
Theoretical Computer Science 868 (2021) 87–96
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Collaborative delivery on a fixed path with
homogeneous energy-constrained agents ✩

Jérémie Chalopin a, Shantanu Das a,∗, Yann Disser b, Arnaud Labourel a,
Matúš Mihalák c

a Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
b Graduate School CE, TU Darmstadt, Germany
c Department of Data Science and Knowledge Engineering, Maastricht University, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2019
Received in revised form 10 March 2021
Accepted 11 April 2021
Available online 20 April 2021

Keywords:
Collaborative delivery
Mobile agents
Energy constrained robots
Directed graphs
Fixed path
Approximation algorithms

We consider the problem of collectively delivering a package from a specified source to a
designated target location in a graph, using multiple mobile agents. Each agent starts from
some vertex of the graph; it can move along the edges of the graph and can pick up the
package from a vertex and drop it in another vertex during the course of its movement.
However, each agent has limited energy budget allowing it to traverse a path of bounded
length B; thus, multiple agents need to collaborate to move the package to its destination.
Given the positions of the agents in the graph and their energy budgets, the problem of
finding a feasible movement schedule is called the Collaborative Delivery problem and has
been studied before.
One of the open questions from previous results is what happens when the delivery
must follow a fixed path given in advance. Although this special constraint reduces the
search space for feasible solutions, the problem remains NP hard, as the general version
of the problem. We consider the optimization version of the problem that asks for
the optimal energy budget B per agent which allows for a feasible delivery schedule
along a fixed path, given the initial positions of the agents. We provide polynomial time
approximation algorithms for both directed and undirected graphs, and establish hardness
of approximation for the directed case. Note that the fixed path version of collaborative
delivery requires completely different techniques since a single agent may be used multiple
times, unlike the general version of collaborative delivery studied before. We show that
restricting each agent to a single pickup allows better approximations for fixed path
collaborative delivery compared to the original problem. Finally, we provide a polynomial
time algorithm for determining a feasible delivery strategy, if any exists, for a given budget
B when the number of available agents is bounded by a constant.

© 2021 Elsevier B.V. All rights reserved.

✩ This work was partially supported by the ANR project ANCOR (anr-14-CE36-0002-01). The third author was supported by the ‘Excellence Initiative’ of
the German Federal and State Governments and the Graduate School CE at TU Darmstadt (grant GSC 233/2).

* Corresponding author.
E-mail addresses: jeremie.chalopin@lis-lab.fr (J. Chalopin), shantanu.das@lis-lab.fr (S. Das), disser@mathematik.tu-darmstadt.de (Y. Disser),

arnaud.labourel@lis-lab.fr (A. Labourel), matus.mihalak@maastrichtuniversity.nl (M. Mihalák).
URL: http://pageperso.lif.univ-mrs.fr/~shantanu.das/en/ (S. Das).
https://doi.org/10.1016/j.tcs.2021.04.004
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.04.004&domain=pdf
mailto:jeremie.chalopin@lis-lab.fr
mailto:shantanu.das@lis-lab.fr
mailto:disser@mathematik.tu-darmstadt.de
mailto:arnaud.labourel@lis-lab.fr
mailto:matus.mihalak@maastrichtuniversity.nl
http://pageperso.lif.univ-mrs.fr/~shantanu.das/en/
https://doi.org/10.1016/j.tcs.2021.04.004

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
1. Introduction

We consider a team of mobile agents which need to collaboratively deliver a package from a source location to a des-
tination. The difficulty of collaboration can be due to several limitations of the agents, such as limited communication,
restricted vision or the lack of persistent memory, and this has been the subject of extensive research (see e.g. [1] for a
recent survey of this area of research). When considering agents that move physically (such as mobile robots or automated
vehicles), a major limitation of the agents is their energy resources, which restricts the distance that the robot can travel.
This is particularly true for small battery operated robots or drones, for which the energy limitation is the real bottleneck.
We consider a set of mobile agents where each agent i has a budget Bi on the distance it can move, as in [2–7]. We model
the environment as a directed or undirected edge-weighted graph G , with each agent starting on some vertex of G and
traveling along edges of G , until it runs out of energy and stops forever. In this model, the agents are obliged to collaborate
as no single agent can usually perform the required task on its own.

Given a graph G with designated source and target vertices, and k agents with given starting locations and energy
budgets, the decision problem of whether the agents can collectively deliver a single package from the source to the target
node in G is called CollaborativeDelivery. Chalopin et al. [4,5] showed that CollaborativeDelivery is weakly NP-hard on
paths and strongly NP-hard on general graphs. When the agents are homogeneous, each agent has the same uniform budget
initially. The optimization version of this problem asks for the minimum energy budget B per agent, that allows a feasible
schedule for delivering the package. Throughout this paper we consider agents with uniform budgets. There exist constant
factor approximations [3,4] for the optimal budget needed for solving CollaborativeDelivery.

Unlike previous papers, this paper considers a version of the problem where the package must be transported through a
designated path that is provided as input to the algorithm. This is a natural assumption, e.g. for delivery of valuable packages
which must go on a “safe” route, allowing them to be tracked. We call this variant FixedPath CollaborativeDelivery. Even
with this additional constraint, the problem remains NP-hard for general graphs due to the result in [4]. Note that on trees,
the two problems are equivalent and both problems are known to be weakly NP-hard. However, for arbitrary graphs, the
two problems are quite different. In particular, in the FixedPath CollaborativeDelivery, each agent may be used multiple
times, while in the original version no agent needs to participate more than once in an optimal delivery schedule (see [4]).
In this paper, we attempt to find the difference between the two problems in terms of approximability.

1.1. Our model

We consider finite, connected (or strongly connected), edge-weighted graphs G = (V , E) with n = |V | vertices. For undi-
rected graphs, the weight w(e) of an edge e ∈ E defines the energy required to cross the edge in either direction. For
directed graphs, there may be up to two directed arcs between any pair of vertices and the weight of each arc is the energy
required to traverse the arc from its tail to its head. We have k mobile agents which are initially placed on arbitrary nodes
p1, . . . , pk of G , called the starting positions. In this paper, we consider the agents to have uniform budget B . Each agent
has an initially assigned energy budget B > 0 which allows each agent to move along the edges of the graph for a total
distance of at most B (if an agent travels only on a part of an edge, its traveled distance is downscaled proportionally to
the part traveled). The agents are required to move a package from a given source node s to a target node t . An agent can
pick up the package when it is at the same location as the package; we say that the agent is carrying the package. An agent
carrying the package can drop it at any location that it visits, i.e., either at a node or even at a point inside an edge/arc.
The agents do not need to return to their starting locations, after completing their task. We assume that the graph and the
starting locations are initially known and the objective is to compute a strategy for movements of the agents which allows
the delivery of the package from s to t (along a given (s, t) path P). We denote by d(x, y) = dG(x, y) the distance between
two nodes x, y in G (i.e. the sum of the weights on the shortest path from x to y in G). The length of path P is the sum
of the weights on the path, denoted by w(P) = dP (s, t). We denote an interval on this path as (x, y] if it includes all points
on P between x and y, excluding point x, but including y.

