4.1. This can be
done such that the schedule ending in 1 starts at time µ+ 1

Θ for some sufficiently small µ > 0
Immediately after the start of this schedule, we add a series of non-overlapping requests that
require the server to move to position − 1

Θ and afterwards to position 1. We can show that
Opt serves the resulting set of requests simply by moving to − 1

Θ and then straight to 1. On
the other hand, independent of the capacity, Smartstart needs to cross the space between
the origin and point 1 two more times. A quantitative analysis of this setting yields the
claimed bound. J

I Proposition 4.3. Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and let
2 ≤ Θ ≤ 1

2 (1 +
√

13). For every sufficiently small ε > 0 there is a set of requests σ such that
Smartstart immediately starts SN after SN−1 and such that

Smartstart(σ)
Opt(σ) ≥ Θ + 1− Θ− 1

3Θ + 3 − ε,

i.e., the upper bound established in Proposition 3.4 is tight for Θ ∈ [2, 1
2 (1+

√
13)] ≈ [2, 2.303].

Proof. Let ε > 0 with ε < 1
5Θ

3Θ2−Θ
3Θ+3 and ε′ = 3Θ+3

3Θ2−Θε. We apply Lemma 4.1 with p = 1
and µ = ε′

2 . For convenience, we start the enumeration of the schedules with the first schedule
after the application of Lemma 4.1. Algorithm Smartstart reaches position p1 = 1 at
time 1 + ε′

2 . Now let the requests

σ
(1)
1 =

(
2 + 1

Θ − ε
′, 2 + 1

Θ − ε
′; 1

Θ + ε′
)
,

σ
(2)
1 =

(
− 1

Θ ,− 1
Θ; 1

Θ + ε′
)

appear. Note that both requests are released after time 1
Θ + ε′

2 and, therefore, do not interfere
with the application of Lemma 4.1. If Smartstart serves σ(2)

1 before serving σ(1)
1 the time

it needs is at least∣∣∣∣1− (− 1
Θ

)∣∣∣∣+
∣∣∣∣(− 1

Θ

)
−
(

2 + 1
Θ − ε

′
)∣∣∣∣ = 1 + 1

Θ + 2 + 2
Θ − ε

′ = 3 + 3
Θ − ε

′.

The best schedule that serves σ(2)
1 after serving σ(1)

1 needs time∣∣∣∣1− (2 + 1
Θ − ε

′
)∣∣∣∣+ ∣∣∣∣(2 + 1

Θ − ε
′
)
−
(
− 1

Θ

)∣∣∣∣ = 1 + 1
Θ − ε

′+ 2 + 2
Θ − ε

′ = 3 + 3
Θ − 2ε′.

Thus, Smartstart serves σ(2)
1 after serving σ(1)

1 , and, for all t ≥ 1 + ε′

2 , we obtain

L
(
t, p1, {σ(1)

1 , σ
(2)
1 }

)
= L

(
t, 1, {σ(1)

1 , σ
(2)
1 }

)
= 3 + 3

Θ − 2ε′.

By assumption, we have Θ ≤ 1
2 (1 +

√
13) and ε < 1

5Θ
3Θ2−Θ
3Θ+3 , i.e., ε′ < 1

5Θ < 1, which implies

STACS 2019

15:12 Tight Analysis of the Smartstart Algorithm

that for the time 1 + ε′

2 , when Smartstart reaches position p1 = 1, the inequality

L
(

1 + ε′

2 , p1, {σ(1)
1 , σ

(2)
1 }

)
Θ− 1 =

3 + 3
Θ − 2ε′

Θ− 1

= 3− 2ε′

Θ− 1 + 3
Θ(Θ− 1)

1 < Θ ≤ 1
2 (1 +

√
13)

≥ 3− 2ε′
1
2 (
√

13− 1)
+ 3

1
4 (
√

13− 1)(1 +
√

13)

= 3− 2ε′
1
2 (
√

13− 1)
+ 1

1
2 (
√

13− 1) < 2
> 1 + ε′

2
holds. Thus, Smartstart has a waiting period and starts schedule S1 at time

t1 = min
{
t ≥ 1 + ε′

2

∣∣∣∣∣ L(t, p1, {σ(1)
1 , σ

(2)
1 })

Θ− 1 ≤ t

}

= min
{
t ≥ 1 + ε′

2

∣∣∣∣ 3 + 3
Θ − 2ε′

Θ− 1 ≤ t
}

=
3 + 3

Θ − 2ε′

Θ− 1

= 3Θ + 3
Θ(Θ− 1) −

2ε′

Θ− 1 .

