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Abstract. We study the Travelling Salesperson (TSP) and the Steiner
Tree problem (STP) in graphs of low highway dimension. This graph
parameter was introduced by Abraham et al. [SODA 2010] as a model
for transportation networks, on which TSP and STP naturally occur for
various applications in logistics. It was previously shown [Feldmann et
al. ICALP 2015] that these problems admit a quasi-polynomial time
approximation scheme (QPTAS) on graphs of constant highway dimen-
sion. We demonstrate that a significant improvement is possible in the
special case when the highway dimension is 1, for which we present a
fully-polynomial time approximation scheme (FPTAS). We also prove
that STP is weakly NP-hard for these restricted graphs. For TSP we
show NP-hardness for graphs of highway dimension 6, which answers an
open problem posed in [Feldmann et al. ICALP 2015].
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1 Introduction

Two fundamental optimization problems already included in Karp’s initial
list of 21 NP-complete problems [33] are the Travelling Salesperson
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problem (TSP) and the Steiner Tree problem (STP). Given an undirected
graph G = (V,E) with non-negative edge weights w : E → R

+, the TSP asks
to find the shortest closed walk in G visiting all nodes of V . Besides its funda-
mental role in computational complexity and combinatorial optimization, this
problem has a variety of applications ranging from circuit manufacturing [29,41]
and scientific imaging [14] to vehicle routing problems [40] in transportation
networks. For the STP, a subset R ⊆ V of nodes is marked as terminals. The
task is to find a weight-minimal connected subgraph of G containing the ter-
minals. It has plenty of fundamental applications in network design including
telecommunication networks [42], computer vision [20], circuit design [30], and
computational biology [22,43], but also lies at the heart of line planning in public
transportation [17].

Both TSP and STP are APX-hard in general [6,13,21,34,39,45] implying
that, unless P = NP, none of these problems admit a polynomial-time approxi-
mation scheme (PTAS), i.e., an algorithm that computes a (1+ε)-approximation
in polynomial time for any given constant ε > 0. On the other hand, for restricted
inputs PTASs do exist, e.g., for planar graphs [5,18,28,36], Euclidean and Man-
hattan metrics [7,44], and more generally low doubling1 metrics [8].

We study another class of graphs captured by the notion of highway dimen-
sion, which was proposed by Abraham et al. [3]. This graph parameter models
transportation networks and is thus of particular importance in terms of appli-
cations for both TSP and STP. On a high level, the highway dimension is based
on the empirical observation of Bast et al. [9,10] that travelling from a point in a
network to a sufficiently distant point on a shortest path always passes through
a sparse set of “hubs”. The following formal definition is taken from [25] and
follows the lines of Abraham et al. [3].2 Here the distance between two vertices
is the length of the shortest path between them, according to the edge weights.
The ball Bv(r) of radius r around a vertex v contains all vertices with distance
at most r from v.

Definition 1. For a scale r ∈ R>0, let P(r,2r] denote the set of all vertex sets
of shortest paths with length in (r, 2r]. A shortest path cover for scale r is a
hitting set for P(r,2r], i.e., a set spc(r) ⊆ V such that |spc(r) ∩ P | �= ∅ for all
P ∈ P(r,2r]. The vertices of spc(r) are the hubs for scale r. A shortest path
cover spc(r) is locally h-sparse, if |spc(r) ∩ Bv(2r)| ≤ h for all vertices v ∈ V .
The highway dimension of G is the smallest integer h such that there is a locally
h-sparse shortest path cover spc(r) for every scale r ∈ R>0 in G.

The algorithmic consequences of this graph parameter were originally studied
in the context of road networks [1–3], which are conjectured to have fairly small

1 A metric is said to have doubling dimension d if for all r > 0 every ball of radius r
can be covered by at most 2d balls of half the radius r/2.

2 It is often assumed that all shortest paths are unique when defining the highway
dimension, since this allows good polynomial approximations of this graph parame-
ter [2]. In this work however, we do not rely on these approximations, and thus do
not require uniqueness of shortest paths.
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highway dimension. Road networks are generally non-planar due to overpasses
and tunnels, and are also not Euclidean due to different driving or transmission
speeds. This is even more pronounced in public transportation networks, where
large stations have many incoming connections and plenty of crossing links, mak-
ing Euclidean (or more generally low doubling) and planar metrics unsuitable as
models. Here the highway dimension is better suited, since longer connections
are serviced by larger and sparser stations (such as train stations and airports)
that can act as hubs.

