
Algorithmica
https://doi.org/10.1007/s00453-022-01061-4

Improved Bounds for Open Online Dial-a-Ride on the Line

Alexander Birx1 · Yann Disser2 · Kevin Schewior3

Received: 28 January 2020 / Accepted: 17 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We consider the open, non-preemptive online Dial-a-Ride problem on the real line,
where transportation requests appear over time and need to be served by a single server.
We give a lower bound of 2.0585 on the competitive ratio, which is the first bound that
strictly separates open online Dial-a-Ride on the line from open online TSP on the
line in terms of competitive analysis, and is the best currently known lower bound even
for general metric spaces. On the other hand, we present an algorithm that improves
the best known upper bound from 2.9377 to 2.6662. The analysis of our algorithm is
tight.

Keywords Dial-a-ride on the line · Elevator problem · Online algorithms ·
Competitive analysis · Smartstart · Competitive ratio

1 Introduction

Weconsider the onlineDial-a-Rideproblemon the line,where transportation requests
appear over time and need to be transported to their respective destinations by a single

In part supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the
Graduate School CE at TU Darmstadt. Also in part supported by the Independent Research Fund
Denmark, Natural Sciences, Grant DFF-0135-00018B.
A preliminary version of this article appeared in [8].

B Kevin Schewior
kevs@sdu.dk

Alexander Birx
alexander.birx@gmail.com

Yann Disser
disser@mathematik.tu-darmstadt.de

1 Darmstadt, Germany

2 Institute of Mathematics and Graduate School CE, TU Darmstadt, Darmstadt, Germany

3 Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01061-4&domain=pdf
http://orcid.org/0000-0002-2085-0454
http://orcid.org/0000-0003-2236-0210

Algorithmica

server. More precisely, each request is of the form σi = (ai , bi ; ri) and appears in
position ai ∈ R along the real line at time ri ≥ 0 and needs to be transported to
position bi ∈ R. The server starts at the origin, can move at unit speed, and has a
capacity c ∈ N∪ {∞} that bounds the number of requests it can carry simultaneously.
The objective is to minimize the completion time, i.e., the time until all requests have
been served. In this paper, we focus on the non-preemptive and open setting, where
the former means that requests can only be unloaded at their destinations, and the
latter means that we do not require the server to return to the origin after serving all
requests. Note that, in accordance with the literature (e.g., [9], we think of the real line
as a horizontal object, with −∞ on the very “left” and +∞ on the very “right”. Our
pictures, however, are turned sideways for a more compact representation.

We aim to bound the competitive ratio of the problem, i.e., the smallest ratio any
online algorithm can guarantee between the completion time of its solution compared
to an (offline) optimum solution that knows all requests ahead of time. To date, the best
known lower bound of 2.0346 on this ratio was shown by Bjelde et al. [9], already for
online TSP, where ai = bi for all requests (i.e., requests only need to be visited). The
best known upper bound of 2.9377 was achieved by the Smartstart algorithm [7].
Our results.Our first result is an improved lower bound for onlineDial-a-Ride on the
line. Importantly, since the bound of roughly 2.0346 was shown to be tight for open
online TSP [9], our new bound is the first time that open Dial-a-Ride on the line
can be strictly separated from open online TSP in terms of competitive analysis. In
addition, our bound is the currently best known lower bound even for general metric
spaces. Specifically, we show the following.

Theorem 1 Let ρ ≈ 2.0585 be the second largest root of the polynomial 4ρ3−26ρ2+
39ρ −5. There is no (ρ −ε)-competitive algorithm for open, non-preemptive (c < ∞)
online Dial-a-Ride on the line for any ε > 0.

Our construction is a non-trivial variation of the construction achieving roughly
2.0346 for online TSP [9]. This construction is comprised of an initial request, a first
stage consisting in turn of different iterations, and a second stage. We show that, by
using a proper transportation request as initial request, we can adapt a single iteration
of the first stage as well as the second stage to achieve the bound of roughly 2.0585
in the Dial-a-Ride setting.

Our second result is an improved algorithm SmarterStart for online Dial-a-
Ride on the line. This algorithm improves the waiting strategy of the Smartstart
algorithm, which was identified as a weakness in [7]. We show that this modification
improves the competitive ratio of the algorithm and give a tight analysis. Specifically,
we show the following.

Theorem 2 The competitive ratio of SmarterStart is (roughly) 2.6662.

The general idea of SmarterStart is to improve the tradeoff between the case
when the algorithmwaits before starting its final schedule and the casewhen it starts the
final schedule immediately. Our modification of Smartstart significantly improves
the performance in the former case, while only moderately degrading the performance
in the latter case. Overall, this results in an improved worst-case performance.

123

Algorithmica

Table 1 Overview of the best known bounds for online Dial-a-Ride on the line (top), and online Dial-a-
Ride on general metric spaces (bottom)

Open Closed

Lower bound Upper bound Lower bound Upper bound

Line

Non-preemptive 2.0585 (Thm. 1) 2.6662 (Thm. 2) 1.75 [9] 2

Preemptive 2.04 2.41 [9] 1.64 2

TSP 2.04 [9] 2.04 [9] 1.64 [3] 1.64 [9]

General

Non-preemptive 2.0585 (Thm. 1) 3.41 [18] 2 2 [1, 13]

Preemptive 2.04 3.41 2 2

TSP 2.04 2.5 [3] 2 [3] 2 [3]

Results are split into the non-preemptive case (with c < ∞), the preemptive case, and the TSP-case,
where source and destination of each request coincide. Bold results are original, all other results follow
immediately

Related work. The online Dial-a-Ride problem has received considerable attention
in the past (e.g. [1, 7, 9, 10, 13, 17]). Table 1 gives an overview of the currently best
known bounds on the line for open onlineDial-a-Ride and its special case open online
TSP. Note that we only consider the case of bounded capacity c < ∞. For c = ∞,
the best known lower bound is 2.04 (via open online TSP) and the best known upper
bound is 2.41 [9, Theorem 6.3].

The following results are known for closed onlineDial-a-Ride: For general metric
spaces, the competitive ratio is exactly 2, both for onlineDial-a-Ride aswell as online
TSP [1, 3, 13]. On the line, a better upper bound is known only for online TSP, where
the competitive ratio is exactly (9 + √

17)/8 ≈ 1.6404 [3, 9]. The best known lower
bound for closed, non-preemptive Dial-a-Ride on the line is 1.75 [9].

When the objective is to minimize the maximum (or average) flow time, on many
metric spaces no online algorithm can be competitive [19, 21]. Hauptmeier et al. [16]
showed that a competitive algorithm is possible if we restrict ourselves to instances
with “reasonable” load. Krumke et al. [20] and Bienkowski et al. [4, 5] minimized
the sum of completion times. Yi and Tian [23] considered online Dial-a-Ride with
deadlines, where the objective is to maximize the number of requests that are served in
time. Other interesting variants of online Dial-a-Ride where destinations of requests
are only revealed upon their collection were studied by Lipmann et al. [22] as well as
Yi and Tian [24].

For an overview of results for the offline version of Dial-a-Ride on the line, see
[12]. Without release times, Gilmore and Gomory [14] and Atallah and Kosaraju [2]
gave a polynomial time algorithm for closed, non-preemptiveDial-a-Ride on the line
with capacity c = 1. Guan [15] showed that the closed, non-preemptive problem is
hard for c = 2, and Bjelde et al. [9] extended this result for any finite capacity c ≥ 2 in
both the open and the closed variant. Bjelde et al. [9] also showed that the problemwith
release times is already hard for finite c ≥ 1 in both variants, and Krumke [18] gave a
3-approximation algorithm for the closed variant. The complexity for the case c = ∞

123

Algorithmica

remains open. For closed, preemptive Dial-a-Ride on the line without release times,
Atallah and Kosaraju [2] gave a polynomial time algorithm for c = 1 and Guan [15]
for c ≥ 2. Charikar and Raghavachari [11] presented approximation algorithms for
the closed case without release times on general metric spaces.

2 General Lower Bound

In this section, we prove Theorem 1. Let c < ∞ and Alg be a deterministic online
algorithm for open online Dial-a-Ride. Let ρ ≈ 2.0585, be the second largest root
of the polynomial 4ρ3 − 26ρ2 + 39ρ − 5. We describe a request sequence σρ such
that Alg(σρ) ≥ ρOpt(σρ).

We first give a high-level description of our construction disregarding many techni-
cal details. Our construction is based on that in [9] for the TSP version of the problem.
That construction consists of two stages: After an initial request (1, 1; 1) (assuming
w.l.o.g. Alg’s position at time 1 is at most 0), the first stage starts. This stage consists
of a loop, which ends as soon as two so-called critical requests are established. The
second stage consists of augmenting the critical requests by suitable additional ones
to show the desired competitive ratio. A single iteration of the loop only yields a lower
bound of roughly 2.0298, but as the number of iterations approaches infinity one can
show the tight bound of roughly 2.0346 in the limit.

In the Dial-a-Ride setting, we show a lower bound of roughly 2.0585 using the
same general structure but only a single iteration. Our additional leeway stems from
replacing the initial request (1, 1; 1) with c initial requests of the form (1, δ; 1) where
δ > 1: At the time when an initial request is loaded, we show that w.l.o.g. all c
requests are loaded and then proceed as we did when (1, 1; 1) was served. In the
new situation, the algorithm has to first deliver the c initial requests to be able to
serve additional requests. For the optimum, the two situations however do not differ,
because in the new situation there will be an additional request to the right of δ later
anyway. Interestingly, this leeway turns out to be sufficient not only to create critical
requests (w.r.t. a slightly varied notion of criticality) for a competitive ratio of larger
than 2.0298 but even strictly larger than 2.0346. The second stage has to be slightly
adapted to match the new notion of criticality. It remains unclear how to use multiple
iterations in our setting.

We start by making observations that will simplify the exposition. Consider a sit-
uation in which the server is fully loaded.1 First note that it is essentially irrelevant
whether we assume that the server, without delivering any of the loaded requests, can
still serve requests (ai , bi ; ti) for which ai = bi : If it can, we simply move ai and bi
by ε > 0 apart, forbidding the server to serve it before delivering one of the loaded
requests first. Therefore, we assume for simplicity that, when fully loaded, the server
has to first deliver a request before it can serve any other one. We note that, in our
construction, the above idea can be implemented without loss, not even in terms of ε

since we are applying the above idea to O(1) requests.

1 Note that this crucially needs that the capacity is bounded.

123

Algorithmica

The latter discussion also motivates restricting the space of considered algorithms:
We call Alg eager if it, when fully loaded with requests with identical destinations,
immediately delivers these requests without detour. It is clear that we can transform
every algorithmAlg′ into an eager algorithmAlg′

eager by letting it deliver the requests

right away, waiting until Alg′ would have delivered them, and then letting it continue
like Alg′. Since Alg′ cannot collect or serve other requests while being fully loaded,
we have Alg′

eager(σ) ≤ Alg′
(σ) for every request sequence σ .

Observation 1 Every algorithm for online Dial-a-Ride can be turned into an eager
algorithm with the same competitive ratio.

Thus, we may assume that Alg is eager. We now give some intuition on criti-
cal requests. Suppose that we have two requests σ R = (t R, t R; t R) and σ L =
(−t L ,−t L , t L) with t L ≤ t R to the right and to the left of the origin, respectively, and
that Alg serves σ R first at some time t∗ ≥ (2ρ − 2)t L + (ρ − 2)t R . Now suppose we
could forceAlg to serve σ L directly after σ R , even if additional requests are released.
Then we could just release the request σ R∗ = (t R, t R, 2t L + t R) and we would have

Alg(σρ) = t∗ + 2t L + 2t R ≥ 2ρt L + ρt R = ρOpt(σρ),

since Opt can serve the three requests in time 2t L + t R by serving σ L first. In fact,
we will show that we can force Alg into this situation (or a comparably bad situation)
if the requests σ R = (t R, t R; t R) and σ L = (−t L ,−t L , t L) satisfy the following
properties. To describe the trajectory of a server, we use the notation “move(a)” for
the tour that moves the server from its current position with unit speed to the point
a ∈ R.

