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We consider the problem of collectively delivering a package from a specified source to a 
designated target location in a graph, using multiple mobile agents. Each agent starts from 
some vertex of the graph; it can move along the edges of the graph and can pick up the 
package from a vertex and drop it in another vertex during the course of its movement. 
However, each agent has limited energy budget allowing it to traverse a path of bounded 
length B; thus, multiple agents need to collaborate to move the package to its destination. 
Given the positions of the agents in the graph and their energy budgets, the problem of 
finding a feasible movement schedule is called the Collaborative Delivery problem and has 
been studied before.
One of the open questions from previous results is what happens when the delivery 
must follow a fixed path given in advance. Although this special constraint reduces the 
search space for feasible solutions, the problem remains NP hard, as the general version 
of the problem. We consider the optimization version of the problem that asks for 
the optimal energy budget B per agent which allows for a feasible delivery schedule 
along a fixed path, given the initial positions of the agents. We provide polynomial time 
approximation algorithms for both directed and undirected graphs, and establish hardness 
of approximation for the directed case. Note that the fixed path version of collaborative 
delivery requires completely different techniques since a single agent may be used multiple 
times, unlike the general version of collaborative delivery studied before. We show that 
restricting each agent to a single pickup allows better approximations for fixed path 
collaborative delivery compared to the original problem. Finally, we provide a polynomial 
time algorithm for determining a feasible delivery strategy, if any exists, for a given budget 
B when the number of available agents is bounded by a constant.
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1. Introduction

We consider a team of mobile agents which need to collaboratively deliver a package from a source location to a des-
tination. The difficulty of collaboration can be due to several limitations of the agents, such as limited communication, 
restricted vision or the lack of persistent memory, and this has been the subject of extensive research (see e.g. [1] for a 
recent survey of this area of research). When considering agents that move physically (such as mobile robots or automated 
vehicles), a major limitation of the agents is their energy resources, which restricts the distance that the robot can travel. 
This is particularly true for small battery operated robots or drones, for which the energy limitation is the real bottleneck. 
We consider a set of mobile agents where each agent i has a budget Bi on the distance it can move, as in [2–7]. We model 
the environment as a directed or undirected edge-weighted graph G , with each agent starting on some vertex of G and 
traveling along edges of G , until it runs out of energy and stops forever. In this model, the agents are obliged to collaborate 
as no single agent can usually perform the required task on its own.

Given a graph G with designated source and target vertices, and k agents with given starting locations and energy 
budgets, the decision problem of whether the agents can collectively deliver a single package from the source to the target 
node in G is called CollaborativeDelivery. Chalopin et al. [4,5] showed that CollaborativeDelivery is weakly NP-hard on 
paths and strongly NP-hard on general graphs. When the agents are homogeneous, each agent has the same uniform budget 
initially. The optimization version of this problem asks for the minimum energy budget B per agent, that allows a feasible 
schedule for delivering the package. Throughout this paper we consider agents with uniform budgets. There exist constant 
factor approximations [3,4] for the optimal budget needed for solving CollaborativeDelivery.

Unlike previous papers, this paper considers a version of the problem where the package must be transported through a 
designated path that is provided as input to the algorithm. This is a natural assumption, e.g. for delivery of valuable packages 
which must go on a “safe” route, allowing them to be tracked. We call this variant FixedPath CollaborativeDelivery. Even 
with this additional constraint, the problem remains NP-hard for general graphs due to the result in [4]. Note that on trees, 
the two problems are equivalent and both problems are known to be weakly NP-hard. However, for arbitrary graphs, the 
two problems are quite different. In particular, in the FixedPath CollaborativeDelivery, each agent may be used multiple 
times, while in the original version no agent needs to participate more than once in an optimal delivery schedule (see [4]). 
In this paper, we attempt to find the difference between the two problems in terms of approximability.

1.1. Our model

We consider finite, connected (or strongly connected), edge-weighted graphs G = (V , E) with n = |V | vertices. For undi-
rected graphs, the weight w(e) of an edge e ∈ E defines the energy required to cross the edge in either direction. For 
directed graphs, there may be up to two directed arcs between any pair of vertices and the weight of each arc is the energy 
required to traverse the arc from its tail to its head. We have k mobile agents which are initially placed on arbitrary nodes 
p1, . . . , pk of G , called the starting positions. In this paper, we consider the agents to have uniform budget B . Each agent 
has an initially assigned energy budget B > 0 which allows each agent to move along the edges of the graph for a total 
distance of at most B (if an agent travels only on a part of an edge, its traveled distance is downscaled proportionally to 
the part traveled). The agents are required to move a package from a given source node s to a target node t . An agent can 
pick up the package when it is at the same location as the package; we say that the agent is carrying the package. An agent 
carrying the package can drop it at any location that it visits, i.e., either at a node or even at a point inside an edge/arc. 
The agents do not need to return to their starting locations, after completing their task. We assume that the graph and the 
starting locations are initially known and the objective is to compute a strategy for movements of the agents which allows 
the delivery of the package from s to t (along a given (s, t) path P ). We denote by d(x, y) = dG(x, y) the distance between 
two nodes x, y in G (i.e. the sum of the weights on the shortest path from x to y in G). The length of path P is the sum 
of the weights on the path, denoted by w(P ) = dP (s, t). We denote an interval on this path as (x, y] if it includes all points 
on P between x and y, excluding point x, but including y.