The main question posed in this paper is whether the structure of graphs
with low highway dimension admits PTASs for problems such as TSP and STP,
similar to Euclidean or planar instances. It was shown that quasi-polynomial
time approximation schemes (QPTASs) exist for these problems [24], i.e., (1 +
ε)-approximation algorithms with runtime 2polylog(n) assuming that ε and the
highway dimension of the input graph are constants. However it was left open
whether this can be improved to polynomial time.

1.1 Our Results

Our main result concerns graphs of the smallest possible highway dimension, and
shows that for these fully polynomial time approximation schemes (FPTASs)
exist, i.e., a (1 + ε)-approximation can be computed in time polynomial in both
the input size and 1/ε. Thus at least for this restricted case we obtain a significant
improvement over the previously known QPTAS [24].

Theorem 2. Both Travelling Salesperson and Steiner Tree admit an
FPTAS on graphs with highway dimension 1.

From an application point of view, so-called hub-and-spoke networks that can
typically be seen in air traffic networks can be argued to have very small highway
dimension close to 1: their star-like structure implies that hubs are needed at the
centers of stars only, where all shortest paths converge. From a more theoretical
viewpoint, we show that surprisingly the STP problem is non-trivial on graphs
highway dimension 1, since it is still NP-hard even on this very restricted case.
Interestingly, together with Theorem 2 this implies [49] that STP is weakly NP-
hard on graphs of highway dimension 1. This is in contrast to planar graphs or
Euclidean metrics, for which the problem is strongly NP-hard.

Theorem 3. The Steiner Tree problem is weakly NP-hard on graphs with
highway dimension 1.3

It was in fact left as an open problem in [24] to determine the hardness of
STP and also TSP on graphs of constant highway dimension. Theorem3 settles
this question for STP. We also answer the question for TSP, but in this case
we are not able to bring down the highway dimension to 1 so that the following
theorem does not complement Theorem 2 tightly.

Theorem 4. The Travelling Salesperson problem is NP-hard on graphs
with highway dimension 6.
3 The proofs of Theorems 3 and 4 are deferred to the full version of the paper.
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1.2 Techniques

We present a step towards a better understanding of low highway dimension
graphs by giving new structural insights on graphs of highway dimension 1.
It is not hard to find examples of (weighted) complete graphs with highway
dimension 1 (cf. [24]), and thus such graphs are not minor-closed. Nevertheless,
it was suggested in [24] that the treewidth of low highway dimension graphs
might be bounded polylogarithmically in terms of the aspect ratio α, which
is the maximum distance divided by the minimum distance between any two
vertices of the input graph.

Definition 5. A tree decomposition of a graph G = (V,E) is a tree D where
each node v is labelled with a bag Xv ⊆ V of vertices of G, such that the following
holds: (a)

⋃
v∈V (D) Xv = V , (b) for every edge {u,w} ∈ E there is a node

v ∈ V (D) such that Xv contains both u and w, and (c) for every v ∈ V the set
{u ∈ V (D) | v ∈ Xu} induces a connected subtree of D. The width of the tree
decomposition is max{|Xv| − 1 | v ∈ V (D)}. The treewidth of a graph G is the
minimum width among all tree decompositions for G.

As suggested in [24], one may hope to prove that the treewidth of any graph
of highway dimension h is, say, O(h polylog(α)). As argued in Sect. 4, it unfor-
tunately is unlikely that such a bound is generally possible. In contrast to this,
our main structural insight on graphs of highway dimension 1 is that they have
treewidth O(log α). This implies FPTASs for TSP and STP, since we may reduce
the aspect ratio of any graph with n vertices to O(n/ε) and then use algorithms
by Bodlaender et al. [16] to compute optimum solutions to TSP and STP in
graphs of treewidth t in 2O(t)n time. Since reducing the aspect ratio distorts the
solution by a factor of 1 + ε, this results in an approximation scheme. Although
these are fairly standard techniques for metrics (cf. [24]), in our case we need to
take special care, since we need to bound the treewidth of the graphs resulting
from this reduction, which the standard techniques do not guarantee.

It remains an intriguing open problem to understand the complexity and
structure of graphs of constant highway dimension larger than 1.

