
Fast Collaborative Graph Exploration�

Dariusz Dereniowski1, Yann Disser2, Adrian Kosowski3,
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Abstract. We study the following scenario of online graph exploration. A team
of k agents is initially located at a distinguished vertex r of an undirected graph.
At every time step, each agent can traverse an edge of the graph. All vertices have
unique identifiers, and upon entering a vertex, an agent obtains the list of identi-
fiers of all its neighbors. We ask how many time steps are required to complete
exploration, i.e., to make sure that every vertex has been visited by some agent.

We consider two communication models: one in which all agents have global
knowledge of the state of the exploration, and one in which agents may only
exchange information when simultaneously located at the same vertex. As our
main result, we provide the first strategy which performs exploration of a graph
with n vertices at a distance of at most D from r in time O(D), using a team of
agents of polynomial size k = Dn1+ε < n2+ε, for any ε > 0. Our strategy works
in the local communication model, without knowledge of global parameters such
as n or D.

We also obtain almost-tight bounds on the asymptotic relation between explo-
ration time and team size, for large k. For any constant c > 1, we show that in the
global communication model, a team of k = Dnc agents can always complete ex-
ploration in D(1+ 1

c−1
+o(1)) time steps, whereas at least D(1+ 1

c
−o(1)) steps

are sometimes required. In the local communication model, D(1 + 2
c−1

+ o(1))

steps always suffice to complete exploration, and at least D(1 + 2
c
− o(1)) steps

are sometimes required. This shows a clear separation between the global and
local communication models.

1 Introduction

Exploring an undirected graph-like environment is relatively straight-forward for a sin-
gle agent. Assuming the agent is able to distinguish which neighboring vertices it has
previously visited, there is no better systematic traversal strategy than a simple depth-
first search of the graph, which takes 2(n−1) moves in total for a graph with n vertices.
The situation becomes more interesting if multiple agents want to collectively explore
the graph starting from a common location. If arbitrarily many agents may be used, then
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we can generously send nD agents through the graph, where D is the distance from the
starting vertex to the most distant vertex of the graph. At each step, we spread out the
agents located at each node (almost) evenly among all the neighbors of the current
vertex, and thus explore the graph in D steps.

While the cases with one agent and arbitrarily many agents are both easy to under-
stand, it is much harder to analyze the spectrum in between these two extremes. Of
course, we would like to explore graphs in as few steps as possible (i.e., close to D),
while using a team of as few agents as possible. In this paper we study this trade-off
between exploration time and team size. A trivial lower bound on the number of steps
required for exploration with k agents is Ω(D + n/k): for example, in a tree, some
agent has to reach the most distant node from r, and each edge of the tree has to be
traversed by some agent. We look at the case of larger groups of agents, for which D
is the dominant factor in this lower bound. This complements previous research on the
topic for trees [6,8] and grids [17], which usually focused on the case of small groups
of agents (when n/k is dominant).

Another important issue when considering collaborating agents concerns the model
that is assumed for the communication between agents. We need to allow communica-
tion to a certain degree, as otherwise there is no benefit to using multiple agents for
exploration [8]. We may, for example, allow agents to freely communicate with each
other, independent of their whereabouts, or we may restrict the exchange of informa-
tion to agents located at the same location. This paper also studies this tradeoff between
global and local communication.

The Collaborative Online Graph Exploration Problem. We are given a graph G =
(V,E) rooted at some vertex r. The number of vertices of the graph is bounded by
n. Initially, a set A of k agents is located at r. We assume that vertices have unique
identifiers that admit a total ordering. In each step, an agent visiting vertex v receives a
complete list of the identifiers of the nodes in N(v), where N(v) is the neighborhood of
v. Time is discretized into steps, and in each step, an agent can either stay at its current
vertex or slide along an edge to a neighboring vertex. Agents have unique identifiers,
which allows agents located at the same node and having the same exploration history to
differentiate their actions. We do not explicitly bound the memory resources of agents,
enabling them in particular to construct a map of the previously visited subgraph, and
to remember this information between time steps. An exploration strategy for G is a
sequence of moves performed independently by the agents. A strategy explores the
graph G in t time steps if for all v ∈ V there exists time step s ≤ t and an agent g ∈ A,
such that g is located at v in step s. Our goal is to find an exploration strategy which
minimizes the time it takes the explore a graph in the worst case, with respect to the
shortest path distance D from r to the vertex furthest from r in the graph.

