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We consider a simple robot inside a polygon P with holes. The robot can move between
vertices of P along lines of sight. When sitting at a vertex, the robot observes the vertices
visible from its current location, and it can use a compass to measure the angle of the
boundary of P towards north. The robot initially only knows an upper bound n̄ on the
total number of vertices of P . We study the mapping problem in which the robot needs to
infer the visibility graph Gvis of P and needs to localize itself within Gvis. We show that the
robot can always solve this mapping problem. To do this, we show that the minimum base
graph of Gvis is identical to Gvis itself. This proves that the robot can solve the mapping
problem, since knowing an upper bound on the number of vertices was previously shown
to suffice for computing Gvis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The mapping problem and the localization problem are fundamental for many tasks in robotics and autonomous explo-
ration. In the mapping problem, a robot is required to obtain a (rough) map of an initially unknown environment, while the
localization problem requires the robot to identify its current position on the map. Both problems often arise together and
need to be solved simultaneously. In this paper, we use the term mapping problem loosely to refer to the combination of
both tasks.

The difficulty of mapping depends on the type of the environment as well as on the capabilities of the robot. Many
variations in scenario, robot models, and questions have been studied in this context. We are interested in the following
question: What are minimal capabilities that a robot needs in order to solve the mapping problem?

We study the mapping problem in polygonal environments. In particular, and in contrast to past work, we allow polyg-
onal obstacles (or, equivalently, holes) in the environment. Our robot model is based on a minimalistic framework: Our
basic robot can move from vertex to vertex along lines of sight, and, being at a vertex, the robot can observe other visible
vertices in counterclockwise order. Other than that, the robot has no direct means of distinguishing vertices according to
global identifiers or names, i.e., it cannot even tell whether it has visited its current location before. Fig. 1 illustrates the
capabilities of the basic robot in a polygon with holes (for a formal definition, see Section 1.2). Using this model as a base-
line we can compare different ways of equipping it with additional sensors (e.g., sensors that measure angles, distances,
etc.). Our goal is to find the smallest set of extra capabilities that empowers the robot to solve the mapping problem. In the
basic model, the robot obviously cannot hope to infer the geometry of the polygon it is exploring. Instead, we concentrate
on reconstructing the visibility graph as a topological map of the polygon. The visibility graph of a polygon P is the graph
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Fig. 1. A polygon P with two holes. A robot is located at vertex v = 11. The gray line-segments connect v to the vertices {12,8,9,1,10} visible to v .
The line-segments are labeled in the order as they appear in a counterclockwise scan of P , starting on the boundary. Angle α is the angle between the
boundary at v and north.

Fig. 2. Left: A polygon P with vertices V = {1,2,3,4,5,6,7} and a hole formed by the vertices 5,6,7. The gray line-segments depict the lines of sight.
Right: the visibility graph Gvis of P . The fat edges denote cycles corresponding to the boundaries 1,2,3,4 and 5,6,7.

Fig. 3. Polygons that a robot with look-back cannot distinguish, even if it has an upper bound on the number of vertices. At every vertex of the three
polygons, the robot observes exactly the same – including the information about which vertex it arrived from in its last move. For convenience, the lines
of sight are depicted in gray for the vertices marked by a circle.

Gvis = (V , E), where V are the vertices of P and E contains the edge {u, v} if and only if u and v see each other in P (i.e.,
the line segment connecting them does not leave P). Fig. 2 gives an example of a polygon with its visibility graph.

Suri et al. showed that a robot with a pebble can solve the mapping problem in polygons with holes, even without
information about the size of the polygon [1]. Such a pebble is a way for the robot to mark a vertex: The robot can drop
the pebble at its current location, it can distinguish the vertex that holds the pebble as long as it is visible, and it can pick
the pebble back up later. A pebble is a powerful tool for the robot. It has been shown for example that a much weaker
pebble that cannot be sensed from a distance allows a robot exploring any directed graph to reconstruct the graph [2]. It is
an important question whether a robot with weaker abilities can solve the mapping problem in polygons with holes. To the
best of our knowledge, no such result is known.