Definitions Given a graph G with edge-weights w , vertices s �= t ∈ V (G), starting nodes p1, . . . , pk for the k agents, and an 
energy budget B , we define CollaborativeDelivery as the decision problem of whether the agents can collectively deliver 
the package. A solution to CollaborativeDelivery is given in the form of a delivery schedule which prescribes for each agent 
whether it moves and if so, the locations in which it has to pick up and drop off the package. A delivery schedule is feasible
if the package can be delivered from s to t and each agent moves at most distance B .

The optimization version of CollaborativeDelivery is to compute the minimum value of B for which there exists a 
feasible delivery schedule. The problem of FixedPath CollaborativeDelivery provides an additional parameter: an (s, t)
path P in G , and the feasible delivery schedules are restricted to those where the package travels on the given path P . Thus 
an instance of FixedPath CollaborativeDelivery is given as (G, w, P , p1, . . . , pk) where P is a path in G , starting at node s
and ending at node t .

1.2. Related work

The model of energy-constrained robot was introduced by Betke et al. [8] for single agent exploration of grid graphs. 
Later Awerbuch et al. [9] studied the same problem for general graphs. In both these papers, the agent is allowed to return 
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to its starting node to refuel, and between two visits to the starting node the agent can traverse at most B edges. Duncan et 
al. [10] studied a similar model where the agent is tied with a rope of length B to the starting location and they optimized 
the exploration time, giving an O(m) time algorithm. A more recent paper [11] provides a constant competitive algorithm 
for the same exploration problem when the value of energy budget B may be as small as the length of the smallest path 
that visits the farthest node.

For energy-constrained agents without the option of refueling, multiple agents may be needed to explore even graphs 
of restricted diameter. Given a graph G and k agents starting from the same location, each having an energy constraint of 
B , deciding whether G can be explored by the agents is NP-hard, even if graph G is a tree [12]. Dynia et al. studied the 
online version of the problem [7,13]. They presented algorithms for exploration of trees by k agents when the energy of 
each agent is augmented by a constant factor over the minimum energy B required per agent in the offline solution. Das 
et al. [6] presented online algorithms that optimize the number of agents used for tree exploration when each agent has 
a fixed energy bound B . On the other hand, Dereniowski et al. [14] gave an optimal time algorithm for exploring general 
graphs using a large number of agents. When both k and B are fixed, Bampas et al. [15] studied the problem of maximizing 
the number of nodes explored by the agents, called the maximal exploration problem. For more details on tree exploration 
with energy constraint, see the recent thesis [16].

When multiple agents start from arbitrary locations in a graph, optimizing the total energy consumption of the agents 
is computationally hard for several formation problems which require the agents to place themselves in desired configura-
tions (e.g. connected or independent configurations) in a graph [17,18]. Anaya et al. [2] studied centralized and distributed 
algorithms for the information exchange by energy-constrained agents, in particular the problem of transferring information 
from one agent to all others (Broadcast) and from all agents to one agent (Convergecast). For both problems, they provided 
hardness results for trees and approximation algorithms for arbitrary graphs. Czyzowicz et al. [19] recently showed that the 
problems of collaborative delivery, broadcast and convergecast remain NP-hard for general graphs even if the agents are 
allowed to exchange energy when they meet. Further results on collective delivery with energy exchange showed that the 
problem remains NP-hard even when B is a small constant [20].

As mentioned before, the collaborative delivery problem was first studied by Chalopin et al. [4] in arbitrary undirected 
graphs for both uniform or non-uniform budgets. When the agents have non-uniform budgets, they provided the so-called 
resource-augmented algorithms where the budgets of the agents are augmented by a small constant factor to allow polynomial 
time solutions for all feasible instances of the original problem. The surprising result that collaborative delivery with non-
uniform budgets is weakly NP-hard even for a line was proved in [5] and a quasi-pseudo-polynomial time algorithm was 
provided for this special case.

Bärtschi et al. [3] considered the returning version of the problem, where each agent needs to return to its starting 
location. They showed that, in this case, the problem can be solved in polynomial time for trees, but the problem is still 
NP-hard for arbitrary planar graphs. They provided a 2-resource-augmented algorithm for general graphs in this setting and 
showed that this is the best possible solution that can be computed in polynomial time. Other variants of collaborative 
delivery that have been considered are when agents have distinct rates of energy consumption [21] or when the agents 
have distinct speeds [22]. In these cases the optimization criteria is minimizing the total energy consumption and/or the 
total time taken for delivery. Another related work [23] studied the collective delivery problem for selfish agents that try 
to optimize their personal gain. See also [24] for a survey of recent results on collaborative delivery by agents with energy 
limitations.

1.3. Our contributions

We show that the best possible approximation of the optimal budget B for FixedPath CollaborativeDelivery that can 
be computed in polynomial time, is between 2 and 3 for directed graphs and at most 2.5 for undirected graphs. In contrast, 
the best known approximation ratio for the general version of CollaborativeDelivery is 2 for undirected graphs [4], and 
there is no known lower bound on approximability.