Definitions Given a graph G with edge-weights w , vertices s �= t ∈ V (G), starting nodes p1, . . . , pk for the k agents, and an
energy budget B , we define CollaborativeDelivery as the decision problem of whether the agents can collectively deliver
the package. A solution to CollaborativeDelivery is given in the form of a delivery schedule which prescribes for each agent
whether it moves and if so, the locations in which it has to pick up and drop off the package. A delivery schedule is feasible
if the package can be delivered from s to t and each agent moves at most distance B .

The optimization version of CollaborativeDelivery is to compute the minimum value of B for which there exists a
feasible delivery schedule. The problem of FixedPath CollaborativeDelivery provides an additional parameter: an (s, t)
path P in G , and the feasible delivery schedules are restricted to those where the package travels on the given path P . Thus
an instance of FixedPath CollaborativeDelivery is given as (G, w, P , p1, . . . , pk) where P is a path in G , starting at node s
and ending at node t .

1.2. Related work

The model of energy-constrained robot was introduced by Betke et al. [8] for single agent exploration of grid graphs.
Later Awerbuch et al. [9] studied the same problem for general graphs. In both these papers, the agent is allowed to return
88

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
to its starting node to refuel, and between two visits to the starting node the agent can traverse at most B edges. Duncan et
al. [10] studied a similar model where the agent is tied with a rope of length B to the starting location and they optimized
the exploration time, giving an O(m) time algorithm. A more recent paper [11] provides a constant competitive algorithm
for the same exploration problem when the value of energy budget B may be as small as the length of the smallest path
that visits the farthest node.

For energy-constrained agents without the option of refueling, multiple agents may be needed to explore even graphs
of restricted diameter. Given a graph G and k agents starting from the same location, each having an energy constraint of
B , deciding whether G can be explored by the agents is NP-hard, even if graph G is a tree [12]. Dynia et al. studied the
online version of the problem [7,13]. They presented algorithms for exploration of trees by k agents when the energy of
each agent is augmented by a constant factor over the minimum energy B required per agent in the offline solution. Das
et al. [6] presented online algorithms that optimize the number of agents used for tree exploration when each agent has
a fixed energy bound B . On the other hand, Dereniowski et al. [14] gave an optimal time algorithm for exploring general
graphs using a large number of agents. When both k and B are fixed, Bampas et al. [15] studied the problem of maximizing
the number of nodes explored by the agents, called the maximal exploration problem. For more details on tree exploration
with energy constraint, see the recent thesis [16].

When multiple agents start from arbitrary locations in a graph, optimizing the total energy consumption of the agents
is computationally hard for several formation problems which require the agents to place themselves in desired configura-
tions (e.g. connected or independent configurations) in a graph [17,18]. Anaya et al. [2] studied centralized and distributed
algorithms for the information exchange by energy-constrained agents, in particular the problem of transferring information
from one agent to all others (Broadcast) and from all agents to one agent (Convergecast). For both problems, they provided
hardness results for trees and approximation algorithms for arbitrary graphs. Czyzowicz et al. [19] recently showed that the
problems of collaborative delivery, broadcast and convergecast remain NP-hard for general graphs even if the agents are
allowed to exchange energy when they meet. Further results on collective delivery with energy exchange showed that the
problem remains NP-hard even when B is a small constant [20].

As mentioned before, the collaborative delivery problem was first studied by Chalopin et al. [4] in arbitrary undirected
graphs for both uniform or non-uniform budgets. When the agents have non-uniform budgets, they provided the so-called
resource-augmented algorithms where the budgets of the agents are augmented by a small constant factor to allow polynomial
time solutions for all feasible instances of the original problem. The surprising result that collaborative delivery with non-
uniform budgets is weakly NP-hard even for a line was proved in [5] and a quasi-pseudo-polynomial time algorithm was
provided for this special case.

Bärtschi et al. [3] considered the returning version of the problem, where each agent needs to return to its starting
location. They showed that, in this case, the problem can be solved in polynomial time for trees, but the problem is still
NP-hard for arbitrary planar graphs. They provided a 2-resource-augmented algorithm for general graphs in this setting and
showed that this is the best possible solution that can be computed in polynomial time. Other variants of collaborative
delivery that have been considered are when agents have distinct rates of energy consumption [21] or when the agents
have distinct speeds [22]. In these cases the optimization criteria is minimizing the total energy consumption and/or the
total time taken for delivery. Another related work [23] studied the collective delivery problem for selfish agents that try
to optimize their personal gain. See also [24] for a survey of recent results on collaborative delivery by agents with energy
limitations.

1.3. Our contributions

We show that the best possible approximation of the optimal budget B for FixedPath CollaborativeDelivery that can
be computed in polynomial time, is between 2 and 3 for directed graphs and at most 2.5 for undirected graphs. In contrast,
the best known approximation ratio for the general version of CollaborativeDelivery is 2 for undirected graphs [4], and
there is no known lower bound on approximability.

In the fixed path version of the problem agents may be used multiple times in a feasible delivery schedule, i.e., the
same agent may move the package along several disjoint segments of the path. Thus, it is not surprising that our solution
for FixedPath CollaborativeDelivery has a higher approximation ratio than the general version of the problem where each
agent is used at most once.

For better comparison, we can make the FixedPath CollaborativeDelivery problem easier by restricting each agent
to a single pickup of the package. This easier version of the problem was considered recently in [25] which provided
a 3-approximation algorithm. In this paper we improve upon this and provide a 2-approximation algorithm for directed
graphs and a (2 − 1/2k)-approximation algorithm for undirected graphs. We also show that there exists no polynomial-time
approximation algorithm with better approximation ratio than 3

2 for directed graphs.
Finally, for the case where the number of agents k is a constant, we show that the decision version of FixedPath

CollaborativeDelivery can be solved in pseudo-polynomial time. For this setting, we also provide a fully polynomial-time
approximation scheme (FPTAS) giving a (1 + ε)-approximation to the optimal budget, for any ε > 0.
89

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
2. Lower bound on approximation

In this section we prove a lower bound on the approximation factor for any polynomial time algorithm that solves
collaborative delivery with uniform budgets on a fixed path in directed graphs.