Next, we let the final request

σ2 =
(

3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′,
3Θ + 3

Θ(Θ− 1) −
2
Θ − ε

′; 3Θ + 3
Θ(Θ− 1)

)
appear. Smartstart finishes schedule S1 at time

t1 + L(t1, p1, {σ(1)
1 , σ

(2)
1 }) = 3Θ + 3

Θ(Θ− 1) −
2ε′

Θ− 1 + 3 + 3
Θ − 2ε′ = 3Θ + 3

Θ− 1 −
2Θε′

Θ− 1

at position p2 = − 1
Θ . For all t ≥ 3Θ+3

Θ−1 −
2Θ

Θ−1ε
′, we obtain

L

(
t,− 1

Θ , {σ2}
)

= 3Θ + 3
Θ(Θ− 1) −

1
Θ − ε

′.

By assumption, we have 2 ≤ Θ ≤ 1
2 (1 +

√
13) < 3 and ε < 1

5Θ
3Θ2−Θ
3Θ+3 , i.e., ε′ < 1

5Θ , which
implies that, for the finishing time 3Θ+3

Θ−1 −
2Θε′
Θ−1 of schedule S1, the inequality

L
(

3Θ+3
Θ−1 −

2Θε′
Θ−1 ,−

1
Θ , {σ2}

)
Θ− 1 = 3Θ + 3

Θ(Θ− 1)2 −
1 + Θε′

Θ(Θ− 1)
Θ ≥ 2
<

3Θ + 3
Θ− 1 −

1 + Θε′

Θ(Θ− 1)
1 > 5Θε′
<

3Θ + 3
Θ− 1 −

6ε′

Θ− 1
Θ < 3
<

3Θ + 3
Θ− 1 −

2Θε′

Θ− 1 (16)

A. Birx and Y. Disser 15:13

holds. (Note that inequality (16) still holds for slightly smaller Θ if we let ε→ 0.) Because
of inequality (16), the final schedule S2 is started at time

t2 = 3Θ + 3
Θ− 1 −

2Θε′

Θ− 1

without waiting. To sum it up, we have

Smartstart(σ) = t2 + L(t2, p2, {σ2})

= 3Θ + 3
Θ− 1 −

2Θε′

Θ− 1 + 3Θ + 3
Θ(Θ− 1) −

1
Θ − ε

′

= 3Θ + 3
Θ− 1 + 3Θ + 3

Θ(Θ− 1) −
1
Θ −

3Θ− 1
Θ− 1 ε

′.

On the other hand, Opt goes from the origin straight to position − 1
Θ serving request σ(2)

1 at
time 1

Θ + ε′ (i.e., it has to wait for ε′ units of time after it reaches position − 1
Θ) and returns

to the origin at time 2
Θ + ε′. Let q > 0 be the position of a request that has occurred by the

application of Lemma 4.1 at the beginning of this proof. Then this request is released earlier
than time q + ε′

2 . Since Opt reaches position q not earlier than time 2
Θ + ε′ + q > q + ε′

2 ,
Opt can go straight from the origin to the right and can serve all remaining requests without
waiting. Note that the position 3Θ+3

Θ(Θ−1) −
2
Θ − ε

′ of σ2 is equal to or to right of the position
2 + 1

Θ − ε
′ of σ(2)

1 because of Θ ≤ 1
2 (1+

√
13). Thus, Opt finishes at position 3Θ+3

Θ(Θ−1)−
2
Θ−ε

′

and we have

Opt(σ) =
∣∣∣∣0− (− 1

Θ

)∣∣∣∣+ ε′ +
∣∣∣∣− 1

Θ −
(

3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′
)∣∣∣∣

= 1
Θ + ε′ + 1

Θ + 3Θ + 3
Θ(Θ− 1) −

2
Θ − ε

′

= 3Θ + 3
Θ(Θ− 1) .

