
Improved Bounds for Open Online Dial-a-Ride on
the Line
Alexander Birx
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
birx@gsc.tu-darmstadt.de

Yann Disser
Institute of Mathematics, TU Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

Kevin Schewior
Institut für Informatik, Technische Universität München, Garching, Germany
kschewior@gmail.com

Abstract
We consider the open, non-preemptive online Dial-a-Ride problem on the real line, where trans-
portation requests appear over time and need to be served by a single server. We give a lower
bound of 2.0585 on the competitive ratio, which is the first bound that strictly separates online
Dial-a-Ride on the line from online TSP on the line in terms of competitive analysis, and is the
best currently known lower bound even for general metric spaces. On the other hand, we present an
algorithm that improves the best known upper bound from 2.9377 to 2.6662. The analysis of our
algorithm is tight.

2012 ACM Subject Classification Theory of computation → Online algorithms; Mathematics of
computing → Combinatorial optimization

Keywords and phrases dial-a-ride on the line, elevator problem, online algorithms, competitive
analysis, smartstart, competitive ratio

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.21

Category APPROX

Related Version A full version of the paper is available at http://arxiv.org/abs/1907.02858.

Funding Alexander Birx: This work was supported by the “Excellence Initiative” of the German
Federal and State Governments and the Graduate School CE at TU Darmstadt.
Yann Disser : This work was supported by the “Excellence Initiative” of the German Federal and
State Governments and the Graduate School CE at TU Darmstadt.
Kevin Schewior : Supported by the DAAD within the PRIME program using funds of BMBF and
the EU Marie Curie Actions.

1 Introduction

We consider the online Dial-a-Ride problem on the line, where transportation requests
appear over time and need to be transported to their respective destinations by a single
server. More precisely, each request is of the form σi = (ai, bi; ri) and appears in position
ai ∈ R along the real line at time ri ≥ 0 and needs to be transported to position bi ∈ R.
The server starts at the origin, can move at unit speed, and has a capacity c ∈ N∪ {∞} that
bounds the number of requests it can carry simultaneously. The objective is to minimize the
completion time, i.e., the time until all requests have been served. In this paper, we focus
on the non-preemptive and open setting, where the former means that requests can only be
unloaded at their destinations, and the latter means that we do not require the server to
return to the origin after serving all requests.

© Alexander Birx, Yann Disser, and Kevin Schewior;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 21; pp. 21:1–21:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:birx@gsc.tu-darmstadt.de
mailto:disser@mathematik.tu-darmstadt.de
mailto:kschewior@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21
http://arxiv.org/abs/1907.02858
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Improved Bounds for Open Online Dial-a-Ride on the Line

We aim to bound the competitive ratio of the problem, i.e., the smallest ratio any online
algorithm can guarantee between the completion time of its solution compared to an (offline)
optimum solution that knows all requests ahead of time. To date, the best known lower
bound of 2.0346 on this ratio was shown by Bjelde et al. [5], already for online TSP, where
ai = bi for all requests (i.e., requests only need to be visited). The best known upper bound
of 2.9377 was achieved by the Smartstart algorithm [4].

Our results. Our first result is an improved lower bound for online Dial-a-Ride on the
line. Importantly, since the bound of roughly 2.0346 was shown to be tight for online TSP [5],
our new bound is the first time that Dial-a-Ride on the line can be strictly separated from
online TSP in terms of competitive analysis. In addition, our bound is the currently best
known lower bound even for general metric spaces. Specifically, we show the following.

I Theorem 1.1. Let ρ ≈ 2.0585 be the second largest root of the polynomial 4ρ3−26ρ2+39ρ−5.
There is no (ρ− ε)-competitive algorithm for open, non-preemptive (c <∞) online Dial-a-
Ride on the line for any ε > 0.

Our construction is a non-trivial variation of the construction achieving roughly 2.0346 for
online TSP [5]. This construction is comprised of an initial request, a first stage consisting in
turn of different iterations, and a second stage. We show that, by using a proper transportation
requests as initial requests, we can adapt a single iteration of the first stage as well as the
second stage to achieve the bound of roughly 2.0585 in the Dial-a-Ride setting.

Our second result is an improved algorithm SmarterStart for online Dial-a-Ride on
the line. This algorithm improves the waiting strategy of the Smartstart algorithm, which
was identified as a weakness in [4]. We show that this modification improves the competitive
ratio of the algorithm and give a tight analysis. Specifically, we show the following.

I Theorem 1.2. The competitive ratio of SmarterStart is (roughly) 2.6662.

The general idea of SmarterStart is to improve the tradeoff between the case when the
algorithm waits before starting its final schedule and the case when it starts the final schedule
immediately. Our modification of Smartstart significantly improves the performance in
the former case, while only moderately degrading the performance in the latter case. Overall,
this results in an improved worst-case performance.

Related Work. The online Dial-a-Ride problem has received considerable attention in the
past (e.g. [1, 4, 5, 6, 9, 13]). Table 1 gives an overview of the currently best known bounds
on the line for open online Dial-a-Ride and its special case open online TSP.

The following results are known for closed online Dial-a-Ride: For general metric
spaces, the competitive ratio is exactly 2, both for online Dial-a-Ride as well as online
TSP [1, 3, 9]. On the line, a better upper bound is known only for online TSP, where the
competitive ratio is exactly (9 +

√
17)/8 ≈ 1.6404 [3, 5]. The best known lower bound for

closed, non-preemptive Dial-a-Ride on the line is 1.75 [5].
When the objective is to minimize the maximum flow time, on many metric spaces

no online algorithm can be competitive [15, 16]. Hauptmeier et al. [12] showed that a
competitive algorithm is possible if we restrict ourselves to instances with “reasonable” load.
Yi and Tian [18] considered online Dial-a-Ride with deadlines, where the objective is to
maximize the number of requests that are served in time. Other interesting variants of online
Dial-a-Ride where destinations of requests are only revealed upon their collection were
studied by Lipmann et al. [17] as well as Yi and Tian [19].

A. Birx, Y. Disser, and K. Schewior 21:3

Table 1 Overview of the best known bounds for online Dial-a-Ride on the line (top), and online
Dial-a-Ride on general metric spaces (bottom). Results are split into the non-preemptive case
(with c <∞), the preemptive case, and the TSP-case, where source and destination of each request
coincide. Bold results are original, all other results follow immediately.

open closed
lower bound upper bound lower bound upper bound

lin
e

non-preemptive 2.0585 (Thm 1.1) 2.6662 (Thm 1.2) 1.75 [5] 2
preemptive 2.04 2.41 [5] 1.64 2

TSP 2.04 [5] 2.04 [5] 1.64 [3] 1.64 [5]

ge
ne

ra
l non-preemptive 2.0585 (Thm 1.1) 3.41 [14] 2 2 [1, 9]

preemptive 2.04 3.41 2 2
TSP 2.04 2.5 [3] 2 [3] 2 [3]

For an overview of results for the offline version of Dial-a-Ride on the line, see [8].
Without release times, Gilmore and Gomory [10] and Atallah and Kosaraju [2] gave a polyno-
mial time algorithm for closed, non-preemptive Dial-a-Ride on the line with capacity c = 1.
Guan [11] showed that the closed, non-preemptive problem is hard for c = 2, and Bjelde
et al. [5] extended this result for any finite capacity c ≥ 2 in both the open and the closed
variant. Bjelde et al. [5] also showed that the problem with release times is already hard
for finite c ≥ 1 in both variants, and Krumke [14] gave a 3-approximation algorithm for the
closed variant. The complexity for the case c = ∞ remains open. For closed, preemptive
Dial-a-Ride on the line without release times, Atallah and Kosaraju [2] gave a polynomial
time algorithm for c = 1 and Guan [11] for c ≥ 2. Charikar and Raghavachari [7] presented
approximation algorithms for the closed case without release times on general metric spaces.