Definition 1 Wecall the last two requestsσ R = (t R, t R; t R) andσ L = (−t L ,−t L ; t L)

of a request sequence with 0 < t L ≤ t R critical for Alg if the following conditions
hold:

(i) Both toursmove(−t L)⊕move(t R) andmove(t R)⊕move(−t L) (started at time0)
serve all requests presented until time t R .

(ii) Alg serves both σ R and σ L after time t R and Alg’s position at time t R lies
between t R and −t L .

(iii) If Alg serves σ R before σ L , it does so no earlier than t R∗ := (2ρ − 2)t L + (ρ −
2)t R .

(iv) If Alg serves σ L before σ R , it does so no earlier than t L∗ := (2ρ − 2)t R + (ρ −
2)t L .

(v) It holds that t R

t L
≤ 4ρ2−30ρ+50

−8ρ2+50ρ−66
≈ 1.717.

Lemma 1 If there is a request sequence with two critical requests for Alg, we can
release additional requests such that Alg is not (ρ − ε)-competitive on the resulting
instance for any ε > 0.

Definition 1 differs from [9, Definition 4.2] only in the right-hand side of property
(v), which is 2 in the original paper. Lemma 1 has been proved in [9, Lemma 4.3] for

123

Algorithmica

slightly smaller values of ρ but request sequences that satisfy the weaker properties
of [9, Definition 4.2], however, a careful inspection of the proof of [9, Lemma 4.3]
shows that the statement of Lemma 1 also holds in our setting.

2.1 Analysis of the First Stage

In this subsection, we describe the first stage. Recall that our goal in the first stage is
to construct a request sequence σρ that satisfies all properties of Definition 1.

Here and throughout, we let pos (t) denote the position of Alg’s server at time t .
We assume w.l.o.g. that pos (1) ≤ 0 (the other case is symmetric). Now, let

δ := 3ρ2 − 11

−3ρ3 + 15ρ − 4
≈ 2.414

and let c initial requests σ R
(j) = (1, δ; 1) with j ∈ {1, . . . , c} appear. These are the

only requests appearing in the entire construction with a starting point differing from
the destination. We make a basic observation on how Alg has to serve these requests.

Lemma 2 Alg cannot collect any of the requests σ R
(j) before time 2. If Alg collects

the requests after time ρδ − (δ − 1) or serves c′ < c requests before loading the
remaining c − c′, it is not (ρ − ε)-competitive.

Proof Alg cannot collect any σ R
(j) before time 2 since its position at time 1 is pos (1) ≤

0. Moreover,Alg is not (ρ −ε)-competitive if it collects one of the requests after time
ρδ − (δ − 1), since it cannot finish before time ρδ and we have

Alg({σ R
(j)} j∈{1,...,c}) ≥ ρδ = ρOpt({σ R

(j)} j∈{1,...,c}).

AssumeAlg serves c′ < c requests before loading the remaining c−c′. Then, because
of

δ = 3ρ2 − 11

−3ρ3 + 15ρ − 4

ρ>2.032
>

1

3 − ρ
, (1)

we have

Alg({σ 0
R}) ≥ 1 + δ + 2(δ − 1)

(1)
> ρδ = ρOpt({σ 0

R}).

This completes the proof. �

We hence may assume that Alg loads all c requests σ R

(j) at the same time. Let

t L ∈ [2, ρδ − (δ − 1)) be the time Alg loads the c requests σ R
(j). We start the first

stage and present a variant of a single iteration of the construction in [9]: We let the
request σ L = (−t L ,−t L ; t L) appear and define the function

�(t) = (4 − ρ) · t − (2ρ − 2) · t L ,

123

Algorithmica

Fig. 1 Left: Alg (green) serves σL (yellow) before σR (violet) at time t∗L . Right: Alg serves σR before the

request σL at time t∗R . Both: The requests σ
j
0 are red and the line � is the dashed black line (Color figure

online)

which can be viewed as a line in the path-time diagram. Because of ρ > 2, we have
�(t L) = (6 − 3ρ)t L < 0 < pos

(
t L

)
, i.e., Alg’s position at time t L is to the right of

the line �. Thus, Alg crosses the line � before it serves σ L . Let t R be the time Alg
crosses � for the first time and let the request σ R = (t R, t R; t R) appear. Assume Alg
crosses the line � and serves σ R before σ L . Then it does not serve σ R before time

t R + |�(t R) − t R | = (2ρ − 2)t L + (ρ − 2)t R = t R∗ , (2)

where we use that �(t R) = pos
(
t R

) ≤ t R for the first equality. Now assume Alg

crosses � at time t R ≥ 3ρ−5
7−3ρ t

L and serves σ L before σ R . Then it does not serve

serve σ L before time

t R + |�(t R) − (−t L)| = (5 − ρ)t R − (2ρ − 3)t L

≥ (2ρ − 2)t R + (7 − 3ρ)
3ρ − 5

7 − 3ρ
t L − (2ρ − 3)t L

= (2ρ − 2)t R + (ρ − 2)t L = t L∗ . (3)

See Fig. 1 for an illustration. The following lemma shows that the two requests cannot
be served before these respective times by establishing that indeed t R ≥ 3ρ−5

7−3ρ t
L .

Lemma 3 Alg can neither serve σ L before time t L∗ nor can it serve σ R before time
t R∗ .

Proof SinceAlg is eager, it delivers the c requests σ R
(j) without waiting or detour, i.e.,

we have pos
(
t L + (δ − 1)

) = δ. Furthermore, we have

�(t L + (δ − 1)) = (4 − ρ)(t L + (δ − 1)) − (2ρ − 2)t L

= (6 − 3ρ)t L + (4 − ρ)(δ − 1)

≤ (6 − 3ρ)(ρδ − (δ − 1)) + (4 − ρ)(δ − 1)

123

Algorithmica

= 3ρ4 − 18ρ3 + 3ρ2 + 50ρ − 14

3ρ3 − 15ρ + 4
ρ < 2.06

< δ = pos
(
t L + (δ − 1)

)
,

i.e., Alg’s position at time t L + (δ − 1) is to the right of �. The earliest possible time
Alg crosses � is the solution of

�(t R) = (4 − ρ)t R − (2ρ − 2)t L = pos
(
t L + (δ − 1)

)
+ t L + (δ − 1) − t R,

which is t R = 2ρ−1
5−ρ

t L + 2δ−1
5−ρ

. The inequality

(
3ρ − 5

7 − 3ρ
− 2ρ − 1

5 − ρ

)
t L = 3ρ2 + 3ρ − 18

3ρ2 − 22ρ + 35
t L

≤ 3ρ2 + 3ρ − 18

3ρ2 − 22ρ + 35
(ρδ − (δ − 1)))

= 3ρ3 + 6ρ2 − 15ρ − 18

3ρ4 − 15ρ3 − 15ρ2 + 79ρ − 20

= 2δ − 1

5 − ρ
,

implies that we have

t R ≥ 3ρ − 5

7 − 3ρ
t L . (4)

Because of inequality (2)Alg does not serve σ R before t R∗ and because of the inequal-
ities (4) and (3) it does not serve σ L before time t L∗ . �

In fact, also the other properties of critical requests are satisfied.

Lemma 4 The requests σ R and σ L of the request sequence σρ are critical.

Proof We have to show that the requests σ R and σ L of the request sequence σρ satisfy
the properties (i) to (v) of Definition 1. The release time of every request is equal to its
starting position, thus every request can be served/loaded immediately once its starting
position is visited and property (i) of Definition 1 is satisfied. At time t R Alg has not
served σ R , because for that it would have needed to go right from time 0 on; it has
not served σ L either, because during the period of time [tL , tR] Alg and σ L were on
different sides of �. This establishes the first part of (ii) of Definition 1. Furthermore
at time t R Alg is at position pos

(
t R

) = (4 − ρ)t R − (2ρ − 2)t L with

−t L ≤ (4 − ρ)t R − (2ρ − 2)t L ≤ t R .

Therefore, the second part of (ii) of Definition 1 is satisfied as well.

123

Algorithmica

Lemma 3 shows that (iii) and (iv) of Definition 1 are satisfied. It remains to show
that property (v) is satisfied. For this we need to examine the release time t R of
σ R . The time t R is largest if Alg tries to avoid crossing the line � for as long as
possible, i.e., it continues to move right after serving the requests σ R

(j). Then, we have

pos (t) = 1 − t L + t for t ∈ [t L , t R] and t R is the solution of

1 − t L + t R = (4 − ρ)t R − (2ρ − 2)t L .

Thus, in general, we have t R ≤ 2ρ−3
3−ρ

t L + 1
3−ρ

, i.e.,

t R

t L
≤ 2ρ − 3

3 − ρ
+ 1

(3 − ρ)t L
t L≥2≤ 4ρ − 5

6 − 2ρ
. (5)

For property (v), we need t R

t L
≤ 4ρ2−30ρ+50

−8ρ2+50ρ−66
. This is satisfied if

4ρ − 5

6 − 2ρ
≤ 4ρ2 − 30ρ + 50

−8ρ2 + 50ρ − 66
,

which, for our value of ρ ≈ 2.0585, is equivalent to

4ρ3 − 26ρ2 + 39ρ − 5 ≥ 0,

which is true by definition of ρ. �

This concludes the description of the first stage.

2.2 Analysis of the Second Stage

In this subsection, we prove Lemma 1 by describing the second stage and showing
that it fulfills its purpose. Let the requests σ L and σ R be critical. Furthermore, let
p0 ∈ {−t L , t R} be the starting position of the request σ0 ∈ {σ L , σ R} that is served first
by Alg and let p1 ∈ {−t L , t R} be the starting position of the request σ1 ∈ {σ L , σ R}
that is not served first by Alg. By properties (iii) and (iv) of Definition 1, Alg cannot
serve σ0 before time (2ρ − 2)|p1| + (ρ − 2)|p0|. Thus, we have

Alg(σρ) ≥ (2ρ − 2)|p1| + (ρ − 2)|p0| + |p0 − p1| = (2ρ − 1)|p1| + (ρ − 1)|p0|.
(6)

We have equality in inequality (6) if Alg serves σ0 at the earliest possible time and
then moves directly to position p1. However, in general Alg does not need to do this
and instead can wait. At time t ≥ max{|p0|, |p1|}, we have

Alg(σρ) ≥ t + |pos (t) − p0| + |p0 − p1|

123

Algorithmica

if Alg still has to serve σ0 and

Alg(σρ) ≥ t + |pos (t) − p1|

if σ0 is served and only σ1 is left to be served. We want to measure the delay of Alg
at a time t ≥ max{|p0|, |p1|}, i.e., the difference between the time Alg needs at least
to serve both requests σ0 and σ1 and the time (2ρ − 1)|p1| + (ρ − 1)|p0|. We define
for t ≥ max{|p0|, |p1|} the function

delay(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t + |pos (t) − p0| − (ρ − 2)|p0| − (2ρ − 2)|p1| if σ0 is not

served at t,

t + |pos (t) − p1| − (ρ − 1)|p0| − (2ρ − 1)|p1| if σ0 is served

at t, but σ1 not,

undefined otherwise.

We make the following observation about delay.

Observation 2 Let t ≥ max{|p0|, |p1|} be a time at which σ1 is not served yet. The
earliest time Alg can serve σ1 is (2ρ − 1)|p1| + (ρ − 1)|p0| + delay(t).