In the fixed path version of the problem agents may be used multiple times in a feasible delivery schedule, i.e., the 
same agent may move the package along several disjoint segments of the path. Thus, it is not surprising that our solution 
for FixedPath CollaborativeDelivery has a higher approximation ratio than the general version of the problem where each 
agent is used at most once.

For better comparison, we can make the FixedPath CollaborativeDelivery problem easier by restricting each agent 
to a single pickup of the package. This easier version of the problem was considered recently in [25] which provided 
a 3-approximation algorithm. In this paper we improve upon this and provide a 2-approximation algorithm for directed 
graphs and a (2 − 1/2k)-approximation algorithm for undirected graphs. We also show that there exists no polynomial-time 
approximation algorithm with better approximation ratio than 3

2 for directed graphs.
Finally, for the case where the number of agents k is a constant, we show that the decision version of FixedPath

CollaborativeDelivery can be solved in pseudo-polynomial time. For this setting, we also provide a fully polynomial-time 
approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal budget, for any ε > 0.
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2. Lower bound on approximation

In this section we prove a lower bound on the approximation factor for any polynomial time algorithm that solves 
collaborative delivery with uniform budgets on a fixed path in directed graphs.

We give a reduction from an NP-hard variant of Sat [26]. Note the difference from the polynomially solvable (3, 3)-Sat, 
where each variable appears in exactly three clauses [27].

(≤ 3, 3)-Sat

Input: A formula with a set of clauses C of size three over a set of variables X , where each variable appears in at most 
three clauses.
Problem: Is there a truth assignment of X satisfying C?

Observe that we may assume that each variable appears at most twice in positive literals and exactly once in a negative 
literal, otherwise we can either eliminate or negate the variable.

Theorem 1. The minimum uniform budget required to solve FixedPath CollaborativeDelivery on directed graphs cannot be approx-
imated to within a factor better than 2 in polynomial time, unless P = NP.

Proof. We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently small ε > 0 and every instance of (≤ 3, 3)-Sat, an 
instance of FixedPath CollaborativeDelivery that has a solution with budget B ≤ 2 − ε if and only if the (≤ 3, 3)-Sat in-
stance has a satisfying assignment. In this case, our instance always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat

is NP-hard, this then implies that no (2 − ε)-approximation algorithm can exist, unless P = NP.
In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat with variables x1, . . . , xt and clauses C1, . . . , Cm . 

We construct a (directed) instance of FixedPath CollaborativeDelivery with k = (3 + q)t agents, where q := �3/ε�, starting 
at vertices p1, . . . , pk . The agents 3i − 2, 3i − 1, 3i for i ∈ {1, . . . , t} are associated with the (at most) two positive literals 
and the single negative literal of variable xi , in this order, that appear in the clauses. In case variable xi only appears in 
a single positive literal, the agent 3i − 1 does not represent any literal. The other q · t agents are the so-called blockers, 
defined later. We incrementally construct the fixed (s, t)-path P = (s = v0, v1, . . . , vm+2(q+1)t) that the package has to be 
transported along.

The first m arcs of P correspond to the clauses C1, . . . , Cm . Each arc e = (v j−1, v j) with j ∈ {1, . . . , m} has weight w(e) =
1 and is associated with clause C j . For every literal of a variable xi that appears in C j , we let pij denote the starting position 
of the (unique) agent associated with this literal, and we introduce an arc ei j = (pij, v j−1) of weight w(ei j) = 0.

Now we add the variable gadgets to the path P . Let qi := m + 2(q + 1)(i − 1). The gadget associated with each variable xi
(cf. Fig. 1) is the subpath Pi = (vqi , . . . , vqi+1) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3 each, the 
central two arcs ei = (vqi+q, vqi+q+1) and e′

i = (vqi+q+1, vqi+q+2) have weights w(ei) = ε/3 and w(e′
i) = 1 − ε/3, and the 

final q arcs have weight 1 − ε/3 each. For � ∈ {1, . . . , q}, we connect the starting position of the ((i − 1)q + �)-th blocker 
to vqi+�−1 with an arc of weight 0, and we add a shortcut arc (that cannot be taken by the package) (vqi+�, vqi+1−�) of 
weight 0. Finally, we connect the three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q) of weight 
1 − ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q) of weight 0.

We first claim that in every solution with B ≤ 2 −ε we can assume that, without loss of generality, for every i ∈ {1, . . . , t}
and every � ∈ {1, . . . , q}, the ((i − 1)q + �)-th blocker transports the package across the arc (vqi+�−1, vqi+�), then takes the 
shortcut arc (vqi+�, vqi+1−�), and finally transports the package across the arc (vqi+1−�, vqi+1−�+1). To see this, consider the 
last arc (vqi+1−1, vqi+1 ) of P ′

i . Since the arcs preceding the vertices vqi and vqi+1−1 along P both have length at least 1 −ε/3, 
no agent other than the two blockers connected to vqi and vqi+1 can reach vqi+1−1 with more than B − (1 −ε/3) ≤ 1 −2ε/3
budget remaining, which is insufficient to cross the last arc of P ′

i . Since there is no disadvantage in using the ((i − 1)q + 1)-
st blocker rather than the ((i − 1)q + 2)-nd, we may assume that the ((i − 1)q + 1)-st blocker transports the package as 
claimed. By repeating this argument (slightly adapted for the iq-th blocker), we can fix all subsequent blockers, too. Note 
that each blocker requires only B = 1.