2 General Lower Bound

In this section, we prove Theorem 1.1. Let c <∞ and Alg be a deterministic online algorithm
for open online Dial-a-Ride. Let ρ ≈ 2.0585, be the second largest root of the polynomial
4ρ3 − 26ρ2 + 39ρ− 5. We describe a request sequence σρ such that Alg(σρ) ≥ ρOpt(σρ).

We first give a high-level description of our construction disregarding many technical
details. Our construction is based on that in [5] for the TSP version of the problem. That
construction consists of two stages: After an initial request (1, 1; 1) (assuming w.l.o.g. Alg’s
position at time 1 is at most 0), the first stage starts. This stage consists of a loop, which
ends as soon as two so-called critical requests are established. The second stage consists of
augmenting the critical requests by suitable additional ones to show the desired competitive
ratio. A single iteration of the loop only yields a lower bound of roughly 2.0298, but as the
number of iterations approaches infinity one can show the tight bound of roughly 2.0346
in the limit.

In the Dial-a-Ride setting, we show a lower bound of roughly 2.0585 using the same
general structure but only a single iteration. Our additional leeway stems from replacing the
initial request (1, 1; 1) with c initial requests of the form (1, δ; 1) where δ > 1: At the time
when an initial request is loaded, we show that w.l.o.g. all c requests are loaded and then
proceed as we did when (1, 1; 1) was served. In the new situation, the algorithm has to first
deliver the c initial requests to be able to serve additional requests. For the optimum, the
two situations however do not differ, because in the new situation there will be an additional

APPROX/RANDOM 2019

21:4 Improved Bounds for Open Online Dial-a-Ride on the Line

request to the right of δ later anyway. Interestingly, this leeway turns out to be sufficient not
only to create critical requests (w.r.t. a slightly varied notion of criticality) for a competitive
ratio of larger than 2.0298 but even strictly larger than 2.0346. The second stage has to
be slightly adapted to match the new notion of criticality. It remains unclear how to use
multiple iterations in our setting.

We start by making observations that will simplify the exposition. Consider a situation
in which the server is fully loaded. First note that it is essentially irrelevant whether we
assume that the server, without delivering any of the loaded requests, can still serve requests
(ai, bi; ti) for which ai = bi: If it can, we simply move ai and bi by ε > 0 apart, forbidding
the server to serve it before delivering one of the loaded requests first. Therefore, we assume
for simplicity that, when fully loaded, the server has to first deliver a request before it can
serve any other one. We note that, in our construction, the above idea can be implemented
without loss, not even in terms of ε.

The latter discussion also motivates restricting the space of considered algorithms: We
call Alg eager if it, when fully loaded with requests with identical destinations, immediately
delivers these requests without detour. It is clear that we can transform every algorithm Alg′

into an eager algorithm Alg′eager by letting it deliver the requests right away, waiting until
Alg′ would have delivered them, and then letting it continue like Alg′. Since Alg′ cannot
collect or serve other requests while being fully loaded, we have Alg′eager(σ) ≤ Alg′(σ) for
every request sequence σ.

I Observation 2.1. Every algorithm for online Dial-a-Ride can be turned into an eager
algorithm with the same competitive ratio.

Thus, we may assume that Alg is eager. We now consider the second stage and then
design a first stage to match the second stage. Suppose we have two requests σR = (tR, tR; tR)
and σL = (−tL,−tL, tL) with tL ≤ tR to the right and to the left of the origin, respectively.
We assume that Alg serves σR first at some time t∗ ≥ (2ρ− 2)tL + (ρ− 2)tR. Now suppose
we could force Alg to serve σL directly after σR, even if additional requests are released.
Then we could just release the request σR∗ = (tR, tR, 2tL + tR) and we would have

Alg(σρ) = t∗ + 2tL + 2tR ≥ 2ρtL + ρtR = ρOpt(σρ),

since Opt can serve the three requests in time 2tL + tR by serving σL first. In fact, we
will show that we can force Alg into this situation (or a worse situation) if the requests
σR = (tR, tR; tR) and σL = (−tL,−tL, tL) satisfy the following properties. To describe the
trajectory of a server, we use the notation “move(a)” for the tour that moves the server from
its current position with unit speed to the point a ∈ R.

I Definition 2.2. We call the last two requests σR = (tR, tR; tR) and σL = (−tL,−tL, tL)
of a request sequence with 0 < tL ≤ tR critical for Alg if the following conditions hold:
(i) Both tours move(−tL)⊕move(tR) and move(tR)⊕move(−tL) serve all requests presented

until time tR.
(ii) Alg serves both σR and σL after time tR and Alg’s position at time tR lies between

tR and −tL.
(iii) If Alg serves σR before σL, it does so no earlier than tR∗ := (2ρ− 2)tL + (ρ− 2)tR.
(iv) If Alg serves σL before σR, it does so no earlier than tL∗ := (2ρ− 2)tR + (ρ− 2)tL.
(v) It holds that tR

tL
≤ 4ρ2−30ρ+50
−8ρ2+50ρ−66 .

A. Birx, Y. Disser, and K. Schewior 21:5

I Lemma 2.3. If there is a request sequence with two critical requests for Alg, we can
release additional requests such that Alg is not (ρ− ε)-competitive on the resulting instance
for any ε > 0.

Definition 2.2 differs from [5, Definition 5] only in property (v), which is tR

tL
≤ 2 in the

original paper. Lemma 2.3 has been proved in [5, Lemma 6] for request sequences that satisfy
the properties of [5, Definition 5], however, a careful inspection of the proof of [5, Lemma 6]
shows that the statement of Lemma 2.3 also holds for request sequences that only satisfy (v)
instead of t

R

tL
≤ 2. For a detailed proof, see Appendix A. Thus, our goal is to construct a

request sequence σρ that satisfies all properties of Definition 2.2.
The remaining part of this section focusses on establishing critical requests. There are no

requests released until time 1. Without loss of generality, we assume that Alg’s position
at time 1 is pos (1) ≤ 0 (the other case is symmetric). Here and throughout, we let pos (t)
denote the position of Alg’s server at time t. Now, let

δ := 3ρ2 − 11
−3ρ3 + 15ρ− 4

and let c initial requests σR(j) = (1, δ; 1) with j ∈ {1, . . . , c} appear. These are the only requests
appearing in the entire construction with a starting point differing from the destination. We
make a basic observation on how Alg has to serve these requests.1

I Lemma 2.4. Alg cannot collect any of the requests σR(j) before time 2. If Alg collects
the requests after time ρδ − (δ − 1) or serves c′ < c requests before loading the remaining
c− c′, it is not (ρ− ε)-competitive.

We hence may assume that Alg loads all c requests σR(j) at the same time. Let tL ∈
[2, ρδ− (δ−1)) be the time Alg loads the c requests σR(j). We start the first stage and present
a variant of a single iteration of the construction in [5]: We let the request σL = (−tL,−tL; tL)
appear and define the function

`(t) = (4− ρ) · t− (2ρ− 2) · tL,

which can be viewed as a line in the path-time diagram. Because of ρ > 2, we have
`(tL) = (6− 3ρ)tL < 0 < pos

(
tL
)
, i.e., Alg’s position at time tL is to the right of the line `.

Thus, Alg crosses the line ` before it serves σL. Let tR be the time Alg crosses ` for the
first time and let the request σR = (tR, tR; tR) appear. Assume Alg crosses the line ` and
serves σR before σL. Then it does not serve σR before time

tR + |`(tR)− tR| = (2ρ− 2)tL + (ρ− 2)tR = tR∗ . (1)

Now assume Alg crosses ` at time tR ≥ 3ρ−5
7−3ρ t

L and serves σL before σR. Then it does not
serve serve σL before time

tR + |`(tR)− (−tL)| = (5− ρ)tR − (2ρ− 3)tL

≥ (2ρ− 2)tR + (7− 3ρ)3ρ− 5
7− 3ρt

L − (2ρ− 3)tL

= (2ρ− 2)tR + (ρ− 2)tL = tL∗ . (2)

The following lemma shows that the two requests cannot be served before these respective
times by establishing that indeed tR ≥ 3ρ−5

7−3ρ t
L.