Without a pebble, the presence of holes makes mapping substantially more difficult. For example, consider the robot
model introduced in [3]. There, the robot is equipped with the ability to look back, i.e., the robot can identify the vertex
from which it arrived in its last move, among its visible vertices. Using such a model, it was then shown that the robot can
compute the visibility graph of any simple polygon (i.e., without holes), provided that a bound on the number of vertices is
known. Fig. 3 illustrates that the robot cannot infer the visibility graph in general if the polygon may have holes. In each of
the three polygons in the example, the robot senses exactly the same, no matter how it moves. Therefore, there is no way
it can distinguish the polygons. Moreover, the example highlights other limitations: the robot cannot infer the number of
vertices, and the robot cannot tell whether it is located on a hole. The example relies on the fact that the robot does not
know the number of vertices exactly.

Fig. 3 also illustrates an important structural property of simple polygons, which polygons with holes do not admit:
A simple polygon always has an ear, i.e., a vertex whose neighbors on the boundary see each other. In the first polygon
in Fig. 3 every vertex is an ear, the other two polygons have no ears at all. This property is crucial for existing mapping
techniques, because it allows an inductive approach based on “cutting off” ears repeatedly [3,4]. For polygons with holes, we
cannot hope to make use of ears in similar fashion. Solving the mapping problem may thus require a more capable robot.

In this paper we consider the following extension to the basic robot model: the robot knows an upper bound n̄ on the
number of vertices, and the robot has a boundary compass. A boundary compass allows to measure the angle at the robot’s
location formed by the line of sight to the counterclockwise neighbor along the boundary and towards north, where north is
any global reference direction in the plane. Fig. 1 illustrates the concept of a boundary compass. We show that such a robot
can reconstruct the visibility graph of any polygon with or without holes.
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1.1. Related work

Various approaches have been made to modeling minimalistic robots for various environments and objectives [1,5–7].
Some effort has been devoted to classifying the power of robot models and to comparing different models in that respect
[8–10]. The basic robot model that serves as a foundation in this paper was introduced in [1], and has been studied in
[3,4,8,11–13].

The focus of research regarding the mapping problem in polygonal environments has so far been on simple polygons (i.e.,
without holes). We provide a brief overview over the different extensions of the basic robot model that have been studied
in the past in the context of simple polygons. For a detailed discussion, we refer to [14].

It has been shown that the basic model does not always allow to infer the visibility graph of a polygon [8]. Such a robot
can in general not even infer the number of vertices n. On the positive side, it has been shown that a robot can compute
the visibility graph with the following extensions to the basic model: (i) the robot has a pebble [1]; (ii) the robot knows
an upper bound n̄ on the number of vertices, and it has look-back [3]; (iii) the robot knows an upper bound n̄ on the
number of vertices, and it can tell convex from reflex angles, i.e., it can tell for any two visible vertices whether the angle
between these two vertices is greater or smaller than π [4]; (iv) the robot has look-back and it can tell convex from reflex
angles [11].

An even more minimalistic version of the basic robot model has been considered, the version that restricts the robot to
moving along the boundary only. In this model it was shown that knowing the number of vertices n is not sufficient to
reconstruct the visibility graph, even when the robot can measure the angle formed by the boundary at each vertex [11].
If the robot can measure the angles between any two lines of sight, however, reconstruction is possible even without prior
knowledge of n [15–17].

An inherent difficulty of visibility graph reconstruction is that these graphs have not yet successfully been character-
ized [18,19].

1.2. Problem definition

Polygon. Throughout this paper we consider the exploration of a polygon P with polygonal holes and a total of n vertices.
We write H1,H2, . . . ,Hh to denote the holes of P and P̄ for the enclosing polygon of P without holes. The boundaries of
P consist of the boundary of P̄ together with the boundaries of H1,H2, . . . ,Hh . We will sometimes refer to the boundary
of P̄ as the outer boundary.

Two vertices u and v are mutually visible in P (or see each other) if the line segment connecting the two vertices does
not leave P . We call the line-segment between u and v the line of sight (between the two vertices).