Note that Opt can do this even if c = 1 since for all requests the starting point is equal to
the destination. Since we have ε′ = 3Θ+3

3Θ2−Θε, we finally obtain

Smartstart(σ)
Opt(σ) =

3Θ+3
Θ−1 + 3Θ+3

Θ(Θ−1) −
1
Θ −

3Θ−1
Θ−1 ε

′

3Θ+3
Θ(Θ−1)

= Θ + 1− Θ− 1
3Θ + 3 −

3Θ2 −Θ
3Θ + 3 ε′

= Θ + 1− Θ− 1
3Θ + 3 − ε,

as claimed. J

Recall that the optimal parameter Θ∗ established in Theorem 3.5 is the only positive,
real solution of the equation

Θ + 1− Θ− 1
3Θ + 3 = 2Θ2 + 2Θ

Θ2 + Θ− 2 ,

which is Θ∗ ≈ 2.0526. Therefore, according to Proposition 4.2 and Proposition 4.3 the
parameter Θ∗ lies in the ranges where the upper bounds of Propositions 3.3 and 3.4 are both
tight. It remains to make sure that for all Θ that lie outside of this range the competitive
ratio of SmartstartΘ is larger than ρ∗ ≈ 2.93768.†

STACS 2019

15:14 Tight Analysis of the Smartstart Algorithm

I Lemma 4.4. Let

I1 = (1, 2], I2 = (1
2 (1 +

√
13), 1 +

√
2], I3 = (1 +

√
2, 3), I4 = [3,∞)

be intervals. For every i ∈ {1, 2, 3, 4} there is a set of requests σ, such that, for all Θ ∈ Ii,

Smartstart(σ)
Opt(σ) > ρ∗ ≈ 2.93768.

Our main theorem now follows from Theorem 3.5 combined with Propositions 4.2 and 4.3,
as well as Lemma 4.4.

I Theorem 4.5. The competitive ratio of SmartstartΘ∗ is exactly

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.93768.

For every other Θ > 1 with Θ 6= Θ∗ the competitive ratio of SmartstartΘ is larger than ρ∗.

Proof. We have shown in Proposition 4.2 that the upper bound

Smartstart(σ)
Opt(σ) ≤ f1(Θ) = 2Θ2 + 2Θ

Θ2 + Θ− 2

established in Proposition 3.3 for the case, where Smartstart waits before starting the
final schedule, is tight for all Θ ∈ (2, 3). Furthermore, we have shown in Proposition 4.3 that
the upper bound

Smartstart(σ)
Opt(σ) ≤ f2(Θ) =

(
Θ + 1− Θ− 1

3Θ + 3

)
established in Proposition 3.4 for the case, where Smartstart does not wait before starting
the final schedule, is tight for all Θ ∈ (2, 1

2 (1 +
√

13)]. Since Θ∗ ≈ 2.0526 lies in those ranges,
the competitive ratio of SmartstartΘ∗ is indeed exactly ρ∗.

It remains to show that for every Θ > 1 with Θ 6= Θ∗ the competitive ratio is larger. First,
according to Lemma 4.4, the competitive ratio of Smartstart with parameter Θ ∈ (1, 2] or
Θ ∈ (1

2 (1 +
√

13),∞) is larger than ρ∗. By monotonicity of f1, every function value in (2,Θ∗)
is larger than f1(Θ∗) = ρ∗. Thus, the competitive ratio of Smartstart with parameter
Θ ∈ (2,Θ∗) is larger than ρ∗, since f1 is tight on (2,Θ∗) by Proposition 4.2. Similarly, by
monotonicity of f2, every function value in (Θ∗, 1

2 (1 +
√

13)] is larger than f2(Θ∗) = ρ∗.
Thus, the competitive ratio of Smartstart with parameter Θ ∈ (Θ∗, 1

2 (1 +
√

13)] is larger
than ρ∗, since f1 is tight on (Θ∗, 1

2 (1 +
√

13)] by Proposition 4.3. J

5 Lower Bound for the Closed Version

We provide a lower bound for Smartstart for closed online Dial-a-Ride on the line that
matches the upper bound given in [1] for arbitrary metric spaces. Note that in this setting,
by definition, every schedule of Smartstart is a closed walk that returns to the origin.