1 The full proof and other omitted proofs can be found at http://arxiv.org/abs/1907.02858.

APPROX/RANDOM 2019

http://arxiv.org/abs/1907.02858

21:6 Improved Bounds for Open Online Dial-a-Ride on the Line

I Lemma 2.5. Alg can neither serve σL before time tL∗ nor can it serve σR before time tR∗ .

Proof. Since Alg is eager, it delivers the c requests σR(j) without waiting or detour, i.e., we
have pos

(
tL + (δ − 1)

)
= δ. Furthermore, we have

`(tL + (δ − 1)) = (4− ρ)(tL + (δ − 1))− (2ρ− 2)tL

= (6− 3ρ)tL + (4− ρ)(δ − 1)

≤ (6− 3ρ)(ρδ − (δ − 1)) + (4− ρ)(δ − 1)

= 3ρ4 − 18ρ3 + 3ρ2 + 50ρ− 14
3ρ3 − 15ρ+ 4

ρ < 2.06
< δ = pos

(
tL + (δ − 1)

)
,

i.e., Alg’s position at time tL + (δ − 1) is to the right of `. The earliest possible time Alg
crosses ` is the solution of

`(tR) = (4− ρ)tR − (2ρ− 2)tL = pos
(
tL + (δ − 1)

)
+ tL + (δ − 1)− tR,

which is tR = 2ρ−1
5−ρ t

L + 2δ−1
5−ρ . The inequality(

3ρ− 5
7− 3ρ −

2ρ− 1
5− ρ

)
tL = 3ρ2 + 3ρ− 18

3ρ2 − 22ρ+ 35 t
L

≤ 3ρ2 + 3ρ− 18
3ρ2 − 22ρ+ 35(ρδ − (δ − 1)))

= 3ρ3 + 6ρ2 − 15ρ− 18
3ρ4 − 15ρ3 − 15ρ2 + 79ρ− 20

= 2δ − 1
5− ρ ,

implies that we have

tR ≥ 3ρ− 5
7− 3ρt

L. (3)

Because of inequality (1) Alg does not serve σR before tR∗ and because of the inequalities
(3) and (2) it does not serve σL before time tL∗ . J

In fact, also the other properties of critical requests are satisfied.

I Lemma 2.6. The requests σR and σL of the request sequence σρ are critical.

Proof. We have to show that the requests σR and σL of the request sequence σρ satisfy
the properties (i) to (v) of Definition 2.2. The release time of every request is equal to its
starting position, thus every request can be served/loaded immediately once its starting
position is visited and (i) of Definition 2.2 is satisfied. At time tR Alg has not served σR,
because for that it would have needed to go right from time 0 on; it has not served σL either,
because during the period of time [tL, tR] Alg and σL were on different sides of `. This
establishes the first part of (ii) of Definition 2.2. Furthermore at time tR Alg is at position
pos

(
tR
)

= (4− ρ)tR − (2ρ− 2)tL with

−tL ≤ (4− ρ)tR − (2ρ− 2)tL ≤ tR

Therefore, the second part of (ii) of Definition 2.2 is satisfied as well.

A. Birx, Y. Disser, and K. Schewior 21:7

Lemma 2.5 shows that (iii) and (iv) of Definition 2.2 are satisfied. It remains to show
that property (v) is satisfied. For this we need to examine the release time tR of σR. The
time tR is largest if Alg tries to avoid crossing the line ` for as long as possible, i.e., it
continues to move right after serving the requests σR(j). Then, we have pos (t) = 1− tL + t

for t ∈ [tL, tR] and tR is the solution of

1− tL + tR = (4− ρ)tR − (2ρ− 2)tL.

Thus, in general, we have tR ≤ 2ρ−3
3−ρ t

L + 1
3−ρ , i.e.,

tR

tL
≤ 2ρ− 3

3− ρ + 1
(3− ρ)tL

tL≥2
≤ 4ρ− 5

6− 2ρ . (4)

For property (v), we need tR

tL
≤ 4ρ2−30ρ+50
−8ρ2+50ρ−66 . This is satisfied if

4ρ− 5
6− 2ρ ≤

4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66 ,

which is equivalent to

4ρ3 − 26ρ2 + 39ρ− 5 ≥ 0,

which is true by definition of ρ. J

Together with Lemma 2.3, this completes the proof of Theorem 1.1.

3 An Improved Algorithm

One of the simplest approaches for an online algorithm to solve Dial-a-Ride is the following:
Always serve the set of currently unserved requests in an optimum offline schedule and ignore
all new incoming request while doing so. Afterwards, repeat this procedure with all ignored
unserved requests until no new requests arrive. This simple algorithm that is often called
Ignore [1] has a competitive ratio of exactly 4 [4, 14]. The main weakness of Ignore is
that it always starts its schedule immediately. Ascheuer et al. showed that it is beneficial
if the server waits sometimes before starting a schedule and introduced the Smartstart
algorithm [1], which has a competitive ratio of roughly 2.94 [4].

We define L(t, p, R) to be the smallest makespan of a schedule that starts at position p at
time t and serves all requests in R ⊆ σ after they appeared (i.e., the schedule must respect
release times). For the description of online algorithms, we denote by t the current time and
by Rt the set of requests that have appeared until time t but have not been served yet.

The algorithm Smartstart is given in Algorithm 1. Essentially, at time t, Smartstart
waits before starting an optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, p, Rt′)

Θ− 1

}
, (5)

where p is the current position of the server and Θ > 1 is a parameter of the algorithm that
scales the waiting time. Importantly, like Ignore, Smartstart ignores incoming requests
while executing a schedule.

Birx and Disser identified that Smartstart’s waiting routine defined by inequality (5)
has a critical weakness [4, Lemma 4.1]. It is possible to lure the server to any position q in
time q+ ε for every ε > 0. Roughly speaking, a request σ1 = ((Θ− 1)ε, (Θ− 1)ε; (Θ− 1)ε) is

APPROX/RANDOM 2019

21:8 Improved Bounds for Open Online Dial-a-Ride on the Line

Algorithm 1 Smartstart.

p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, pj , Rt)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

released first and then for every i ∈ {2, . . . , qε} a request σi = (iε, iε; iε) follows. The schedule
to serve the request σ1 is started at time ε and finished at time 2ε. The schedule to serve
the request at position iε is not started earlier than time

L(iε, (i− 1)ε, {σi})
Θ− 1 = |(i− 1)ε− iε|

Θ− 1 = ε

Θ− 1 . (6)

This time is (depending on the choice of Θ) later than the current time iε for every i ≥ 2.
Thus there is no waiting time for any schedule except the first one and the server reaches
position q at time q+ε. We see that the request sequence to lure the server away heavily uses
that inequality (5) relies on Smartstart’s current position p, when computing the waiting
time. Thus, we modify the waiting routine of Smartstart to avoid luring accordingly.
Denote by σ≤t the set of requests that have been released until time t.

Algorithm 2 SmarterStart.

p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, 0, σ≤t)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

The improved algorithm SmarterStart is given in Algorithm 2. At time t, it waits
before starting an optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, 0, σ≤t′)

Θ− 1

}
. (7)

Again, Θ > 1 is a parameter of the algorithm that scales the waiting time. In contrast to
Smartstart, the waiting time is dependent on the length of the optimum offline schedule
serving all requests appeared until the current time and starting from the origin. This
guarantees that the server cannot be forced to reach any position q before time q/(Θ− 1)
since we always have L(t, 0, σ≤t) > q if σ≤t contains a request with destination in position q.