We distinguish between two communication models. In exploration with global com-
munication we assume that, at the end of each step s, all agents have complete knowl-
edge of the explored subgraph. In particular, in step s all agents know the number of
edges incident to each vertex of the explored subgraph which lead to unexplored ver-
tices, but they have no information on any subgraph consisting of unexplored vertices.
In exploration with local communication two agents can exchange information only if
they occupy the same vertex. Thus, each agent g has its own view on which vertices
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Table 1. Our bounds for the time required to explore general graphs with using Dnc agents. The
same upper and lower bounds hold for trees. The lower bounds use graphs with D = no(1).

Communication Model Upper bound Lower bound

Global communication:
D · (1 + 1

c−1
+ o(1))

Thm. 3
D · (1 + 1

c
− o(1))

Thm. 5

Local communication :
D · (1 + 2

c−1
+ o(1))

Thm. 3
D · (1 + 2

c
− o(1))

Thm. 5

were explored so far, constructed based only the knowledge that originates from the
agent’s own observations and from other agents that it has met.

Our results. Our main contribution is an exploration strategy for a team of polynomial
size to explore graphs in an asymptotically optimal number of steps. More precisely, for
any ε > 0, the strategy can operate with Dn1+ε < n2+ε agents and takes time O(D).
It works even under the local communication model and without prior knowledge of n
or D.

We first restrict ourselves to the exploration of trees (Section 2). We show that with
global communication trees can be explored in time D · (1 + 1/(c− 1) + o(1)) for any
c > 1, using a team of Dnc agents. Our approach can be adapted to show that with
local communication trees can be explored in time D · (1 + 2/(c− 1) + o(1)) for any
c > 1, using the same number of agents. We then carry the results for trees over to
the exploration of general graphs (Section 3). We obtain precisely the same asymptotic
bounds for the number of time steps needed to explore graphs with Dnc agents as for
the case of trees, under both communication models.

Finally, we provide lower bounds for collaborative graph exploration that almost
match our positive results (Section 4). More precisely, we show that, in the worst case
and for any c > 1, exploring a graph with Dnc agents takes at least D · (1+1/c−o(1))
time steps in the global communication model, and at least D·(1+2/c−o(1)) time steps
in the local communication model. Table 1 summarizes our upper and corresponding
lower bounds.

Related Work. Collaborative online graph exploration has been intensively studied for
the special case of trees. In [8], a strategy is given which explores any tree with a team of
k agents in O(D+n/ log k) time steps, using a communication model with whiteboards
at each vertex that can be used to exchange information. This corresponds to a compet-
itive ratio of O(k/ log k) with respect to the optimum exploration time of Θ(D + n/k)
when the graph is known. In [13] authors show that the competitive ratio of the strategy
presented in [8] is precisely k/ log k. Another DFS-based algorithm, given in [2], has an
exploration time of O(n/k +Dk−1) time steps, which provides an improvement only
for graphs of small diameter and small teams of agents, k = O(logD n). For a special
subclass of trees called sparse trees, [6] introduces online strategies with a competitive
ratio of O(D1−1/p), where p is the density of the tree as defined in that work. The best
currently known lower bound is much lower: in [7], it is shown that any deterministic
exploration strategy with k <

√
n has a competitive ratio of Ω(log k/ log log k), even
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in the global communication model. A stronger lower bound of Ω(k/ log k) holds for
so-called greedy algorithms [13]. Both for deterministic and randomized strategies, the
competitive ratio is known to be at least 2 − 1/k, when k <

√
n [8]. None of these

lower bounds concern larger teams of agents. In [16] a lower bound of Ω(D1/(2c+1))
on competitive ratio is shown to hold for a team of k = nc agents, but this lower bound
only concerns so-called rebalancing algorithms which keep all agents at the same height
in the tree throughout the exploration process.