After fixing all blockers, we can observe that any other agent, having a budget B ≤ 2 −ε can transport the package either 
inside a single clause gadget or inside a single variable gadget, but not both. This is because transporting the package inside 
a clause gadget requires one unit of budget, and entering/leaving a variable gadget before or after transporting the package 
across one of its two central arcs also takes at least one unit of budget (all other arcs of a variable gadget are handled by 
blockers).

Finally, and crucially, observe that, in order to transport the package across the two central edges of the variable gadget 
for xi , either the two agents 3i − 2 and 3i − 1 associated with the positive literals of xi , or the agent 3i associated with the 
negative literal are needed, since blockers cannot help (see above). We interpret the former situation as xi being set to false, 
and the latter situation as xi being set to true. Note that either assignments can be accomplished with B = 1.

If a variable is set to true, the two agents corresponding to positive literals are free to transport the package across the 
single (!) clause gadget each of them can reach. Otherwise, the agent corresponding to the negative literal is free to do this. 
In both cases, we interpret this as the clause being satisfied by the corresponding variable. Note that satisfying a clause 
again requires only B = 1.
90



J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Fig. 1. Illustration of the variable gadget. The horizontal arcs are part of the fixed path of the package. Colors indicate responsibilities: blue nodes are for 
blockers and green/red nodes contain agents associated with positive/negative literals. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible solution of FixedPath CollaborativeDelivery

with B = 1. Conversely, every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2 − ε corresponds to a sat-
isfying assignment for (≤ 3, 3)-Sat. Note that q is constant for fixed ε, hence our construction can be done in polynomial 
time. �
3. Approximation algorithms for fixed path delivery

In this section, we give approximation algorithms solving FixedPath CollaborativeDelivery for both directed and undi-
rected graphs. Note that, in any solution to the problem the total distance traveled by the agents must be at least the length 
of the path P plus the distance to s from the closest agent (which denote this by D). This gives the following bound on the 
optimal budget per agent.

Observation 2. The optimal budget B for FixedPath CollaborativeDelivery must be in the range [D/k, D], where D =
mini dG (pi, s) + w(P ).

In the following, we assume that we are given the optimal value of B for a given instance of the problem and we provide 
a polynomial time algorithm to compute a delivery strategy that uses an energy budget of at most α · B for some constant 
α > 1. When B is not known, we can guess the optimal value of B by using a binary search in the interval [D/k, D] due to 
the above observation. The binary search terminates when we find the smallest B for which our algorithm provides a valid 
strategy for a budget of α · B . Clearly this provides an α-approximation algorithm for the optimization problem.

Consider an optimal solution to the problem which moves the package on path P using a budget of B per agent. If P
is of length at least l · B then at least l agents were used. Consider a partition of the path P into intervals of length B
exactly (assuming that w(P ) is a multiple of B). Then, for any x ≤ l intervals, there must be at least x agents that pushed 
the package along those intervals in any optimal solution. This means that it is possible to assign agents to intervals in such 
a way that: (i) The agent assigned to the interval participated in moving the package on that interval, i.e. the agent is able 
to reach some point on the interval using at most budget B . (ii) Each agent is assigned a distinct interval.

The solution strategies that we use for the approximation algorithm would use the above idea. In particular we would 
try to find a matching between a subset of the agents and the intervals of the path P as described below.

Lemma 1. Given an instance (G, w, P , p1, . . . , pk) of the problem for which the optimal budget is B and B < w(P ), let, for some 
l ≥ 2, m0, m1, . . . , ml−1 be distinct points (not necessarily vertices) on the path P , such that 0 ≤ dP (s, m0) < B, dP (mi−1, mi) = B, 
for 0 < i < l, and dP (ml−1, t) > 0. We consider the path P as an Euclidean line and on this line, we define I0 to be the interval [s,s] 
and Ii to be the interval (mi−1, mi], for 0 < i < l. Then there exist distinct agents a0, a1, . . . , al−1 which can be matched to intervals 
I0, I1, . . . Il−1 , such that each agent ai can reach some point in interval Ii using an energy budget of at most B.

Proof. Note that for moving the package across x segments of length B each, we need at least x agents. Consider any 
optimal solution for the instance and let a0 be the agent that picks up the package at source s, which implies agent a0 was 
able to reach s. If dP (s, m0) > 0, and agent a0 moves the package over some non-zero distance in this interval, it would have 
depleted some of its energy; thus agent a0 would not have enough energy to move the package over the complete interval 
I1, which is of length B . Thus, at least one other agent must participate in moving the package over interval I1, let this be 
agent a1. On the other hand, if dP (s, m0) = 0, i.e. s = m0, then agent a0 can potentially move the package on the complete 
interval I1; in that case it would completely exhaust its budget and there must be some other agent a1 that picks up the 
package at m1. This implies agent a1 was able to reach point m1 ∈ I1. So, in both cases there is an agent a1 that can reach 
I1. Thus, the lemma holds for the base case of l = 2 and we can extend this argument. Suppose the lemma holds for l = j
and agents a0, . . .a j−1 be the corresponding agents. We prove the lemma for l = j + 1 i.e. for the intervals I0 to I j .
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Case(i): Only the j agents a0, . . .a j−1 move the package over intervals I0 to I j in the optimal solution. This is only 
possible if s = m0 and each agent starts at the beginning of an interval. In this case, the j agents would completely exhaust 
their total budget in moving the package and thus, a new agent a j must pick up the package at m j (Note that target t is 
further than point m j according to the lemma). Thus, we have agents a0, . . .a j that satisfy the conditions of the lemma.

