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July 2, 2012

Abstract

We consider a simple robot inside a polygon P with holes. The robot can move between
vertices of P along lines of sight. When sitting at a vertex, the robot observes the vertices
visible from its current location, and it can use a compass to measure the angle of the boundary
of P towards north. The robot initially only knows an upper bound n̄ on the total number
of vertices of P. We study the mapping problem in which the robot needs to infer the
visibility graph Gvis of P and needs to localize itself within Gvis. We show that the robot
can always solve this mapping problem. To do this, we show that the minimum base graph
of Gvis is identical to Gvis itself. This proves that the robot can solve the mapping problem,
since knowing an upper bound on the number of vertices was previously shown to suffice for
computing Gvis.

1 Introduction

The mapping problem and the localization problem are fundamental for many tasks in robotics
and autonomous exploration. In the mapping problem, a robot is required to obtain a (rough)
map of an initially unknown environment, while the localization problem requires the robot to
identify its current position on the map. Both problems often arise together and need to be solved
simultaneously. In this paper, we use the term mapping problem loosely to refer to the combination
of both tasks.

The difficulty of mapping depends on the type of the environment as well as on the capabilities
of the robot. Many variations in scenario, robot models, and questions have been studied in this
context. We are interested in the following question: What are minimal capabilities that a robot
needs in order to solve the mapping problem?

We study the mapping problem in polygonal environments. In particular, and in contrast
to past work, we allow polygonal obstacles (or, equivalently, holes) in the environment. Our
robot model is based on a minimalistic framework: Our basic robot can move from vertex to
vertex along lines of sight, and, being at a vertex, the robot can observe other visible vertices in
counterclockwise order. Other than that, the robot has no direct means of distinguishing vertices
according to global identifiers or names, i.e., it can not even tell whether it has visited its current
location before. Figure 1 illustrates the capabilities of the basic robot in a polygon with holes (for
a formal definition, see Section 1.2). Using this model as a baseline we can compare different ways
of equipping it with additional sensors (e.g., sensors that measure angles, distances, etc.). Our
goal is to find the smallest set of extra capabilities that empowers the robot to solve the mapping
problem. In the basic model, the robot obviously cannot hope to infer the geometry of the polygon
it is exploring. Instead, we concentrate on reconstructing the visibility graph as a topological map
of the polygon. The visibility graph of a polygon P is the graph Gvis = (V,E), where V are the
vertices of P and E contains the edge {u, v} if and only if u and v see each other in P (i.e., the
line segment connecting them does not leave P). Figure 2 gives an example of a polygon with its
visibility graph.

Suri et al. showed that a robot with a pebble can solve the mapping problem in polygons with
holes, even without information about the size of the polygon [21]. Such a pebble is a way for the
robot to mark a vertex: The robot can drop the pebble at its current location, it can distinguish
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Figure 1: A robot located at vertex v of polygon P. The grey line-segments connect v to the
vertices {12, 8, 9, 1, 10} visible to v. The line-segments are labeled in the order as they appear in a
counterclockwise scan of P, starting on the boundary. The depicted angle α is the angle between
the boundary at v and north.
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Figure 2: Left: A polygon P with vertices V = {1, 2, 3, 4, 5, 6, 7} and a hole formed by the vertices
5,6,7. The grey line-segments depict the lines of sight. Right: the visibility graph Gvis of P. The
fat edges denote cycles corresponding to the boundaries 1, 2, 3, 4 and 5, 6, 7.

the vertex that holds the pebble as long as it is visible, and it can pick the pebble back up later. A
pebble is a powerful tool for the robot. It has been shown for example that a much weaker pebble
that cannot be sensed from a distance allows a robot exploring any directed graph to reconstruct
the graph [2]. It is an important question whether a robot with weaker abilities can solve the
mapping problem in polygons with holes. To the best of our knowledge, no such result is known.