We give a reduction from an NP-hard variant of Sat [26]. Note the difference from the polynomially solvable (3, 3)-Sat,
where each variable appears in exactly three clauses [27].

(≤ 3, 3)-Sat

Input: A formula with a set of clauses C of size three over a set of variables X , where each variable appears in at most
three clauses.
Problem: Is there a truth assignment of X satisfying C?

Observe that we may assume that each variable appears at most twice in positive literals and exactly once in a negative
literal, otherwise we can either eliminate or negate the variable.

Theorem 1. The minimum uniform budget required to solve FixedPath CollaborativeDelivery on directed graphs cannot be approx-
imated to within a factor better than 2 in polynomial time, unless P = NP.

Proof. We reduce from (≤ 3, 3)-Sat by constructing, for every sufficiently small ε > 0 and every instance of (≤ 3, 3)-Sat, an
instance of FixedPath CollaborativeDelivery that has a solution with budget B ≤ 2 − ε if and only if the (≤ 3, 3)-Sat in-
stance has a satisfying assignment. In this case, our instance always admits a solution with budget B = 1. Since (≤ 3, 3)-Sat

is NP-hard, this then implies that no (2 − ε)-approximation algorithm can exist, unless P = NP.
In the following, fix 0 < ε < 1 and consider an instance of (≤ 3, 3)-Sat with variables x1, . . . , xt and clauses C1, . . . , Cm .

We construct a (directed) instance of FixedPath CollaborativeDelivery with k = (3 + q)t agents, where q := �3/ε�, starting
at vertices p1, . . . , pk . The agents 3i − 2, 3i − 1, 3i for i ∈ {1, . . . , t} are associated with the (at most) two positive literals
and the single negative literal of variable xi , in this order, that appear in the clauses. In case variable xi only appears in
a single positive literal, the agent 3i − 1 does not represent any literal. The other q · t agents are the so-called blockers,
defined later. We incrementally construct the fixed (s, t)-path P = (s = v0, v1, . . . , vm+2(q+1)t) that the package has to be
transported along.

The first m arcs of P correspond to the clauses C1, . . . , Cm . Each arc e = (v j−1, v j) with j ∈ {1, . . . , m} has weight w(e) =
1 and is associated with clause C j . For every literal of a variable xi that appears in C j , we let pij denote the starting position
of the (unique) agent associated with this literal, and we introduce an arc ei j = (pij, v j−1) of weight w(ei j) = 0.

Now we add the variable gadgets to the path P . Let qi := m + 2(q + 1)(i − 1). The gadget associated with each variable xi
(cf. Fig. 1) is the subpath Pi = (vqi , . . . , vqi+1) of P consisting of 2q + 2 edges. The first q arcs have weight ε/3 each, the
central two arcs ei = (vqi+q, vqi+q+1) and e′

i = (vqi+q+1, vqi+q+2) have weights w(ei) = ε/3 and w(e′
i) = 1 − ε/3, and the

final q arcs have weight 1 − ε/3 each. For � ∈ {1, . . . , q}, we connect the starting position of the ((i − 1)q + �)-th blocker
to vqi+�−1 with an arc of weight 0, and we add a shortcut arc (that cannot be taken by the package) (vqi+�, vqi+1−�) of
weight 0. Finally, we connect the three agents associated with variable xi as follows: We add an arc (p3i−2, vqi+q) of weight
1 − ε/3, an arc (p3i−1, vqi+q+1) of weight ε/3, and an arc (p3i, vqi+q) of weight 0.

We first claim that in every solution with B ≤ 2 −ε we can assume that, without loss of generality, for every i ∈ {1, . . . , t}
and every � ∈ {1, . . . , q}, the ((i − 1)q + �)-th blocker transports the package across the arc (vqi+�−1, vqi+�), then takes the
shortcut arc (vqi+�, vqi+1−�), and finally transports the package across the arc (vqi+1−�, vqi+1−�+1). To see this, consider the
last arc (vqi+1−1, vqi+1) of P ′

i . Since the arcs preceding the vertices vqi and vqi+1−1 along P both have length at least 1 −ε/3,
no agent other than the two blockers connected to vqi and vqi+1 can reach vqi+1−1 with more than B − (1 −ε/3) ≤ 1 −2ε/3
budget remaining, which is insufficient to cross the last arc of P ′

i . Since there is no disadvantage in using the ((i − 1)q + 1)-
st blocker rather than the ((i − 1)q + 2)-nd, we may assume that the ((i − 1)q + 1)-st blocker transports the package as
claimed. By repeating this argument (slightly adapted for the iq-th blocker), we can fix all subsequent blockers, too. Note
that each blocker requires only B = 1.

After fixing all blockers, we can observe that any other agent, having a budget B ≤ 2 −ε can transport the package either
inside a single clause gadget or inside a single variable gadget, but not both. This is because transporting the package inside
a clause gadget requires one unit of budget, and entering/leaving a variable gadget before or after transporting the package
across one of its two central arcs also takes at least one unit of budget (all other arcs of a variable gadget are handled by
blockers).

Finally, and crucially, observe that, in order to transport the package across the two central edges of the variable gadget
for xi , either the two agents 3i − 2 and 3i − 1 associated with the positive literals of xi , or the agent 3i associated with the
negative literal are needed, since blockers cannot help (see above). We interpret the former situation as xi being set to false,
and the latter situation as xi being set to true. Note that either assignments can be accomplished with B = 1.

If a variable is set to true, the two agents corresponding to positive literals are free to transport the package across the
single (!) clause gadget each of them can reach. Otherwise, the agent corresponding to the negative literal is free to do this.
In both cases, we interpret this as the clause being satisfied by the corresponding variable. Note that satisfying a clause
again requires only B = 1.
90

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Fig. 1. Illustration of the variable gadget. The horizontal arcs are part of the fixed path of the package. Colors indicate responsibilities: blue nodes are for
blockers and green/red nodes contain agents associated with positive/negative literals. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

Clearly, we can turn a satisfying assignment for (≤ 3, 3)-Sat into a feasible solution of FixedPath CollaborativeDelivery

with B = 1. Conversely, every feasible solution of FixedPath CollaborativeDelivery with B ≤ 2 − ε corresponds to a sat-
isfying assignment for (≤ 3, 3)-Sat. Note that q is constant for fixed ε, hence our construction can be done in polynomial
time. �
3. Approximation algorithms for fixed path delivery

In this section, we give approximation algorithms solving FixedPath CollaborativeDelivery for both directed and undi-
rected graphs. Note that, in any solution to the problem the total distance traveled by the agents must be at least the length
of the path P plus the distance to s from the closest agent (which denote this by D). This gives the following bound on the
optimal budget per agent.

Observation 2. The optimal budget B for FixedPath CollaborativeDelivery must be in the range [D/k, D], where D =
mini dG (pi, s) + w(P).