Case(ii): There are x ≥ j + 1 agents a0, . . .ax that participate in the optimal solution, with agents a0 to a j−1 already 
matched to the intervals I0 to I j−1, according to the induction hypothesis. Consider the last interval I j and let A∗ be 
the subset of i > 0 agents that participated in moving the package on this particular interval. If one of these agents is 
unmatched, it can be matched to interval I j and we are done. Otherwise the agents in A∗ are matched to i intervals, 
possibly including the interval [s, s], so the total length of these intervals is at most (i − 1)B . If we include the interval I j of 
length B and consider the fact that some of the agents have to move between non-consecutive intervals incurring additional 
energy consumption, this implies that the total movement by all the agents that participated in these (i + 1) intervals is 
strictly more than i · B . Hence, at least one other agent ar /∈ A∗ participated in at least one of these intervals say, Iq , where 
q < j. If we match this agent to interval Iq , then the agent aq that was originally matched to Iq , can be matched to interval 
I j . By definition aq ∈ A∗ and thus participated in the last interval I j , so it can reach I j . This concludes the proof. �

The solution strategies that we use for the approximation algorithm would use the above fact. We first show that it is 
possible to compute in polynomial time, one such matching between a subset of agents and the segments of the path P as 
defined in the Lemma 1.

Lemma 2. Consider an instance (G, w, P , p1, . . . , pk) of the problem for which the optimal budget is B, then given any set I =
I0, I1, . . . Il of segments of P satisfying the conditions of Lemma 1, there is an O (n3) algorithm to find a matching g between a subset 
of agents and the segments satisfying Lemma 1.

Proof. One can find such a matching g using the following algorithm:

1. Construct a weighted bipartite graph H = (A ∪ I, E, w H ) with A = [0, k], M = [0, �], E = M × A and for all i ∈ M, j ∈ A, 
w H (i j) is the smallest distance from p j (the starting position of agent j) to some vertex in Ii (or one of the endpoints 
of Ii in case no vertex is located in that segment). This can be done in O (k(m + n log n)) using Dijkstra’s algorithm [28]
starting from each starting position of an agent. Observe that graph H has O (n + k) vertices and O (k(n + k)) edges.

2. Compute a maximal matching in H that minimizes the maximum weight. For each weight ω, one can compute in time 
O ((n +k)2 log(n +k) +k(n +k) min(n, k)) a maximal matching [28] in the graph H without edges of weight greater than 
ω. Hence, one can decide if there is a maximal matching in H with maximum weight ω and by using binary search, 
one can compute a maximal matching in H which minimizes the maximum weight, in time O (log k((n + k)2 log(n +
k) + k(n + k) min(n, k))).

Assuming k = O (n), the algorithm above has a complexity of O (n3). When the number of agents k is considerably smaller 
than n, the algorithm would only be faster. �

We now present the approximation algorithms for FixedPath CollaborativeDelivery in directed and undirected graphs, 
based on the above observations.

3.1. Directed graphs: 3-approximation

Theorem 3. There is a 3-approximation algorithm for FixedPath CollaborativeDelivery on directed graphs.

Proof. Consider an instance (G, w, P , p1, . . . , pk) of FixedPath CollaborativeDelivery on directed graphs and let S be an 
optimal solution of this instance with uniform budget B . Let l = �w(P )/B�.

Case(i): If B ≥ w(P ), then any agent that can reach s can transport the package to t using an additional budget of B . 
Since there must exist such an agent and it is possible to find such an agent in O (k) time by a linear search over all agents, 
this give us the required approximation algorithm.

Case(ii): If B < w(P ) then l = �w(P )/B� ≥ 2. Thus we can apply the Lemma 1 using points m0 = s, and mi = s + i · B, 0 <
i < l on the path P . Note that the last point satisfies the property 0 < dP (ml−1, t) ≤ B . Let a0, . . .al−1 be the matching agents 
according to Lemma 1 (which can be computed using the algorithm from Lemma 2). Since agent a0 can reach the source 
s = m0 using budget B , it can transport the package to point m1 using a budget of at most 2B in total. For 0 < i < l − 1, 
agent ai can reach the point mi using a budget of at most 2B and thus it can transport the package from mi to mi+1 using 
a budget of at most 3B in total. Similarly, the agent al−1 can transport the package from ml−1 to the target t . This gives the 
required 3-approximation. �
3.2. Undirected graphs: 2.5-approximation

Theorem 4. There is a 2.5-approximation algorithm for FixedPath CollaborativeDelivery on undirected graphs.
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Fig. 2. Illustration of the variable gadget for the case where agents cannot pickup the package more than once.

Proof. Consider an instance (G, w, P , p1, . . . , pk) of FixedPath CollaborativeDelivery on undirected graphs and let S be 
an optimal solution of this instance with uniform budget B . If w(P ) ≤ 3B/2, then any agent that reaches the vertex s can 
carry the package to t , using an additional budget of 3B/2, and this immediately gives a 2.5-approximation. Thus, let us 
assume that w(P ) > 3B/2 and consider l = �w(P )/B − 1/2� ≥ 2.