Without a pebble, the presence of holes makes mapping substantially more difficult. For
example, consider the robot model introduced in [8]. There, the robot is equipped with the
ability to look-back, i.e., the robot can identify the vertex from which it arrived in its last move,
among its visible vertices. Using such a model, it was then shown that the robot can compute
the visibility graph of any simple polygon (i.e., without holes), provided that a bound on the
number of vertices is known. Figure 3 illustrates that the robot cannot infer the visibility graph
in general if the polygon may have holes. In each of the three polygons in the example, the robot
senses exactly the same, no matter how it moves. Therefore, there is no way it can distinguish the
polygons. Moreover, the example highlights other limitations: the robot cannot infer the number
of vertices, and the robot cannot tell whether it is located on a hole. The example relies on the
fact that the robot does not know the number of vertices exactly.

Figure 3 also illustrates an important structural property of simple polygons, which polygons
with holes do not admit: A simple polygon always has an ear, i.e., a vertex whose neighbors on
the boundary see each other. In the first polygon in Figure 3 every vertex is an ear, the other two
polygons have no ears at all. This property is crucial for existing mapping techniques, because
it allows an inductive approach based on “cutting off” ears repeatedly [8, 7]. For polygons with
holes, we cannot hope to make use of ears in similar fashion. Solving the mapping problem may
thus require a more capable robot.

In this paper we consider the following extension to the basic robot model: the robot knows
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Figure 3: Three polygons that a robot with look-back cannot distinguish, even if it has an upper
bound on the number of vertices. Observe that at every vertex of each of the three polygons, the
robot observes exactly the same – including the information about which vertex it arrived from
in its last move. For convenience, the lines of sight are depicted in grey for the vertices marked
by a circle.

an upper-bound n̄ on the number of vertices, and the robot has a boundary compass. A boundary
compass allows to measure the angle at the robot’s location formed by the line of sight to the
counterclockwise neighbor along the boundary and towards north, where north is any global ref-
erence direction in the plane. Figure 1 illustrates the concept of a boundary compass. We show
that such a robot can reconstruct the visibility graph of any polygon with or without holes.

1.1 Related work

Various approaches have been made to modeling minimalistic robots for various environments and
objectives [1, 14, 18, 21]. Some effort has been devoted to classifying the power of robot models
and to comparing different models in that respect [5, 13, 20]. The basic robot model that serves
as a foundation in this paper was introduced in [21], and has been studied in [3, 5, 7, 6, 15, 19].

The focus of research regarding the mapping problem in polygonal environments has so far
been on simple polygons (i.e., without holes). We provide a brief overview over the different
extensions of the basic robot model that have been studied in the past in the context of simple
polygons. For a detailed discussion, we refer to [10].

It has been shown that the basic model does not always allow to infer the visibility graph of a
polygon [5]. Such a robot can in general not even infer the number of vertices n. On the positive
site, it has been shown that a robot can compute the visibility graph with the following extensions
to the basic model: (i) the robot has a pebble [21]; (ii) the robot knows an upper bound n̄ on the
number of vertices, and it has look-back [8]; (iii) the robot knows an upper bound n̄ on the number
of vertices, and it can tell convex from reflex angles, i.e., it can tell for any two visible vertices
whether the angle between these two vertices is greater or smaller than π [7]; (iv) the robot has
look-back and it can tell convex from reflex angles [3].

An even more minimalistic version of the basic robot model has been considered, the version
that restricts the robot to moving along the boundary only. In this model it was shown that
knowing the number of vertices n is not sufficient to reconstruct the visibility graph, even when the
robot can measure the angle formed by the boundary at each vertex [3]. If the robot can measure
the angles between any two lines of sight, however, reconstruction is possible even without prior
knowledge of n [9, 12, 11].

An inherent difficulty of visibility graph reconstruction is that these graphs have not yet suc-
cessfully been characterized [16, 17].

1.2 Problem Definition

Polygon. Throughout this paper we consider the exploration of a polygon P with polygonal
holes and a total of n vertices. We write H1,H2, ,Hh to denote the holes of P and P̄ for the
enclosing polygon of P without holes. The boundaries of P consist of the boundary of P̄ together
with the boundaries of H1,H2, . . . ,Hh. We will sometimes refer to the boundary of P̄ as the outer
boundary.
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Two vertices u and v are mutually visible in P (or see each other) if the line segment connecting
the two vertices does not leave P. We call the line-segment between u and v the line of sight
(between the two vertices).