Whenever we need to distinguish the behavior of SmarterStart for different values
of Θ > 1, we write SmarterStartΘ to make the choice of Θ explicit. The length of
SmarterStart’s trajectory is denoted by SmarterStart(σ). Note that the schedules used
by Ignore, Smartstart and SmarterStart are NP-hard to compute for 1 < c <∞, see [5].

A. Birx, Y. Disser, and K. Schewior 21:9

We let N ∈ N be the number of schedules needed by SmarterStart to serve σ. The j-th
schedule is denoted by Sj , its starting time by tj , its starting point by pj , its ending point
by pj+1, and the set of requests served in Sj by σSj

. For convenience, we set t0 = p0 = 0.

3.1 Upper Bound for SmarterStart
We show the upper bound of Theorem 1.2. The completion time of SmarterStart is

SmarterStart(σ) = tN + L(tN , pN , σSN
). (8)

First, observe that, for all 0 ≤ t ≤ t′, p, p′ ∈ R, and R ⊆ σ, we have

L(t, p, R) ≥ L(t′, p, R), (9)
L(t, p, R) ≤ |p− p′|+ L(t, p′, R), (10)

L(t, 0, σ≤t) ≤ L(t, 0, σ) ≤ L(0, 0, σ) ≤ Opt(σ). (11)

Similar to [4], we distinguish between two cases, depending on whether or not SmarterStart
waits after finishing schedule SN−1 and before starting the final schedule SN . If the algorithm
SmarterStart waits, the starting time of schedule SN is given by

tN = 1
Θ− 1L(tN , 0, σ≤tN), (12)

otherwise, we have

tN = tN−1 + L(tN−1, pN−1, σSN−1). (13)

We start by giving a lower bound on the starting time of a schedule. It was shown in [4]
that the schedule Sj of Smartstart is never started earlier than time |pj+1|

Θ . This changes
slightly for SmarterStart.1

I Lemma 3.1. Algorithm SmarterStart does not start schedule Sj earlier than time |pj+1|
Θ−1 ,

i.e., we have tj ≥ |pj+1|
Θ−1 .

Using Lemma 3.1, we can give an upper bound on the length of SmarterStart’s
schedules, which is an essential ingredient in our upper bounds. The following lemma is
proved similarly to [4, Lemma 3.2], which yields an upper bound of (1 + Θ

Θ+2)Opt(σ) for
the length of every schedule Sj of Smartstart.1

I Lemma 3.2. For every schedule Sj of SmarterStart, we have

L(tj , pj , σSj
) ≤

(
1 + Θ− 1

Θ + 1

)
Opt(σ).

Proof sketch. To proof the claim we have to show the two inequalities

L(tj , pj , σSj) ≤ Opt(σ) + |pj | and L(tj , pj , σSj) ≤ 2Opt(σ)− 2 |pj |Θ− 1 . (14)

This implies

L(tj , pj , σSj)
(14)
≤ min

{
Opt(σ) + |pj |, 2Opt(σ)− 2

Θ− 1 |pj |
}

≤
(

1 + Θ− 1
Θ + 1

)
Opt(σ),

since the minimum above is largest for |pj | = Θ−1
Θ+1Opt(σ). J

APPROX/RANDOM 2019

21:10 Improved Bounds for Open Online Dial-a-Ride on the Line

The following proposition uses Lemma 3.2 to provide an upper bound for the competitive
ratio of SmarterStart, in the case that SmarterStart does have a waiting period before
starting the final schedule.

I Proposition 3.3. In case SmarterStart waits before executing SN , we have

SmarterStart(σ)
Opt(σ) ≤ f1(Θ) := 2Θ2 −Θ + 1

Θ2 − 1 .

Proof. Assume SmarterStart waits before starting the final schedule. Lemma 3.2 yields
the claimed bound:

SmarterStart(σ) (8)= tN + L(tN , pN , σSN
)

(12)= 1
Θ− 1L(tN , 0, σ≤tN) + L(tN , pN , σSN

)

(11)
≤ 1

Θ− 1Opt(σ) + L(tN , pN , σSN
)

Lem. 3.2
≤

(
1

Θ− 1 + 1 + Θ− 1
Θ + 1

)
Opt(σ)

= 2Θ2 −Θ + 1
Θ2 − 1 Opt(σ). J

In comparison, the upper bound for the competitive ratio of Smartstart, in case
Smartstart has a waiting period before starting the final schedule is 2Θ2+2Θ

Θ2+Θ−2Opt(σ) [4,
Proposition 3.2]. Note that SmarterStart’s bound is better than Smartstart’s bound
for Θ > 1.

It remains to examine the case that the algorithm SmarterStart has no waiting period
before starting the final schedule. For this we use two lemmas from [4] originally proved
for Smartstart, which are still valid for SmarterStart since they give bounds on the
optimum offline schedules independently of the waiting routine.

By x− := min{0,mini=1,...,n{ai},mini=1,...,n{bi}} we denote the leftmost position that
needs to be visited by the server and by x+ := max{0,maxi=1,...,n{ai},maxi=1,...,n{bi}} the
rightmost. We denote by ySj

− the leftmost and by ySj

+ the rightmost position that occurs
in the requests σSj

. Note that ySj

− and ySj

+ need not lie on different sides of the origin, in
contrast to x−/+.

I Lemma 3.4 (Lemma 3.4, Full Version of [4]). Let Sj with j ∈ {1, . . . , N} be a schedule of
SmarterStart. Moreover, let Opt(σ) = |x−|+ x+ + y for some y ≥ 0. Then, we have

L(tj , 0, σSj) ≤ |min{0, ySj

− }|+ max{0, ySj

+ }+ y.

I Lemma 3.5 (Lemma 3.6, Full Version of [4]). Let Sj with j ∈ {1, . . . , N} be a schedule of
SmarterStart. Moreover, let |x−| ≤ x+ and Opt(σ) = |x−| + x+ + y for some y ≥ 0.
Then, for every point p that is visited by Sj we have

p ≤ |pj |+ |pj − pj+1|+ y − |min{0, ySj

− }|.

Using the bounds established by Lemma 3.4 and Lemma 3.5, we can give an upper bound
for the competitive ratio of SmarterStart if the server is not waiting before starting the
final schedule.

I Proposition 3.6. If SmarterStart does not wait before executing SN , we have

SmarterStart(σ)
Opt(σ) ≤ f2(Θ) := 3Θ2 + 3

2Θ + 1 .

A. Birx, Y. Disser, and K. Schewior 21:11

Proof. Assume algorithm SmarterStart does not have a waiting period before the last
schedule, i.e., SmarterStart starts the final schedule SN immediately after finishing SN−1.
Without loss of generality, we assume |x−| ≤ x+ throughout the entire proof by symmetry.

First of all, we notice that we may assume that SmarterStart executes at least
two schedules in this case. Otherwise either the only schedule has length 0, which would
imply Opt(σ) = SmarterStart(σ) = 0, or the only schedule would have a positive length,
implying a waiting period. Let σOpt

SN
be the first request of σSN

that is served by Opt and
let aOpt

N be its starting point and rOpt
N be its release time. We have

SmarterStart(σ) (8)= tN + L(tN , pN , σSN
)

(13)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tN , pN , σSN
)

tN ≥ rOpt
N

≤ tN−1 + L(tN−1, pN−1, σSN−1) + L(rOpt
N , pN , σSN

). (15)

Since Opt serves all requests of σSN
after time rOpt

N , starting with a request with starting
point aOpt

N , we also have

Opt(σ) ≥ rOpt
N + L(rOpt

N , aOpt
N , σSN

). (16)

Furthermore, we have

rOpt
N > tN−1 (17)

since otherwise σOpt
SN
∈ σSN−1 would hold. This gives us

SmarterStart(σ)
(15)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + L(rOpt

N , pN , σSN
)

(10)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |
+L(rOpt

N , aOpt
N , σSN

)
(16)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |
+Opt(σ)− rOpt

N

(17)
< L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |+ Opt(σ) (18)
(10)
≤ |pN−1|+ L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
Lem. 3.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ).
(19)

We have

Opt(σ) ≥ tN−2 + |aOpt
N − pN |, (20)

because Opt has to visit both aOpt
N and pN after time tN−2: It has to visit aOpt

N to collect
σOpt
SN

and it has to visit pN to deliver some request of σSN−1 . Using the above inequalitiy,
we get

SmarterStart(σ)
(19)
< (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
(20)
≤ 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ− 2)tN−2. (21)

APPROX/RANDOM 2019

21:12 Improved Bounds for Open Online Dial-a-Ride on the Line

In the case Θ ≥ 2, we have

SmarterStart(σ)
(21)
< 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ− 2)tN−2

(11)
≤ (Θ + 1)Opt(σ)

Θ ≥ 2
≤ 3Θ2 + 3

2Θ + 1 Opt(σ).