We define the points m′
1, . . .m′

l on P such that m′
i + (l − i) ∗ B = t , for 1 ≤ i ≤ l (thus m′

l = t). Note that the distance 
from s to m′

1 is at most 3B/2. Now let mi be the point on path P defined as mi = m′
i+1 − B/2 for 0 ≤ i < l. Thus the point 

mi is the midpoint between m′
i−1 and m′

i for 1 < i ≤ l and the point m0 is at a distance at most B from s. Now we can 
apply Lemma 1 using points s, m0, . . .ml−1 to obtain matching agents a0 to al−1. Agent a0 can reach the source s and thus 
it can transport the package to m′

1 using an additional budget of 3B/2. Agent ai, 0 < i < l can reach the interval (mi−1, mi), 
and thus using an additional budget B/2, the agent can reach the mid-point m′

i (this may involve going back on the path). 
Thus agent ai can transport the package from m′

i to m′
i+1 using a total budget of at most 2.5 ∗ B which gives the required 

approximation algorithm. �
4. Special case: single pickup per agent

In this section, we consider a slightly easier version of the problem when each agent can pickup the package at most 
once. This means that each agent that participates in the solution, moves the package over a single continuous segment of 
the path. In this case, we can obtain better approximations for the problem. We first present a lower bound of 3

2 on the 
approximation ratio of optimizing FixedPath CollaborativeDelivery using the same idea as in Section 2.

4.1. Lower bound

Theorem 5. The minimum uniform budget required to solve FixedPath CollaborativeDelivery on directed graphs cannot be ap-
proximated to within a factor better than 1.5 in polynomial time, unless P = NP, even when each agent may pickup the package at 
most once.

Proof. We use the same construction as in the proof of Theorem 1, but we set ε = 3/2 and q = 0 (cf. Fig. 2). All claims in 
the proof of Theorem 1 remain valid for any B < 3/2. Note that, since we eliminated all blockers, no agent has to pickup 
the package more than once in the optimum solution. �
4.2. Approximation algorithm for single pickup per agent

We now present approximation algorithms for FixedPath CollaborativeDelivery with the restriction of a single pickup 
per agent. This means that for agents with uniform budget B , any two points on the fixed path P that are separated by a 
distance of at least B must be served by distinct agents. This observation allows us to match the agents to specific points 
on the path P (as opposed to intervals on the path in the general case considered in the previous section). The rest of the 
algorithm is based on similar ideas as in the previous section.

Lemma 3. Given any instance of FixedPath CollaborativeDelivery that admits a solution using optimal uniform budget B, under 
the restriction that each agent can pickup the package at most once, when the value of B is given, we can compute in polynomial 
time a 2-approximate delivery strategy with a single pickup per agent. When the graph is undirected, we can compute a (2 − 1/2k)-
approximation for the same problem in polynomial time.

Proof. Suppose there exists a feasible solution S for the problem using uniform budget B and a single pickup per agent. 
Consider the fixed (s, t) path P and partition it into segments using the points X = (m1, m2 . . .ml = t) on P , such that 
l = �w(P )/B� and, the length of the first segment dP (s, m1) ≤ B , the length of segment (mi, mi+1) is B , ∀1 ≤ i < l. We have 
the following observations for strategy S: (1) Any agent that moves the package over point mi ∈ X in strategy S must have 
enough energy to reach point mi , and (2) Any single agent cannot transport the package over two distinct points in X since 
the distance between these two points is at least B .
Case (i): In strategy S , the agent that picks up the package at s is not the same agent that moves the package over m1. In 
this case, there exists a matching between the agents and the points X+ = (s = m0, m1, m2, . . .ml) such that each agent can 
reach the point that it is mapped to. We call any such matching a type M0 matching.
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Case (ii): In strategy S , a single agent delivers the package from s to m1 with its original energy budget B . In this case, 
there exists a matching between the agents and the points in X (w.l.o.g. agent ai is mapped to point mi ), such that, agent 
a1 has enough energy to move the package from s to m1 and ∀1 < i < l, agent ai can reach mi , using budget B . We call any 
such matching a type M1 matching.

Note that if S is a feasible solution to the problem using a single pickup per agent and uniform budget B , then there 
exists a matching of type M0 or M1. If we can find such a matching, then, using budget B per agent, we can move the 
package to point m1 and move each agent ai to the respective point mi in path P . If the budget of each agent is augmented 
by factor 2, then using the additional budget B , the agent ai that is mapped to point mi can actually deliver the package to 
the next point mi+1. This gives a 2-approximate solution to the problem (for directed and undirected graphs).