The counterclockwise neighbor of vertex v of P is v’s neighbor u on the boundary of P such that
by moving along the line segment from u to v, the interior of P lies to the left of the line segment.
Figure 1 illustrates this by the arrows on the boundary suggesting the order of vertices which we
encounter if we move (iteratively) to the counterclockwise neighbor. Observe the difference of the
order if placed on a hole or on the outer boundary of P: an iterative process of moving to the
counterclockwise neighbor results in a (a) a counterclockwise walk if the robot moves on the outer
boundary P̄, or (b) a clockwise walk if the robot moves on a hole.

Robot. A robot is modeled as a “moving point”. Initially, the robot is placed at a vertex of
P. Being at a vertex v, the robot observes the following information about P: (i) the number of
vertices visible to v, and (ii) the angle α↑v of the ray from v to its counterclockwise neighbor on
the boundary towards a globally fixed direction that we will refer to as north. See Figure 1 for
illustration.

The robot can order the visible vertices: starting on the boundary, the robot can sort all lines
of sight at v as they appear in a counterclockwise scan of the polygon. This naturally induces an
ordering of the visible vertices (Figure 1 illustrates this ordering). The robot can select a position
in this ordering and move to the corresponding vertex (without knowing the global identity of it).

Visibility graph. The visibility graph of a polygon P is an undirected graph Gvis = (V,E),
where V is the set of vertices of P, and E contains the edge {u, v} if and only if u and v see each
other in P (i.e., edges of Gvis are lines of sight of P). To reflect the local sensing of a robot at
a vertex u ∈ V , we will consider a directed and edge-labeled version of the visibility graph. We
replace every undirected edge {u, v} with two directed edges (u, v) and (v, u). We label every edge
(u, v) by a label l(u, v) which encodes the information observed by a robot at vertex u. Formally,
we set l(u, v) = (i, α↑u), where i denotes that (u, v) is the i-th line of sight at u in counterclockwise
order, and α↑u is the angle between the ray towards u’s counterclockwise neighbor and north.
Observe that the edge (u, v) will generally have a different label than the edge (v, u). With this
transformation, we can regard the robot operating inside the polygon P as an agent moving along
the edges of the directed and edge-labeled visibility graph Gvis, where the agent sees the labels of
the outgoing edges of the vertex it is located at.

Minimum base graph. An edge-labeled directed multi-graph G′ is a base graph of an edge-
labeled directed graph G, if every vertex v of G can be mapped to a vertex v′ of G′ such that
every path in G starting at v with an induced sequence λ of edge labels has a corresponding path
starting at v′ in G′ with the same induced sequence λ of edge labels, and vice versa, i.e., every
path in G′ has a counterpart in G. A minimum base graph G∗ of G is a base graph of G of
minimum size. Every graph G has a unique minimum base graph G∗ (up to isomorphism) [4].

A useful interpretation of the minimum base graph is to see every vertex of the minimum base
graph G∗ as representing a class of vertices of G. Every two vertices of G that map to the same
vertex of G∗ belong to the same class. Each class groups vertices together according to the same
observation along paths in G specified by a sequence of edge-labels (recall that at any vertex u
there are no two adjacent outgoing edges with the same label, and thus any sequence of edge-labels
uniquely specifies a path in G). This is useful when arguing about the robot: Starting from any
vertex in a class, the robot observes the same for every sequence of movement decisions. In other
words, the vertices of the same class are indistinguishable by the robot by means of moving and
sensing. Moreover, a minimum base graph G∗ can be used as a kind of map as well. Being located
in vertex v ∈ Gvis and knowing the corresponding class v∗ in G∗, we can use G∗ to navigate the
robot to any other class of G∗.

For an example, consider the visibility graphs in Figure 3. For the basic robot, i.e., without
sensing the angles α↑v, the edge-label of every edge in the directed visibility graph only encodes the
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position of the corresponding line of sight in the local ordering. In that case, it is easy to observe
that the multi-graph consisting of one node with five self-loops labeled (1), (2), (3), (4), and (5),
is indistinguishable from the three visibility graphs by the robot. Because there is obviously no
smaller such graph, it is the minimum base graph of each of the three visibility graphs. Obviously,
computing the minimum base graph does not help the basic robot to solve the mapping problem:
as far as it can tell, it could be in any of the three polygons – the minimum base graph does not
help to distinguish them.