The counterclockwise neighbor of vertex v of P is v ’s neighbor u on the boundary of P such that by moving along the
line segment from u to v , the interior of P lies to the left of the line segment. Fig. 1 illustrates this by the arrows on the
boundary suggesting the order of vertices which we encounter if we move (iteratively) to the counterclockwise neighbor.
Observe the difference of the order if placed on a hole or on the outer boundary of P : an iterative process of moving
to the counterclockwise neighbor results in (a) a counterclockwise walk if the robot moves on the outer boundary P̄ , or
(b) a clockwise walk if the robot moves on a hole.

Robot. A robot is modeled as a “moving point”. Initially, the robot is placed at a vertex of P . Being at a vertex v , the robot
observes the following information about P : (i) the number of vertices visible to v , and (ii) the angle α

↑
v of the ray from v

to its counterclockwise neighbor on the boundary towards a globally fixed direction that we will refer to as north. See Fig. 1
for illustration.

The robot can order the visible vertices: starting on the boundary, the robot can sort all lines of sight at v as they
appear in a counterclockwise scan of the polygon. This naturally induces an ordering of the visible vertices (Fig. 1 illustrates
this ordering). The robot can select a position in this ordering and move to the corresponding vertex (without knowing the
global identity of it).

Visibility graph. The visibility graph of a polygon P is an undirected graph Gvis = (V , E), where V is the set of vertices of
P , and E contains the edge {u, v} if and only if u and v see each other in P (i.e., edges of Gvis are lines of sight of P). To
reflect the local sensing of a robot at a vertex u ∈ V , we will consider a directed and edge-labeled version of the visibility
graph. We replace every undirected edge {u, v} with two directed edges (u, v) and (v, u). We label every edge (u, v) by
a label l(u, v) which encodes the information observed by a robot at vertex u. Formally, we set l(u, v) = (i,α↑

u ), where i
denotes that (u, v) is the i-th line of sight at u in counterclockwise order, and α

↑
u is the angle between the ray towards u’s

counterclockwise neighbor and north. Observe that the edge (u, v) will generally have a different label than the edge (v, u).
With this transformation, we can regard the robot operating inside the polygon P as an agent moving along the edges of
the directed and edge-labeled visibility graph Gvis, where the agent sees the labels of the outgoing edges of the vertex it is
located at.

Minimum base graph. An edge-labeled directed multi-graph G ′ is a base graph of an edge-labeled directed graph G , if every
vertex v of G can be mapped to a vertex v ′ of G ′ such that every path in G starting at v with an induced sequence λ of
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Fig. 4. The left polygon is a square with a square hole. The right polygon is a “spiral” – a polygon without a hole. A robot observes exactly the same in both
polygons, regardless of its movements, unless it reaches the end of the spiral.

edge labels has a corresponding path starting at v ′ in G ′ with the same induced sequence λ of edge labels, and vice versa,
i.e., every path in G ′ has a counterpart in G . A minimum base graph G∗ of G is a base graph of G of minimum size. Every
graph G has a unique minimum base graph G∗ (up to isomorphism) [20].

A useful interpretation of the minimum base graph is to see every vertex of the minimum base graph G∗ as representing
a class of vertices of G . Every two vertices of G that map to the same vertex of G∗ belong to the same class. Each class
groups vertices together according to the same observation along paths in G specified by a sequence of edge labels (recall
that at any vertex u there are no two adjacent outgoing edges with the same label, and thus any sequence of edge labels
uniquely specifies a path in G). This is useful when arguing about the robot: Starting from any vertex in a class, the
robot observes the same for every sequence of movement decisions. In other words, the vertices of the same class are
indistinguishable by the robot by means of moving and sensing. Moreover, a minimum base graph G∗ can be used as a kind
of map as well. Being located in vertex v ∈ Gvis and knowing the corresponding class v∗ in G∗ , we can use G∗ to navigate
the robot to any other class of G∗ .

For an example, consider the visibility graphs in Fig. 3. For the basic robot, i.e., without sensing the angles α
↑
v , the edge

label of every edge in the directed visibility graph only encodes the position of the corresponding line of sight in the local
ordering. In that case, it is easy to observe that the multi-graph consisting of one node with five self-loops labeled (1), (2),
(3), (4), and (5), is indistinguishable from the three visibility graphs by the robot. Because there is obviously no smaller
such graph, it is the minimum base graph of each of the three visibility graphs. Obviously, computing the minimum base
graph does not help the basic robot to solve the mapping problem: as far as it can tell, it could be in any of the three
polygons – the minimum base graph does not help to distinguish them.