For undirected graphs, we will now construct a delivery strategy where each agent has a budget 2B − B/2k . We consider 
the same two cases as before.
Case (i): The delivery strategy S uses at least l + 1 agents and there is a type M0 matching between the agents and l + 1
points s = m0, m1, m2, . . .ml = t . Consider the points m′

i = mi + B − (2i − 1)B/2l+1, 0 ≤ i ≤ l − 1. The agent a0 can move 
the package from point s = m0 to m′

0 using additional budget of B(1 − 1/2l+1). For 0 < i < l, each agent ai located at point 
mi returns to m′

i−1 to pick up the package and then moves the package to point m′
i . This requires an additional budget of 

B − (2i − 1)B/2l+1 + 2 × 2i B/2l+1 = B(1 − 1/2l+1), for each of these agents. Finally, note that the distance between point 
m′

l−1 and the target t = ml is at most B/2 − B/2l+1, and so the agent al can move from ml to m′
l−1 to pick up the package 

and deliver it to the target, using 2 × (B/2 − B/2l+1) < B(1 − 1/2l+1) ≤ B(1 − 1/2k) additional energy.
Case (ii): The delivery strategy S uses l agents and there is a type M1 matching between the agents and l points s =
m1, m2, . . .ml = t . Consider the points m′

i = mi + B − (2i − 1)B/2l , 1 ≤ i ≤ l − 1. The agent a1 delivers the package from point 
m1 to m′

1. For 1 < i < l, each agent ai located at point mi returns to m′
i−1 to pick up the package and then moves the package 

to point m′
i . This requires an additional budget of B −(2i −1)B/2l + 2 ×2i B/2l = B(1 −1/2l), for each of these agents. Finally, 

note that the distance between point m′
l−1 and the target t = ml is at most B/2 − B/2l , and so the agent al can move from 

ml to m′
l−1 to pick up the package and deliver it to the target, using 2 × (B/2 − B/2l) < B(1 − 1/2l) ≤ B(1 − 1/2k) additional 

energy.
The computation of the schedule requires constructing a bipartite graph between k agents and at most k points, and then 

solving maximum matching in this bipartite graph. Similar to the proof of Lemma 2, these computations can be performed 
in O (n3) time. �

As in the previous section, we use a binary search to find the smallest B for which there exists a matching of type M0 or 
M1 from the above lemma. This gives us a (2 −1/2k)-approximate (respectively 2-approximate) solution to the optimization 
problem for undirected (resp. directed) graphs. Hence we can state the following theorem:

Theorem 6. The minimum uniform budget required to solve FixedPath CollaborativeDelivery with a single pickup per agent on 
directed (and undirected) graphs can be approximated to a factor 2 (respectively (2 − 1/2k)), in polynomial time.

5. Fixed path delivery with O (1) agents

In this section we consider the FixedPath CollaborativeDelivery problem with only a few agents, i.e., when k is a small 
constant. Further we will assume in this section that the agents are allowed to exchange the package at vertices only. Recall 
that if there is a single agent (k = 1) then the problem can be solved trivially (by simply computing the shortest path from 
the agent to the source). However for k > 1 agents, the problem is weakly NP-hard.

Theorem 7. FixedPath CollaborativeDelivery is (weakly) NP-hard for k = 2 agents even if the agents are restricted to pickup the 
package only at vertices of G.

Proof. Consider a complete graph on n vertices where the fixed path P is (s = v1, v2, v3 . . . vn = t), k = 2 and both the 
agents are initially located at the source. We show a reduction from the NP-complete problem Partition: Given a set X of n
integers a1, a2, . . .an whose sum is 2S , does there exist a subset of X whose sum is exactly S?

We construct the instance of FixedPath CollaborativeDelivery by assigning weights a1, a2, . . . , an to the edges 
(v1, v2), (v2, v3), . . . (vn−1, vn) of the path P and we assign weight zero to all other edges of the complete graph. Finally 
we assign a budget of B = S to each agent. It is easy to see that there is a feasible delivery schedule by the two agents 
if and only if each agent can move on a subset of edges whose sum of weights equals S , which is equivalent to finding a 
subset of sum S for the instance of the partition problem. �

Given an instance of the decision problem for a specific B , we can design a dynamic programming algorithm that 
computes whether there exists a feasible schedule with uniform budget B , and has a running time that is exponential in k
and pseudo-polynomial in n (the run-time will depend on B).
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Theorem 8. There is an algorithm that decides whether there exists a feasible schedule restricted to pickup at vertices, for FixedPath

CollaborativeDelivery with uniform budget B in undirected or directed graphs. The algorithm runs in O (k · nk+2 · Bk) time.

Proof. The algorithm works as follows. We keep a boolean table whose entries are of the form T v [ j|pv
1 , . . . , pv

k |B v
1 , . . . , B v

k ]
denoting whether there exists a feasible schedule that delivers the package from s to vertex v on the path P such that

1. the last agent that delivers the package to vertex v is agent a j ,
2. the positions of the k agents, when the package arrives at v , are pv

1 , . . . , pv
k , and

3. the remaining budgets of the agents are B v
1 , . . . , B v

k .