In this paper we will show that if the robot also has a boundary compass (i.e., it can measure
α↑v), then the minimum base graph of every correspondingly edge-labeled visibility graph Gvis is
the visibility graph itself. Therefore, computing the minimum base graph is enough to compute
Gvis.

Goal. We want to know whether the robot can infer the visibility graph of any polygon P and
determine its location in it. More precisely, given a number n̄ ≥ n, we want to know whether
there exists a deterministic algorithm that (i) navigates the robot inside any polygon P with at
most n̄ vertices, and (ii) computes from the collected observations the visibility graph Gvis of P,
as well as the robot’s location in Gvis.

2 Algorithm

In this section we show that a robot with boundary compass can compute the visibility graph
Gvis of any polygon P if it knows an upper bound n̄ on the number of vertices of P. We do
so by showing that the minimum base graph G∗ is equal to the visibility graph Gvis. Using
the algorithm of [7, 10] for determining the minimum base graph, the algorithm then trivially
follows: Since G∗ = Gvis, we can simply apply the algorithm of [7, 10] and return its result. The
algorithm operates on general edge-labeled graphs and also determines the location of the robot
in G∗ (and thus, in our case, in Gvis as well). We note that the running time of the algorithm can
be exponential in n̄ in the worst case.

We can see this approach as a generic black-box method for solving the mapping problem
by some variant of the basic robot (with extended sensing capabilities), assuming that an upper
bound n̄ on the number of vertices is known. The method is as follows, with its core difficulty
lying in step 2.

1. Encode the sensed information in the edge-labels of the directed version of Gvis;

2. Show that G∗ = Gvis;

3. Use the fact that the robot can compute the minimum base graph G∗ (applying the algorithm
of [7, 10]).

2.1 Labeling the visibility graph

We consider the directed and edge-labeled version of Gvis as described in Section 1.2. This labelling
reflects the local sensing of the robot. Recall that every outgoing edge (u, v) of a vertex u is labeled
with (i, α↑u), where i denotes the rank of v in the counterclockwise order of the vertices visible to
u, and α↑u is the angle formed by the ray to the counterclockwise neighbor of u along the boundary
and north.

Because of the ordering of the lines of sight, no two labels of outgoing edges at a vertex are the
same. Therefore, any walk in the visibility graph can uniquely be described by a starting vertex
and a sequence of edge labels.

2.2 Showing that G∗ = Gvis

To show that the minimum base graph G∗ is equal to the visibility graph Gvis, we show that every
two vertices u and v of Gvis are distinguishable by a walk in Gvis (thus showing that the two
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Figure 4: A polygon with one hole. Marked inner angle αI , outer angle αO and three turn angles
αT > 0, α′T < 0, and α′′T < 0. Observe that αT and α′T are the turn angles in counterclockwise
direction, whereas α′′T is the turn angle in clockwise direction.

vertices cannot be in the same class of G∗). We proceed in several steps. In the following, we let
H ∈ {P̄,H1,H2, . . . ,Hh} be a hole Hi or the enclosing polygon P̄.

Distinguishing vertices of H
We will show that no two vertices of H belong to the same class of G∗, i.e., we show that every
two vertices of H are distinguishable by the robot.

The robot can consciously walk along the boundary of H: It can just repeatedly move to its
counterclockwise neighbor on the boundary (i.e., to its first visible vertex). This will result in a
counterclockwise (if H = P̄) or clockwise (if H ∈ {H1,H2, . . . ,Hh}) walk along the boundary of
H, in which the robot possibly visits each vertex of H more than once. Any such walk induces a
sequence of observations (provided by the sensing capabilities of the robot). Let nH denote the
number of vertices of H. After at most n̄ steps, the robot is guaranteed to have visited every
vertex of H at least once. Therefore, in a walk along the boundary of H, observations repeat
with a period of at most nH. Formally, p ∈ N is a period of a sequence (ai)i∈N if ai = ai+kp for
all k ∈ N, and we say that the first p elements (a1, . . . , ap) repeat in the sequence. We show in
the following that we can uniquely identify the exact value of nH by considering the sequence of
observations induced by n̄ moves along the boundary.