In the following, we assume that we are given the optimal value of B for a given instance of the problem and we provide
a polynomial time algorithm to compute a delivery strategy that uses an energy budget of at most α · B for some constant
α > 1. When B is not known, we can guess the optimal value of B by using a binary search in the interval [D/k, D] due to
the above observation. The binary search terminates when we find the smallest B for which our algorithm provides a valid
strategy for a budget of α · B . Clearly this provides an α-approximation algorithm for the optimization problem.

Consider an optimal solution to the problem which moves the package on path P using a budget of B per agent. If P
is of length at least l · B then at least l agents were used. Consider a partition of the path P into intervals of length B
exactly (assuming that w(P) is a multiple of B). Then, for any x ≤ l intervals, there must be at least x agents that pushed
the package along those intervals in any optimal solution. This means that it is possible to assign agents to intervals in such
a way that: (i) The agent assigned to the interval participated in moving the package on that interval, i.e. the agent is able
to reach some point on the interval using at most budget B . (ii) Each agent is assigned a distinct interval.

The solution strategies that we use for the approximation algorithm would use the above idea. In particular we would
try to find a matching between a subset of the agents and the intervals of the path P as described below.

Lemma 1. Given an instance (G, w, P , p1, . . . , pk) of the problem for which the optimal budget is B and B < w(P), let, for some
l ≥ 2, m0, m1, . . . , ml−1 be distinct points (not necessarily vertices) on the path P , such that 0 ≤ dP (s, m0) < B, dP (mi−1, mi) = B,
for 0 < i < l, and dP (ml−1, t) > 0. We consider the path P as an Euclidean line and on this line, we define I0 to be the interval [s,s]
and Ii to be the interval (mi−1, mi], for 0 < i < l. Then there exist distinct agents a0, a1, . . . , al−1 which can be matched to intervals
I0, I1, . . . Il−1 , such that each agent ai can reach some point in interval Ii using an energy budget of at most B.

Proof. Note that for moving the package across x segments of length B each, we need at least x agents. Consider any
optimal solution for the instance and let a0 be the agent that picks up the package at source s, which implies agent a0 was
able to reach s. If dP (s, m0) > 0, and agent a0 moves the package over some non-zero distance in this interval, it would have
depleted some of its energy; thus agent a0 would not have enough energy to move the package over the complete interval
I1, which is of length B . Thus, at least one other agent must participate in moving the package over interval I1, let this be
agent a1. On the other hand, if dP (s, m0) = 0, i.e. s = m0, then agent a0 can potentially move the package on the complete
interval I1; in that case it would completely exhaust its budget and there must be some other agent a1 that picks up the
package at m1. This implies agent a1 was able to reach point m1 ∈ I1. So, in both cases there is an agent a1 that can reach
I1. Thus, the lemma holds for the base case of l = 2 and we can extend this argument. Suppose the lemma holds for l = j
and agents a0, . . .a j−1 be the corresponding agents. We prove the lemma for l = j + 1 i.e. for the intervals I0 to I j .
91

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Case(i): Only the j agents a0, . . .a j−1 move the package over intervals I0 to I j in the optimal solution. This is only
possible if s = m0 and each agent starts at the beginning of an interval. In this case, the j agents would completely exhaust
their total budget in moving the package and thus, a new agent a j must pick up the package at m j (Note that target t is
further than point m j according to the lemma). Thus, we have agents a0, . . .a j that satisfy the conditions of the lemma.

Case(ii): There are x ≥ j + 1 agents a0, . . .ax that participate in the optimal solution, with agents a0 to a j−1 already
matched to the intervals I0 to I j−1, according to the induction hypothesis. Consider the last interval I j and let A∗ be
the subset of i > 0 agents that participated in moving the package on this particular interval. If one of these agents is
unmatched, it can be matched to interval I j and we are done. Otherwise the agents in A∗ are matched to i intervals,
possibly including the interval [s, s], so the total length of these intervals is at most (i − 1)B . If we include the interval I j of
length B and consider the fact that some of the agents have to move between non-consecutive intervals incurring additional
energy consumption, this implies that the total movement by all the agents that participated in these (i + 1) intervals is
strictly more than i · B . Hence, at least one other agent ar /∈ A∗ participated in at least one of these intervals say, Iq , where
q < j. If we match this agent to interval Iq , then the agent aq that was originally matched to Iq , can be matched to interval
I j . By definition aq ∈ A∗ and thus participated in the last interval I j , so it can reach I j . This concludes the proof. �

The solution strategies that we use for the approximation algorithm would use the above fact. We first show that it is
possible to compute in polynomial time, one such matching between a subset of agents and the segments of the path P as
defined in the Lemma 1.

Lemma 2. Consider an instance (G, w, P , p1, . . . , pk) of the problem for which the optimal budget is B, then given any set I =
I0, I1, . . . Il of segments of P satisfying the conditions of Lemma 1, there is an O (n3) algorithm to find a matching g between a subset
of agents and the segments satisfying Lemma 1.

Proof. One can find such a matching g using the following algorithm:

1. Construct a weighted bipartite graph H = (A ∪ I, E, w H) with A = [0, k], M = [0, �], E = M × A and for all i ∈ M, j ∈ A,
w H (i j) is the smallest distance from p j (the starting position of agent j) to some vertex in Ii (or one of the endpoints
of Ii in case no vertex is located in that segment). This can be done in O (k(m + n log n)) using Dijkstra’s algorithm [28]
starting from each starting position of an agent. Observe that graph H has O (n + k) vertices and O (k(n + k)) edges.

2. Compute a maximal matching in H that minimizes the maximum weight. For each weight ω, one can compute in time
O ((n +k)2 log(n +k) +k(n +k) min(n, k)) a maximal matching [28] in the graph H without edges of weight greater than
ω. Hence, one can decide if there is a maximal matching in H with maximum weight ω and by using binary search,
one can compute a maximal matching in H which minimizes the maximum weight, in time O (log k((n + k)2 log(n +
k) + k(n + k) min(n, k))).

Assuming k = O (n), the algorithm above has a complexity of O (n3). When the number of agents k is considerably smaller
than n, the algorithm would only be faster. �

We now present the approximation algorithms for FixedPath CollaborativeDelivery in directed and undirected graphs,
based on the above observations.

3.1. Directed graphs: 3-approximation

Theorem 3. There is a 3-approximation algorithm for FixedPath CollaborativeDelivery on directed graphs.

Proof. Consider an instance (G, w, P , p1, . . . , pk) of FixedPath CollaborativeDelivery on directed graphs and let S be an
optimal solution of this instance with uniform budget B . Let l = �w(P)/B�.