I Theorem 5.1. The competitive ratio of Smartstart for closed online Dial-a-Ride on
the line with Θ = 2 is exactly 2. For every other Θ > 1 with Θ 6= 2 the competitive ratio of
SmartstartΘ is larger than 2.

A. Birx and Y. Disser 15:15

Proof. We show that the competitive ratio of Smartstart2 is at least 2 and that the
competitive ratio of SmartstartΘ is larger than 2 for all Θ 6= 2. From the fact that
Smartstart is 2-competitive even for general metric spaces [1, Thm. 6], it follows that
Smartstart2 has competitive ratio exactly 2 on the line.

Let Θ ≤ 2 and consider the set of requests {σ1} with σ1 = (0.5, 0.5; 0). Obviously, Opt
can serve this request and return to the origin in time Opt({σ1}) = 1. Thus, for all t ≥ 0,
we have L(t, 0, {σ1}) = 1. On the other hand, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1

to start its only schedule and finishes at time Θ
Θ−1 . To sum it up, we have

Smartstart({σ1})
Opt({σ1})

= Θ
Θ− 1

with Θ
Θ−1 > 2 for all Θ < 2 and Θ

Θ−1 = 2 for Θ = 2. Now let 2 < Θ ≤ 3 and ε ∈
(0,min{1− 1

Θ−1 ,
Θ−2

2(Θ−1)}), and consider the set of requests {σ1, σ2} with

σ1 = (0.5, 0.5; 0) and σ2 =
(

1− 1
Θ− 1 − ε, 1−

1
Θ− 1 − ε;

1
Θ− 1 + ε

)
.

By assumption, we have Θ > 2 and ε < 1− 1
Θ−1 , which implies

0
ε<1− 1

Θ−1
< 1− 1

Θ− 1 − ε
Θ≤3
< 0.5,

i.e., the position of request σ2 lies between 0 and 0.5. If Opt moves to position 0.5 and then
returns to the origin, it is at position

a2 = 0.5−
∣∣∣∣(1

Θ− 1 + ε

)
︸ ︷︷ ︸

>0.5

−0.5
∣∣∣∣= 1− 1

Θ− 1 − ε

at time r2 = 1
Θ−1 + ε. Thus, Opt can serve σ2 on the way and we have Opt({σ1, σ2}) = 1.

For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Therefore, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1 .

before starting its first schedule. Since we have 1
Θ−1 <

1
Θ−1 + ε, Smartstart starts to serve

σ1 at time t1 and returns to the origin at time Θ
Θ−1 . For all t ≥ 0, we have

L(t, 0, {σ2}) = 2− 2
Θ− 1 − 2ε,

thus Smartstart does not start the second and final schedule before time 2− 2
Θ−1−2ε
Θ−1 . By

assumption, we have Θ > 2, which implies Θ
Θ−1 >

2− 2
Θ−1−2ε
Θ−1 . Thus, the second schedule is

started at time t2 = Θ
Θ−1 and finished at time

Smartstart({σ1, σ2}) = Θ
Θ− 1 + 2− 2

Θ− 1 − 2ε.

STACS 2019

15:16 Tight Analysis of the Smartstart Algorithm

To sum it up, we have

Smartstart({σ1, σ2})
Opt({σ1, σ2})

= Θ
Θ− 1 + 2− 2

Θ− 1 − 2ε

ε < Θ−2
2(Θ−1)
>

3Θ− 4
Θ− 1 − 2 Θ− 2

2(Θ− 1)
= 2.

Now let Θ > 3 and ε ∈ (0, 0.5− 1
Θ−1), and consider the set of requests {σ1, σ2} with

σ1 = (0.5, 0.5; 0) and σ2 =
(

0.5, 0.5; 1
Θ− 1 + ε

)
.