1.3 Related Work

The Travelling Salesperson problem (TSP) is among Karp’s initial list
of 21 NP-complete problems [33]. For general metric instances, the best known
approximation algorithm is due to Christofides [23] and computes a solution with
cost at most 3/2 times the LP value. For unweighted instances, the best known
approximation guarantee is 7/5 and is due to Sebő and Vygen [47]. In general
the problem is APX-hard [34,39,45]. For geometric instances where the nodes are
points in R

d and distances are given by some lp-norm, there exists a PTAS [4,44]
for fixed d. When d = log n, the problem is APX-hard [48]. Krauthgamer and Lee
[38] generalized the PTAS to hyperbolic space. Grigni et al. [28] gave a PTAS
for unweighted planar graphs which was later generalized by Arora et al. [5] to
the weighted case. For improvements of the running time see Klein [36].
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The Steiner Tree problem (STP) is contained in Karp’s list of NP-
complete problems as well [33]. The best approximation algorithm for general
metric instances is due to Byrka et al. [19] and computes a solution with cost at
most ln(4) + ε < 1.39 times that of an LP relaxation. Their algorithm improved
upon previous results by, e.g., Robins and Zelikovsky [46] and Hougardy and
Prömel [32]. Also the STP is APX-hard [21] in general. For Euclidean dis-
tances and nodes in R

d with d constant there is a PTAS due to Arora [4]. For
d = log |R|/ log log |R| where R is the terminal set, the problem is APX-hard [48].
For planar graphs, there is a PTAS for STP [18], and even for the more general
Steiner Forest problem for graphs with bounded genus [11]. Note that STP

remains NP-complete for planar graphs [27].
It is worth mentioning that alternate definitions of the highway dimension

exist.4 In particular, in a follow-up paper to [3], Abraham et al. [1] define a ver-
sion of the highway dimension, which implies that the graphs also have bounded
doubling dimension. A related model for transportation networks was given
by Kosowski and Viennot [37] via the so-called skeleton dimension, which also
implies bounded doubling dimension. Hence for these definitions, Bartal et al. [8]
already provide a PTAS for TSP. The highway dimension definition used here
(cf. Definition 1) on the other hand allows for metrics of large doubling dimen-
sion as noted by Abraham et al. [3]: a star has highway dimension 1 (by using
the center vertex to hit all paths), but its doubling dimension is unbounded.
While it may be reasonable to assume that road networks (which are the main
concern in the works of Abraham et al. [1–3]) have low doubling dimension, there
are metrics modelling transportation networks for which it can be argued that
the doubling dimension is large, while the highway dimension should be small.
These settings are better captured by Definition 1. For instance, the so-called
hub-and-spoke networks that can typically be seen in air traffic networks are
star-like networks and are unlikely to have small doubling dimension while still
having very small highway dimension close to 1. Thus in these examples it is rea-
sonable to assume that the doubling dimension is a lot larger than the highway
dimension.

Feldmann et al. [24] showed that graphs with low highway dimension can be
embedded into graphs with low treewidth. This embedding gives rise to a QPTAS
for both TSP and STP but also other problems. However, the result in [24] is
only valid for a less general definition of the highway dimension from [2], i.e.,
there are graphs which have constant highway dimension according to Defini-
tion 1 but for which the algorithm of [24] cannot be applied. For the less general
definition from [2], Becker et al. [12] give a PTAS for Bounded-Capacity Vehi-

cle Routing in graphs of bounded highway dimension. Also the k-Center

problem has been studied on graphs of bounded highway dimension, both for
the less general definition [12] and the more general one used here [25,26].

4 See [24, Section 9] and [15] for detailed discussions on different definitions of the
highway dimension.
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2 Structure of Graphs with Highway Dimension 1

In this section, we analyse the structure of graphs with highway dimension 1.
To this end, let us fix a graph G with highway dimension 1 and a shortest path
cover spc(r) for each scale r ∈ R

+. As a preprocessing, we remove edges that
are longer than the shortest path between their endpoints, so that the triangle
inequality holds.

We begin by analysing the structure of the graph G≤2r, which is spanned by
all edges of the input graph G of length at most 2r. If G has highway dimension 1
it exhibits the following key property.

Lemma 6. Let G be a metric graph with highway dimension 1, r ∈ R
+ a scale,

and spc(r) a shortest path cover for scale r. Then, every connected component
of G≤2r contains at most one hub.