Case(i): If B ≥ w(P), then any agent that can reach s can transport the package to t using an additional budget of B .
Since there must exist such an agent and it is possible to find such an agent in O (k) time by a linear search over all agents,
this give us the required approximation algorithm.

Case(ii): If B < w(P) then l = �w(P)/B� ≥ 2. Thus we can apply the Lemma 1 using points m0 = s, and mi = s + i · B, 0 <
i < l on the path P . Note that the last point satisfies the property 0 < dP (ml−1, t) ≤ B . Let a0, . . .al−1 be the matching agents
according to Lemma 1 (which can be computed using the algorithm from Lemma 2). Since agent a0 can reach the source
s = m0 using budget B , it can transport the package to point m1 using a budget of at most 2B in total. For 0 < i < l − 1,
agent ai can reach the point mi using a budget of at most 2B and thus it can transport the package from mi to mi+1 using
a budget of at most 3B in total. Similarly, the agent al−1 can transport the package from ml−1 to the target t . This gives the
required 3-approximation. �
3.2. Undirected graphs: 2.5-approximation

Theorem 4. There is a 2.5-approximation algorithm for FixedPath CollaborativeDelivery on undirected graphs.
92

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Fig. 2. Illustration of the variable gadget for the case where agents cannot pickup the package more than once.

Proof. Consider an instance (G, w, P , p1, . . . , pk) of FixedPath CollaborativeDelivery on undirected graphs and let S be
an optimal solution of this instance with uniform budget B . If w(P) ≤ 3B/2, then any agent that reaches the vertex s can
carry the package to t , using an additional budget of 3B/2, and this immediately gives a 2.5-approximation. Thus, let us
assume that w(P) > 3B/2 and consider l = �w(P)/B − 1/2� ≥ 2.

We define the points m′
1, . . .m′

l on P such that m′
i + (l − i) ∗ B = t , for 1 ≤ i ≤ l (thus m′

l = t). Note that the distance
from s to m′

1 is at most 3B/2. Now let mi be the point on path P defined as mi = m′
i+1 − B/2 for 0 ≤ i < l. Thus the point

mi is the midpoint between m′
i−1 and m′

i for 1 < i ≤ l and the point m0 is at a distance at most B from s. Now we can
apply Lemma 1 using points s, m0, . . .ml−1 to obtain matching agents a0 to al−1. Agent a0 can reach the source s and thus
it can transport the package to m′

1 using an additional budget of 3B/2. Agent ai, 0 < i < l can reach the interval (mi−1, mi),
and thus using an additional budget B/2, the agent can reach the mid-point m′

i (this may involve going back on the path).
Thus agent ai can transport the package from m′

i to m′
i+1 using a total budget of at most 2.5 ∗ B which gives the required

approximation algorithm. �
4. Special case: single pickup per agent

In this section, we consider a slightly easier version of the problem when each agent can pickup the package at most
once. This means that each agent that participates in the solution, moves the package over a single continuous segment of
the path. In this case, we can obtain better approximations for the problem. We first present a lower bound of 3

2 on the
approximation ratio of optimizing FixedPath CollaborativeDelivery using the same idea as in Section 2.

4.1. Lower bound

Theorem 5. The minimum uniform budget required to solve FixedPath CollaborativeDelivery on directed graphs cannot be ap-
proximated to within a factor better than 1.5 in polynomial time, unless P = NP, even when each agent may pickup the package at
most once.

Proof. We use the same construction as in the proof of Theorem 1, but we set ε = 3/2 and q = 0 (cf. Fig. 2). All claims in
the proof of Theorem 1 remain valid for any B < 3/2. Note that, since we eliminated all blockers, no agent has to pickup
the package more than once in the optimum solution. �
4.2. Approximation algorithm for single pickup per agent

We now present approximation algorithms for FixedPath CollaborativeDelivery with the restriction of a single pickup
per agent. This means that for agents with uniform budget B , any two points on the fixed path P that are separated by a
distance of at least B must be served by distinct agents. This observation allows us to match the agents to specific points
on the path P (as opposed to intervals on the path in the general case considered in the previous section). The rest of the
algorithm is based on similar ideas as in the previous section.

Lemma 3. Given any instance of FixedPath CollaborativeDelivery that admits a solution using optimal uniform budget B, under
the restriction that each agent can pickup the package at most once, when the value of B is given, we can compute in polynomial
time a 2-approximate delivery strategy with a single pickup per agent. When the graph is undirected, we can compute a (2 − 1/2k)-
approximation for the same problem in polynomial time.

Proof. Suppose there exists a feasible solution S for the problem using uniform budget B and a single pickup per agent.
Consider the fixed (s, t) path P and partition it into segments using the points X = (m1, m2 . . .ml = t) on P , such that
l = �w(P)/B� and, the length of the first segment dP (s, m1) ≤ B , the length of segment (mi, mi+1) is B , ∀1 ≤ i < l. We have
the following observations for strategy S: (1) Any agent that moves the package over point mi ∈ X in strategy S must have
enough energy to reach point mi , and (2) Any single agent cannot transport the package over two distinct points in X since
the distance between these two points is at least B .
Case (i): In strategy S , the agent that picks up the package at s is not the same agent that moves the package over m1. In
this case, there exists a matching between the agents and the points X+ = (s = m0, m1, m2, . . .ml) such that each agent can
reach the point that it is mapped to. We call any such matching a type M0 matching.
93

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Case (ii): In strategy S , a single agent delivers the package from s to m1 with its original energy budget B . In this case,
there exists a matching between the agents and the points in X (w.l.o.g. agent ai is mapped to point mi), such that, agent
a1 has enough energy to move the package from s to m1 and ∀1 < i < l, agent ai can reach mi , using budget B . We call any
such matching a type M1 matching.

Note that if S is a feasible solution to the problem using a single pickup per agent and uniform budget B , then there
exists a matching of type M0 or M1. If we can find such a matching, then, using budget B per agent, we can move the
package to point m1 and move each agent ai to the respective point mi in path P . If the budget of each agent is augmented
by factor 2, then using the additional budget B , the agent ai that is mapped to point mi can actually deliver the package to
the next point mi+1. This gives a 2-approximate solution to the problem (for directed and undirected graphs).