Lemma 5 There is a W ≥ 0 with

delay

(
2|p1| + |p0| + W

ρ − 1

)
= W

Proof Because of property (ii) ofDefinition 1, at timemax{|p0|, |p1|} neither σ0 nor σ1
has been served byAlg yet. SinceAlg serves σ1 after σ0, and sincemax{|p0|, |p1|} =
t R , the request σ1 is not served before time

max{|p0|, |p1|} + |p0| + |p1| ≥ 2|p1| + |p0|,

i.e, delay(2|p1| + |p0|) is defined. Because of properties (iii) and (iv) of Definition 1,
σ0 is not served before time (2ρ − 2)|p1|+ (ρ − 2)|p0|. Thus, for t ≥ (2ρ − 2)|p1|+
(ρ − 2)|p0|, we have delay(t) ≥ 0. We have

2|p1| + |p0|
Def 1 (v)≥ 2|p1| + (3 − ρ)

−8ρ2 + 50ρ − 66

4ρ2 − 30ρ + 50
|p1| + (ρ − 2)|p0|

2 < ρ < 2.5
> (2ρ − 2)|p1| + (ρ − 2)|p0|, (7)

i.e. delay(2|p1|+|p0|) ≥ 0. If delay(2|p1|+|p0|) = 0, we haveW = 0 and are done.
Otherwise, by inequality (7), we have delay(2|p1| + |p0|) > 0. Note that Alg needs
to serve σ1 at some point to be (ρ − ε)-competitive. Let W ∗ ≥ 0 be chosen such that
Alg serves σ1 at time 2|p1|+ |p0|+W ∗/(ρ − 1); such a value exists again because σ1

123

Algorithmica

has not been served by Alg at time 2|p1| + |p0|. Therefore

delay

(
2|p1| + |p0| + W ∗

ρ − 1
− ε′

)

is defined for some sufficiently small ε′ ≤ |p1|. Define the function

f (W) := delay

(
2|p1| + |p0| + W

ρ − 1

)
− W .

Note that f is continuous and we have f (0) > 0. If

delay

(
2|p1| + |p0| + W ∗

ρ − 1
− ε′

)
≤ W ∗

ρ − 1
− ε′ ρ>2

< W ∗ − (ρ − 1)ε′,

we have f (W ∗ − (ρ − 1)ε′) < 0 and we find W in the interval (0,W ∗ − (ρ − 1)ε′].
Otherwise, we have

delay

(
2|p1| + |p0| + W ∗

ρ − 1
− ε′

)
>

W ∗

ρ − 1
− ε′.

By Observation 2, Alg has not served σ1 at time

(2ρ − 1)|p1| + (ρ − 1)|p0| + W ∗

ρ − 1
− ε′ ρ>2,ε′≤|p1|

> 2|p1| + |p0| + W ∗

ρ − 1
.

This is a contradiction to the fact that W ∗ was chosen such that Alg serves σ1 at time
2|p1| + |p0|+ W ∗

ρ−1 . �

Lemma 6 Let W ≥ 0 with

delay

(
2|p1| + |p0| + W

ρ − 1

)
= W .

Then Alg serves σ0 no later than time 2|p1| + |p0| + W
ρ−1 .

Proof Assume we have

2|p1| + |p0| + W

ρ − 1
≥ (2ρ − 2)|p1| + (ρ − 2)|p0| + W . (8)

Then, by definition of W and Observation 2, Alg can serve σ1 at time

(2ρ − 1)|p1| + (ρ − 1)|p0| + delay

(
2|p1| + |p0| + W

ρ − 1

)

= (2ρ − 1)|p1| + (ρ − 1)|p0| + W . (9)

123

Algorithmica

Because of inequality (8), this can only be the case if Alg serves σ0 no later than time

(2ρ − 1)|p1| + (ρ − 1)|p0| + W − |p1| − |p0| = (2ρ − 2)|p1| + (ρ − 2)|p0| + W
(8)≤ 2|p1| + |p0| + W

ρ − 1
.

Thus, it remains to show inequality (8). Because of property (i) of Definition 1 all
requests can be served by the tours move(p0)⊕move(p1) and move(p1)⊕move(p0).
By Observation 2 and by (9), we have Alg(σρ) ≥ (2ρ − 1)|p1| + (ρ − 1)|p0| + W .
Thus, if we have

Alg(σρ) ≥ (2ρ − 1)|p1| + (ρ − 1)|p0| + W

> (ρ − ε)(2|p1| + |p0|)
≥ (ρ − ε)Opt(σρ),

Alg is not (ρ − ε)-competitive. Therefore, we may assume

(2ρ − 1)|p1| + (ρ − 1)|p0| + W ≤ (ρ − ε)(2|p1| + |p0|),

and thus

W ≤ (ρ − ε)(2|p1| + |p0|) − (2ρ − 1)|p1| − (ρ − 1)|p0|
= (1 − 2ε)|p1| + (1 − ε)|p0|
< |p1| + |p0|. (10)

Inequality (8) now is equivalent to the inequality

2|p1| + |p0| − ((2ρ − 2)|p1| + (ρ − 2)|p0|)
1 − 1

ρ−1

= (ρ − 1)((4 − 2ρ)|p1| + (3 − ρ)|p0|)
ρ − 2

= (ρ − 1)(4 − 2ρ)

ρ − 2
|p1| + (ρ − 1)(3 − ρ)

ρ − 2
|p0|

Def 1 (v)≥ |p0| + (2 − 2ρ)|p1|

+ (−ρ2 + 3ρ − 1)(−8ρ2 + 50ρ − 66)

(ρ − 2)(4ρ2 − 30ρ + 50)
|p1|

≥ |p0| + 5ρ3 − 36ρ2 + 86ρ − 67

2ρ3 − 19ρ2 + 55ρ − 50
|p1|

2 < ρ < 2.5
> |p0| + |p1|
(10)
> W

123

Algorithmica

Fig. 2 Case 1:Alg (green) servesσ1 (red) beforeσ+
0 (violet).We assumedelay(t) = W = 2 for t ≥ t∗0 +W ,

where t∗0 is the earliest time that Alg can serve σ0. Opt is blue and the request σ0 is yellow (Color figure
online)

if we solve inequality (8) for W . �

Now we have all ingredients to prove Lemma 1.

Proof of Lemma 1 Let W ≥ 0 with

delay

(
2|p1| + |p0| + W

ρ − 1

)
= W .

We present the request

σ+
0 = (p+

0 , p+
0 ; t+0)

:=
(
p0 + sgn(p0)

W

ρ − 1
, p0 + sgn(p0)

W

ρ − 1
; 2|p1| + |p0| + W

ρ − 1

)

and distinguish two cases.
Case 1: At time t+0 , Alg is at least as close to p1 as to p+

0 or it serves σ1 before σ+
0 .

See Fig. 2 for an illustration of this case. In this case, we do not present additional
requests. By Lemma 6, Alg has served σ0 at time t+0 or before and by Observation 2
it does not serve σ1 earlier than time (2ρ − 1)|p1| + (ρ − 1)|p0| + W . Thus, we have

Alg(σρ) ≥ (2ρ − 1)|p1| + (ρ − 1)|p0| + W + |p1| + |p0| + W

ρ − 1

≥ ρ

(
2|p1| + |p0| + W

ρ − 1

)

= ρOpt(σρ).

Case 2: At time t+0 , Alg is closer to p+
0 than to p1 and it serves σ+

0 first.We assume
that the offline server continues moving away from the origin after serving σ+

0 at time
|p+

0 |. Then, the position of the offline server at time t ≥ |p1| is sgn(p0)t + 2p1. We
denote by

M(t) := sgn(p0)t + 3p1
2

123

Algorithmica

Fig. 3 Case 2.1: The midpoint of Opt’s position and p1 (dahsed line) reaches p+
0 (violet) the same time

as Alg (green). No new requests are released. In this figure, we have delay(t) = W = 2 for t ≥ t∗0 + W .
Opt is blue, the request σ0 is yellow, and the request σ1 is red (Color figure online)

the midpoint between the current position of the offline server and the position p1.
Note that the time M−1(p), when the midpoint is at position p (on the same side of
p1 as p0), is given by

M−1(p) := |2p − 3p1|.

We again distinguish two cases.
Case 2.1: Alg does not serve σ+

0 until time M−1(p+
0). See Fig. 3 for an illustration

of this case. In this case, we do not present additional requests. Since we are in Case
2, neither σ+

0 nor σ1 is served at time M−1(p+
0). Thus, we have

Alg(σρ) ≥ M−1(p+
0) + |p+

0 | + |p1|
= |2p+

0 − 3p1| + |p+
0 | + |p1|

= |2p0 + 2sgn(p0)
W

ρ − 1
− 3p1| + |p0| + W

ρ − 1
+ |p1|

= 3|p0| + 4|p1| + 3
W

ρ − 1

= ρ|p0| + (3 − ρ)|p0| + 4|p1| + 3
W

ρ − 1
Def. 1 (v)≥ ρ|p0| + (3 − ρ)(−8ρ2 + 50ρ − 66)

4ρ2 − 30ρ + 50
|p1| + 4|p1| + 3

W

ρ − 1

= ρ|p0| + 4ρ3 − 29ρ2 + 48ρ + 1

2ρ2 − 15ρ + 25
|p1| + 3

W

ρ − 1
2 < ρ < 2.5

> ρ|p0| + 2ρ|p1| + 3
W

ρ − 1
ρ < 3
> ρ

(
|p0| + 2|p1| + W

ρ − 1

)

= ρOpt(σρ).

123

Algorithmica

Fig. 4 Case 2.2:Alg (green) serves σ+
0 (violet) before the midpoint of Opt’s position and p1 (dashed line)

reaches σ+
0 . Thus, σ+

0 (brown) is released. We have delay(t) = W = 0 for t ≥ t� + W . Opt is shown in
blue, σ0 is shown in yellow, and σ1 is shown in red (Color figure online)

Case 2.2: Alg serves σ+
0 before time M−1(p+

0).
See Fig. 4 for an illustration of this case. By definition of W , the delay function is
defined for time t+0 , hence Alg has not served σ1 before time t+0 . Note that, at time
t+0 ,Alg is not on the same side of the midpoint M(t+0) as this unserved request (using
that we are in Case 2) and the midpoint is moving towards the server, so the server
and midpoint must eventually meet. Additionally, since Alg serves σ+

0 before time
M−1(p+

0) (using that we are in Case 2.2), i.e., the time that the midpoint reaches p+
0 ,

there is a (first) time tmid ≥ t+0 at which Alg has served σ+
0 and M(tmid) = pos (tmid).

We present the request

σ++
0 = (p++

0 , p++
0 ; t++

0) := (sgn(p0)tmid + 2p1, sgn(p0)tmid + 2p1; tmid).

Note that Alg is at the midpoint between p++
0 and p1 and, thus, both tours

move(p++
0) ⊕move(p1) and move(p1) ⊕move(p++

0) incur identical costs for Alg.
We have

Alg(σρ) ≥ tmid + 3

(|sgn(p0)tmid + 2p1 − p1|
2

)
= 5tmid − 3|p1|

2

We have Opt(σρ) = tmid, i.e., we want to show

Alg(σρ) ≥ 5tmid − 3|p1|
2

≥ ρtmid = ρOpt(σρ). (11)

Inequality (11) is equivalent to

(5 − 2ρ)tmid ≥ 3|p1|. (12)

Since ρ < 2.5, the coefficient (5−2ρ) of tmid is positive. Thus we may assume tmid is
minimal to show the inequality (12). By definition of tmid, σ

+
0 is already served at time

tmid. Hence, tmid is minimum if, starting at time t+0 at position pos
(
t+0

)
, Alg serves

σ+
0 and then moves towards the origin. Then, tmid is the solution of the equation

123

Algorithmica

sgn(p0)t
+
0 + |pos (

t+0
) − p+

0 | + p+
0 − sgn(p0)tmid = sgn(p0)tmid + 3p1

2
. (13)

Because of Lemma 6, the request σ0 is already served at time t+0 . Furthermore, since
the position of σ1 has not been visited yet at time t+0 , we have sgn(p0)pos

(
t+0

)
>

sgn(p0)p1, i.e.,

|pos (
t+0

) − p1| = sgn(p0)(pos
(
t+0

) − p1) > 0

and thus, because of −sgn(p0)p1 = |p1|, we get

delay(t+0) = t+0 + |pos (
t+0

) − p1| − (ρ − 1)|p0| − (2ρ − 1)|p1|
= t+0 + sgn(p0)pos

(
t+0

) − sgn(p0)p1 − (ρ − 1)|p0| − (2ρ − 1)|p1|
= t+0 + sgn(p0)pos

(
t+0

) + |p1| − (ρ − 1)|p0| − (2ρ − 1)|p1|. (14)

Solving equation (14) for sgn(p0)pos
(
t+0

)
gives

sgn(p0)pos
(
t+0

)