By assumption, we have ε < 0.5 − 1
Θ−1 , which implies 1

Θ−1 + ε < 0.5, i.e., σ2 is released
before position 0.5 is reachable. If Opt moves to position 0.5 and then returns to the origin,
it can serve both requests without additional waiting time and we have Opt({σ1, σ2}) = 1.
For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Therefore, Smartstart waits until time

t1 = L(t1, 0, {σ1})
Θ− 1 = 1

Θ− 1 .

before starting its first schedule. Since we have 1
Θ−1 <

1
Θ−1 + ε, Smartstart starts to serve

σ1 at time t1 and returns to the origin at time Θ
Θ−1 . For all t ≥ 0, we have

L(t, 0, {σ2}) = 1,

thus Smartstart does not start the second and final schedule before time 1
Θ−1 . By

assumption, we have Θ > 3, which implies Θ
Θ−1 >

1
Θ−1 . Thus, the second schedule is started

at time t2 = Θ
Θ−1 and finished at time

Smartstart({σ1, σ2}) = Θ
Θ− 1 + 1.

To sum it up, we have

Smartstart({σ1, σ2})
Opt({σ1, σ2})

= Θ
Θ− 1 + 1 > 2. J

References
1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:

Minimizing the Completion Time. In Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 639–650, 2000.

2 Mikhail J. Atallah and S. Rao Kosaraju. Efficient Solutions to Some Transportation Problems
with Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing, 17(5),
1988.

3 G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the On-Line
Travelling Salesman. Algorithmica, 29(4):560–581, 2001.

4 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proceedings of the 28th Annual Symposium on Discrete Algorithms (SODA),
pages 994–1005, 2017.

5 Michiel Blom, Sven O. Krumke, Willem E. de Paepe, and Leen Stougie. The Online TSP
Against Fair Adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

A. Birx and Y. Disser 15:17

6 Moses Charikar and Balaji Raghavachari. The Finite Capacity Dial-A-Ride Problem. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 458–467, 1998.

7 Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-
Aided Complexity Classification of Dial-a-Ride Problems. INFORMS Journal on Computing,
16(2):120–132, 2004.

8 Esteban Feuerstein and Leen Stougie. On-line Single-server Dial-a-ride Problems. Theoretical
Computer Science, 268(1):91–105, 2001.

9 Paul C. Gilmore and Ralph E. Gomory. Sequencing a One State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, 12(5):655–679, 1964.

10 D. J. Guan. Routing a Vehicle of Capacity Greater Than One. Discrete Applied Mathematics,
81(1-3):41–57, 1998.

11 Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The Online Dial-a-Ride Problem
Under Reasonable Load. In Proceedings of the 4th Italian Conference on Algorithms and
Complexity (CIAC), pages 125–136, 2000.

12 Patrick Jaillet and Michael R. Wagner. Generalized Online Routing: New Competitive Ratios,
Resource Augmentation, and Asymptotic Analyses. Operations Research, 56(3):745–757, 2008.

13 Sven O. Krumke. Online Optimization Competitive Analysis and Beyond, 2001. Habilitation
thesis.

14 Sven O. Krumke, Willem E. de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online
Dial-a-ride Problem. In Proceedings of the Third International Conference on Approximation
and Online Algorithms (WAOA), pages 258–269, 2006.

15 Sven O. Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem
de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Prob-
lem. In Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 200–214, 2002.

16 Maarten Lipmann. On-Line Routing. PhD thesis, Technical University Eindhoven, 2003.
17 Maarten Lipmann, Xiwen Lu, Willem E. de Paepe, Rene A. Sitters, and Leen Stougie. On-Line

Dial-a-Ride Problems Under a Restricted Information Model. Algorithmica, 40(4):319–329,
2004.

18 Fanglei Yi and Lei Tian. On the Online Dial-a-ride Problem with Time-windows. In Proceedings
of the 1st International Conference on Algorithmic Applications in Management (AAIM),
pages 85–94, 2005.

19 Fanglei Yi, Yinfeng Xu, and Chunlin Xin. Online Dial-a-ride Problem with Time-windows
Under a Restricted Information Model. In Proceedings of the 2nd International Conference on
Algorithmic Aspects in Information and Management (AAIM), pages 22–31, 2006.

STACS 2019

	Introduction
	Preliminaries
	Upper Bound for the Open Version
	Lower Bound for the Open Version
	Lower Bound for the Closed Version