In this paper we will show that if the robot also has a boundary compass (i.e., it can measure α
↑
v ), then the minimum

base graph of every correspondingly edge-labeled visibility graph Gvis is the visibility graph itself. Therefore, computing the
minimum base graph is enough to compute Gvis.

Goal. We want to know whether the robot can infer the visibility graph of any polygon P and determine its location in it.
More precisely, given a number n̄ � n, we want to know whether there exists a deterministic algorithm that (i) navigates
the robot inside any polygon P with at most n̄ vertices, and (ii) computes from the collected observations the visibility
graph Gvis of P , as well as the robot’s location in Gvis.

Necessity of knowing an upper bound on n. We have argued in the introduction that a simple robot (not sensing any angle
information) cannot compute the visibility graph of a polygon with holes even if an upper bound n̄ on n is known (and
even if additionally the robot can look back). This motivates the study of robot models with better sensory capabilities. In
our case, the robot can observe the angle α

↑
v between the ray from the robot’s position v to its counterclockwise neighbor

on the boundary and towards north. A natural question arises, whether the knowledge of n̄ is still necessary, or whether
the knowledge of α

↑
v alone suffices. Fig. 4 illustrates that without n̄, the robot cannot compute the visibility graph. Assume

for the sake of contradiction that there is a strategy that allows to compute the visibility graph of any polygon P . Consider
the left polygon in the figure. The strategy moves the robot inside the polygon, and in a finite number of steps, say, N , it
stops and produces an answer (i.e., it computes the visibility graph of the left polygon). Consider now a large spiral-like
polygon similar to the right one in the figure, having at least 2N + 2 “bends”, and the initial position of the robot being in
the middle of the spiral (so that there are at least N + 1 bends in both the clockwise and the counterclockwise direction
of the spiral). Initially, and in every of the subsequent N steps, the robot senses exactly the same as in the left polygon: it
sees the same number of vertices, and it measures the same angle α

↑
v . Therefore, the robot has to stop after N steps and

produces exactly the same answer as for the left polygon, which is obviously wrong. This contradicts our assumption.

2. Algorithm

In this section we show that a robot with boundary compass can compute the visibility graph Gvis of any polygon P
if it knows an upper bound n̄ on the number of vertices of P . We do so by showing that the minimum base graph G∗ is
equal to the visibility graph Gvis. Using the algorithm of [4,14] for determining the minimum base graph, the algorithm then
trivially follows: Since G∗ = Gvis, we can simply apply the algorithm of [4,14] and return its result. The algorithm operates
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Fig. 5. A polygon with inner angle αI , outer angle αO and three turn angles αT > 0, α′
T < 0, and α′′

T < 0. Observe that αT and α′
T are the turn angles in

counterclockwise direction, whereas α′′
T is the turn angle in clockwise direction.

on general edge-labeled graphs and also determines the location of the robot in G∗ (and thus, in our case, in Gvis as well).
We note that the running time of the algorithm is in general exponential in n̄ in the worst case.

We can see this approach as a generic black-box method for solving the mapping problem by some variant of the basic
robot (with extended sensing capabilities), assuming that an upper bound n̄ on the number of vertices is known. The
method is as follows, with its core difficulty lying in step 2.

1. Encode sensed information in the edge labels of the directed version of Gvis;
2. Show that G∗ = Gvis;
3. Compute G∗ using the algorithm of [4,14].

2.1. Labeling the visibility graph

We consider the directed and edge-labeled version of Gvis as described in Section 1.2. This labeling reflects the local
sensing of the robot. Recall that every outgoing edge (u, v) of a vertex u is labeled with (i,α↑

u ), where i denotes the rank of
v in the counterclockwise order of the vertices visible to u, and α

↑
u is the angle formed by the ray to the counterclockwise

neighbor of u along the boundary and north.
Because of the ordering of the lines of sight, no two labels of outgoing edges at a vertex are the same. Therefore, any

walk in the visibility graph can uniquely be described by a starting vertex and a sequence of edge labels.