= delay

(
2|p1| + |p0| + W

ρ − 1

)
− W

ρ − 1

+(ρ − 2)|p0| + (2ρ − 4)|p1|
= W − W

ρ − 1
+ (ρ − 2)|p0| + (2ρ − 4)|p1|

= ρ − 2

ρ − 1
W + (ρ − 2)|p0| + (2ρ − 4)|p1|

ρ < 3
<

W

ρ − 1
+ (ρ − 2)|p0| + (2ρ − 4)|p1|

Def 1 (v)≤ W

ρ − 1
+

(
(ρ − 2) + (2ρ − 4)

4ρ2 − 30ρ + 50

−8ρ2 + 50ρ − 66

)
|p0|

1.9 < ρ < 4.3
<

W

ρ − 1
+ |p0|

= |p+
0 |

sgn(p+
0) = sgn(p0)= sgn(p0)p

+
0 . (15)

Thus, we have

|pos (
t+0

) − p+
0 | = sgn(p0)(p

+
0 − pos

(
t+0

)
) > 0 (16)

Using inequality (16) and plugging inequality (15) into inequality (13) gives us

123

Algorithmica

sgn(p0)tmid = 1

3
(2sgn(p0)t

+
0 + 2|pos (

t+0
) − 2p+

0 | + 2p+
0 − 3p1)

(16)= 1

3
(2sgn(p0)t

+
0 + 2sgn(p0)p

+
0 − 2sgn(p0)pos

(
t+0

) + 2p+
0 − 3p1)

= 1

3

(
−7p1 + 6p0 + (6sgn(p0))W

ρ − 1
− 2sgn(p0)pos

(
t+0

))

(15)= 1

3

(
−(15 − 4ρ)p1 + (10 − 2ρ)p0 + (10 − 2ρ)sgn(p0)W

ρ − 1

)
(17)

Note that we also used sgn(p0) = sgn(p+
0) = −sgn(p1). Multiplying equality (17)

with sgn(p0) gives us

tmid = 1

3

(
(15 − 4ρ)|p1| + (10 − 2ρ)|p0| + (10 − 2ρ)W

ρ − 1

)
. (18)

By substituting (18) into (12) and noting that it is hardest to satisfy, when W = 0, we
get

|p0|
|p1| ≤ 4ρ2 − 30ρ + 50

−8ρ2 + 50ρ − 66
,

which is true due to Definition 1 (v). �

This completes the proof of Theorem 1.

3 An Improved Algorithm

One of the simplest approaches for an online algorithm to solve Dial-a-Ride is the
following: Always serve the set of currently unserved requests in an optimum offline
schedule and ignore all new incoming requests while doing so. Afterwards, repeat
this procedure with all ignored unserved requests until no new requests arrive. This
simple algorithm that is often called Ignore [1] has a competitive ratio of exactly 4 [7,
18]. The main weakness of Ignore is that it always starts its schedule immediately.
Ascheuer et al. showed that it is beneficial if the server waits sometimes before starting
a schedule and introduced the Smartstart algorithm [1], which has a competitive
ratio of roughly 2.94 [7].

We define L(t, p, R) to be the smallest length of a schedule that starts at position p
at time t and serves all requests in R ⊆ σ after they appeared (i.e., the schedule must
respect release times). In other words, L(t, p, R) is the earliest possible completion
time of a schedule for R that is only allowed to start at time t minus t . For the description
of online algorithms, we denote by t the current time and by Rt the set of requests that
have appeared until time t but have not been served yet.

123

Algorithmica

Algorithm 1: Smartstart
p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, p j , Rt)/(Θ − 1) do
wait

t j ← t
S j ← optimal offline schedule serving Rt starting from p j
execute S j
p j+1 ← current position

The algorithm Smartstart is given in Algorithm 1. Essentially, at time t , Smart-
startwaits before starting an optimal schedule to serve all available requests at time

min
t ′≥t

{
t ′ ≥ L(t ′, p, Rt ′)

Θ − 1

}
, (19)

where p is the current position of the server andΘ > 1 is a parameter of the algorithm
that scales the waiting time. Importantly, like Ignore, Smartstart ignores incoming
requests while executing a schedule.

Birx andDisser identified that Smartstart’s waiting routine defined by inequality
(19) has a critical weakness [7, Lemma 4.1]. It is possible to lure the server to any
position q in time q + ε for every ε > 0. Roughly speaking, a request σ1 = ((Θ −
1)ε, (Θ −1)ε; (Θ −1)ε) is released first and then for every i ∈ {2, . . . , q/ε} a request
σi = (iε, iε; iε) follows. The schedule to serve the request σ1 is started at time ε and
finished at time 2ε. The schedule to serve the request at position iε is not started earlier
than time

L(iε, (i − 1)ε, {σi })
Θ − 1

= |(i − 1)ε − iε|
Θ − 1

= ε

Θ − 1
. (20)

This time is (depending on the choice of Θ) earlier than the current time iε for every
i ≥ 2. Thus there is no waiting time for any schedule except the first one and the
server reaches position q at time q + ε. We see that the request sequence to lure
the server away heavily uses that inequality (19) relies on Smartstart’s current
position p, when computing the waiting time. Thus, we modify the waiting routine of
Smartstart to avoid luring accordingly. Denote by σ≤t the set of requests that have
been released until time t .

The improved algorithm SmarterStart is given in Algorithm 2. At time t , it waits
before starting an optimal schedule to serve all available requests at time

min
t ′≥t

{
t ′ ≥ L(t ′, 0, σ≤t ′)

Θ − 1

}
. (21)

Again, Θ > 1 is a parameter of the algorithm that scales the waiting time. In contrast
to Smartstart, the waiting time is dependent on the length of the optimum offline

123

Algorithmica

Algorithm 2: SmarterStart
p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, 0, σ≤t)/(Θ − 1) do
wait

t j ← t
S j ← optimal offline schedule serving Rt starting from p j
execute S j
p j+1 ← current position

schedule serving all requests that appeared until the current time and starting from the
origin. This guarantees that the server cannot be forced to reach any position q before
time q/(Θ − 1) since we always have L(t, 0, σ≤t) > q if σ≤t contains a request with
destination in position q.

We denote by by SmarterStart(σ) the length of SmarterStart’s trajectory.
Whenever we need to distinguish the behavior of SmarterStart for different values
of Θ > 1, we write SmarterStartΘ to make the choice of Θ explicit. Note that
the schedules used by Ignore, Smartstart and SmarterStart are NP-hard to
compute for 1 < c < ∞, see [9].

We let N ∈ N be the number of schedules needed by SmarterStart to serve σ .
The j-th schedule is denoted by S j , its starting time by t j , its starting point by p j , its
ending point by p j+1, and the set of requests served in S j by σS j . For convenience,
we set t0 = p0 = 0.

3.1 Upper Bound for SMARTERSTART

We show the upper bound of Theorem 2. The completion time of SmarterStart is

SmarterStart(σ) = tN + L(tN , pN , σSN). (22)

First, observe that, for all 0 ≤ t ≤ t ′, p, p′ ∈ R, and R ⊆ σ , we have

L(t, p, R) ≥ L(t ′, p, R), (23)

L(t, p, R) ≤ |p − p′| + L(t, p′, R), (24)

L(t, 0, σ≤t) ≤ L(t, 0, σ) ≤ L(0, 0, σ) ≤ Opt(σ). (25)

Similarly to [7], we distinguish between two cases, depending on whether or not
SmarterStart postpones the execution of the final schedule SN .

If SmarterStart postpones the execution of SN (i.e., it waits even though there
are unserved requests), the starting time of schedule SN is given by

tN = 1

Θ − 1
L(tN , 0, σ≤tN). (26)

123

Algorithmica

Otherwise, we have

tN = tN−1 + L(tN−1, pN−1, σSN−1) (27)

or

tN = rn . (28)

The former (27) is the case if the final schedule SN is executed directly after the second
to final schedule SN−1. The latter (28) is the case if there are no unserved requests at
the point of time the execution of SN−1 is finished and the last request is released at
time rn > 1

Θ−1 L(tN , 0, σ≤tN). We start by giving a lower bound on the starting time
of a schedule. It was shown in [7] that the schedule S j of Smartstart is never started

earlier than time
|p j+1|

Θ
. This changes slightly for SmarterStart.

Lemma 7 Algorithm SmarterStart does not start schedule S j earlier than time
|p j+1|
Θ−1 , i.e., we have t j ≥ |p j+1|

Θ−1 .

Proof Since p j+1 is the ending point of schedule S j , there is a request with destination
in p j+1 in the set σS j . All requests of σS j appear before time t j , which implies that
they are part of the set σ≤t j . Thus, we have

L(t j , 0, σ≤t j) ≥ |p j+1| (29)

and therefore

t j
(21)≥ L(t j , 0, σ≤t j)

Θ − 1

(29)≥ |p j+1|
Θ − 1

This completes the proof. �

Using Lemma 7, we can give an upper bound on the length of SmarterStart’s
schedules,which is an essential ingredient in our upper bounds.The following lemma is
proved similarly to [7, Lemma 3.2], which yields an upper bound of (1+ Θ

Θ+2)Opt(σ)

for the length of every schedule S j of Smartstart.

Lemma 8 For every schedule S j of SmarterStart, we have

L(t j , p j , σS j) ≤
(
1 + Θ − 1

Θ + 1

)
Opt(σ).

Proof First, we notice that, by (24), we have

L(t j , p j , σS j) ≤ |p j | + L(t j , 0, σS j) ≤ Opt(σ) + |p j |. (30)

Now, let σOpt
S j

be the first request of σS j that is picked up by Opt and let aOptj be its

starting position and rOptj be its release time. We have

123

Algorithmica

L(t j , p j , σS j) ≤ |aOptj − p j | + L(t j , a
Opt
j , σS j), (31)

again by the triangle inequality. SinceOpt serves all requests of σS j starting at position

aOptj no earlier than time rOptj , we have

L(t j , a
Opt
j , σS j)

rOptj ≤t j
≤ L(rOptj , aOptj , σS j) ≤ Opt(σ) − rOptj , (32)

which yields

L(t j , p j , σS j)
(31)≤ |aOptj − p j | + L(t j , a

Opt
j , σS j)

(32)≤ Opt(σ) + |aOptj − p j | − rOptj

t j−1 < rOptj
< Opt(σ) + |aOptj − p j | − t j−1. (33)

Since p j is the destination of a request,Opt needs to visit it. In the case that Opt visits
p j before collecting σOpt

S j
, Opt still has to collect and serve every request of σS j after

it has visited position p j the first time, which directly implies

(
1 + Θ − 1

Θ + 1

)
Opt(σ) > Opt(σ) ≥ L(|p j |, p j , σS j)

|p j |≤t j≥ L(t j , p j , σS j).

On the other hand, if Opt collects σOpt
S j

before visiting the position p j , we have

t j−1 + |aOptj − p j |
t j−1<rOptj

< rOptj + |aOptj − p j | ≤ Opt(σ), (34)

since Opt cannot collect σOpt
S j

before time rOptj and then still has to visit position p j .
Thus, we have

L(t j , p j , σS j)
(33)
< Opt(σ) + |aOptj − p j | − t j−1

(34)≤ 2Opt(σ) − 2t j−1

Lem. 7≤ 2Opt(σ) − 2
|p j |

Θ − 1
. (35)

This implies

L(t j , p j , σS j)
(30),(35)≤ min

{
Opt(σ) + |p j |, 2Opt(σ) − 2

Θ − 1
|p j |

}

≤
(
1 + Θ − 1

Θ + 1

)
Opt(σ),

123

Algorithmica

since the minimum above is largest if the two terms are equal, which is the case for
|p j | = Θ−1

Θ+1Opt(σ). �

The following proposition uses Lemma 8 to provide an upper bound for the com-

petitive ratio of SmarterStart, in the case that SmarterStart does have a waiting
period before starting the final schedule.

Proposition 1 In case SmarterStart postpones executing SN , we have

SmarterStart(σ)

Opt(σ)
≤ f1(Θ) := 2Θ2 − Θ + 1

Θ2 − 1
.