Proof. For the sake of contradiction, let r ∈ R
+ and let x, y ∈ spc(r) be a closest

pair of distinct hubs in some component of G≤2r. Let further P be a shortest
path in G≤2r between x and y using only edges of length at most 2r. (Note that
P need not be a shortest path between x and y in G.) In particular, there is no
other hub from spc(r)\{x, y} along P . This implies that every edge of P that is
not incident to either x or y must be of length at most r, since otherwise the edge
would be a shortest path of length (r, 2r] between its endpoints (using that G is
metric) contradicting the fact that spc(r) is a shortest path cover for scale r.

Since the highway dimension of G is 1, any ball Bw(2r) around a vertex
w ∈ V (P ) contains at most one of the hubs x, y ∈ spc(r). Let x′, y′ ∈ P be the
vertices indicent to x and y along P , respectively. Since the length of the edge
{x, x′} is at most 2r, the ball Bx′(2r) must contain x and, by the observation
above, it cannot contain y (in particular {x, y} is not an edge). Symmetrically,
the ball By′(2r) contains y but not x. Consequently, x′ �= y′ and neither of these
two vertices can be a hub of scale r, i.e., the path P contains at least two vertices
different from x and y.

Let Vx = {w ∈ V : dist(x,w) < dist(y, w)} contain all vertices closer to x
than to y, where dist(·, ·) refers to the distance in the original graph G. As all
edge weights are strictly positive, we have that dist(x, y) > 0 and thus y /∈ Vx.
Since P starts with vertex x ∈ Vx and ends with vertex y /∈ Vx we deduce
that there is an edge {u, v} of P such that u ∈ Vx and v /∈ Vx. In particular,
dist(x, u) < dist(y, u) and dist(y, v) ≤ dist(x, v). We must have {u, v} �= {y′, y},
since otherwise dist(x, y′) < dist(y, y′) ≤ 2r and hence By′(2r) would contain x.
Similarly, we have {u, v} �= {x, x′}, since otherwise Bx′(2r) would contain y. Note
that, by definition, u �= y and v �= x, and hence x, y /∈ {u, v}. Consequently, since
every edge of P not incident to either x or y must have length at most r, we
conclude that {u, v} has length at most r.

Finally, consider the scale r′ ∈ R
+, defined such that 2r′ = dist(x, u) +

dist(u, v). Let Q and Q′ denote shortest paths between x, u and v, y in G,
respectively. Then the ball Bv(2r′) around v contains Q by definition of r′.
From dist(y, v) ≤ dist(x, v) ≤ dist(x, u) + dist(u, v) = 2r′ it follows that
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Bv(2r′) contains Q′ as well. Also, dist(y, v) ≤ dist(x, v) means that Bv(2r)
cannot contain x, and hence 2r′ = dist(x, u) + dist(u, v) ≥ dist(x, v) > 2r,
which implies r′ > r. W.l.o.g., assume that dist(x, u) ≤ dist(v, y) (otherwise
consider scale 2r′ = dist(y, v) + dist(u, v) and the ball Bu(2r′)). Our earlier
observation that dist(u, v) ≤ r with r < r′ then yields dist(v, y) ≥ dist(x, u) =
2r′ − dist(u, v) > r′. In other words, the lengths of both paths Q and Q′ are
in (r′, 2r′], and so they both need to contain a hub of spc(r′). However, by defi-
nition of u, v, the paths Q and Q′ are vertex disjoint, which means that the ball
Bv(2r′), which contains Q and Q′, also contains at least two hubs from spc(r′).
This is a contradiction with G having highway dimension 1. 
�

Given a graph G, we now consider graphs G≤2r for exponentially growing
scales. In particular, for any integer i ≥ 0 we define the scale ri = 2i and call a
connected component of G≤2ri

a level-i component. Note that the level-i compo-
nents partition the graph G, and that the level-i components are a refinement of
the level-(i + 1) components, i.e., every level-i component is contained in some
level-(i + 1) component. W.l.o.g., we scale the edge weights of the graph such
that mine∈E w(e) = 3, so that there are no edges on level 0, and every level-0
component is a singleton. Let α = maxu�=v dist(u,v)

minu�=v dist(u,v) = maxu�=v dist(u,v)
3 be the aspect

ratio of G. In our applications we may assume that G is connected, so that there
is exactly one level-(1 + �log2(α)
) component containing all of G.