We will use the following facts about the sum of the inner and outer angles, and about the
rotation number of a simple polygon. Inner angles of P are the angles on the inside of P formed
by two adjacent segments of a boundary. An outer angle is the counterpart of an inner angle
– the angle on the outside of P formed by two adjacent boundary segments. See Figure 4 for
illustration. The rotation number of a simple polygon measures (in angles), informally, how much
the boundary turns. Formally, consider three consecutive neighbors u, v, w on the boundary of a
simple polygon P in a chosen direction (counterclockwise or clockwise direction). The turn angle
of the polygon at vertex v (in the chosen direction) is the angle at v formed by the rays −→uv and −→vw
in this order (!). The rotation number in the chosen direction of P is the sum of its turn angles
in the chosen direction. Turn angles are signed: a “left” turn gives a positive angle αT ∈ (0, π),
and a “right” turn gives a negative turn angle αT ∈ (−π, 0). Figure 4 illustrates these angles in
an example.

Fact 1. The sum of all inner angles of a simple polygon is (n− 2)π. The sum of all outer angles
of a simple polygon is (n+ 2)π. The rotation number in the counterclockwise direction is 2π, and
the rotation number in the clockwise direction is −2π.

We use the robot direction to denote the direction which the robot induced on H if it walks
along the boundary by iteratively moving to its counterclockwise neighbor. That is, if H is the
outer boundary P̄, then robot direction is the counterclockwise direction, otherwise (if H is a hole
Hi) then robot direction is the clockwise direction.
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We use the rotation number to infer nH – the size of H. While moving along the boundary of
H the turn angles can be computed by using the angles provided by the boundary compass.

Proposition 2. Let u be a vertex of H and let v be the counterclockwise neighbor of u on H.
Then, the turn angle in the robot direction is equal to α↑u − α↑v (mapped to the interval (−π, π)).

For every vertex u ∈ H, the walk along the boundary induces a sequence ~α(u) = (α1, α2, . . . , αi, . . . , αn̄, . . .)
of turn angles. Recall that αi ∈ (−π, π). By Fact 1 we know that

∑nH
i=1 αi = ±2π. For simplicity

of the exposition, we will assume that the sum equals 2π. The case when the sum equals −2π can
be handled analogously. Thus, we have

∑k·nH
i=1 αi = k · 2π. Obviously, the sequence (α1, . . . , αnH)

appears periodically in ~α(u) with period nH. We claim that this sequence is the smallest sequence
that periodically repeats in ~α(u) and sums to 2π.

Lemma 3. Sequence (α1, . . . , αnH) is the only sequence that periodically repeats in ~α(u) and sums
to 2π.

Proof. Consider the sequence (α1, . . . , αk), k ∈ N. We will show that if the sequence (α1, . . . , αk)
sums to 2π and periodically repeats in ~α(u), then k = nH. Assume therefore that the sequence

repeats and sums to 2π, i.e.,
∑k

i=1 αi = 2π. Consider the sum X :=
∑k·nH

i=1 αi. By the assumption,

we can write the sum as X = nH
∑k

i=1 αi = nH · 2π. At the same time, because (α1, . . . , αnH)
periodically repeats in ~α(u), we can also write X = k

∑nH
i=1 αi = k · 2π. Therefore, k = nH.

Lemma 3 immediately gives the robot a way to compute the number of vertices of H. It suffices
to identify the smallest period of ~α(u) that sums to 2π. This is an easy task since the robot has
an upper bound n̄ on the total number of vertices – the robot walks n̄! number of steps along the
boundary and identifies the smallest period in the resulting sequence (α1, . . . , αn̄!) that sums to
2π.

We can now show that every two vertices of H are distinguishable.

Lemma 4. No two vertices of H belong to the same class of the minimum base graph G∗ of Gvis.