For undirected graphs, we will now construct a delivery strategy where each agent has a budget 2B − B/2k . We consider
the same two cases as before.
Case (i): The delivery strategy S uses at least l + 1 agents and there is a type M0 matching between the agents and l + 1
points s = m0, m1, m2, . . .ml = t . Consider the points m′

i = mi + B − (2i − 1)B/2l+1, 0 ≤ i ≤ l − 1. The agent a0 can move
the package from point s = m0 to m′

0 using additional budget of B(1 − 1/2l+1). For 0 < i < l, each agent ai located at point
mi returns to m′

i−1 to pick up the package and then moves the package to point m′
i . This requires an additional budget of

B − (2i − 1)B/2l+1 + 2 × 2i B/2l+1 = B(1 − 1/2l+1), for each of these agents. Finally, note that the distance between point
m′

l−1 and the target t = ml is at most B/2 − B/2l+1, and so the agent al can move from ml to m′
l−1 to pick up the package

and deliver it to the target, using 2 × (B/2 − B/2l+1) < B(1 − 1/2l+1) ≤ B(1 − 1/2k) additional energy.
Case (ii): The delivery strategy S uses l agents and there is a type M1 matching between the agents and l points s =
m1, m2, . . .ml = t . Consider the points m′

i = mi + B − (2i − 1)B/2l , 1 ≤ i ≤ l − 1. The agent a1 delivers the package from point
m1 to m′

1. For 1 < i < l, each agent ai located at point mi returns to m′
i−1 to pick up the package and then moves the package

to point m′
i . This requires an additional budget of B −(2i −1)B/2l + 2 ×2i B/2l = B(1 −1/2l), for each of these agents. Finally,

note that the distance between point m′
l−1 and the target t = ml is at most B/2 − B/2l , and so the agent al can move from

ml to m′
l−1 to pick up the package and deliver it to the target, using 2 × (B/2 − B/2l) < B(1 − 1/2l) ≤ B(1 − 1/2k) additional

energy.
The computation of the schedule requires constructing a bipartite graph between k agents and at most k points, and then

solving maximum matching in this bipartite graph. Similar to the proof of Lemma 2, these computations can be performed
in O (n3) time. �

As in the previous section, we use a binary search to find the smallest B for which there exists a matching of type M0 or
M1 from the above lemma. This gives us a (2 −1/2k)-approximate (respectively 2-approximate) solution to the optimization
problem for undirected (resp. directed) graphs. Hence we can state the following theorem:

Theorem 6. The minimum uniform budget required to solve FixedPath CollaborativeDelivery with a single pickup per agent on
directed (and undirected) graphs can be approximated to a factor 2 (respectively (2 − 1/2k)), in polynomial time.

5. Fixed path delivery with O (1) agents

In this section we consider the FixedPath CollaborativeDelivery problem with only a few agents, i.e., when k is a small
constant. Further we will assume in this section that the agents are allowed to exchange the package at vertices only. Recall
that if there is a single agent (k = 1) then the problem can be solved trivially (by simply computing the shortest path from
the agent to the source). However for k > 1 agents, the problem is weakly NP-hard.

Theorem 7. FixedPath CollaborativeDelivery is (weakly) NP-hard for k = 2 agents even if the agents are restricted to pickup the
package only at vertices of G.

Proof. Consider a complete graph on n vertices where the fixed path P is (s = v1, v2, v3 . . . vn = t), k = 2 and both the
agents are initially located at the source. We show a reduction from the NP-complete problem Partition: Given a set X of n
integers a1, a2, . . .an whose sum is 2S , does there exist a subset of X whose sum is exactly S?

We construct the instance of FixedPath CollaborativeDelivery by assigning weights a1, a2, . . . , an to the edges
(v1, v2), (v2, v3), . . . (vn−1, vn) of the path P and we assign weight zero to all other edges of the complete graph. Finally
we assign a budget of B = S to each agent. It is easy to see that there is a feasible delivery schedule by the two agents
if and only if each agent can move on a subset of edges whose sum of weights equals S , which is equivalent to finding a
subset of sum S for the instance of the partition problem. �

Given an instance of the decision problem for a specific B , we can design a dynamic programming algorithm that
computes whether there exists a feasible schedule with uniform budget B , and has a running time that is exponential in k
and pseudo-polynomial in n (the run-time will depend on B).
94

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
Theorem 8. There is an algorithm that decides whether there exists a feasible schedule restricted to pickup at vertices, for FixedPath

CollaborativeDelivery with uniform budget B in undirected or directed graphs. The algorithm runs in O (k · nk+2 · Bk) time.

Proof. The algorithm works as follows. We keep a boolean table whose entries are of the form T v [j|pv
1 , . . . , pv

k |B v
1 , . . . , B v

k]
denoting whether there exists a feasible schedule that delivers the package from s to vertex v on the path P such that

1. the last agent that delivers the package to vertex v is agent a j ,
2. the positions of the k agents, when the package arrives at v , are pv

1 , . . . , pv
k , and

3. the remaining budgets of the agents are B v
1 , . . . , B v

k .

We initialize Ts[0|p1, . . . , pk|B, . . . , B] = TRUE and initialize Ts[...] = FALSE for all other values of j and ps
i and Bs

i ,
i = 1, . . . , k. Here, j = 0 denotes that no agent has been used yet. We also abuse the notation and use p0 to denote s.
Clearly, T v [j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k] = TRUE if and only if pv

j = v , and there exists a vertex u on the path P before vertex
v and an agent’s index j′ �= j such that there is a feasible schedule where agent a j walks from position pu

j to pick-up the
package at vertex u from agent a j′ and carries it from vertex u to vertex v . I.e., we have T v [j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k] = TRUE

if and only if there exist u and j′ and an entry in the table T such that Tu[j′|pu
1, . . . , pu

k |Bu
1, . . . , Bu

k] = TRUE and pv
j = v ,

pv
j′ = pu

j′ = u, pv
i = pu

i for every i �= j, j′ , B v
j = Bu

j − d(pu
j , u) − dP (u, v), and B v

i = Bu
i for every i �= j. Recall that dP (u, v)

denotes the distance from u to v on the path P .
At the end, when the whole table is computed, we check whether there is an entry at target vertex t such that Tt [. . .] =

TRUE, in which case there is a feasible schedule for the uniform budget B , and there is no feasible schedule otherwise. To
compute the feasible schedule, standard bookkeeping techniques can be applied. There are n ·nk · Bk entries in T that need to
be computed. To compute one entry T v [j|pv

1 , . . . , pv
k |B v

1 , . . . , B v
k], we need to check the existence of j′ and u with the above

mentioned properties, which can be done in time O (k · n). Hence, the total run-time of the algorithm is O (k · nk+2 · Bk). �
By using the data rounding technique, we turn the developed algorithm into a fully polynomial-time approximation

scheme (FPTAS).

Theorem 9. For any ε > 0, there is an algorithm that computes a feasible uniform budget B that is at most (1 + ε)B∗ , where B∗ is the
optimum uniform budget, and runs in O

(
k · nk+2 · (2m2k

ε)k log
(

2m2k
ε

))
time.