The same model for online exploration is studied in [17], where a strategy is pro-
posed for exploring graphs which can be represented as a D × D grid with a certain
number of disjoint rectangular holes. The authors show that such graphs can be explored
with a team of k agents in time O(D log2 D+n logD/k), i.e., with a competitive ratio
of O(log2 D). By adapting the approach for trees from [7], they also show lower bounds
on the competitive ratio in this class of graphs of Ω(log k/log log k) for deterministic
strategies and Ω(

√
log k/log log k) for randomized strategies. These lower bounds also

hold in the global communication model.
Collaborative exploration has also been studied with different optimization objec-

tives. An exploration strategy for trees with global communication is given in [7],
achieving a competitive ratio of (4 − 2/k) for the objective of minimizing the maxi-
mum number of edges traversed by an agent. In [5] a corresponding lower bound of
3/2 is provided.

Our problem can be seen as an online version of the k Traveling Salesmen Problem
(k-TSP) [9]. Online variants of TSP (for a single agent) have been studied in various
contexts. For example, the geometric setting of exploring grid graphs with and without
holes is considered by [10,11,14,15,17], where a variety of competitive algorithms with
constant competitive ratios is provided. A related setting is studied in [4], where an
agent has to explore a graph while being attached to the starting point by a rope of
restricted length. A similar setting is considered in [1], in which each agent has to
return regularly to the starting point, for example for refueling. Online exploration of
polygons is considered in [3,12].

2 Tree Exploration

We start our considerations by designing exploration strategies for the special case when
the explored graph is a tree T rooted at a vertex r. For any exploration strategy, the set
of all encountered vertices (i.e., all visited vertices and their neighbors) at the beginning
of step s = 1, 2, 3, . . . forms a connected subtree of T , rooted at r and denoted by T (s).
In particular, T (1) is the vertex r together with its children, which have not yet been
visited. For v ∈ V (T ) we write T (s)(v) to denote the subtree of T (s) rooted at v. We
denote by L(T (s), v) the number of leaves of the tree T (s)(v). Note that L(T (s), v) ≤
L(T (s+1), v) because each leaf in T (s)(v) is either a leaf of the tree T (s+1) or the root of
a subtree containing at least one vertex. If v is an unencountered vertex at the beginning
of step s, i.e., its parent was not yet visited, we define L(T (s), v) = 1.
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2.1 Tree Exploration with Global Communication

We are ready to give the procedure TEG (Tree Exploration with Global Communication).
The pseudocode uses the command “move(s)”, describing the move to be performed by
each agent, specifying the destination at which the agent appears at the start of time
step s + 1. Since the agents can communicate globally, the procedure can centrally
coordinate the movements of each agent. For simplicity we assume that x agents spawn
in r in each time step, for some given value of x. Then, the total number of agents used
after l steps is simply lx.

Procedure TEG (tree T with root r, integer x) at time step s:
Place x new agents at r.
for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents located at v }

Let A(s)
v be the set of agents currently located at v.

Denote by v1, v2, . . . , vd the set of children of v.
Let i∗ := argmaxi{L(T (s), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1 ,Av2 , . . . ,Avd , such that:

(i) |Avi | =
⌊

|A(s)
v |·L(T (s),vi)

L(T (s),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A(s)
v | −∑

i∈{1,2,...,d}\{i∗} |Avi |.
for each i ∈ {1, 2, . . . , d} do for each agent g ∈ Avi do move(s) g to vertex vi.

end for
end procedure TEG.

The following lemma provides a characterization of the tradeoff between exploration
time and the number of agents x released at every round in procedure TEG. In the
following, all logarithms are with base 2 unless a different base is explicitly given.

Lemma 1. In the global communication model, procedure TEG with parameter x ex-
plores any rooted tree T in at most D · (1 + 1

logn x−1−logn(2 log x) ) time steps, for

x > 6(n logn+ 1).