Proof AssumeSmarterStartwaits before starting thefinal schedule. ThenLemma8
yields the claimed bound:

SmarterStart(σ)
(22)= tN + L(tN , pN , σSN)

(26)= 1

Θ − 1
L(tN , 0, σ≤tN) + L(tN , pN , σSN)

(25)≤ 1

Θ − 1
Opt(σ) + L(tN , pN , σSN)

Lem. 8≤
(

1

Θ − 1
+ 1 + Θ − 1

Θ + 1

)
Opt(σ)

= 2Θ2 − Θ + 1

Θ2 − 1
Opt(σ).

This completes the proof. �

In comparison, the upper bound for the competitive ratio of Smartstart, in case

Smartstart has awaiting period before starting the final schedule is 2Θ2+2Θ
Θ2+Θ−2

Opt(σ)

[7, Proposition 3.2]. Note that SmarterStart’s bound is better than Smartstart’s
bound for Θ > 1.

It remains to examine the case that the algorithm SmarterStart has no waiting
period before starting thefinal schedule. For thisweuse two lemmas from [7] originally
proved for Smartstart, which are still valid for SmarterStart since they give
bounds on the optimum offline schedules independently of the waiting routine.

By x− := min{0,mini=1,...,n ai ,mini=1,...,n bi } we denote the leftmost position
and by x+ := max{0,maxi=1,...,n ai ,maxi=1,...,n bi } the rightmost position that needs

to be visited by the server. We denote by y
S j
− the leftmost and by y

S j
+ the rightmost

position that occurs in the requests σS j . Note that y
S j
− and y

S j
+ need not lie on different

sides of the origin, in contrast to x−/+.
Wemention that SmarterStart is a so-called schedule-based algorithm,meaning

that it alternates between waiting for some time and executing (without interruption)
optimal schedules on all currently unserved requests (see [6] for a formal definition).
In particular, the following lemmas can be applied (see also Lemmas 3.4 and 3.6 in
[7]). The proofs of these lemmas do not depend on the specific waiting condition and

123

Algorithmica

only need that the schedules S j are optimal schedules for σS j and that all requests
of σS j have already appeared by the starting time t j of S j .

Lemma 9 (Lemma 4.7 in [6]) Let S j with j ∈ {1, . . . , N } be a schedule of Smarter-
Start. Moreover, let Opt(σ) = |x−| + x+ + y for some y ≥ 0. Then, we have

L(t j , 0, σS j) ≤ |min{0, yS j− }| + max{0, yS j+ } + y.

Lemma 10 (Lemma4.9 in [6])Let S j with j ∈ {1, . . . , N } be a schedule of Smarter-
Start. Moreover, let |x−| ≤ x+ and Opt(σ) = |x−| + x+ + y for some y ≥ 0. Then,
for every point p that is visited by S j we have

p ≤ |p j | + |p j − p j+1| + y − |min{0, yS j− }|.

Using the bounds established by Lemma 9 and Lemma 10, we can give an upper
bound for the competitive ratio of SmarterStart if the server is not waiting before
starting the final schedule.

Proposition 2 If SmarterStart does not postpone executing SN , we have

SmarterStart(σ)

Opt(σ)
≤ f2(Θ) := 3Θ2 + 3

2Θ + 1
.

Proof Assume algorithm SmarterStart does not postpone the last schedule, i.e.,
SmarterStart starts the final schedule SN either immediately after finishing SN−1
or immediately after the last request is released.

Let the latter be the case. Then, the final schedule is started at the release time rn
of the last request. Since Opt also has to serve the last request, we have

Opt(σ) ≥ rn . (36)

In total we have

SmarterStart(σ)
(22)= tN + L(tN , pN , σSN)

(28)= rn + L(tN , pN , σSN)

(36)≤ Opt(σ) + L(tN , pN , σSN)

Lem. 8≤
(
2 + Θ − 1

Θ + 1

)
Opt(σ)

Θ > 1
<

3Θ2 + 3

2Θ + 1
Opt(σ).

Now, consider the case that the last schedule is started immediately after the second
to final one. Let σOpt

SN
be the first request of σSN that is served by Opt and let aOptN be

123

Algorithmica

its starting point and rOptN be its release time. We have

SmarterStart(σ)
(22)= tN + L(tN , pN , σSN)

(27)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tN , pN , σSN)

tN ≥ rOptN≤ tN−1 + L(tN−1, pN−1, σSN−1)

+L(rOptN , pN , σSN). (37)

Since Opt serves all requests of σSN after time rOptN , starting with a request with

starting point aOptN , we also have

Opt(σ) ≥ rOptN + L(rOptN , aOptN , σSN). (38)

Furthermore, we have

rOptN > tN−1 (39)

since otherwise σOpt
SN

∈ σSN−1 would hold. This gives us

SmarterStart(σ)
(37)≤ tN−1 + L(tN−1, pN−1, σSN−1) + L(rOptN , pN , σSN)

(24)≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOptN − pN |
+L(rOptN , aOptN , σSN)

(38)≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOptN − pN |
+Opt(σ) − rOptN

(39)
< L(tN−1, pN−1, σSN−1) + |aOptN − pN | + Opt(σ) (40)
(24)≤ |pN−1| + L(tN−1, 0, σSN−1)

+|aOptN − pN | + Opt(σ)

Lem. 7≤ (Θ − 1)tN−2 + L(tN−1, 0, σSN−1)

+|aOptN − pN | + Opt(σ). (41)

We have

Opt(σ) ≥ tN−2 + |aOptN − pN |, (42)

because Opt has to visit both aOptN and pN after time tN−2: It has to visit aOptN to

collect σOpt
SN

and it has to visit pN to deliver some request of σSN−1 . Using the above

123

Algorithmica

inequalitiy, we get

SmarterStart(σ)
(41)
< (Θ − 1)tN−2 + L(tN−1, 0, σSN−1)

+|aOptN − pN | + Opt(σ)

(42)≤ 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ − 2)tN−2. (43)

In the case Θ ≥ 2, we have

SmarterStart(σ)
(43)
< 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ − 2)tN−2

(25)≤ (Θ + 1)Opt(σ)

Θ ≥ 2≤ 3Θ2 + 3

2Θ + 1
Opt(σ).

Thus, we may assume Θ < 2. Similarly as in inequality (43), we get

SmarterStart(σ)
(41)
< (Θ − 1)tN−2 + L(tN−1, 0, σSN−1)

+|aOptN − pN | + Opt(σ)

(42)≤ ΘOpt(σ) + L(tN−1, 0, σSN−1) + (2 − Θ)|aOptN − pN |
(21)≤ ΘOpt(σ) + (Θ − 1)tN−1 + (2 − Θ)|aOptN − pN |
≤ (2Θ − 1)Opt(σ) + (2 − Θ)|aOptN − pN |, (44)

where the last inequality follows, because there exists a request in σ with release date
later than tN−1. This means the claim is shown if we have

|pN − aOptN | ≤ Opt(σ) − Θ − 1

2Θ + 1
Opt(σ) (45)

since then we have

SmarterStart(σ)
(44)
< (2Θ − 1)Opt(σ) + (2 − Θ)|aOptN − pN |
(45)≤ (2Θ − 1)Opt(σ) + (2 − Θ)

(
1 − Θ − 1

2Θ + 1

)
Opt(σ)

= 3Θ2 + 3

2Θ + 1
Opt(σ).

Therefore, we may assume in the following that

|pN − aOptN | > Opt(σ) − Θ − 1

2Θ + 1
Opt(σ). (46)

123

Algorithmica

Let Opt(σ) = |x−| + x+ + y for some y ≥ 0. By definition of x− and x+ we have

|pN − aOptN | + y ≤ Opt(σ). (47)

In the case that Opt visits position pN before it collects σOpt
SN

, we have

|aOptN − pN | + |pN | ≤ Opt(σ). (48)

Similarly, if Opt collects σOpt
SN

before it visits position pN for the first time, we have

Opt(σ) ≥ rOptN + |aOptN − pN |
(39)
> tN−1 + |aOptN − pN |

Lem. 7≥ |pN |
Θ − 1

+ |aOptN − pN |
Θ < 2≥ |pN | + |aOptN − pN |.

Thus, inequality (48) holds in general. To sum it up, we may assume that

max{y, |pN |, tN−2} (46),(47),(48),(42)
<

Θ − 1

2Θ + 1
Opt(σ) (49)

holds. In the following, denote by ySN−1− the leftmost starting or ending point and by

ySN−1+ the rightmost starting or ending point of the requests in σSN−1 . We compute

SmarterStart(σ)
(40)
< L(tN−1, pN−1, σSN−1) + |pN − aOptN | + Opt(σ)

(48)
< L(tN−1, pN−1, σSN−1) + 2Opt(σ) − |pN |
(23)≤ |pN−1| + L(tN−1, 0, σSN−1) + 2Opt(σ) − |pN |

Lem. 7≤ (Θ − 1)tN−2 + L(tN−1, 0, σSN−1)

+2Opt(σ) − |pN |
Lem. 9≤ (Θ − 1)tN−2 + max{0, |ySN−1− |} + max{0, ySN−1+ }

+y + 2Opt(σ) − |pN |. (50)

Obviously, position ySN−1+ is visited by SmarterStart in schedule SN−1. Therefore,

ySN−1+ is smaller than or equal to the rightmost point that is visited by SmarterStart
during schedule SN−1, which gives us

ySN−1+
Lem. 10≤ |pN−1| + |pN−1 − pN | + y − max{0, |ySN−1− |}. (51)

123

Algorithmica

On the other hand, because of |x−| ≤ x+, we have Opt(σ) ≥ 2|x−| + x+, which
implies y ≥ |x−|. By definition of x− and ySN−1− , we have |x−| ≥ max{0, |ySN−1− |}.
This gives us y ≥ max{0, |ySN−1− |} and

0 ≤ |pN−1| + |pN−1 − pN | + y − max{0, |ySN−1− |}. (52)

To sum it up, we have

max{0, ySN−1+ } (51),(52)≤ |pN−1| + |pN−1 − pN | + y − max{0, |ySN−1− |}. (53)

The inequality above gives us

SmarterStart(σ)
(50)
< (Θ − 1)tN−2 + max{0, |ySN−1− |} + max{0, ySN−1+ }

+y + 2Opt(σ) − |pN |
53≤ (Θ − 1)tN−2 + |pN−1| + |pN−1 − pN | + 2y

+2Opt(σ) − |pN |
≤ (Θ − 1)tN−2 + |pN−1| + |pN−1| + |pN | + 2y

+2Opt(σ) − |pN |
Lem. 7≤ (Θ − 1)tN−2 + 2(Θ − 1)tN−2 + 2y + 2Opt(σ)

(49)≤ (3Θ − 3)
Θ − 1

2Θ + 1
Opt(σ) + 2

Θ − 1

2Θ + 1
Opt(σ)

+2Opt(σ)

= 3Θ2 + 3

2Θ + 1
Opt(σ).

This completes the proof. �

In comparison, the upper bound for the competitive ratio of Smartstart in case it

does not have awaiting period before starting the final schedule isΘ+1− Θ−1
3Θ+3Opt(σ)

[7, Proposition 3.4]. Note that SmarterStart’s bound is slightly worse than
Smartstart’s bound for Θ > 1.47. However, in combination with the bound of
Proposition 1, SmarterStart has a better worst-case than Smartstart.

Theorem 3 Let Θ∗ be the largest solution of f1(Θ) = f2(Θ), i.e.,

3Θ∗2 + 3

2Θ∗ + 1
= 2Θ∗2 − Θ∗ + 1

Θ∗2 − 1
.

Then, SmarterStartΘ∗ is ρ∗-competitive with ρ∗ := f1(Θ∗) = f2(Θ∗) ≈ 2.6662.