Proof. We define an alternative weight unit μ := ε w(P)/k+X
m2 , where w(P) is the weight of the fixed path P , X is the

minimum distance of any agent to the path P , and m is the number of edges of the graph G . We measure the weights w(e)
in the integer multiples of μ, rounded-up, i.e., we define w̄(e) := �w(e)/μ�.

We solve the problem in the new edge weights w̄(e) using the dynamic programming approach, where we also measure
budget in multiples of μ. Let B̄ be the computed optimum uniform budget for the modified edge-weights. Our algorithm
returns B A = B̄ · μ as the solution for the original edge-weights. Let P̄1, . . . , P̄k be the walks that the k agents walk in
the optimum solution for the modified edge-weights. Hence, B̄ = maxi{w̄(P̄ i)}, and thus B̄ · μ = maxi{w̄(P̄ i) · μ}. Observe
also that B A is a feasible budget, since every path P̄ i can be walked with budget B A , since the original length of P̄ i is
w(P̄ i) ≤ μ · w̄(P̄ i) ≤ μB̄ .

Let B∗ be the optimum budget for the original edge-weights, and let P∗
1, . . . , P∗

k be the walks of the k agents
in some optimum solution. Hence, B∗ = maxi{w(Pi)}. We now argue that B A is not much larger than B∗ . We have

B A = μ · B̄ = μ · maxi{w̄(P̄ i)}
(1)≤ μ · maxi{w̄(P∗

i)} = maxi{μ · w̄(P∗
i)} (2)≤ maxi{w(P∗

i) + m2μ} = m2μ + maxi{w(P∗
i)} =

m2μ + B∗ = m2
(
ε w(P)/k+X

m2

)
+ B∗ (3)≤ ε · B∗ + B∗ = (1 + ε)B∗ . Here, inequality (1) is because maxi P̄ i is the optimum feasible

solution in weights w̄; inequality (2) follows because any walk appears at most m times on the path P , and between any
two appearances, the walk contains at most m edges (this part of the walk is a simple path), inequality (3) follows because
B∗ needs to be at least w(P)/k + X (the average traveled distance per agent on P plus the distance to get from the initial
position to the path P).

We now analyze the run-time of the algorithm. Observe first that B∗ ≤ mini d(pi, s) + w(P) ≤ (X + w(P)) + w(P) ≤
2(X + w(P)). Therefore, measured in the units μ, we search for B̄ in the range between 1 and 2(X + w(P))/μ ≤ 2m2k

ε .
Hence, one run of the dynamic programming on the modified weights takes time O (k · nk+2 · (2m2k

ε)k). Using the binary

search to find the minimum such B̄ adds a multiplicative logarithmic factor of log
(

2m2k
ε

)
. This proves the theorem. �

Thus, we have shown the following.

Corollary 1. There exists an FPTAS for FixedPath CollaborativeDelivery restricted to pickup at vertices, when the number of agents
is constant.
95

J. Chalopin, S. Das, Y. Disser et al. Theoretical Computer Science 868 (2021) 87–96
6. Conclusions

The problem of collectively delivering a package by mobile agents is a difficult problem even when the path for moving
the package is given in advance. We presented approximation algorithms and lower bounds of approximation for the fixed
path version of the problem. These results leave some gaps and we would like to reduce the gap between the upper and
lower bounds for the various versions of the problem. We also considered the special case of fixed path delivery with
a single pickup per agent, and we were able to find better approximation algorithms for this case compared to the best
known algorithm for collaborative delivery without fixed path. This seems to suggest that the fixed path version admits
better approximation than the general version, when each agent is restricted to a single pickup. However to prove this we
need to find lower bounds on the approximation factor of collaborative delivery. Another possible extension to this work
is to consider agents with non-uniform budgets and find resource-augmented algorithms for fixed path delivery. Finally, we
would like to analyze more precisely the effect of restricting package handovers to nodes only and not anywhere inside the
edges.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] P. Flocchini, G. Prencipe, N. Santoro (Eds.), Distributed Computing by Mobile Entities, Current Research in Moving and Computing, Lecture Notes in
Computer Science, vol. 11340, Springer, 2019.

[2] J. Anaya, J. Chalopin, J. Czyzowicz, A. Labourel, A. Pelc, Y. Vaxès, Convergecast and broadcast by power-aware mobile agents, Algorithmica 74 (1) (2016)
117–155.

[3] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, B. Geissmann, D. Graf, A. Labourel, M. Mihalák, Collaborative delivery with energy-constrained mobile robots,
Theor. Comput. Sci. 810 (2020) 2–14.

[4] J. Chalopin, S. Das, M. Mihalák, P. Penna, P. Widmayer, Data delivery by energy-constrained mobile agents, in: 9th International Symposium on Algo-
rithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics ALGOSENSORS’13, 2013, pp. 111–122.

[5] J. Chalopin, R. Jacob, M. Mihalák, P. Widmayer, Data delivery by energy-constrained mobile agents on a line, in: 41st International Colloquium on
Automata, Languages, and Programming ICALP’14, 2014, pp. 423–434.

[6] S. Das, D. Dereniowski, C. Karousatou, Collaborative exploration by energy-constrained mobile robots, in: 22nd International Colloquium on Structural
Information and Communication Complexity SIROCCO’15, 2015, pp. 357–369.

[7] M. Dynia, M. Korzeniowski, C. Schindelhauer, Power-aware collective tree exploration, in: 19th International Conference on Architecture of Computing
Systems, ARCS’06, 2006, pp. 341–351.

[8] M. Betke, R.L. Rivest, M. Singh, Piecemeal learning of an unknown environment, Mach. Learn. 18 (2) (1995) 231–254.
[9] B. Awerbuch, M. Betke, R.L. Rivest, M. Singh, Piecemeal graph exploration by a mobile robot, Inf. Comput. 152 (2) (1999) 155–172.

[10] C.A. Duncan, S.G. Kobourov, V.S.A. Kumar, Optimal constrained graph exploration, in: 12th ACM Symposium on Discrete Algorithms, SODA’01, 2001,
pp. 807–814.

[11] S. Das, D. Dereniowski, P. Uznanski, Energy constrained depth first search, CoRR abs /1709 .10146, 2017, arXiv:1709 .10146, http://arxiv.org /abs /1709 .
10146.