Proof. Fix any leaf f of the tree T . We want to prove that procedure TEG visits the
leaf f after at most D · (1 + 1

logn x−1−logn(2 log x)) time steps. Take the path F =

(f0, f1, f2, . . . , fDf
) from r to f in T , where r = f0,f = fDf

, and Df ≤ D. We define
the wave of agents ws starting from r at time s and traversing the path F as the max-
imum sequence of the non-empty sets of agents which leave the root in step s and tra-
verse edges of F in successive time steps, i.e., ws = (A(s)

f0
,A(s+1)

f1
, . . .), where we use

the notation from procedure TEG. The size of wave ws in step s+t is defined to be |A(s)
ft

|,
i.e., the number of exploring agents located at vertex ft at the beginning of time step s+

t; initially, every wave has size |A(s)
f0

| = x. Note that each agent in A(s+i)
fi

, 0 ≤ i < Df ,
is located at r at the start of time step s. We denote the number of leaves in the subtree
of T (i) rooted at fj by λ

(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step

i, by definition of the functionL, we have λ(i)
j = 1. In general, 1 ≤ λ

(i)
j ≤ n. We define

αi =
x

2

λ
(i)
1

λ
(i)
0

λ
(i+1)
2

λ
(i+1)
1

· · ·
λ
(i+Df−1)
Df

λ
(i+Df−1)
Df−1

,



Fast Collaborative Graph Exploration 525

and define α∗
i as the number of agents of the i-th wave that reach the leaf f , i.e., the size

of the i-th wave in step i +Df . If α∗
1 = α∗

2 = · · · = α∗
i−1 = 0 and α∗

i ≥ 1 for some
time step i, then we say that leaf f is explored by the i-th wave. Before we proceed with
the analysis, we show the following auxiliary claim.

Claim (*). Let i be a time step for which αi ≥ log x. Then, α∗
i ≥ αi, and thus αi is

a lower bound on the number of agents reaching f in step i+Df .

Proof (of the claim). We define cj = λ
(i+j)
j+1 /λ

(i+j)
j for j = 0, . . . , Df − 1. For i ≥ 1

we have αi = x/2
∏Df−1

j=0 cj . Since cj ≤ 1 for all j and since αi ≥ log x, there exist
at most log x different j such that cj ≤ 1/2. Denote the set of all such j by J , with
|J | ≤ log x. Also, denote the size of wave wi in step i + s by as (for s = 0, 1, 2, . . .),
in particular a0 = x.

Consider some index s for which cs > 1/2. We have λ
(i+s)
s+1 /λ

(i+s)
s > 1/2, thus

more than half of all leaves of the tree T (i+s)(fs) also belong to the tree T (i+s)(fs+1).
But then, in time step i + s + 1, agents are sent from fs to fs+1 according to the defi-
nition in expression (ii) in procedure TEG. Thus, we can lower-bound the size of wave
wi in step i + s + 1 by as+1 ≥ ascs. Otherwise, if cs ≤ 1/2 (i.e., if s ∈ J ), then
agents are sent according the definition in expression (i) in procedure TEG, and hence
as+1 ≥ �ascs�. Note that these bounds also hold if there are no agents left in the wave,
i.e., as = as+1 = 0. Thus, we have:

as+1 ≥ ascs − δs, where δs =

{
1, if s ∈ J ,

0, otherwise.

In this way we expand the expression for α∗
i = aDf

:

α∗
i = aDf ≥ aDf−1cDf−1−δDf−1 ≥ . . . ≥ (...((a0c0−δ0)c1−δ1)c2−. . .)cDf−1−δDf−1 =

= x

Df−1∏
j=0

cj −
Df−1∑
j=0

⎛
⎝δj

Df−1∏
p=j+1

cj

⎞
⎠ ≥ 2αi −

Df−1∑
j=0

δj ≥ 2αi − |J | ≥ 2αi − log x.

Since by assumption αi ≥ log x, we obtain α∗
i ≥ 2αi − log x ≥ αi, which completes

the proof of the claim.
We now show that if the number of waves a in the execution of the procedure is

sufficiently large, then there exists an index i ≤ a, such that αi ≥ log x. Thus, taking
into account Claim (*), leaf f is explored at the latest by the a-th wave.