Since every edge is a shortest path between its endpoints, every edge e =
{u, v} that connects a vertex u of a level-i component C with a vertex v outside
C is hit by a hub of spc(rj), where j is the level for which w(e) ∈ (rj , 2rj ].
Moreover, since v lies outside C, we have w(e) > 2ri and, thus, j ≥ i + 1.
The following definition captures the set of the hubs through which edges can
possibly leave C.

Definition 7. Let C be a level-i component of G. We define the set of interface
points of C as IC :=

⋃
j≥i{u ∈ spc(rj) : distC(u) ≤ 2rj}, where distC(u)

denotes the minimum distance from u to a vertex in C (if u ∈ C, distC(u) = 0).

Note that, for technical reasons, we explicitly add every hub at level i of
a component to its set of interface points as well, even if such a hub does not
connect the component with any vertex outside at distance more than 2ri.

Lemma 8. If G has highway dimension 1, then each interface IC of a level-i
component C contains at most one hub for each level j ≥ i.

Proof. Assume that there are two hubs u, v ∈ spc(rj) in IC , and recall that we
preprocessed the graph so that the triangle inequality holds. Then u and v must
be contained in the same level-j component C ′, since u and v are connected
to C with edges of length at most 2rj (or are contained in C) and C ⊆ C ′. This
contradicts Lemma 6. 
�

Using level-i components and their interface points we can prove that the
treewidth of a graph with highway dimension 1 is bounded in terms of the
aspect ratio.
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Lemma 9. If a graph G has highway dimension 1 and aspect ratio α, its
treewidth is at most 1 + �log2(α)
.
Proof. The tree decomposition of G is given by the refinement property of level-i
components. That is, let D be a tree that contains a node vC for every level-i
component C for all levels 0 ≤ i ≤ 1 + �log2(α)
. For every node vC we add
an edge in D to node vC′ , if C is a level-i component, C ′ is a level-(i + 1)
component, and C ⊆ C ′. The bag XC for node vC contains the interface points
IC . For a level-0 component C the bag XC additionally contains the single vertex
u contained in C.

Clearly, the tree decomposition has Property (a) of Definition 5, since the
level-0 components partition the vertices of G and every vertex of G is contained
in a bag XC corresponding to a level-0 component C. Also, Property (b) is given
by the bags XC for level-0 components C, since for every edge e of G one of its
endpoints u is a hub of spc(ri) where i is such that w(e) ∈ (ri, 2ri], and the
other endpoint w is contained in a level-0 component C, for which XC contains
u and w.

For Property (c), first consider a vertex u of G, which is not contained in any
set of interface points for any level-i component and any 0 ≤ i ≤ log2(α). Such
a vertex only appears in the bag XC for the level-0 component C containing u,
and thus the node vC for which the bag contains u trivially induces a connected
subtree of D.

Any other vertex u of G is an interface point. Let i be the highest level for
which u ∈ IC for some level-i component C. We claim that u ∈ C, which implies
that C is the unique level-i component containing u in its interface. To show our
claim, assume u /∈ C. Then, by definition, IC contains u because u ∈ spc(rj)
for some j ≥ i and u has some neighbour at distance at most 2rj in C. Since
we preprocessed the graph such that every edge is a shortest path between its
endpoints, this means that there must be an edge e = {u, v} with w(e) ∈ (rj , 2rj ]
and v ∈ C. Since u /∈ C, we have i < j. Let C ′ be the unique level-j component
with C ⊆ C ′. Then, by definition, u ∈ IC′ , which contradicts the maximality
of i. This proves our claim and shows that the highest level component C with
u ∈ XC is uniquely defined. Moreover, we obtain u ∈ spc(ri).

Now consider a level-i′ component C ′ with i′ < i, such that u ∈ XC′ , and
let C ′′ be the unique level-(i′ + 1) component containing C ′. We claim that
u ∈ XC′′ . If u ∈ C ′ ⊆ C ′′, then u ∈ XC′′ , since u ∈ spc(ri), distC′′(u) = 0 ≤ 2ri

and i′ + 1 ≤ i. If u /∈ C ′, then u ∈ XC′ implies u ∈ IC′ , which means that
there must be a vertex w ∈ C ′ with dist(u,w) ≤ 2ri. But then w ∈ C ′′ and thus
distC′′(u) ≤ 2ri. Together with u ∈ spc(ri), this implies u ∈ XC′′ , as claimed.
Since vC′ is a child of vC′′ in the tree D, it follows inductively that the nodes of
D with bags containing u induce a subtree of D with root vC , which establishes
Property (c).