Thus, we may assume Θ < 2. Similarly as in inequality (21), we get

SmarterStart(σ)
(19)
< (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
(20)
≤ ΘOpt(σ) + L(tN−1, 0, σSN−1) + (2−Θ)|aOpt

N − pN |
(7)
≤ ΘOpt(σ) + (Θ− 1)tN−1 + (2−Θ)|aOpt

N − pN |

≤ (2Θ− 1)Opt(σ) + (2−Θ)|aOpt
N − pN |, (22)

where the last inequality follows, because there exists a request in σ with release date later
than tN−1. This means the claim is shown if we have

|pN − aOpt
N | ≤ Opt(σ)− Θ− 1

2Θ + 1Opt(σ) (23)

since then we have

SmarterStart(σ)
(22)
< (2Θ− 1)Opt(σ) + (2−Θ)|aOpt

N − pN |
(23)
≤ (2Θ− 1)Opt(σ) + (2−Θ)

(
1− Θ− 1

2Θ + 1

)
Opt(σ)

= 3Θ2 + 3
2Θ + 1 Opt(σ).

Therefore, we may assume in the following that

|pN − aOpt
N | > Opt(σ)− Θ− 1

2Θ + 1Opt(σ). (24)

Let Opt(σ) = |x−|+ x+ + y for some y ≥ 0. By definition of x− and x+ we have

|pN − aOpt
N |+ y ≤ Opt(σ). (25)

In the case that Opt visits position pN before it collects σOpt
SN

, we have

|aOpt
N − pN |+ |pN | ≤ Opt(σ). (26)

Similarly, if Opt collects σOpt
SN

before it visits position pN for the first time, we have

Opt(σ) ≥ rOpt
N + |aOpt

N − pN |
(17)
> tN−1 + |aOpt

N − pN |
Lem. 3.1
≥ |pN |

Θ− 1 + |aOpt
N − pN |

Θ < 2
≥ |pN |+ |aOpt

N − pN |.

A. Birx, Y. Disser, and K. Schewior 21:13

Thus, inequality (26) holds in general. To sum it up, we may assume that

max{y, |pN |, tN−2}
(24),(25),(26),(20)

<
Θ− 1
2Θ + 1Opt(σ) (27)

holds. In the following, denote by ySN−1
− the leftmost starting or ending point and by ySN−1

+
the rightmost starting or ending point of the requests in σSN−1 . We compute

SmarterStart(σ)
(18)
< L(tN−1, pN−1, σSN−1) + |pN − aOpt

N |+ Opt(σ)
(26)
< L(tN−1, pN−1, σSN−1) + 2Opt(σ)− |pN |
(9)
≤ |pN−1|+ L(tN−1, 0, σSN−1) + 2Opt(σ)− |pN |

Lem. 3.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + 2Opt(σ)− |pN |

Lem. 3.4
≤ (Θ− 1)tN−2 + max{0, |ySN−1

− |}+ max{0, ySN−1
+ }+ y

+2Opt(σ)− |pN |. (28)

Obviously, position ySN−1
+ is visited by SmarterStart in schedule SN−1. Therefore, ySN−1

+
is smaller than or equal to the rightmost point that is visited by SmarterStart during
schedule SN−1, which gives us

y
SN−1
+

Lem. 3.5
≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1

− |}. (29)

On the other hand, because of |x−| ≤ x+, we have Opt(σ) ≥ 2|x−| + x+, which implies
y ≥ |x−|. By definition of x− and y

SN−1
− , we have |x−| ≥ max{0, |ySN−1

− |}. This gives
us y ≥ max{0, |ySN−1

− |} and

0 ≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1
− |}. (30)

To sum it up, we have

max{0, ySN−1
+ }

(29),(30)
≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1

− |}. (31)

The inequality above gives us

SmarterStart(σ)
(28)
< (Θ− 1)tN−2 + max{0, |ySN−1

− |}+ max{0, ySN−1
+ }

+y + 2Opt(σ)− |pN |
(31)
≤ (Θ− 1)tN−2 + |pN−1|+ |pN−1 − pN |+ 2y + 2Opt(σ)− |pN |

≤ (Θ− 1)tN−2 + |pN−1|+ |pN−1|+ |pN |+ 2y + 2Opt(σ)− |pN |
Lem. 3.1
≤ (Θ− 1)tN−2 + 2(Θ− 1)tN−2 + 2y + 2Opt(σ)

(27)
≤ (3Θ− 3) Θ− 1

2Θ + 1Opt(σ) + 2 Θ− 1
2Θ + 1Opt(σ) + 2Opt(σ)

= 3Θ2 + 3
2Θ + 1 Opt(σ). J

In comparison, the upper bound for the competitive ratio of Smartstart in case it does
not have a waiting period before starting the final schedule is Θ + 1− Θ−1

3Θ+3Opt(σ) [4, Propo-
sition 3.4]. Note that SmarterStart’s bound is slightly worse than Smartstart’s bound
for Θ > 1.47. However, in combination with the bound of Proposition 3.3, SmarterStart
has a better worst-case than Smartstart.

APPROX/RANDOM 2019

21:14 Improved Bounds for Open Online Dial-a-Ride on the Line

I Theorem 3.7. Let Θ∗ be the largest solution of f1(Θ) = f2(Θ), i.e.,

3Θ∗2 + 3
2Θ∗ + 1 = 2Θ∗2 −Θ∗ + 1

Θ∗2 − 1 .

Then, SmarterStartΘ∗ is ρ∗-competitive with ρ∗ := f1(Θ∗) = f2(Θ∗) ≈ 2.6662.

Proof. According to Proposition 3.3 and Proposition 3.6, if it exists,

Θ∗ = argmin
Θ>1

{max{f1(Θ), f2(Θ)}}

is the parameter for SmarterStart with the smallest upper bound. We note that f1 is
strictly decreasing for Θ > 1 and that f2 is strictly increasing for Θ > 1. Therefore, if an
intersection point of f1 and f2 that is larger than 1 exists, then this is at Θ∗. Indeed, the
intersection point exists, which is the largest solution of

3Θ2 + 3
2Θ + 1 = 2Θ2 −Θ + 1

Θ2 − 1 .

The resulting upper bound for the competitive ratio is

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.6662. J

3.2 Lower Bound for SmarterStart
We show the lower bound of Theorem 1.2. In this section, we explicitly construct instances
that demonstrate that the upper bounds given in the previous section are tight for certain
ranges of Θ > 1, in particular for Θ = Θ∗ (as in Theorem 3.7). Further, we show that choices
of Θ > 1 different from Θ∗ yield competitive ratios worse than ρ∗ ≈ 2.67. Together, this
implies that ρ∗ is exactly the best possible competitive ratio for SmarterStart.1

I Proposition 3.8. Let 1 < Θ < 2. For every sufficiently small ε > 0, there is a set of
requests σ such that SmarterStart waits before starting the final schedule and such that
the inequality

SmarterStart(σ)
Opt(σ) ≥ 2Θ2 −Θ + 1

Θ2 − 1 − ε

holds, i.e., the upper bound established in Proposition 3.3 is tight for Θ ∈ (1, 2).