2.2. Showing that G∗ = Gvis

To show that the minimum base graph G∗ is equal to the visibility graph Gvis, we show that every two vertices u and
v of Gvis are distinguishable by a walk in Gvis (thus showing that the two vertices cannot be in the same class of G∗). We
proceed in several steps. In the following, we let H ∈ {P̄,H1,H2, . . . ,Hh} be a hole Hi or the enclosing polygon P̄ .

2.2.1. How to distinguish two vertices of H
We will show that no two vertices of H belong to the same class of G∗ , i.e., we show that every two vertices of H are

distinguishable by the robot.
The robot can consciously walk along the boundary of H: It can just repeatedly move to its counterclockwise neighbor

on the boundary (i.e., to its first visible vertex). This will result in a counterclockwise (if H = P̄) or clockwise (if H ∈
{H1,H2, . . . ,Hh}) walk along the boundary of H, in which the robot possibly visits each vertex of H more than once. Any
such walk induces a sequence of observations (provided by the sensing capabilities of the robot). Let nH denote the number
of vertices of H. After at most n̄ steps, the robot is guaranteed to have visited every vertex of H at least once. Therefore, in
a walk along the boundary of H, observations repeat with a period of at most nH . Formally, p ∈N is a period of a sequence
(ai)i∈N if ai = ai+kp for all k ∈ N, and we say that the first p elements (a1, . . . ,ap) repeat in the sequence. We show in the
following that we can uniquely identify the exact value of nH by considering the sequence of observations induced by n̄
moves along the boundary.

We will use the following facts about the sum of the inner and outer angles, and about the rotation number of a simple
polygon. Inner angles of P are the angles on the inside of P formed by two adjacent segments of a boundary. An outer
angle is the counterpart of an inner angle – the angle on the outside of P formed by two adjacent boundary segments. See
Fig. 5 for illustration. The rotation number of a simple polygon measures (in angles), informally, how much the boundary
turns. Formally, consider three consecutive neighbors u, v, w on the boundary of a simple polygon P in a chosen direction
(counterclockwise or clockwise direction). The turn angle of the polygon at vertex v (in the chosen direction) is the angle at
v formed by the rays −−→uv and −−−→v w in this order (!). The rotation number in the chosen direction of P is the sum of its turn
angles in the chosen direction. Turn angles are signed: a “left” turn gives a positive angle αT ∈ (0,π), and a “right” turn
gives a negative turn angle αT ∈ (−π,0). Fig. 5 illustrates these angles in an example.

Fact 1. The sum of all inner angles of a simple polygon is (n − 2)π . The sum of all outer angles of a simple polygon is (n + 2)π . The
rotation number in the counterclockwise direction is 2π , and the rotation number in the clockwise direction is −2π .
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We use the robot direction to denote the direction which the robot induced on H if it walks along the boundary by
iteratively moving to its counterclockwise neighbor. That is, if H is the outer boundary P̄ , then robot direction is the coun-
terclockwise direction, otherwise (if H is a hole Hi ) then robot direction is the clockwise direction.

We use the rotation number to infer nH – the size of H. While moving along the boundary of H the turn angles can be
computed by using the angles provided by the boundary compass.

Proposition 2. Let u be a vertex of H and let v be the counterclockwise neighbor of u on H. Then, the turn angle in the robot direction
is equal to α

↑
u − α

↑
v (mapped to the interval (−π,π)).

For every vertex u ∈ H, the walk along the boundary induces a sequence �α(u) = (α1,α2, . . . ,αi, . . . ,αn̄, . . .) of turn
angles. Recall that αi ∈ (−π,π). By Fact 1 we know that

∑nH
i=1 αi = ±2π . For simplicity of the exposition, we will assume

that the sum equals 2π . The case when the sum equals −2π can be handled analogously. Thus, we have
∑k·nH

i=1 αi = k · 2π .
Obviously, the sequence (α1, . . . ,αnH) appears periodically in �α(u) with period nH . We claim the following.

Lemma 3. Sequence (α1, . . . ,αnH) is the only sequence that periodically repeats in �α(u) and sums to 2π .