[12] P. Fraigniaud, L. Ga̧sieniec, D.R. Kowalski, A. Pelc, Collective tree exploration, Networks 48 (3) (2006) 166–177.
[13] M. Dynia, J. Łopuszański, C. Schindelhauer, Why robots need maps, in: 14th International Colloquium on Structural Information and Communication

Complexity, SIROCCO’07, 2007, pp. 41–50.
[14] D. Dereniowski, Y. Disser, A. Kosowski, D. Pająk, P. Uznański, Fast collaborative graph exploration, Inf. Comput. 243 (2015) 37–49.
[15] E. Bampas, J. Chalopin, S. Das, J. Hackfeld, C. Karousatou, Maximal exploration of trees with energy-constrained agents, CoRR abs /1802 .06636, 2018,

arXiv:1802 .06636.
[16] C. Karousatou, Distributed algorithms for energy constrained mobile agents, Ph.D. thesis, Aix-Marseille Université, Marseille, France, 2017.
[17] E.D. Demaine, M. Hajiaghayi, H. Mahini, A.S. Sayedi-Roshkhar, S. Oveisgharan, M. Zadimoghaddam, Minimizing movement, ACM Trans. Algorithms 5 (3)

(2009) 1–30.
[18] D. Bilò, Y. Disser, L. Gualà, M. Mihalák, G. Proietti, P. Widmayer, Polygon-constrained motion planning problems, in: 9th International Symposium on

Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics ALGOSENSORS’13, 2013, pp. 67–82.
[19] J. Czyzowicz, K. Diks, J. Moussi, W. Rytter, Communication problems for mobile agents exchanging energy, in: 23rd International Colloquium on

Structural Information and Communication Complexity SIROCCO’16, in: Lecture Notes in Computer Science, vol. 9988, 2016, pp. 275–288.
[20] E. Bampas, S. Das, D. Dereniowski, C. Karousatou, Collaborative delivery by energy-sharing low-power mobile robots, in: 13th International Symposium

on Algorithms and Experiments for Wireless Sensor Networks (ALGOSENSORS), 2017, pp. 1–12.
[21] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, D. Graf, J. Hackfeld, P. Penna, Energy-efficient delivery by heterogeneous mobile agents, in: 34th Symposium

on Theoretical Aspects of Computer Science (STACS), 2017, pp. 10:1–10:14.
[22] A. Bärtschi, D. Graf, M. Mihalák, Collective fast delivery by energy-efficient agents, in: 43rd International Symposium on Mathematical Foundations of

Computer Science (MFCS 2018), in: LIPIcs, vol. 117, 2018, pp. 56:1–56:16.
[23] A. Bärtschi, D. Graf, P. Penna, Truthful mechanisms for delivery with agents, in: 17th Workshop on Algorithmic Approaches for Transportation Mod-

elling, Optimization, and Systems (ATMOS 2017), in: OASIcs, vol. 59, 2017, pp. 2:1–2:17.
[24] A. Bärtschi, Efficient delivery with mobile agents, Ph.D. thesis, ETH Zurich, Zurich, 2017.
[25] A. Giannakos, M. Hifi, G. Karagiorgos, Data delivery by mobile agents with energy constraints over a fixed path, CoRR abs /1703 .05496, 2017, arXiv:

1703 .05496.
[26] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979.
[27] C.A. Tovey, A simplified np-complete satisfiability problem, Discrete Appl. Math. 8 (1) (1984) 85–89.
[28] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (3) (1987) 596–615, https://

doi .org /10 .1145 /28869 .28874.
96

http://refhub.elsevier.com/S0304-3975(21)00209-7/bibB378FFFFD6C94209E9D6999D2BBCCE7Ds1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibB378FFFFD6C94209E9D6999D2BBCCE7Ds1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibEDA4B0867C3F261F1DE45222F9359400s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibEDA4B0867C3F261F1DE45222F9359400s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib4A264A131085116290C996C0531EE213s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib4A264A131085116290C996C0531EE213s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibF369C8EF9F7751D7A81F4CAC9312AFC9s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibF369C8EF9F7751D7A81F4CAC9312AFC9s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib2CAF7878EF0C723ACEEDEDB8C2B4F1A8s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib2CAF7878EF0C723ACEEDEDB8C2B4F1A8s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib3A674C3AE551268B84F8CC7A8F81B660s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib3A674C3AE551268B84F8CC7A8F81B660s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC70C707714D6493CDBD7AA29F7F44E48s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC70C707714D6493CDBD7AA29F7F44E48s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib8F16344A1C8CB14F9540A03DE07540BAs1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib987CD6A0CB5E865F06BEF848C3875691s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib134078FA938469C70CAF9868F11EB593s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib134078FA938469C70CAF9868F11EB593s1
http://arxiv.org/abs/1709.10146
http://arxiv.org/abs/1709.10146
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibFBDF0145A09907A64C2311B305934161s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib2712B45C3039106AA3188304F90777EFs1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib2712B45C3039106AA3188304F90777EFs1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib16D1426D41497C1FA46ED700C88E89F1s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibD6E010F406A048FE5226A2364323513As1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibD6E010F406A048FE5226A2364323513As1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibBCA71B92DF902D75FEB9AF1F5626E26Cs1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib6B98F9B9C6AA7AB5D7A2A9B8C7C1F297s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib6B98F9B9C6AA7AB5D7A2A9B8C7C1F297s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC52ADF871BC5B74DC5F41459CD8227B1s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC52ADF871BC5B74DC5F41459CD8227B1s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib0638C15D375F0216B83EB313A0FAEFC8s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib0638C15D375F0216B83EB313A0FAEFC8s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib06A32671BBC9AD313AA808C396AFE082s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib06A32671BBC9AD313AA808C396AFE082s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibB87FA0A492F2545F12E6F571F83E08D6s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibB87FA0A492F2545F12E6F571F83E08D6s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC3015CACC4D9BA97EE01141F37B9CD32s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibC3015CACC4D9BA97EE01141F37B9CD32s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibA160BE9EB525AD73EBEF67D20251914Ds1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bibA160BE9EB525AD73EBEF67D20251914Ds1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib71C2315A37435E2233AF276E622D41DEs1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib50AE99715310BAD13C4140821B895785s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib50AE99715310BAD13C4140821B895785s1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib9B8100C599E9F41DF0062FBF37BEC16Es1
http://refhub.elsevier.com/S0304-3975(21)00209-7/bib0EB353FA9DB63CE3E15A0F18A13AB78Bs1
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874

	homogeneous energy-constrained agents
	1 Introduction
	1.1 Our model
	1.2 Related work
	1.3 Our contributions

	2 Lower bound on approximation
	3 Approximation algorithms for fixed path delivery
	3.1 Directed graphs: 3-approximation
	3.2 Undirected graphs: 2.5-approximation

	4 Special case: single pickup per agent
	4.1 Lower bound
	4.2 Approximation algorithm for single pickup per agent

	5 Fixed path delivery with O(1) agents
	6 Conclusions
	Declaration of competing interest
	References