123

Algorithmica

Proof For the case, where SmarterStart doeswait before starting the final schedule,
we have established the upper bound

SmarterStart(σ)

Opt(σ)
≤ 2Θ2 − Θ + 1

Θ2 − 1
= f1(Θ)

in Proposition 1 and for the case, where SmarterStart starts the final schedule
immediately after the second to final one, we have established the upper bound

SmarterStart(σ)

Opt(σ)
≤ 3Θ2 + 3

2Θ + 1
= f2(Θ)

in Proposition 2. Therefore, if it exists,

Θ∗ = argmin
Θ>1

{max{ f1(Θ), f2(Θ)}}

is the parameter for SmarterStartwith the smallest upper bound. We note that f1 is
strictly decreasing for Θ > 1 and that f2 is strictly increasing for Θ > 1. Therefore,
if an intersection point of f1 and f2 that is larger than 1 exists, then this is at Θ∗.
Indeed, the intersection point exists, which is the largest solution of

3Θ2 + 3

2Θ + 1
= 2Θ2 − Θ + 1

Θ2 − 1
.

The resulting upper bound for the competitive ratio is

ρ∗ = f1(Θ
∗) = f2(Θ

∗) ≈ 2.6662.

This completes the proof. �

3.2 Lower Bound for SMARTERSTART

We show the lower bound of Theorem 2. In this section, we explicitly construct
instances that demonstrate that the upper bounds given in the previous section are
tight for certain ranges of Θ > 1, in particular for Θ = Θ∗ (as in Theorem 3). Fur-
ther, we show that choices of Θ > 1 different from Θ∗ yield competitive ratios worse
than ρ∗ ≈ 2.67. Together, this implies that ρ∗ is exactly the best possible competitive
ratio for SmarterStart.

Proposition 3 Let 1 < Θ < 2. For every sufficiently small ε > 0, there is a set of
requests σ such that SmarterStart waits before starting the final schedule and such
that the inequality

SmarterStart(σ)

Opt(σ)
≥ 2Θ2 − Θ + 1

Θ2 − 1
− ε

123

Algorithmica

holds, i.e., the upper bound established in Proposition 1 is tight for Θ ∈ (1, 2).

Proof Let ε > 0 with ε < Θ
Θ+1 and ε′ = Θ+1

2Θ ε. Let the request

σ1 = (1, 1; 0)

appear. For all t ≥ 0 we have L(t, 0, {σ1}) = 1. Thus, SmarterStart starts its first
schedule S1 at time t1 = 1

Θ−1 and reaches position p2 = 1 at time Θ
Θ−1 . Next, we let

the second and final request

σ2 =
(

− 1

Θ − 1
+ ε′, 1; 1

Θ − 1
+ ε′

)

appear. For t ≥ Θ
Θ−1 we have

L(t, 0, {σ1, σ2}) =
∣∣∣∣0 −

(
− 1

Θ − 1
+ ε′

)∣∣∣∣ +
∣∣∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣∣

= 2

Θ − 1
− 2ε′ + 1.

Thus, the second and final schedule S2 is not started before time

L
(

Θ
Θ−1 , 0, {σ1, σ2}

)

Θ − 1
= 2

(Θ − 1)2
+ 1 − 2ε′

Θ − 1
.

By assumption, we have Θ < 2 and ε < Θ
Θ+1 , i.e., ε

′ < 1
2 , which implies that for the

time Θ
Θ−1 , when SmarterStart reaches position p2 = 1, the inequality

L(Θ
Θ−1 , 0, {σ1, σ2})

Θ − 1
= 2

(Θ − 1)2
+ 1 − 2ε′

Θ − 1

ε′< 1
2

>
2

(Θ − 1)2
1<Θ<2

>
Θ

Θ − 1
(54)

holds. (Note that inequality (54) also holds for slightly larger Θ if we let ε → 0.)
Because of inequality (54), SmarterStart has a waiting period and starts the sched-
ule S2 at time

t2 =
L

(
Θ

Θ−1 , 0, {σ1, σ2}
)

Θ − 1
= 2

(Θ − 1)2
+ 1 − 2ε′

Θ − 1
.

Serving σ2 from position p2 = 1 takes time

L(t2, p2, {σ2}) =
∣∣∣∣1 −

(
− 1

Θ − 1
+ ε′

)∣∣∣∣ +
∣∣∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣∣

= 2 + 2

Θ − 1
− 2ε′.

123

Algorithmica

To sum it up, we have

SmarterStart(σ) = t2 + L(t2, p2, {σ2})
= 2

(Θ − 1)2
+ 1 − 2ε′

Θ − 1
+ 2 + 2

Θ − 1
− 2ε′

= 2Θ2 − Θ + 1

(Θ − 1)2
− 2ε′ Θ

Θ − 1
.

On the other hand,Opt goes from the origin to− 1
Θ−1 +ε′ to collect σ2 at time 1

Θ−1+ε′

(i.e., it has to wait for 2ε′ units of time after it reaches position − 1
Θ−1 + ε′). Then Opt

goes straight to position 1 delivering σ2 and serving σ1. Therefore, we have

Opt(σ) =
∣∣
∣∣0 −

(
− 1

Θ − 1
+ ε′

)∣∣
∣∣ + 2ε′ +

∣∣
∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣
∣∣ = Θ + 1

Θ − 1
.

Note, that Opt can do this even if the capacity is c = 1, since σ2 does not need to be
carried over position 1, where σ1 appears. Since we have ε′ = Θ+1

2Θ ε, we obtain

SmarterStart(σ)

Opt(σ)
= 2Θ2 − Θ + 1

Θ2 − 1
− 2ε′Θ

Θ + 1
= 2Θ2 − Θ + 1

Θ2 − 1
− ε,

as claimed. �

Proposition 4 Let 1

2 (1 + √
5) ≤ Θ ≤ 2. For every sufficiently small ε > 0 there is

a set of requests σ such that SmarterStart immediately starts SN after SN−1 and
such that

SmarterStart(σ)

Opt(σ)
≥ 3Θ2 + 3

2Θ + 1
− ε,

i.e., the upper bound established in Proposition 2 is tight for Θ ∈ [12 (1 + √
5), 2] ≈

[1.6180, 2].

Proof Let ε > 0 with ε < 1
4 (

5Θ2−9Θ+4
2Θ+1) (note that 5Θ2−9Θ+4

2Θ+1 > 0 for Θ > 1) and

ε′ = 2Θ+1
5Θ2−9Θ+4

ε. Let the request

σ1 = (1, 1; 0)

appear. For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Thus, SmarterStart starts its first
schedule S1 at time t1 = 1

Θ−1 and reaches position p2 = 1 at time Θ
Θ−1 . Next we let

two new requests

σ
(1)
2 =

(
2 + 1

Θ − 1
− 2ε′, 2 + 1

Θ − 1
− 2ε′; 1

Θ − 1
+ ε′

)
,

123

Algorithmica

σ
(2)
2 =

(
− 1

Θ − 1
,− 1

Θ − 1
; 1

Θ − 1
+ ε′

)

appear. For t ≥ Θ
Θ−1 we have

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 }) =

∣∣∣∣0 −
(

− 1

Θ − 1

)∣∣∣∣ + ε′

+
∣∣∣
∣

(
− 1

Θ − 1

)
−

(
2 + 1

Θ − 1
− 2ε′

)∣∣∣
∣

= 3

Θ − 1
+ 2 − ε′.

Thus, the second schedule S2 is not started before time

L
(

Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 }

)

Θ − 1
= 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
.

By assumption of the lemma, we have Θ < 2 and ε < 1
4 (

5Θ2−9Θ+4
2Θ+1), i.e., ε′ < 1

4 ,

which implies that for the time Θ
Θ−1 , when SmarterStart reaches position p2 = 1,

the inequality

L(Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 })

Θ − 1
= 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
ε′<2
>

3

(Θ − 1)2
Θ<2
>

Θ

Θ − 1
(55)

holds. (Note that inequality (55) also holds for slightly larger Θ if we let ε → 0.)
Because of inequality (55), SmarterStart has a waiting period and starts the sched-
ule S2 at time

t2 =
L

(
Θ

Θ−1 , 0, {σ1, σ (1)
2 , σ

(2)
2 }

)

Θ − 1
= 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
.

If SmarterStart serves σ
(2)
2 before serving σ

(1)
2 the time it needs is at least

∣∣∣∣1 −
(

− 1

Θ − 1

)∣∣∣∣ +
∣∣∣∣

(
− 1

Θ − 1

)
−

(
2 + 1

Θ − 1
− 2ε′

)∣∣∣∣ = 3 + 3

Θ − 1
− 2ε′.

The best schedule that serves σ
(2)
2 after serving σ

(1)
2 needs time

∣∣∣∣1 −
(
2 + 1

Θ − 1
− 2ε′

)∣∣∣∣ +
∣∣∣∣

(
2 + 1

Θ − 1
− 2ε′

)
−

(
− 1

Θ − 1

)∣∣∣∣

123

Algorithmica

= 3 + 3

Θ − 1
− 4ε′.

Thus, SmarterStart serves σ
(2)
2 after serving σ

(1)
2 and finishes S2 at position p3 =

− 1
Θ−1 at time

t2 + L(t2, p2, {σ (1)
2 , σ

(2)
2 }) = 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
+ 3 + 3

Θ − 1
− 4ε′.

Now let the final request

σ3 =
(

3

(Θ − 1)2
− ε′, 3

(Θ − 1)2
− ε′; 3

(Θ − 1)2
+ 2

Θ − 1

)

appear. By assumption, we have Θ < 2, which implies

2 + 1

Θ − 1
− 2ε′ = 2Θ − 1

Θ − 1
− 2ε′ Θ<2

<
3

(Θ − 1)2
− ε′,

i.e., the position of the request σ3 lies to the right of σ
(1)
2 . Thus, for all t ≥ 3

(Θ−1)2
+

2−ε′
Θ−1 + 3 + 3

Θ−1 − 4ε′, we have the equation

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3}) =

∣
∣∣∣0 −

(
− 1

Θ − 1

)∣
∣∣∣ +

∣
∣∣∣

(
− 1

Θ − 1

)
− 3

(Θ − 1)2
− ε′

∣
∣∣∣

= 2

Θ − 1
+ 3

(Θ − 1)2
− ε′.

Therefore, the final schedule is not started before time

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3})

Θ − 1
= 2

(Θ − 1)2
+ 3

(Θ − 1)3
− ε′

Θ − 1
.

However, by assumption, we haveΘ ≥ 1
2

(
1 + √

5
)
and ε < 1

4 (
5Θ2−9Θ+4

2Θ+1), i.e., ε′ <

1
4 , which implies

t2 + L(t2, p2, {σ (1)
2 , σ

(2)
2 }) = 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
+ 3 + 3

Θ − 1
− 4ε′

= 3Θ

(Θ − 1)2
+ 2Θ

Θ − 1
+ 1 − 4ε′ − ε′

Θ − 1

= 3(Θ(Θ − 1))

(Θ − 1)3
+ 2(Θ(Θ − 1))

(Θ − 1)2

+1 − 4ε′ − ε′

Θ − 1

123

Algorithmica

ε′ < 1
4

>
3(Θ(Θ − 1))

(Θ − 1)3
+ 2(Θ(Θ − 1))

(Θ − 1)2
− ε′

Θ − 1

Θ ≥ 1
2

(
1 + √

5
)

≥ 3

(Θ − 1)3
+ 2

(Θ − 1)2
− ε′

Θ − 1

= L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3})

Θ − 1
,

i.e., the starting time of the schedule S3 is the ending time of the schedule S2 and we
have

t3 = 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
+ 3 + 3

Θ − 1
− 4ε′.

The schedule S3 needs time

L(t3, p3, {σ3}) =
∣∣
∣∣

(
− 1

Θ − 1

)
−

(
3

(Θ − 1)2
− ε′

)∣∣
∣∣ = 1

Θ − 1
+ 3

(Θ − 1)2
− ε′.

To sum it up, we have

SmarterStart(σ) = t3 + L(t3, p3, {σ3})
= 3

(Θ − 1)2
+ 2 − ε′

Θ − 1
+ 3 + 3

Θ − 1
− 4ε′

+ 1

Θ − 1
+ 3

(Θ − 1)2
− ε′

= 6

(Θ − 1)2
+ 6

Θ − 1
+ 3 − 5Θ − 4

Θ − 1
ε′.