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE for all other values of j and ps
i and Bs

i , 
i = 1, . . . , k. Here, j = 0 denotes that no agent has been used yet. We also abuse the notation and use p0 to denote s. 
Clearly, T v [ j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k ] = TRUE if and only if pv

j = v , and there exists a vertex u on the path P before vertex 
v and an agent’s index j′ �= j such that there is a feasible schedule where agent a j walks from position pu

j to pick-up the 
package at vertex u from agent a j′ and carries it from vertex u to vertex v . I.e., we have T v [ j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k ] = TRUE

if and only if there exist u and j′ and an entry in the table T such that Tu[ j′|pu
1, . . . , pu

k |Bu
1, . . . , Bu

k ] = TRUE and pv
j = v , 

pv
j′ = pu

j′ = u, pv
i = pu

i for every i �= j, j′ , B v
j = Bu

j − d(pu
j , u) − dP (u, v), and B v

i = Bu
i for every i �= j. Recall that dP (u, v)

denotes the distance from u to v on the path P .
At the end, when the whole table is computed, we check whether there is an entry at target vertex t such that Tt [. . .] =

TRUE, in which case there is a feasible schedule for the uniform budget B , and there is no feasible schedule otherwise. To 
compute the feasible schedule, standard bookkeeping techniques can be applied. There are n ·nk · Bk entries in T that need to 
be computed. To compute one entry T v [ j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k ], we need to check the existence of j′ and u with the above 

mentioned properties, which can be done in time O (k · n). Hence, the total run-time of the algorithm is O (k · nk+2 · Bk). �
By using the data rounding technique, we turn the developed algorithm into a fully polynomial-time approximation 

scheme (FPTAS).

Theorem 9. For any ε > 0, there is an algorithm that computes a feasible uniform budget B that is at most (1 + ε)B∗ , where B∗ is the 
optimum uniform budget, and runs in O  

(
k · nk+2 · ( 2m2k

ε )k log
(

2m2k
ε

))
time.

Proof. We define an alternative weight unit μ := ε w(P )/k+X
m2 , where w(P ) is the weight of the fixed path P , X is the 

minimum distance of any agent to the path P , and m is the number of edges of the graph G . We measure the weights w(e)
in the integer multiples of μ, rounded-up, i.e., we define w̄(e) := �w(e)/μ�.

We solve the problem in the new edge weights w̄(e) using the dynamic programming approach, where we also measure 
budget in multiples of μ. Let B̄ be the computed optimum uniform budget for the modified edge-weights. Our algorithm 
returns B A = B̄ · μ as the solution for the original edge-weights. Let P̄1, . . . , P̄k be the walks that the k agents walk in 
the optimum solution for the modified edge-weights. Hence, B̄ = maxi{w̄( P̄ i)}, and thus B̄ · μ = maxi{w̄( P̄ i) · μ}. Observe 
also that B A is a feasible budget, since every path P̄ i can be walked with budget B A , since the original length of P̄ i is 
w( P̄ i) ≤ μ · w̄( P̄ i) ≤ μB̄ .

Let B∗ be the optimum budget for the original edge-weights, and let P∗
1, . . . , P∗

k be the walks of the k agents 
in some optimum solution. Hence, B∗ = maxi{w(Pi)}. We now argue that B A is not much larger than B∗ . We have 

B A = μ · B̄ = μ · maxi{w̄( P̄ i)} 
(1)≤ μ · maxi{w̄(P∗

i )} = maxi{μ · w̄(P∗
i )} (2)≤ maxi{w(P∗

i ) + m2μ} = m2μ + maxi{w(P∗
i )} =

m2μ + B∗ = m2
(
ε w(P )/k+X

m2

)
+ B∗ (3)≤ ε · B∗ + B∗ = (1 + ε)B∗ . Here, inequality (1) is because maxi P̄ i is the optimum feasible 

solution in weights w̄; inequality (2) follows because any walk appears at most m times on the path P , and between any 
two appearances, the walk contains at most m edges (this part of the walk is a simple path), inequality (3) follows because 
B∗ needs to be at least w(P )/k + X (the average traveled distance per agent on P plus the distance to get from the initial 
position to the path P ).

We now analyze the run-time of the algorithm. Observe first that B∗ ≤ mini d(pi, s) + w(P ) ≤ (X + w(P )) + w(P ) ≤
2(X + w(P )). Therefore, measured in the units μ, we search for B̄ in the range between 1 and 2(X + w(P ))/μ ≤ 2m2k

ε . 
Hence, one run of the dynamic programming on the modified weights takes time O (k · nk+2 · ( 2m2k

ε )k). Using the binary 

search to find the minimum such B̄ adds a multiplicative logarithmic factor of log
(

2m2k
ε

)
. This proves the theorem. �

Thus, we have shown the following.

Corollary 1. There exists an FPTAS for FixedPath CollaborativeDelivery restricted to pickup at vertices, when the number of agents 
is constant.
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6. Conclusions

The problem of collectively delivering a package by mobile agents is a difficult problem even when the path for moving 
the package is given in advance. We presented approximation algorithms and lower bounds of approximation for the fixed 
path version of the problem. These results leave some gaps and we would like to reduce the gap between the upper and 
lower bounds for the various versions of the problem. We also considered the special case of fixed path delivery with 
a single pickup per agent, and we were able to find better approximation algorithms for this case compared to the best 
known algorithm for collaborative delivery without fixed path. This seems to suggest that the fixed path version admits 
better approximation than the general version, when each agent is restricted to a single pickup. However to prove this we 
need to find lower bounds on the approximation factor of collaborative delivery. Another possible extension to this work 
is to consider agents with non-uniform budgets and find resource-augmented algorithms for fixed path delivery. Finally, we 
would like to analyze more precisely the effect of restricting package handovers to nodes only and not anywhere inside the 
edges.
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