By Lemma 8 each set of interface points contains at most one hub of each
level. Since all edges have length at least 3, there are no hubs in spc(r0) on level 0.
This means that each bag of the tree decomposition contains at most 1+�log2(α)




Travelling on Graphs with Small Highway Dimension 183

interface points. The bags for level-0 components contain one additional vertex.
Thus the treewidth of G is at most 1 + �log2(α)
, as claimed. 
�

An additional property that we will exploit for our algorithms is the following.
A (μ, δ)-net N ⊆ V is a subset of vertices such that (a) the distance between any
two distinct net points u,w ∈ N is more than μ, and (b) for every vertex v ∈ V
there is some net point w ∈ N at distance at most δ. For graphs of highway
dimension 1 however, we can obtain nets with additional favourable properties,
as the next lemma shows.

Lemma 10. For any graph G of highway dimension 1 and any r > 0, there is
an (r, 3r)-net such that every connected component of G≤r contains exactly one
net point. Moreover this net can be computed in polynomial time.

Proof. We first derive an upper bound of 3r for the diameter of any connected
component of G≤r. Lemma 6 implies that a connected component C contains at
most one hub x of spc(r/2). By definition, any shortest path in C of length in
(r/2, r ] must pass through x. We also know that every edge of C has length
at most r. Consequently, every edge in C not incident to x must have length
at most r/2, since each edge constitutes a shortest path between its endpoints.
This implies that any shortest path in C that is not hit by x must have length
at most r/2: if C contains a shortest path P with length more than r/2 not
containing x we could repeatedly remove edges of length at most r/2 from P
until we obtain a shortest path of length in (r/2, r ] not hit by x, a contradiction.
Now consider a shortest path P in G of length more than r/2 from some vertex
v ∈ C to x (note that this path may not be entirely contained in C). Let {u,w}
be the unique edge of P such that dist(v, u) ≤ r/2 and dist(v, w) > r/2. If the
length of the edge {u,w} is at most r/2 then dist(v, w) ≤ r, and thus w = x,
since the part of the path from v to w is a shortest path of length in (r/2, r ] and
thus needs to pass through x. Otherwise the length of the edge {u,w} is in the
interval (r/2, r ], which again implies w = x, since the edge must contain x. In
either case, dist(v, x) ≤ 3r/2. This implies that every vertex in C is at distance
at most 3r/2 from x, and thus the diameter of C is at most 3r.

To compute the (r, 3r)-net, we greedily pick an arbitrary vertex of each
connected component of G≤r. As the distances between components of G≤r

is greater than r, and every vertex lies in some component containing a net
point, we get the desired distance bounds. Clearly this net can be computed in
polynomial time. 
�

3 Approximation Schemes

In general the aspect ratio of a graph may be exponential in the input size. A key
ingredient of our algorithms is to reduce the aspect ratio α of the input graph G =
(V,E) to a polynomial. For STP and TSP, standard techniques can be used to
reduce the aspect ratio to O(n/ε) when aiming for a (1+ε)-approximation. This
was for instance also used in [24] for low highway dimension graphs, but here
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we need to take special care not to destroy the structural properties given by
Lemma 9 in this process. In particular, we need to reduce the aspect ratio and
maintain the fact that the treewidth is bounded.

Therefore, we reduce the aspect ratio of our graphs by the following prepro-
cessing. Both metric TSP and STP admit constant factor approximations in
polynomial time using well-known algorithms [19,23]. We first compute a solu-
tion of cost c using a β-approximation algorithm for the problem at hand (TSP

or STP). For TSP, the diameter of the graph G clearly is at most c/2. For
STP we remove every vertex of V that is at distance more than c from any
terminal, since such a vertex cannot be part of the optimum solution. After hav-
ing removed all such vertices in this way, we obtain a graph G of diameter at
most 3c. Thus, in the following, we may assume that our graph G has diameter
at most 3c. We then set r = εc

3n in Lemma 10 to obtain a ( εc
3n , εc

n )-net N ⊆ V . As
a consequence the metric induced by N (with distances of G) has aspect ratio at
most 3c

εc/(3n) = O(n/ε), since the minimum distance between any two net points
of N is at least εc

3n and the maximum distance is at most 3c. We will exploit this
property in the following.