Take a waves and consider the product
∏a

i=1 αi. Note that λ(s)
Df

= 1 for every s.
Thus, simplifying the product of all αi by shortening repeating terms in numerators and
denominators, and using 1 ≤ λ

(i)
j ≤ n, we get

a∏
i=1

αi = (x
2
)a

a∏
i=1

Df−1∏
j=0

λ
(i+j)
j+1

λ
(i+j)
j

= (x
2
)a

∏a
i=1

∏Df−1

j=0 λ
(i+j)
j+1∏a

i=1

∏Df−1

j=0 λ
(i+j)
j

= (x
2
)a

∏a−1
i′=0

∏Df

j′=1
λ
(i′+j′)
j′∏a

i=1

∏Df−1

j=0 λ
(i+j)
j

=

= (x
2
)a

(∏Df

j′=1
λ
(j′)
j′

)(∏a−1
i′=1

∏Df−1

j′=1
λ
(i′+j′)
j′

)(∏a−1
i′=1 λ

(i′+Df )

Df

)
(∏a

i=1 λ
(i)
0

)(∏a−1
i=1

∏Df−1

j=1 λ
(i+j)
j

)(∏Df−1

j=1 λ
(a+j)
j

) ≥ (x/2)a

nanDf−1
≥ (x/2)a

na+D
.

(1)
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We want to find a, such that
∏a

i=1 αi ≥ (log x)a. Taking into account (1), it is sufficient
to find a satisfying

(x/2)a

na+D
≥ (log x)a,

which for sufficiently large x (we take x > 6(n logn + 1)) can be equivalently trans-
formed by taking logarithms and arithmetic to the form:

a ≥ D

logn x− 1− logn(2 logx)
.

Hence, for a = � D
logn x−1−logn(2 log x)	, we have that there exists some i such that

αi ≥ log x. For the same i we have α∗
i ≥ log x, by Claim (*). Thus, a waves are

sufficient to explore the path F . This analysis can be done for any leaf f , thus it is
enough to send a waves in order to explore the graph G. Considering that a wave wi is
completed by the end of step D+i−1, the exploration takes at most D+a−1 time steps
in total. Thus, the exploration takes at most D·(1+ 1

logn x−1−logn(2 log x) ) time steps. 
�

We remark that in the above Lemma, the total number of agents used throughout all
steps of procedure TEG is x ·D · (1 + 1

logn x−1−logn(2 log x) ). For any c > 1, by appro-
priately setting x = Θ(nc), we directly obtain the following theorem.

Theorem 1. For any fixed c > 1 and known n, the online tree exploration problem with

global communication can be solved in at most D ·
(
1 + 1

c−1 + o(1)
)

time steps using

a team of k ≥ Dnc agents. 
�

2.2 Tree Exploration with Local Communication

In this section we propose a strategy for tree exploration under the local communica-
tion model. In the implementation of the algorithm we assume that whenever two agents
meet, they exchange all information they possess about the tree. Thus, after the meeting,
the knowledge about the explored vertices and their neighborhoods, is a union of the
knowledge of the two agents before the meeting. Since agents exchange information
only if they occupy the same vertex, at any time s, the explored tree T (s) may only par-
tially be known to each agent, with different agents possibly knowing different subtrees
of T (s).

In order to obtain a procedure for the local communication model, we modify proce-
dure TEG from the previous section. Observe that in procedure TEG, agents never move
towards the root of the tree, hence, in the local communication model, agents cannot
exchange information with other agents located closer to the root. The new strategy is
given by the procedure TEL (Tree Exploration with Local Communication).

In procedure TEL, all agents are associated with a state flag which may be set either
to the value “exploring” or “notifying”. Agents in the “exploring” state act similarly as
in global exploration, with the requirement that they always move to a vertex in groups
of 2 or more agents. Every time a group of “exploring” agents visits a new vertex, it
detaches two of its agents, changes their state to “notifying”, and sends them back along
the path leading back to the root. These agents notify every agent they encounter on their



Fast Collaborative Graph Exploration 527

way about the discovery of the new vertices. Although information about the discovery
may be delayed, in every step s, all agents at vertex v know the entire subtree T (s′)(v)
which was explored until some previous time step s′ ≤ s. The state flag also has a
third state, “discarded”, which is assigned to agents no longer used in the exploration
process.

The formulation of procedure TEL is not given from the perspective of individual
agents, however, based on its description, the decision on what move to make in the
current step can be made by each individual agent. The correctness of the definition of
the procedure relies on the subsequent lemma, which guarantees that for a certain value
s′ the tree T (s′)(v) is known to all agents at v.