Proof sketch. Let ε > 0 with ε < Θ
Θ+1 and ε′ = Θ+1

2Θ ε. The request sequence σ = {σ1, σ2}
with

σ1 = (1, 1; 0) and σ2 = (− 1
Θ− 1 + ε′, 1; 1

Θ− 1 + ε′)

achieves the desired result. J

I Proposition 3.9. Let 1
2 (1 +

√
5) ≤ Θ ≤ 2. For every sufficiently small ε > 0 there is a set

of requests σ such that SmarterStart immediately starts SN after SN−1 and such that

SmarterStart(σ)
Opt(σ) ≥ 3Θ2 + 3

2Θ + 1 − ε,

i.e., the upper bound established in Proposition 3.6 is tight for Θ ∈ [1
2 (1+

√
5), 2] ≈ [1.6180, 2].

A. Birx, Y. Disser, and K. Schewior 21:15

Proof sketch. Let ε > 0 with ε < 1
4 (5Θ2−9Θ+4

2Θ+1) and ε′ = 2Θ+1
5Θ2−9Θ+4ε. The request sequence

σ = {σ1, σ2} with

σ1 = (1, 1; 0),

σ
(1)
2 =

(
2 + 1

Θ− 1 − 2ε′, 2 + 1
Θ− 1 − 2ε′; 1

Θ− 1 + ε′
)
,

σ
(2)
2 =

(
− 1

Θ− 1 ,−
1

Θ− 1 ; 1
Θ− 1 + ε′

)
,

σ3 =
(

3
(Θ− 1)2 − ε

′,
3

(Θ− 1)2 − ε
′; 3

(Θ− 1)2 + 2
Θ− 1

)
achieves the desired result. J

Recall that the optimal parameter Θ∗ established in Theorem 3.7 is the only positive,
real solution of the equation

3Θ2 + 3
2Θ + 1 = 2Θ2 −Θ + 1

Θ2 − 1 ,

which is Θ∗ ≈ 1.7125. Therefore, according to Proposition 3.8 and Proposition 3.9 the
parameter Θ∗ lies in the range where the upper bounds of Propositions 3.3 and 3.6 are both
tight. It remains to make sure that for all Θ that lie outside of this range the competitive
ratio of SmarterStartΘ is larger than ρ∗ ≈ 2.6662.1

I Lemma 3.10. Let Θ > 2. There is a set of requests σΘ>2 such that

SmarterStart(σΘ>2)
Opt(σΘ>2) > ρ∗ ≈ 2.6662.

Figure 1 shows the upper and lower bounds that we have established. Theorem 1.2 now
follows from Theorem 3.7 combined with Propositions 3.8 and 3.9, as well as Lemma 3.10.

Proof of Theorem 1.2. We have shown in Proposition 3.8 that the upper bound

SmarterStart(σ)
Opt(σ) ≤ f1(Θ) = 2Θ2 −Θ + 1

Θ2 − 1

established in Proposition 3.3 for the case, where SmarterStart waits before starting the
final schedule, is tight for all Θ ∈ (1, 2). Furthermore, we have shown in Proposition 3.9 that
the upper bound

SmarterStart(σ)
Opt(σ) ≤ f2(Θ) = 3Θ2 + 3

2Θ + 1

established in Proposition 3.6 for the case, where SmarterStart does not wait before
starting the final schedule, is tight for all Θ ∈ (1

2 (1 +
√

5), 2]. Since Θ∗ ≈ 1.71249 lies in
those ranges, the competitive ratio of SmarterStartΘ∗ is indeed exactly ρ∗.

It remains to show that for every Θ > 1 with Θ 6= Θ∗ the competitive ratio is larger.
First, according to Lemma 3.10, the competitive ratio of SmarterStart with parameter
Θ ∈ (2,∞) is larger than ρ∗. By monotonicity of f1, every function value in (1,Θ∗) is
larger than f1(Θ∗) = ρ∗. Thus, the competitive ratio of SmarterStart with parameter
Θ ∈ (1,Θ∗) is larger than ρ∗, since f1 is tight on (1,Θ∗) by Proposition 3.8. Similarly, by
monotonicity of f2, every function value in (Θ∗, 2] is larger than f2(Θ∗) = ρ∗. Thus, the
competitive ratio of SmarterStart with parameter Θ ∈ (Θ∗, 2] is larger than ρ∗, since f2
is tight on (Θ∗, 2] by Proposition 3.9. J

APPROX/RANDOM 2019

21:16 Improved Bounds for Open Online Dial-a-Ride on the Line

1 2 3 4
2

3

4

f1 f2

g1
g2

Θ∗ ≈ 1.71

ρ∗ ≈ 2.67

scaling paramter Θ

co
m
pe

tit
iv
e
ra
tio

ρ

Figure 1 Overview of our bounds for SmarterStart. The functions f1 (green) / f2 (red) are
upper bounds for the cases where SmarterStart waits / does not wait before starting the final
schedule, respectively. The upper bounds are drawn solid in the domains where they are tight for
their corresponding case. The functions g1 and g2 (blue) are general lower bounds.

References

1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:
Minimizing the Completion Time. In Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 639–650, 2000.

2 Mikhail J. Atallah and S. Rao Kosaraju. Efficient Solutions to Some Transportation Problems
with Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing, 17(5),
1988.

3 G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the On-Line
Travelling Salesman. Algorithmica, 29(4):560–581, 2001.

4 A. Birx and Y. Disser. Tight analysis of the Smartstart algorithm for online Dial-a-Ride on the
line. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer
Science (STACS), 2019. Full version: https://arxiv.org/abs/1901.04272.

5 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proceedings of the 28th Annual Symposium on Discrete Algorithms (SODA),
pages 994–1005, 2017.

6 Michiel Blom, Sven O. Krumke, Willem E. de Paepe, and Leen Stougie. The Online TSP
Against Fair Adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

7 Moses Charikar and Balaji Raghavachari. The Finite Capacity Dial-A-Ride Problem. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 458–467, 1998.

8 Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-
Aided Complexity Classification of Dial-a-Ride Problems. INFORMS Journal on Computing,
16(2):120–132, 2004.

9 Esteban Feuerstein and Leen Stougie. On-line Single-server Dial-a-ride Problems. Theoretical
Computer Science, 268(1):91–105, 2001.

A. Birx, Y. Disser, and K. Schewior 21:17

10 Paul C. Gilmore and Ralph E. Gomory. Sequencing a One State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, 12(5):655–679, 1964.

11 D. J. Guan. Routing a Vehicle of Capacity Greater Than One. Discrete Applied Mathematics,
81(1-3):41–57, 1998.

12 Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The Online Dial-a-Ride Problem
Under Reasonable Load. In Proceedings of the 4th Italian Conference on Algorithms and
Complexity (CIAC), pages 125–136, 2000.

13 Patrick Jaillet and Michael R. Wagner. Generalized Online Routing: New Competitive Ratios,
Resource Augmentation, and Asymptotic Analyses. Operations Research, 56(3):745–757, 2008.

14 Sven O. Krumke. Online Optimization Competitive Analysis and Beyond, 2001. Habilitation
thesis.

15 Sven O. Krumke, Willem E. de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online
Dial-a-ride Problem. In Proceedings of the Third International Conference on Approximation
and Online Algorithms (WAOA), pages 258–269, 2006.

16 Sven O. Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem
de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Prob-
lem. In Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 200–214, 2002.

17 Maarten Lipmann, Xiwen Lu, Willem E. de Paepe, Rene A. Sitters, and Leen Stougie. On-Line
Dial-a-Ride Problems Under a Restricted Information Model. Algorithmica, 40(4):319–329,
2004.

18 Fanglei Yi and Lei Tian. On the Online Dial-a-ride Problem with Time-windows. In Proceedings
of the 1st International Conference on Algorithmic Applications in Management (AAIM),
pages 85–94, 2005.