On the other hand,Opt goes from the origin straight to position− 1
Θ−1 serving request

σ
(2)
2 at time 1

Θ−1 + ε′ (i.e., it has to wait for ε′ units of time after it reaches position

− 1
Θ−1). Then Opt walks straight from the origin to position 3

(Θ−1)2
− ε′ serving all

remaining requests. Thus, we have

Opt(σ) =
∣
∣∣∣0 −

(
− 1

Θ − 1

)∣
∣∣∣ + ε′ +

∣
∣∣∣−

1

Θ − 1
−

(
3

(Θ − 1)2
− ε′

)∣
∣∣∣

= 2

Θ − 1
+ 3

(Θ − 1)2
.

Note that Opt can do this even if c = 1 since for all requests the starting point is equal
to the ending point. Since we have ε′ = 2Θ+1

5Θ2−9Θ+4
ε, we finally obtain

SmarterStart(σ)

Opt(σ)
=

6
(Θ−1)2

+ 6
Θ−1 + 3 − 5Θ−4

Θ−1 ε′
2

Θ−1 + 3
(Θ−1)2

123

Algorithmica

= 3Θ2 + 3

2Θ + 1
− 5Θ2 − 9Θ + 4

2Θ + 1
ε′

= 3Θ2 + 3

2Θ + 1
− ε,

as claimed. �

Recall that the optimal parameter Θ∗ established in Theorem 3 is the only positive,

real solution of the equation

3Θ2 + 3

2Θ + 1
= 2Θ2 − Θ + 1

Θ2 − 1
,

which is Θ∗ ≈ 1.7125. Therefore, according to Proposition 3 and Proposition 4 the
parameter Θ∗ lies in the range where the upper bounds of Propositions 1 and 2 are
both tight. It remains to make sure that for all Θ that lie outside of this range the
competitive ratio of SmarterStartΘ is larger than ρ∗ ≈ 2.6662. Let ε > 0 with
ε < 4Θ+4

Θ−1 · min{ Θ
2Θ−2 ,

Θ2−Θ−2
(Θ−1)2

, 1
Θ−1 } (note that Θ2−Θ−2

(Θ−1)2
> 0 for Θ > 2) and

ε′ = Θ−1
4Θ+4ε. Consider the set of requests σΘ>2 = {σ1, σ (1)

2 , σ
(2)
2 , σ3} with

σ1 := (1, 1; 0),
σ

(1)
2 :=

(
Θ − 2

2Θ − 2
+ ε′, 1; 1

Θ − 1
+ ε′

)
,

σ
(2)
2 :=

(
− 1

Θ − 1
+ ε′,− 1

Θ − 1
+ ε′; 1

Θ − 1
+ ε′

)
,

σ3 :=
(
1, 1; Θ + 1

(Θ − 1)2
+ ε′

)
.

We compute SmarterStart’s completion time for the set of requests σΘ>2 in the
case 2 < Θ ≤ 1 + √

2 and in the case Θ > 1 + √
2.

Lemma 11 Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and let
2 < Θ ≤ 1 + √

2. We have

SmarterStart(σΘ>2)

Opt(σΘ>2)
≥ 3Θ2 − 2Θ + 1

Θ2 − 1
− ε.

In particular, we have

SmarterStart(σΘ>2)

Opt(σΘ>2)
> ρ∗ ≈ 2.6662.

for Θ ∈ (2, 1 + √
2] ≈ (2, 2.4142] and sufficiently small ε.

123

Algorithmica

Proof For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Thus, SmarterStart starts its first
schedule S1 at time t1 = 1

Θ−1 and reaches position p2 = 1 at time Θ
Θ−1 . We have

ε < 4Θ+4
Θ−1 · Θ

2Θ−2 , i.e., ε
′ < Θ

2Θ−2 , which implies

0 <
Θ − 2

2Θ − 2
+ ε′ ε′< Θ

2Θ−2
< 1

for Θ > 2, i.e. the starting position of σ
(1)
2 is between 0 and 1. For t ≥ Θ

Θ−1 we have

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 }) =

∣∣
∣∣0 −

(
− 1

Θ − 1
+ ε′

)∣∣
∣∣ + 2ε′ +

∣∣
∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣
∣∣

= 2

Θ − 1
+ 1.

Thus, the second schedule S2 is not started before time

L
(

Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 }

)

Θ − 1
= 2

(Θ − 1)2
+ 1

Θ − 1
= Θ + 1

(Θ − 1)2
.

By assumption of the lemma, we have Θ ≤ 1 + √
2, which implies that for the time

Θ
Θ−1 , when SmarterStart reaches position p2 = 1, the inequality

L
(

Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 }

)

Θ − 1
= Θ + 1

(Θ − 1)2
≥ Θ

Θ − 1

holds. Thus, SmarterStart has a waiting period and starts the schedule S2 at time

t2 =
L

(
Θ

Θ−1 , 0, {σ1, σ (1)
2 , σ

(2)
2 }

)

Θ − 1
= Θ + 1

(Θ − 1)2
.

If SmarterStart serves σ
(2)
2 before serving σ

(1)
2 , the time it needs is at least

∣∣∣∣1 −
(

− 1

Θ − 1
+ ε′

)∣∣∣∣ +
∣∣∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣∣ = 2Θ

Θ − 1
− 2ε′.

The best schedule that serves σ
(2)
2 after serving σ

(1)
2 needs time

∣∣
∣∣1 −

(
Θ − 2

2Θ − 2
+ ε′

)∣∣
∣∣ +

∣∣
∣∣

(
Θ − 2

2Θ − 2
+ ε′

)
− 1

∣∣
∣∣ +

∣∣
∣∣1 −

(
− 1

Θ − 1
+ ε′

)∣∣
∣∣

= Θ

2Θ − 2
− ε′ + Θ

2Θ − 2
− ε′ + Θ

Θ − 1
− ε′

= 2Θ

Θ − 1
− 3ε′.

123

Algorithmica

Thus, SmarterStart serves σ
(2)
2 after serving σ

(1)
2 and finishes S2 at position p3 =

− 1
Θ−1 + ε′ at time

t2 + L(t2, p2, {σ (1)
2 , σ

(2)
2 }) = Θ + 1

(Θ − 1)2
+ 2Θ

Θ − 1
− 3ε′ = 2Θ2 − Θ + 1

(Θ − 1)2
− 3ε′.

For all t ≥ 2Θ2−Θ+1
(Θ−1)2

− 3ε′, we have the equation

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3}) =

∣∣∣∣0 −
(

− 1

Θ − 1

)∣∣∣∣ +
∣∣∣∣

(
− 1

Θ − 1

)
− 1

∣∣∣∣

= 2

Θ − 1
+ 1.

Therefore the final schedule is not started before time

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3})

Θ − 1
= 2

(Θ − 1)2
+ 1

Θ − 1
= Θ + 1

(Θ − 1)2
,

which is equal to t2 and thus smaller than t2 + L(t2, p2, {σ (1)
2 , σ

(2)
2 }). Therefore, the

starting time of the schedule S3 is the ending time of the schedule S2 and we have

t3 = 2Θ2 − Θ + 1

(Θ − 1)2
− 3ε′.

The schedule S3 needs time

L(t3, p3, {σ3}) =
∣∣∣
∣

(
− 1

Θ − 1
+ ε

)
− 1

∣∣∣
∣ = 1

Θ − 1
+ 1 − ε′ = Θ

Θ − 1
− ε′

To sum it up, we have

SmarterStart(σ) = t3 + L(t3, p3, {σ3})

= 2Θ2 − Θ + 1

(Θ − 1)2
− 3ε′ + Θ

Θ − 1
− ε′

= 3Θ2 − 2Θ + 1

(Θ − 1)2
− 4ε′.

On the other hand, Opt goes from the origin straight to position − 1
Θ−1 + ε′ serving

request σ (2)
2 at time 1

Θ−1 + ε′ (i.e., it has to wait for 2ε′ units of time after it reaches

position− 1
Θ−1). Then Optwalks straight to position

Θ−2
2Θ−2 +ε′ collecting the request

σ
(1)
2 . Note that the release time of σ

(2)
2 is the same as of σ

(1)
2 and thus Opt has no

waiting time at position Θ−2
2Θ−2 + ε′. Opt reaches position 1 and delivers σ

(1)
2 at time

123

Algorithmica

2
Θ−1 + 1 = Θ+1

Θ−1 . By assumption we have Θ > 2 and ε < 4Θ+4
Θ−1 · Θ2−Θ−2

(Θ−1)2
, i.e.,

ε′ < Θ2−Θ−2
(Θ−1)2

, which implies

Θ + 1

Θ − 1
= Θ + 1

(Θ − 1)2
+ Θ2 − Θ − 2

(Θ − 1)2
>

Θ + 1

(Θ − 1)2
+ ε′.

Thus, Opt has no waiting time at position 1 and can serve the requests σ1 and σ3 at
arrival. To sum it up, we have

Opt(σ) =
∣
∣∣∣0 −

(
− 1

Θ − 1
+ ε′

)∣
∣∣∣ + 2ε′ +

∣
∣∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣
∣∣∣

= 2

Θ − 1
+ 1 = Θ + 1

Θ − 1
.

Note that Opt can do this even if c = 1 since σ
(1)
2 is the only transportation request

and no other request lies between its starting position and destination. Since we have
ε′ = Θ−1

4Θ+4ε, we finally obtain

SmarterStart(σ)

Opt(σ)
=

3Θ2−2Θ+1
(Θ−1)2

− 4ε′
Θ+1
Θ−1

= 3Θ2 − 2Θ + 1

Θ2 − 1
− ε =: g1(Θ) − ε.

The function g1 is monotonically decreasing on (2, 1 + √
2]. Therefore, we have

SmarterStart(σ)

Opt(σ)
+ ε > g1(1 + √

2) = 2
√
2 > 2.82 > ρ∗

for all Θ ∈ (2, 1 + √
2], and thus SmarterStart(σ)

Opt(σ)
> ρ∗ for sufficiently small ε. �

Lemma 12 Let the capacity c ∈ N ∪ {∞} of the server be arbitrary but fixed and let
Θ > 1 + √

2. We have

SmarterStart(σΘ>2)

Opt(σΘ>2)
≥ 4Θ

Θ + 1
− ε.

In particular, we have

SmarterStart(σΘ>2)

Opt(σΘ>2)
> ρ∗ ≈ 2.6662.

for Θ ∈ (1 + √
2,∞) ≈ (2.4142,∞) and sufficiently small ε.

123

Algorithmica

Proof For all t ≥ 0, we have L(t, 0, {σ1}) = 1. Thus, SmarterStart starts its first
schedule S1 at time t1 = 1

Θ−1 and reaches position p2 = 1 at time Θ
Θ−1 . We have

ε < 4Θ+4
Θ−1 · Θ

2Θ−2 , i.e., ε
′ < Θ

2Θ−2 , which implies

0 <
Θ − 2

2Θ − 2
+ ε′ ε′< Θ

2Θ−2
< 1

for Θ > 2, i.e. the starting position of σ
(1)
2 is between 0 and 1. For t ≥ Θ

Θ−1 we have

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 }) =

∣∣∣
∣0 −

(
− 1

Θ − 1
+ ε′

)∣∣∣
∣ + 2ε′ +

∣∣∣
∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣
∣

= 2

Θ − 1
+ 1.

Thus, the second schedule S2 is not started before time

L
(

Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 }

)

Θ − 1
= 2

(Θ − 1)2
+ 1

Θ − 1
= Θ + 1

(Θ − 1)2
.

By assumption of the lemma, we have Θ > 1 + √
2, which implies that for the time

Θ
Θ−1 , when SmarterStart reaches position p2 = 1, the inequality

L
(

Θ
Θ−1 , 0, {σ1, σ (1)

2 , σ
(2)
2 }

)

Θ − 1
= Θ + 1

(Θ − 1)2
<

Θ

Θ − 1

holds. Thus, SmarterStart has no waiting period and the starting time of the sched-
ule S2 is the ending time of the schedule S1. We have

t2
Θ

Θ − 1
.

If SmarterStart serves σ
(2)
2 before serving σ

(1)
2 the time it needs is at least

∣∣∣
∣1 −

(
− 1

Θ − 1
+ ε′

)∣∣∣
∣ +

∣∣∣
∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣
∣ = 2Θ

Θ − 1
− 2ε′.