Procedure TEL (tree T with root r, integer x) at time step s:
Place x new agents at r in state “exploring”.
for each v ∈ V (T (s)) which is not a leaf do: { determine moves of the agents located at v }

if v �= r then for each agent g at v in state “notifying” do move(s) g to the parent of v.
if v contains at least two agents in state “exploring” and agents at v do not have

information of any agent which visited v before step s then:
{ send two new notifying agents back to the root from newly explored vertex v }
Select two agents g∗, g∗∗ at v in state “exploring”.
Change state to “notifying” for agents g∗ and g∗∗.
move(s) g∗ to the parent of v. { g∗∗ will move to the parent one step later }

end if
Let A(s)

v be the set of all remaining agents in state “exploring” located at v.
Denote by v1, v2, . . . , vd all children of v, and by δ the distance from r to v.
s′ :=

⌊
δ+s
2

⌋
. { s′ is a time in the past such that T (s′)(v) is known to the agents at v }

Let i∗ := argmaxi{L(T (s′), vi)}. { vi∗ is the child of v with the largest value of L }
Partition A(s)

v into disjoint sets Av1 ,Av2 , . . . ,Avd , such that:

(i) |Avi | =
⌊

|A(s)
v |·L(T (s′),vi)
L(T (s′),v)

⌋
, for i ∈ {1, 2, . . . , d} \ {i∗},

(ii) |Avi∗ | = |A(s)
v | −∑

i∈{1,2,...,d}\{i∗} |Avi |.
for each i ∈ {1, . . . , d} do if |Avi | ≥ 2 then for each agent g ∈ Avi do move(s) g to vi.
for each i ∈ {1, . . . , d} do if |Avi | = 1 then change state to “discarded” for agent in Avi .

end for
for each v ∈ V (T (s)) which is a leaf do move(s) all agents located at v to the parent of v.

end procedure TEL.

Lemma 2. Let T be a tree rooted at some vertex r and let v be a vertex with distance
δ to r. After running procedure TEL until time step s, all agents which are located at
vertex v at the start of time step s know the tree T (s′)(v), for s′ =

⌊
δ+s
2

⌋
.

(Some proofs are omitted from this extended abstract.)

Lemma 3. In the local communication model, procedure TEL with parameter x ex-
plores any rooted tree T in at most D · (1 + 2+1/ logn

logn x−1−logn(4 log x) ) time steps, for

x > 17(n logn+ 1).
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Proof (sketch). As in the proof of Lemma 1, we consider any leaf f and the path F =
(f0, f1, . . . , fDf

) from r to f . As before, we denote the number of leaves in the subtree

of T (i) rooted at fj by λ
(i)
j = L(T (i), fj). Recall that if fj is not yet discovered in step

i, we have L(T (i), fj) = 1. We adopt the definition of a wave from Lemma 1. We define
the values αi differently, however, to take into account the fact that the procedure relies
on a delayed exploration tree, and that some waves lose agents as a result of deploying

notifying agents: αi =
x
4
λ
(� i

2�)
1

λ
(� i

2�)
0

λ
(� i

2�+1)
2

λ
(� i

2�+1)
1

· · ·
λ
(� i

2�+Df−1)
Df

λ
(� i

2�+Df−1)
Df−1

.

We call a wave that discovered at least �log x	 new nodes (or equivalently, a wave
whose agents were the first to visit at least �log x	 nodes of the tree) a discovery wave.
Thus, there are at most � Df

�log x�� ≤ � D
log x� discovery waves along the considered path.

Observe that if a wave is not a discovery wave, then the number of notifying agents it
sends out is at most 2 logx.

We define by α∗
i the number of agents of the i-th wave that reach leaf f . We first

prove that the following analogue of Claim (*) from the proof of Lemma 1 holds for
non-discovery waves (we leave out the details from this extended abstract).

Claim (**). Let i be a time step for which wi is not a discovery wave and αi ≥ log x.
Then, α∗

i ≥ αi, and thus αi is a lower bound on the number of agents reaching f in
step i+Df .

Finally, we prove that if the number of waves a in the execution of the procedure is
sufficiently large, i.e. a ≥ D · ( 2+1/ log n

logn x−1−logn(4 log x)), there exists an index i ≤ a, such
that wave wi is not a discovery wave and αi ≥ log x. Exploration is then completed
when the last wave reaches leaves, i.e. in D + a− 1 steps, which completes the proof.