19 Fanglei Yi, Yinfeng Xu, and Chunlin Xin. Online Dial-a-ride Problem with Time-windows
Under a Restricted Information Model. In Proceedings of the 2nd International Conference on
Algorithmic Aspects in Information and Management (AAIM), pages 22–31, 2006.

A Proof of Lemma 2.3

In this section we prove Lemma 2.3. The proof is almost identical to the proof of [5, Lemma 6].
Since there are however several parts where inequalities change slightly, we decided to present
the full proof here.

I Lemma 2.3. If there is a request sequence with two critical requests for Alg, we can
release additional requests such that Alg is not (ρ− ε)-competitive on the resulting instance
for any ε > 0.

Let the requests σL and σR be critical. Furthermore, let p0 ∈ {tL, tR} be the starting
position of the request σ0 ∈ {σL, σR} that is served first by Alg and let p1 ∈ {tL, tR} be the
starting position of the request σ1 ∈ {σL, σR} that is not served first by Alg. By properties
(iii) and (iv) of Definition 2.2, Alg cannot serve σ0 before time (2ρ − 2)|p1|+ (ρ − 2)|p0|.
Thus, we have

Alg(σρ) ≥ (2ρ− 2)p1 + (ρ− 2)p0 + |p0 − p1| = (2ρ− 1)|p1|+ (ρ− 1)|p0|. (32)

We have equality in inequality (32) if Alg serves σ0 the earliest possible time and then
moves directly to position p1. However, in general Alg does not need to do this and instead
can wait. At time t ≥ max{|p0|, |p1|}, we have Alg(σρ) ≥ t + |pos (t) − p0| + |p0 − p1| if
Alg still has to serve σ0 and Alg(σρ) ≥ t+ |pos (t)− p1| if σ0 is served and only σ1 is left

APPROX/RANDOM 2019

21:18 Improved Bounds for Open Online Dial-a-Ride on the Line

to be served. We want to measure the delay of Alg at a time t ≥ max{|p0|, |p1|}, i.e. the
difference between the time Alg needs at least to serve both requests σ0 and σ1 and the
time (2ρ− 1)|p1|+ (ρ− 1)|p0|. We define for t ≥ max{|p0|, |p1|} the function

delay(t) :=


t+ |pos (t)− p0| − (ρ− 2)|p0| − (2ρ− 2)|p1| if σ0 is not served at t,
t+ |pos (t)− p1| − (ρ− 1)|p0| − (2ρ− 1)|p1| if σ0 is served at t, but σ1 not,
undefined otherwise.

We make the following observation about delay.

I Observation A.1. Let t ≥ max{|p0|, |p1|} be a time at which σ1 is not served yet. The
earliest time Alg can serve σ1 is (2ρ− 1)|p1|+ (ρ− 1)|p0|+ delay(t).

I Lemma A.2. There is a W ≥ 0 with

delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= W

Proof. Because of property (ii) of Definition 2.2, at time max{|p0|, |p1|} neither σ0 nor σ1
has been served by Alg yet. Since Alg serves σ1 after σ0, the request σ1 is not served before
time max{|p0|, |p1|} + |p0| + |p1| ≥ 2|p1| + |p0|, i.e, delay(2p1 + p0) is defined. Because of
properties (iii) and (iv) of Definition 2.2, σ0 is not served before time (2ρ−2)|p1|+(ρ−2)|p0|.
Thus, for t ≥ (2ρ− 2)p1 + (ρ− 2)p0, we have delay(t) ≥ 0. We have

2p1 + p0
Def 2.2 (v)
≥ 2p1 + (3− ρ)−8ρ2 + 50ρ− 66

4ρ2 − 30ρ+ 50 |p1|+ (ρ− 2)|p0|

2 < ρ < 2.5
> (2ρ− 2)|p1|+ (ρ− 2)|p0|, (33)

i.e. delay(2p1 + p0) ≥ 0. If delay(2p1 + p0) = 0, we have W = 0 and are done. Otherwise, by
inequality (33), we have delay(2p1 + p0) > 0. Note that Alg needs to serve σ1 at some point
to be (ρ−ε)-competitive. LetW ∗ be chosen such that Alg serves σ1 at time 2|p1|+ |p0|+W∗

ρ−1 .
Therefore delay(2|p1|+ |p0|+ W∗

ρ−1 − ε
′) is defined for some sufficiently small ε′ ≤ |p1|. We

define the function

f(W) := delay
(

2|p1|+ |p0|+
W

ρ− 1

)
−W.

Note that f is continuous and we have f(0) > 0. If

delay
(

2|p1|+ |p0|+
W ∗

ρ− 1 − ε
′
)
≤ W ∗

ρ− 1 − ε
′ ρ>1
< W ∗ − (ρ− 1)ε′,

we have f(W ∗ − (ρ− 1)ε′) < 0 and we find W in the interval (0,W ∗ − (ρ− 1)ε′]. Otherwise,
we have

delay
(

2|p1|+ |p0|+
W ∗

ρ− 1 − ε
′
)
>

W ∗

ρ− 1 − ε
′.

By Observation A.1 Alg has not served σ1 at time

(2ρ− 1)|p1|+ (ρ− 1)|p0|+
W ∗

ρ− 1 − ε
′ ρ>2,ε′≤|p1|

> 2|p1|+ |p0|+
W ∗

ρ− 1 .

This is a contradiction to the fact, that W ∗ was chosen such that Alg serves σ1 at time
2|p1|+ |p0|+W∗

ρ−1 . J

A. Birx, Y. Disser, and K. Schewior 21:19

I Lemma A.3. Let W ≥ 0 with

delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= W.

Alg serves σ0 no later than time 2|p1|+ |p0|+ W
ρ−1 .

Proof. Assume we have

2|p1|+ |p0|+
W

ρ− 1 ≥ (2ρ− 2)|p1|+ (ρ− 2)|p0|+W. (34)

Then, by definition of W and Observation A.1, Alg can serve σ1 at time

(2ρ−1)|p1|+(ρ−1)|p0|+delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= (2ρ−1)|p1|+(ρ−1)|p0|+W. (35)

Because of inequality (34), this can only be the case if Alg serves σ0 no later than time

(2ρ−1)|p1|+(ρ−1)|p0|+W−|p1|−|p0| = (2ρ−2)|p1|+(ρ−2)|p0|+W
(34)
≤ 2|p1|+|p0|+

W

ρ− 1 .

Thus, it remains to show inequality (34). Because of property (i) of Definition 2.2 all requests
can be served the tours move(p0)⊕move(p1) and move(p1)⊕move(p0). By inequality 35,
we have Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W . Thus, if we have

Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W > (ρ− ε)(2|p1|+ |p0|) ≥ (ρ− ε)Opt(σρ),

Alg is not (ρ− ε)-competitive. Therefore, we may assume

(2ρ− 1)|p1|+ (ρ− 1)|p0|+W ≤ (ρ− ε)(2|p1|+ |p0|),

and thus

W ≤ (ρ− ε)(2|p1|+ |p0|)− (2ρ− 1)|p1| − (ρ− 1)|p0|
= (1− 2ε)|p1|+ (1− ε)|p0|
< |p1|+ |p0|. (36)

Inequality (34) now is equivalent to the inequality

2|p1|+ |p0| − ((2ρ− 2)|p1|+ (ρ− 2)|p0|)
1− 1

ρ−1
= (ρ− 1)(4− 2ρ)

ρ− 2 |p1|+
(ρ− 1)(3− ρ)

ρ− 2 |p0|

Def 2.2 (v)
≥ |p0|+ (2− 2ρ)|p1|

+(−ρ2 + 3ρ− 1)(−8ρ2 + 50ρ− 66)
(ρ− 2)(4ρ2 − 30ρ+ 50) |p1|

≥ |p0|+
5ρ3 − 36ρ2 + 86ρ− 67
2ρ3 − 19ρ2 + 55ρ− 50 |p1|

2 < ρ < 2.5
> |p0|+ |p1|
(36)
> W

if we solve inequality (34) for W . J

APPROX/RANDOM 2019

21:20 Improved Bounds for Open Online Dial-a-Ride on the Line

Now we have all ingredients to proof Lemma 2.3.