Proof. We have shown that, for any vertex u ∈ H, the sequence (α1, . . . , αnh
) is the only sequence

that periodically repeats in ~α(u) and sums to 2π.
Consider any two vertices u, v ∈ H. We claim that the walk along the boundary of size nH

distinguishes the two vertices. Obviously, if ~α(u) 6= ~α(v), then also the corresponding sequences
of observed angles ∠↑w at vertices w along the walk cannot be the same (as the latter implies the
former). In the case when ~α(u) = ~α(v) we have that the subsequence of ~α(u) between u and v
repeats in ~α(u). Let p be the distance between u and v on the walk. Thus, p is the period of
the subsequence in ~α(u) and we have that p divides nH. Thus, the subsequence between u and
v repeats nH/p times within the first nH elements of ~α(u). It follows that

∑p
i=1 αi =: β 6= 0 (as

otherwise
∑nH

i=1 αi = 0, a contradiction). Also, β < 2π by Lemma 3. But then α↑u 6= α↑v because
α↑v = α↑u − β. Hence, obviously, the two vertices are distinguishable.

With this lemma, we have not excluded the case that there may be two vertices u ∈ H,
v ∈ P \ H belonging to the same class of the minimum base graph.

Distinguishing vertices of P̄ from the rest

We show that the robot can distinguish any vertex of P̄ from the vertices in P \ P̄. Obviously,
any vertex u ∈ P̄ can be distinguished from a vertex v ∈ Hi, if nP̄ 6= nHi : The walk along the
boundary from the respective vertices u and v will induce sequences ~α(u) and ~α(v) of different
periods. Let us therefore concentrate on the case where nP̄ = nHi

. We use Fact 1 again.
For Fact 1 we have defined an inner angle of a simple polygon. We can naturally define an

inner angle of polygon P with holes to be the angle lying inside P and formed by two adjacent
boundary segments. Note that for a vertex v ∈ Hi, the corresponding inner angle in P is actually
the outer angle of the simple polygon Hi (see Figure 5 for illustration).
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Figure 5: Inner angles of polygon P: α is the inner angle of the polygon at vertex of u ∈ H and β
is the inner angle of the polygon at vertex v ∈ P̄. Observe that when H is considered as a simple
polygon, then α is its outer angle.

Therefore, by Fact 1, the sum of the inner angles of P at vertices of P̄ is (nP̄ − 2)π, whereas
the sum of the inner angles of P at vertices of Hi is (nHi

+ 2)π.
Let H be a hole or P̄ at which the robot is positioned. The observed angles by the robot in a

walk around the boundary of H induce the inner angles of P at vertices of H.

Proposition 5. The inner angle of P at a vertex v ∈ H is equal to π−αT , where αT is the signed
turn angle at vertex v.

Proposition 5 gives an immediate way to distinguish P̄ from any hole Hi.

Lemma 6. No two vertices u ∈ P̄, v ∈ Hi belong to the same class of the minimum base graph
G∗.

Proof. We have already argued that the vertices are distinguishable if the number of vertices in
P̄ and Hi is different. Without loss of generality, assume that nP̄ = nHi = n′. By Fact 1 we
know that the inner angles of P̄ sum up to (n′ − 2)π and the inner angles of any hole sum up to
(n′ + 2)π. Proposition 5 provides a correspondence between the sequence of n′ observed angles
from the boundary compass and the inner angles of P. As the sums of the inner angles are different
for vertices of P̄ and vertices of a hole, the sequence of observed angles have to be different, too.
Therefore, a counterclockwise walk along the boundary allows to distinguish between u and v.

It remains to distinguish vertices of different holes Hi and Hj for i 6= j.

Distinguishing the vertices of two holes

Recall that the vertices of P̄ can be uniquely distinguished in G∗, i.e., they form a singleton class
in G∗. Therefore, as the robot can navigate in G∗ to get to any class of G∗, it can get to any
vertex of P̄.

We use the boundary of P̄ as a reference point to identify all other vertices of P uniquely.
Consider an arbitrary vertex v1 ∈ P̄. We use it as a kind of “origin” of Gvis to distinguish any two
vertices u ∈ Hi, v ∈ Hj , i 6= j. Observe that, because Gvis is strongly connected, there exists a
closed walk from v1 that visits all vertices of Gvis – a Hamiltonian walk. We will now see the walk
as a sequence L of both classes (vertices) of G∗ and of edge-labels: every walk in Gvis translates
to a walk in G∗; we add the visited vertices of G∗ into L in the order induced by the walk. We
will abuse the notation a bit, and use L to sometimes refer to the walk and sometimes to the
edge-labels.