�

Acting as in the previous Subsection, from Lemma 3 we obtain a strategy for online
exploration of trees in the model with local communication.

Theorem 2. For any fixed c > 1, the online tree exploration problem can be solved
in the model with local communication and knowledge of n using a team of k ≥ Dnc

agents in at most D
(
1 + 2

c−1 + o(1)
)

time steps. 
�

3 General Graph Exploration

In this section we develop strategies for exploration of general graphs, both with global
communication and with local communication. These algorithms are obtained by mod-
ifying the tree-exploration procedures given in the previous section.

Given a graph G = (V,E) with root vertex r, we call P = (v0, v1, v2, . . . , vm) with
r = v0, vi ∈ V , and {vi, vi+1} ∈ E a walk of length �(P ) = m. Note that a walk
may contain a vertex more than once. We introduce the notation P [j] to denote vj , i.e.,
the j-th vertex of P after the root, and P [0, j] to denote the walk (v0, v1, . . . , vj), for
j ≤ m. The last vertex of path P is denoted by end(P ) = P [�(P )]. The concatenation
of a vertex u to path P , where u ∈ N(end(P )) is defined as the path P ′ ≡ P + u of
length �(P ) + 1 with P ′[0, �(P )] = P and end(P ′) = u.
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Let P be the set of walks P in G having length 0 ≤ �(P ) < n. We introduce a
linear order on walks in P such that for two walks P1 and P2, we say that P1 < P2

if �(P1) < �(P2), or �(P1) = �(P2) and there exists an index j < �(P1) such that
P1([0, j]) = P2([0, j]) and P1([j+1]) < P2([j+1]). The comparison of vertices from
V is understood as comparison of their identifiers in G.

We now define the tree T with vertex set P , root (r) ∈ P , such that vertex P ′ is
a child of vertex P if and only if P ′ = P + u, for some u ∈ N(end(P )). We first
show that agents can simulate the exploration of T while in fact moving around graph
G. Intuitively, while an agent is following a path from the root to the leaves of T , its
location in T corresponds to the walk taken by this agent in G.

Lemma 4. A team of agents can simulate the virtual exploration of tree T starting from
root (r), while physically moving around graphG starting from vertex r. The simulation
satisfies the following conditions:

(1) An agent virtually occupying a vertex P of T is physically located at a vertex
end(P ) in G.

(2) Upon entering a vertex P of T in the virtual exploration, the agent obtains the
identifiers of all children of P in T .

(3) A virtual move along an edge of T can be performed in a single time step, by
moving the agent to an adjacent location in G.

(4) Agents occupying the same virtual location P in T can communicate locally, i.e.,
they are physically located at the same vertex of G.

We remark that the number of vertices of tree T is exponential in n. Hence, our goal is
to perform the simulation with only a subset of the vertices of T . For a vertex v ∈ V ,
let Pmin(v) ∈ P be the minimum (with respect to the linear order on P) walk ending
at v. We observe that, by property (1) in Lemma 4, if, for all v ∈ V , the vertex Pmin(v)
of T has been visited by at least one agent in the virtual exploration of T , the physical
exploration of G is completed. We define Pmin = {Pmin(v) : v ∈ V }, and show that
all vertices of Pmin are visited relatively quickly if we employ the procedure TEG (or
TEL) for T , subject to a simple modification. In the original algorithm, we divided the
agents descending to the children of the vertex according to the number of leaves of
the discovered subtrees. We introduce an alternate definition of the function L(T (s), v),
so as to take into account only the number of vertices in T (s) corresponding to walks
which are smallest among all walks in T (s) sharing the same end-vertex.

Lemma 5. Let T (s) ⊆ T be a subtree of T rooted at (r). For P ∈ V (T (s)), let
L(T (s), P ) be the number of vertices v of G, for which the subtree of T (s) rooted at
P contains a vertex representing the smallest walk contained in T (s) which ends at v:

L(T (s), P ) =
∣
∣
∣V (T (s)(P )) ∩

⋃

v∈V

{
min{P ′ ∈ V (T (s)) : end(P ′) = v}

} ∣
∣
∣,

and for P ∈ P \ V (T (s)), let L(T (s), P ) = 1. Subject to this definition of L, pro-
cedure TEG with parameter x > 6(n logn + 1) (procedure TEL with parameter x >
17(n logn + 1)) applied to tree T starting from root (r) visits all vertices from Pmin
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within D · (1+ 1
logn x−1−logn(2 log x) ) (respectively, D · (1+ 2+1/ log n

logn x−1−logn(4 log x))) time
steps.