The best schedule that serves σ
(2)
2 after serving σ

(1)
2 needs time

∣∣∣∣1 −
(

Θ − 2

2Θ − 2
+ ε′

)∣∣∣∣ +
∣∣∣∣

(
Θ − 2

2Θ − 2
+ ε′

)
− 1

∣∣∣∣ +
∣∣∣∣1 −

(
− 1

Θ − 1
+ ε′

)∣∣∣∣

= Θ

2Θ − 2
− ε′ + Θ

2Θ − 2
− ε′ + Θ

Θ − 1
− ε′

123

Algorithmica

= 2Θ

Θ − 1
− 3ε′.

Thus, SmarterStart serves σ
(2)
2 after serving σ

(1)
2 and finishes S2 at position p3 =

− 1
Θ−1 + ε′ at time

t2 + L(t2, p2, {σ (1)
2 , σ

(2)
2 }) = Θ

Θ − 1
+ 2Θ

Θ − 1
− 3ε′ = 3Θ

Θ − 1
− 3ε′.

For all t ≥ 3Θ
Θ−1 − 3ε′, we have the equation

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3}) =

∣
∣∣∣0 −

(
− 1

Θ − 1

)∣
∣∣∣ +

∣
∣∣∣

(
− 1

Θ − 1

)
− 1

∣
∣∣∣

= 2

Θ − 1
+ 1.

Therefore the final schedule is not started before time

L(t, 0, {σ1, σ (1)
2 , σ

(2)
2 , σ3})

Θ − 1
= 2

(Θ − 1)2
+ 1

Θ − 1
= Θ + 1

(Θ − 1)2
,

which is, as before, smaller than t2, and thus also smaller than time t2 +
L(t2, p2, {σ (1)

2 , σ
(2)
2 }). Therefore, the starting time of the schedule S3 is the ending

time of the schedule S2 and we have

t3 = 3Θ

Θ − 1
− 3ε′.

The schedule S3 needs time

L(t3, p3, {σ3}) =
∣
∣∣∣

(
− 1

Θ − 1
+ ε

)
− 1

∣
∣∣∣ = 1

Θ − 1
+ 1 − ε′ = Θ

Θ − 1
− ε′.

To sum it up, we have

SmarterStart(σ) = t3 + L(t3, p3, {σ3})
= 3Θ

Θ − 1
− 3ε′ + Θ

Θ − 1
− ε′

= 4Θ

Θ − 1
− 4ε′.

On the other hand, Opt goes from the origin straight to position − 1
Θ−1 + ε′ serving

request σ (2)
2 at time 1

Θ−1 + ε′ (i.e., it has to wait for 2ε′ units of time after it reaches

position− 1
Θ−1). Then Optwalks straight to position

Θ−2
2Θ−2 +ε′ collecting the request

σ
(1)
2 . Note that the release time of σ

(2)
2 is the same as of σ

(1)
2 and thus Opt has no

123

Algorithmica

waiting time at position Θ−2
2Θ−2 + ε′. Opt reaches position 1 and delivers σ

(1)
2 at time

2
Θ−1 + 1 = Θ+1

Θ−1 . By assumption of the lemma, we have Θ > 2 and ε < 4Θ+4
Θ−1 · 1

Θ−1 ,

i.e., ε′ < 1
Θ−1 , which implies

Θ + 1

Θ − 1
= Θ

Θ − 1
+ 1

Θ − 1
>

Θ

Θ − 1
+ ε′.

Thus, Opt has no waiting time at position 1 and can serve the requests σ1 and σ3 at
arrival. To sum it up, we have

Opt(σ) =
∣∣∣∣0 −

(
− 1

Θ − 1
+ ε′

)∣∣∣∣ + 2ε′ +
∣∣∣∣

(
− 1

Θ − 1
+ ε′

)
− 1

∣∣∣∣

= 2

Θ − 1
+ 1 = Θ + 1

Θ − 1
.

Note that Opt can do this even if c = 1 since σ
(1)
2 is the only transportation request

and no other request lies between its starting position and destination. Since we have
ε′ = Θ−1

4Θ+4ε, we finally obtain

SmarterStart(σ)

Opt(σ)
=

4Θ
Θ−1 − 4ε′

Θ+1
Θ−1

= 4Θ

Θ + 1
− ε =: g2(Θ) − ε.

The function g1 is monotonically increasing on (1 + √
2,∞). Therefore, we have

SmarterStart(σ)

Opt(σ)
+ ε > g2(1 + √

2) = 2
√
2 > 2.82 > ρ∗

for all Θ ∈ (1 + √
2,∞), and thus SmarterStart(σ)

Opt(σ)
> ρ∗ for sufficiently small ε. �

Lemma 13 Let Θ > 2. There is a set of requests σΘ>2 such that

SmarterStart(σΘ>2)

Opt(σΘ>2)
> ρ∗ ≈ 2.6662.

Proof This is an immediate consequence of Lemma 11 and Lemma 12. �

Figure 5 shows the upper and lower bounds thatwehave established. Theorem2now

follows from Theorem 3 combined with Propositions 3 and 4, as well as Lemma 13.

Proof of Theorem 2 We have shown in Proposition 3 that the upper bound

SmarterStart(σ)

Opt(σ)
≤ f1(Θ) = 2Θ2 − Θ + 1

Θ2 − 1

123

Algorithmica

Fig. 5 Overview of our bounds for SmarterStart. The functions f1 (green) / f2 (red) are upper bounds
for the cases where SmarterStart waits / does not wait before starting the final schedule, respectively.
The upper bounds are drawn solid in the domains where they are tight for their corresponding case. The
functions g1 and g2 (blue) are general lower bounds (Color figure online)

established in Proposition 1 for the case, where SmarterStart waits before start-
ing the final schedule, is tight for all Θ ∈ (1, 2). Furthermore, we have shown in
Proposition 4 that the upper bound

SmarterStart(σ)

Opt(σ)
≤ f2(Θ) = 3Θ2 + 3

2Θ + 1

established in Proposition 2 for the case, where SmarterStart does not wait before
starting the final schedule, is tight for all Θ ∈ (12 (1 + √

5), 2]. Since Θ∗ ≈ 1.71249
lies in those ranges, the competitive ratio of SmarterStartΘ∗ is indeed exactly ρ∗.

It remains to show that for every Θ > 1 with Θ �= Θ∗ the competitive ratio is
larger. First, according to Lemma 13, the competitive ratio of SmarterStart with
parameter Θ ∈ (2,∞) is larger than ρ∗. By monotonicity of f1, every function value
in (1,Θ∗) is larger than f1(Θ∗) = ρ∗. Thus, the competitive ratio of Smarter-
Start with parameter Θ ∈ (1,Θ∗) is larger than ρ∗, since f1 exactly captures the
worst-case behavior of SmarterStart for Θ ∈ (1,Θ∗) by Proposition 3. Similarly,
by monotonicity of f2, every function value in (Θ∗, 2] is larger than f2(Θ∗) = ρ∗.
Thus, the competitive ratio of SmarterStart with parameter Θ ∈ (Θ∗, 2] is larger
than ρ∗, since f2 exactly captures the worst-case behavior of SmarterStart for
Θ ∈ (Θ∗, 2] by Proposition 4. �

123

Algorithmica

References

1. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: minimizing the completion
time. In: Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pp. 639–650 (2000)

2. Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems with applications to
minimizing robot arm travel. SIAM J. Comput. 17(5) (1988)

3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo,M.: Algorithms for the on-line travelling
salesman. Algorithmica 29(4), 560–581 (2001)

4. Bienkowski, M., Kraska, A., Liu, H.: Traveling repairperson, unrelated machines, and other stories
about average completion times. In: Bansal, N., Merelli, E., Worrell, J. (eds.), Proceedings of the
48th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 28:1–28:20
(2021)

5. Bienkowski, M., Liu, H.: An improved online algorithm for the traveling repairperson problem on a
line. In: Proceedings of the 44th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pp. 6:1–6:12 (2019)

6. Birx, A.: Competitive analysis of the online Dial-a-Ride problem. Ph.D. thesis, TU Darmstadt (2020)
7. Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online Dial-a-Ride on the line. SIAM

J. Discrete Math. 34(2), 1409–1443 (2020)
8. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online Dial-a-Ride on the line. In:

Proceedings of the 22nd International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), volume 145, page 21(22) (2019)

9. Bjelde, A., Disser, Y., Hackfeld, J., Hansknecht, C., Lipmann, M., Meißner, J., Schewior, K., Schlöter,
M., Stougie, L.: Tight bounds for online tsp on the line. ACM Trans. Algorithms 17(1) (2020)

10. Blom, M., Krumke, S.O., de Paepe, W.E., Stougie, L.: The online TSP against fair adversaries.
INFORMS J. Comput. 13(2), 138–148 (2001)

11. Charikar, M., Raghavachari, B.: The finite capacity dial-a-ride problem. In: Proceedings of the 39th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 458–467 (1998)

12. de Paepe, W.E., Lenstra, J.K., Sgall, J., Sitters, R.A., Stougie, L.: Computer-aided complexity classi-
fication of Dial-a-Ride problems. INFORMS J. Comput. 16(2), 120–132 (2004)

13. Feuerstein, E., Stougie, L.: On-line single-server Dial-a-Ride problems. Theoret. Comput. Sci. 268(1),
91–105 (2001)

14. Gilmore, P.C., Gomory, R.E.: Sequencing a one state-variable machine: a solvable case of the traveling
salesman problem. Oper. Res. 12(5), 655–679 (1964)

15. Guan, D.J.: Routing a vehicle of capacity greater than one. Discrete Appl.Math. 81(1–3), 41–57 (1998)
16. Hauptmeier, D., Krumke, S.O., Rambau, J.: The online Dial-a-Ride problem under reasonable load.

In: Proceedings of the 4th Italian Conference on Algorithms and Complexity (CIAC), pp. 125–136
(2000)

17. Jaillet, P., Wagner, M.R.: Generalized online routing: new competitive ratios, resource augmentation,
and asymptotic analyses. Oper. Res. 56(3), 745–757 (2008)

18. Krumke, S.O.: Online optimization competitive analysis and beyond. Habilitation thesis (2001)
19. Krumke, S.O., de Paepe,W.E., Poensgen, D., Lipmann,M.,Marchetti-Spaccamela, A., Stougie, L.: On

minimizing the maximum flow time in the online Dial-a-Ride problem. In: Proceedings of the Third
International Conference on Approximation and Online Algorithms (WAOA), pp. 258–269 (2006)

20. Krumke, S.O., de Paepe, W.E., Poensgen, D., Stougie, L.: News from the online traveling repairman.
Theoret. Comput. Sci. 295(1–3), 279–294 (2003)

21. Krumke, S.O., Laura, L., Lipmann,M.,Marchetti-Spaccamela,A., dePaepe,W., Poensgen,D., Stougie,
L.: Non-abusiveness helps: an O(1)-competitive algorithm for minimizing the maximum flow time in
the online traveling salesman problem. In: Proceedings of the 5th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization (APPROX), pp. 200–214 (2002)

22. Lipmann, M., Lu, X., de Paepe, W.E., Sitters, R.A., Stougie, L.: On-line Dial-a-Ride problems under
a restricted information model. Algorithmica 40(4), 319–329 (2004)

23. Yi, F., Tian, L.: On the online dial-a-ride problem with time-windows. In: Proceedings of the 1st
International Conference on Algorithmic Applications in Management (AAIM), pp. 85–94 (2005)

24. Yi, F., Xu, Y., Xin, C.: Online dial-a-ride problem with time-windows under a restricted information
model. In: Proceedings of the 2nd International Conference on Algorithmic Aspects in Information
and Management (AAIM), pp. 22–31 (2006)

123

Algorithmica

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Improved Bounds for Open Online Dial-a-Ride on the Line
	Abstract
	1 Introduction
	2 General Lower Bound
	2.1 Analysis of the First Stage
	2.2 Analysis of the Second Stage

	3 An Improved Algorithm
	3.1 Upper Bound for SmarterStart
	3.2 Lower Bound for SmarterStart

	References