A sufficient condition to distinguish any two vertices u and v is that the walk L does not have
a period smaller than |L| (where |L| denotes the length of the sequence). Having such a walk at
hand, we can easily distinguish the vertices u and v. We consider L as an infinite sequence formed
by an infinite concatenation of L. Let Wu be the closed walk in L of length |L| starting from the
first occurrence of u in L, and let Wv be the closed walk in L of length |L| starting from the first
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occurrence of v in L. Obviously, because L has a period |L|, Wu 6= Wv, and thus these paths are
distinguishing paths for u and v.

It remains to be shown that a Hamiltonian walk L of period |L| exists in Gvis.

Lemma 7. The visibility graph Gvis of any polygon P with holes contains a Hamiltonian walk L
of period |L|.
Proof. We construct one such Hamiltonian walk as follows. Let v1 be a vertex of P̄. We initially
set L to be the walk from v1 along the boundary of P̄. If v1, . . . , vnP̄ denote the vertices of the
boundary of P̄, then initially L = (v1, . . . , vnP̄ ). Obviously, L is not Hamiltonian. We extend L as
follows. We mark all vertices of P̄ as visited ; all other vertices are marked as unvisited. For every
vertex vi of P̄ we compute, in the order as the vertices appear on the boundary (starting from v1),
a depth-first search tree in the graph induced by the unvisited vertices of Gvis. The depth-first
search from vi induces a closed walk L(vi) on the computed depth-first search tree. We add this
walk into the walk L in the place of v. We mark all vertices from the depth-first search tree as
visited and proceed with the next vertex v on the boundary of P̄.

We have computed a closed walk L in Gvis of the form L(v1), L(v2), . . . , L(vnP̄ ). Obviously,
the walk visits every vertex of Gvis.

Moreover, the walk has period |L|: Recall that we can identify v1 and v2 (as they are from
the boundary of P̄); Observe that the occurrences of vi come consecutively in L without being
“interrupted” by another vertex vj , i 6= j; Therefore, we can uniquely identify the last occurrence
of v1 in L as it comes before the first occurrence of v2; Thus, any two vertices u and v are
distinguishable by the different distances from u and v to the last occurrence of v1, respectively.

Lemma 7 thus implies the following.

Lemma 8. No two vertices from different holes appear in the same class of G∗.

Putting pieces together

Lemma 4, Lemma 6, and Lemma 8 imply the main result of the paper:

Theorem 9. The minimum base graph G∗ is equal to the edge-labeled visibility graph Gvis.

Theorem 10. The robot can compute the visibility graph Gvis of any polygon P with holes, and
it can localize its position in Gvis.

Proof. The robot can compute the minimum base graph G∗ of Gvis and its position therein using
the algorithm in [7]. Theorem 9 implies that the computed graph G∗ is actually what we want –
the visibility graph Gvis.

3 Conclusions

We have studied the mapping and localization problem by a simple robot inside a polygon P
with a boundary compass. We have presented a black-box solution approach to show that such
a robot can always compute the visibility graph Gvis of P whenever it knows an upper bound
on the number of vertices of P. The central part of the black-box approach is to prove that the
minimum base graph G∗ of Gvis is the visibility graph Gvis, i.e., G∗ = Gvis. Our algorithm uses the
generic algorithm of Chalopin et al. [7] for computing the minimum base graph of any edge-labeled
directed graph G by a robot that only senses the edge-labels of the outgoing edges and knows an
upper bound on the number of vertices of G. This algorithm has an exponential running time in
the worst case. We leave it open whether the time complexity can be improved for a robot with
boundary compass.

Due to the fundamental importance of the mapping problem, our solution has further impli-
cations for other tasks. For example, it follows that a collection of robots with boundary compass
and knowledge of an upper bound on the number of vertices can solve the strong rendezvous prob-
lem, i.e., they can meet in a vertex of P (even in an asynchronous model with no communication
between the robots).

9



References

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Au-
tomation, 15(5):818–828, 1999.

[2] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: Exploring
and mapping directed graphs. In Proceedings of the 30th ACM Symposium on Theory of
Computing, pages 269–287, 1998.
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