Proof. The set Pmin spans a subtree Tmin = T [Pmin] in T , rooted at (r). We can
perform an analysis analogous to that used in the Proofs of Lemmas 1 and 3, evaluating
sizes of waves of agents along paths in the subtree Tmin. We observe that for any P ∈
Pmin which is not a leaf in Tmin, we always have L(T (s), P ) ≥ 1. Moreover, we
have L(T (s), P ) ≤ |V (T (s)(P ))|, and so L(T (s), P ) ≤ n. Since these two bounds
were the only required properties of the functions L in the Proofs of Lemmas 1 and
3, the analysis from these proofs applies within the tree Tmin without any changes. It
follows that each vertex of Pmin is reached by the exploration algorithm within D · (1+

1
logn x−1−logn(2 log x) ) time steps in case of global communication, and within D · (1 +

2+1/ logn
logn x−1−logn(4 log x) ) time steps in case of local communication. 
�

We recall that by Lemma 4, one step of exploration of tree T can be simulated by a
single step of an agent running on graph G. Thus, appropriately choosing x = Θ(nc)
in Lemma 5, we obtain our main theorem for general graphs.

Theorem 3. For any c > 1, the online graph exploration problem with knowledge of n
can be solved using a team of k ≥ Dnc agents:

– in at most D ·
(
1 + 1

c−1 + o(1)
)

time steps in the global communication model.

– in at most D ·
(
1 + 2

c−1 + o(1)
)

time steps in the local communication model.

For the case when we do not assume knowledge of (an upper bound on) n, we provide
a variant of the above theorem which also completes exploration in O(D) steps, with a
slightly larger multiplicative constant.

Theorem 4. For any c > 1, there exists an algorithm for the local communication
model, which explores a rooted graph of unknown order n and unknown diameter D
using a team of k agents, such that its exploration time is O(D) if k ≥ Dnc.

We remark that by choosing x = Θ(n log n) in Lemma 2, we can also explore a graph
using k = Θ(Dn log n) agents in time Θ(D logn), with local communication. This
bound is the limit of our approach in terms of the smallest allowed team of agents.

4 Lower Bounds

In this section, we show lower bounds for exploration with Dnc agents, complementary
to the positive results given by Theorem 3. The graphs that produce the lower bound are
a special class of trees. The same class of trees appeared in the lower bound from [8]
for the competitive ratio of tree exploration algorithms with small teams of agents. In
our scenario, we obtain different lower bounds depending on whether communication
is local or global.

Theorem 5. For all n > 1 and for every increasing function f , such that log f(n) =
o(logn), and every constant c > 0, there exists a family of trees Tn,D, each with n
vertices and height D = Θ(f(n)), such that
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(i) for every exploration strategy with global communication that uses Dnc agents
there exists a tree in Tn,D such that number of time steps required for its exploration
is at least D

(
1 + 1

c − o(1)
)
,

(ii) for every exploration strategy with local communication that uses Dnc agents there
exists a tree in Tn,D such that number of time steps required for exploration is at
least D

(
1 + 2

c − o(1)
)
.

When looking at the problem of minimizing the size of the team of agents, our work
(Theorem 4) shows that it is possible to achieve asymptotically-optimal online explo-
ration time of O(D) using a team of k ≤ Dn1+ε agents, for any ε > 0. For graphs
of small diameter, D = no(1), we can thus explore the graph in O(D) time steps us-
ing k ≤ n1+ε agents. This result almost matches the lower bound on team size of
k = Ω(n1−o(1)) for the case of graphs of small diameter, which follows from the trivial
lower bound Ω(D + n/k) on exploration time (cf. e.g. [8]). The question of establish-
ing precisely what team size k is necessary and sufficient for performing exploration in
O(D) steps in a graph of larger diameter remains open.
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