By Lemma 10, each connected component of G≤ εc
3n

contains exactly one net
point of N . Let η : V �→ N map each vertex of G to the unique net point in
the same connected component of G≤ εc

3n
. We define a new graph G′ with vertex

set N ⊆ V and edge set {{η(u), η(v)} : {u, v} ∈ E ∧ η(u) �= η(v)}. The length
of each edge {w,w′} of G′ is the shortest path distance between w and w′ in
G. This new graph G′ may not have bounded highway dimension, but we claim
that it has treewidth O(log(n/ε)).

Lemma 11. If G has highway dimension 1, the graph G′ with vertex set N
has treewidth O(log(n/ε)). Moreover, a tree decomposition for G′ of width
O(log(n/ε)) can be computed in polynomial time.

Proof. We construct a tree decomposition D′ of G′ as follows. Following Lemma 9
we can compute a tree decomposition D of width at most 1+�log2(α)
, where α
is the aspect ratio of G: for this we need to compute a locally 1-sparse shortest
path cover spc(ri) for each level i, which can be done in polynomial time via
an XP algorithm [24] if the highway dimension is 1. We then find the level-i
components and their interface points, from which the tree decomposition D
and its bags can be constructed. Since there are O(log α) levels and α is at most
exponential in the input size (which includes the encoding length of the edge
weights), we can compute D in polynomial time.

We construct D′ from D by replacing every bag X of D by a new bag
X ′ = {η(v) : v ∈ X} containing the net points for the vertices in X. It is not
hard to see that Properties (a) and (b) of Definition 5 are fulfilled by D′, since
they are true for D. For Property (c), note that for any edge {u, v} of G, the
set of all bags of D that contain u or v form a connected subtree of D. This
is because the bags containing u form a connected subtree (Property (c)), the
same is true for v, and both these subtrees share at least one node labelled
by a bag containing the edge {u, v} (Property (b)). Consequently, the set of
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all bags containing vertices of any connected subgraph of G form a connected
subtree. In particular, for any connected component A of G≤ εc

3n
, the set of bags

of D containing at least one vertex of A form a connected subtree. This implies
Property (c) for D′. Thus, D′ is indeed a tree decomposition of G′ according to
Definition 5. Note that D′ can be computed in polynomial time.

To bound the width of D′, recall that a bag X of the tree decomposition D
of G contains the interface points IC of a level-i component C, in addition to one
more vertex of C on the lowest level i = 0. Each interface point is a hub from
spc(rj) at some level j ≥ i and is at distance at most 2rj from C. In particular,
if 2ri ≤ εc

3n then C is a component of G≤2ri
⊆ G≤ εc

3n
, and all hubs of IC ∩spc(rj)

for which 2rj ≤ εc
3n lie in the same connected component A of G≤ εc

3n
as C. These

hubs are therefore all mapped to the same net point w in A by η. In addition
to w, the bag X ′ = {η(v) : v ∈ X} resulting from X and η contains at most
one vertex for every level j such that 2rj > εc

3n . As rj = 2j , this condition is
equivalent to j > log2(

εc
3n ) − 1. As there are 1 + �log2(α)
 levels in total, there

are O(log(αn
εc )) hubs in X ′. This bound is obviously also valid in case 2ri > εc

3n .
We preprocessed the graph G so that its diameter is at most 3c and its minimum
distance is 3, which implies an aspect ratio α of at most c for G. This means
that every bag X ′ contains O(log(n/ε)) vertices, and thus the claimed treewidth
bound for G′ follows. 
�

We are now ready to prove our main result.

Proof (of Theorem 2). To solve TSP or STP on G we first use the above reduc-
tion to obtain G′ and its tree decomposition D′, and then compute an optimum
solution for G′. For TSP, G′ is already a valid input instance, but for STP we
need to define a terminal set, which simply is R′ = {η(v) | v ∈ R} if R is the
terminal set of G. Bodlaender et al. [16] proved that for both TSP and STP

there are deterministic algorithms to solve these problems exactly in time 2O(t)n,
given a tree decomposition of the input graph of width t. By Lemma 11 we can
thus compute the optimum to G′ in time 2O(log(n/ε)) ·n = (n/ε)O(1). Afterwards,
we convert the solution for G′ back to a solution for G, as follows.