Proof of Lemma 2.3. Let W ≥ 0 with delay(2|p1| + |p0| + W
ρ−1) = W . We present the

request

σ+
0 = (p+

0 , p
+
0 ; t+0) :=

(
p0 + sgn(p0) W

ρ− 1 , p0 + sgn(p0) W

ρ− 1 ; 2|p1|+ |p0|+
W

ρ− 1

)
and distinguish two cases.

Case 1: At time t+0 , Alg is at least as close to p1 as to p+
0 or it serves σ1 before

σ+
0 . In this case, we do not present additional requests. By Lemma A.3, Alg has served

σ0 at time t+0 or before and by Observation A.1 it does not serve σ1 earlier than time
(2ρ− 1)|p1|+ (ρ− 1)|p0|+W . Thus, we have

Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W + |p1|+ |p0|+
W

ρ− 1

≥ ρ
(

2|p1|+ |p0|+
W

ρ− 1

)
= ρOpt(σρ).

Case 2: At time t+0 , Alg is closer to p+
0 than to p1 and it serves σ+

0 first. We assume
that the offline server continues moving away from the origin after serving σ+

0 at time p+
0 .

Then, the position of the offline serve at time t ≥ |p1| is sgn(p0)t+ 2p1. We denote by

M(t) := sgn(p0)t+ 3p1

2

the midpoint between the current position of the offline server and the position p1. Note
that the time M−1(p), when the midpoint is at position p is given by

M−1(p) := |2p− 3p1|.

We again distinguish two cases

Case 2.1: Alg does not serve σ+
0 until time M−1(p+

0). In this case, we do not present
additional requests. Since we are in Case 2, neither σ+

0 nor σ1 is served at time M−1(p+
0).

Thus, we have

Alg(σρ) ≥ M−1(p+
0) + |p+

0 |+ |p1|
= |2p+

0 − 3p1|+ |p+
0 |+ |p1|

= |2p0 + 2sgn(p0) W

ρ− 1 − 3p1|+ |p0|+
W

ρ− 1 + |p1|

= 3|p0|+ 4|p1|+ 3 W

ρ− 1
2 < ρ < 2.5

> ρ|p0|+ 2ρ|p1|+ 3 W

ρ− 1

> ρ

(
|p0|+ 2|p1|+

W

ρ− 1

)
= ρOpt(σρ).

A. Birx, Y. Disser, and K. Schewior 21:21

Case 2.2: Alg serves σ+
0 before time M−1(p+

0). By definition of W , the delay function
is defined for time p+

0 , hence Alg has not served σ1 before time p+
0 . Since Alg is to the right

of the midpoint M(p+
0) at time p+

0 , there is a first time tmid at which M(tmid) = pos (tmid).
We present the request

σ++
0 = (p++

0 , p++
0 ; t++

0) := (sgn(p0)tmid + 2p1, sgn(p0)tmid + 2p1; tmid).

Note that Alg is at the midpoint between p++
0 and p1 and thus, both tours move(p++

0)⊕
move(p1) and move(p1)⊕move(p++

0) incur identical costs for Alg. We have

Alg(σρ) ≥ tmid + 3
(
|sgn(p0)tmid + 2p1 − p1|

2

)
= 5tmid + 3|p1|

2
We have Opt(σρ) = tmid, i.e., if we want to show

Alg(σρ) ≥
5tmid + 3|p1|

2 ≥ ρtmid = ρOpt(σρ) (37)

Inequality (37) is equivalent to

(5− 2ρ)tmid ≥ 3|p1|. (38)

Since 2ρ < 2.5, the coefficient (5 − 2ρ) of tmid is positive. Thus we may assume tmid is
minimal to show the inequality (38). By assumption, σ+

0 is already served at time tmid.
Hence, tmid is minimum if, starting at time t+0 at position pos

(
t+0
)
, Alg serves σ+

0 and then
moves towards the origin. Then, tmid is the solution of the equation

sgn(p0)t+0 + |pos
(
t+0
)
− p+

0 |+ p+
0 − sgn(p0)tmid = sgn(p0)tmid + 3p1

2 . (39)

Because of Lemma A.3, the request σ0 is already served at time t+0 . Furthermore, since the
position of σ1 has not been visited yet at time t+0 , we have sgn(p0)pos

(
t+0
)
> sgn(p0)p1, i.e.,

|pos
(
t+0
)
− p1| = sgn(p0)(pos

(
t+0
)
− p1) > 0

and thus, because of −sgn(p0)p1 = |p1|, we get

delay(t+0) = t+0 + |pos
(
t+0
)
− p1| − (ρ− 1)|p0| − (2ρ− 1)|p1|

= t+0 + sgn(p0)pos
(
t+0
)
− sgn(p0)p1 − (ρ− 1)|p0| − (2ρ− 1)|p1|

= t+0 + sgn(p0)pos
(
t+0
)

+ |p1| − (ρ− 1)|p0| − (2ρ− 1)|p1|. (40)

Solving equation (40) for sgn(p0)pos
(
t+0
)
gives

sgn(p0)pos
(
t+0
)

= delay
(

2|p1|+ |p0|+
W

ρ− 1

)
− W

ρ− 1
+(ρ− 2)|p0|+ (2ρ− 4)|p1|

= W − W

ρ− 1 + (ρ− 2)|p0|+ (2ρ− 4)|p1|

= ρ− 2
ρ− 1W + (ρ− 2)|p0|+ (2ρ− 4)|p1| (41)

ρ < 3
<

W

ρ− 1 + (ρ− 2)|p0|+ (2ρ− 4)|p1|

Def 2.2 (v)
≤ W

ρ− 1 +
(

(ρ− 2) + (2ρ− 4) 4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66

)
|p0|

1.9 < ρ < 4.3
<

W

ρ− 1 + |p0|

sgn(p0) = sgn(p+
0)

= sgn(p0)p+
0 .

APPROX/RANDOM 2019

21:22 Improved Bounds for Open Online Dial-a-Ride on the Line

Thus, we have

|pos
(
t+0
)
− p+

0 | = sgn(p0)(p+
0 − pos

(
t+0
)
) > 0 (42)

Using inequality (42) and plugging inequality (41) into inequality (39) gives us

sgn(p0)tmid = 1
3(2sgn(p0)t+0 + 2|pos

(
t+0
)
− 2p+

0 |+ 2p+
0 − 3p1)

(42)= 1
3(2sgn(p0)t+0 + 2sgn(p0)p+

0 − 2sgn(p0)pos
(
t+0
)

+ 2p+
0 − 3p1)

= 1
3

(
−7p1 + 6p0 + (6sgn(p0))W

ρ− 1 − 2sgn(p0)pos
(
t+0
))

(41)= 1
3

(
−(15− 4ρ)p1 + (10− 2ρ)p0 + (10− 2ρ)sgn(p0)W

ρ− 1

)
(43)

Note that we also used sgn(p0) = sgn(p+
0) = −sgn(p1). Multiplying equality (43) with sgn(p0)

gives us

tmid = 1
3

(
(15− 4ρ)|p1|+ (10− 2ρ)|p0|+

(10− 2ρ)W
ρ− 1

)
. (44)

By substituting (44) into (38) and noting that it is hardest to satisfy, when W = 0, we get

|p0|
|p1|
≤ 4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66 ,

which is true due to Definition 2.2 (v). J

	Introduction
	General Lower Bound
	An Improved Algorithm
	Upper Bound for SmarterStart
	Lower Bound for SmarterStart

	Proof of Lemma 2.3