For TSP we may greedily add vertices of V to the tour on N by connecting
every vertex v ∈ V to the net point η(v). As the vertices N of G′ form a
( εc
3n , εc

n )-net of V , this incurs an additional cost of at most 2 εc
n per vertex, which

sums up to at most 2εc. Let Opt and Opt
′ denote the costs of the optimum

tours in G and G′, respectively. We know that c ≤ β · Opt, since we used a
β-approximation algorithm to compute c. Furthermore, the optimum tour in G
can be converted to a tour in G′ of cost at most Opt by short-cutting, due to
the triangle inequality. Thus Opt

′ ≤ Opt, which means that the cost of the
computed tour in G is at most Opt

′ + 2εc ≤ (1 + 2βε)Opt.
Similarly, for STP we may greedily connect a terminal v of G to the terminal

η(v) of G′ in the computed Steiner tree in G′. This adds an additional cost of at
most εc

n , which sums up to at most εc. Let now Opt and Opt
′ be the costs of the

optimum Steiner trees in G and G′, respectively. We may convert a Steiner tree T
in G into a tree T ′ in G′ by using edge {η(u), η(v)} for each edge {u, v} of T . Note
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that the resulting tree T ′ contains all terminals of G′, since R′ = {η(v) | v ∈ R}.
As the vertices N of G′ form a ( εc

3n , εc
n )-net of V , the cost of T ′ is at most

Opt + 2εc if the cost of T is Opt (by the same argument as used for the proof
of Lemma 11). As before, we know that c ≤ β · Opt, and thus the cost of the
computed Steiner tree in G is at most Opt

′ + εc ≤ Opt+ 3εc ≤ (1 + 3βε)Opt.
Hence we obtain FPTASs for both TSP and STP, which compute

(1 + ε)-approximations within a runtime that is polynomial in the input
size and 1/ε. 
�

4 Conclusions

We showed that, somewhat surprisingly, graphs of highway dimension 1 exhibit
a rich combinatorial structure. On one hand, it was already known [24] that
these graphs are not minor-closed and thus their treewidth is unbounded. Here
we additionally showed that STP is weakly NP-hard on such graphs, further
confirming that these graphs have non-trivial properties. On the other hand,
we proved in Lemma 9 that the treewidth of a graph of highway dimension 1 is
logarithmically bounded in the aspect ratio α. This in turn can be exploited to
obtain a very efficient FPTAS for both STP and TSP.

At this point one may wonder whether it is possible to generalize Lemma 9
to larger values of the highway dimension. In particular, in [24] it was suggested
that the treewidth of a graph of highway dimension h might be bounded by,
say, O(h polylog(α)). However such a bound is highly unlikely in general, since
it would have the following consequence for the k-Center problem, for which
k vertices (centers) need to be selected in a graph such that the maximum
distance of any vertex to its closest center is minimized. It was shown in [25]
that it is NP-hard to compute a (2 − ε)-approximation for k-Center on graphs
of highway dimension O(log2 n), for any ε > 0. Given such a graph, the same
preprocessing of Sect. 3 could be used to derive an analogue of Lemma 11, i.e.,
a graph G′ of treewidth O(polylog(n/ε)) could be computed for the net N .
Moreover, a 2-approximation for k-Center can be computed in polynomial
time on any graph [31], and if the input has treewidth t a (1+ ε)-approximation
can be computed in (t/ε)O(t)nO(1) time [35]. Using the same arguments to prove
Theorem 2 for STP and TSP, it would now be possible to compute a (1 + ε)-
approximation for k-Center in quasi-polynomial time (cf. [26]). That is, we
would obtain a QPTAS for graphs of highway dimension O(log2 n), which is
highly unlikely given that computing a (2 − ε)-approximation is NP-hard on
such graphs.

The above argument rules out any bound of (h log α)O(1) for graphs of high-
way dimension h and aspect ratio α, unless NP-hard problems admit quasi-
polynomial time algorithms. In fact, we conjecture that the k-Center problem
is NP-hard to approximate within a factor of 2−ε for graphs of constant highway
dimension (for some constant larger than 1). If this is true, then the above argu-
ment even rules out a treewidth bound of f(h) polylog(α) for any function f .
Thus, in order to answer the open problem of [24] and obtain a PTAS for graphs
of constant highway dimension, a different approach seems to be needed.
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