Proof. Consider the sequence (α1, . . . ,αk), k ∈ N. We will show that if the sequence (α1, . . . ,αk) sums to 2π and peri-
odically repeats in �α(u), then k = nH . Assume therefore that the sequence repeats and sums to 2π , i.e.,

∑k
i=1 αi = 2π .

Consider the sum X := ∑k·nH
i=1 αi . By the assumption, we can write the sum as X = nH

∑k
i=1 αi = nH · 2π . At the same time,

because (α1, . . . ,αnH) periodically repeats in �α(u), we also have X = k
∑nH

i=1 αi = k · 2π . Therefore, k = nH . �
Lemma 3 immediately gives the robot a way to compute the number of vertices of H. It suffices to identify the smallest

period of �α(u) that sums to 2π . This is an easy task since the robot has an upper bound n̄ on the total number of vertices
– the robot walks n̄! number of steps along the boundary and identifies the smallest period in the resulting sequence
(α1, . . . ,αn̄!) that sums to 2π .

We can now show that every two vertices of H are distinguishable.

Lemma 4. No two vertices of H belong to the same class of the minimum base graph G∗ of Gvis .

Proof. We have shown that, for any vertex u ∈H, the sequence (α1, . . . ,αnh ) is the only sequence that periodically repeats
in �α(u) and sums to 2π .

Consider any two vertices u, v ∈H. We claim that the walk along the boundary of size nH distinguishes the two vertices.
Obviously, if �α(u) �= �α(v), then also the corresponding sequences of observed angles � ↑

w at vertices w along the walk cannot
be the same (as the latter implies the former). In the case when �α(u) = �α(v) we have that the subsequence of �α(u) between
u and v repeats in �α(u). Let p be the distance between u and v on the walk. Thus, p is the period of the subsequence
in �α(u) and we have that p divides nH . Thus, the subsequence between u and v repeats nH/p times within the first nH
elements of �α(u). It follows that

∑p
i=1 αi =: β �= 0 (as otherwise

∑nH
i=1 αi = 0, a contradiction). Also, β < 2π by Lemma 3.

But then α
↑
u �= α

↑
v because α

↑
v = α

↑
u − β . Hence, obviously, the two vertices are distinguishable. �

With this lemma, we have not excluded the case that there may be two vertices u ∈H, v ∈P \H belonging to the same
class of the minimum base graph.

2.2.2. How to distinguish a vertex of P̄ from the rest
We now show that the robot can distinguish any vertex of P̄ from the vertices in P \ P̄ . Obviously, any vertex u ∈ P̄

can be distinguished from a vertex v ∈ Hi , if nP̄ �= nHi : The walk along the boundary from the respective vertices u and
v will induce sequences �α(u) and �α(v) of different periods. Let us therefore concentrate on the case where nP̄ = nHi . We
use Fact 1 again.

For Fact 1 we have defined an inner angle of a simple polygon. We can naturally define an inner angle of polygon P with
holes to be the angle lying inside P and formed by two adjacent boundary segments. Note that for a vertex v ∈ Hi , the
corresponding inner angle in P is actually the outer angle of the simple polygon Hi (see Fig. 6 for illustration).

Therefore, by Fact 1, the sum of the inner angles of P at vertices of P̄ is (nP̄ − 2)π , whereas the sum of the inner
angles of P at vertices of Hi is (nHi + 2)π .

Let H be a hole or P̄ at which the robot is positioned. The observed angles by the robot in a walk around the boundary
of H induce the inner angles of P at vertices of H. This then gives an immediate way to distinguish P̄ from any hole Hi .

Proposition 5. The inner angle of P at a vertex v ∈H is equal to π − αT , where αT is the signed turn angle at vertex v.

Lemma 6. No two vertices u ∈ P̄ , v ∈Hi belong to the same class of the minimum base graph G∗ .
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Fig. 6. Inner angles of polygon P : α is the inner angle of the polygon at vertex of u ∈ H and β is the inner angle of the polygon at vertex v ∈ P̄ . Observe
that when H is considered as a simple polygon, then α is its outer angle.

Proof. We have already argued that the vertices are distinguishable if the number of vertices in P̄ and Hi is different.
Without loss of generality, assume that nP̄ = nHi = n′ . By Fact 1 we know that the inner angles of P̄ sum up to (n′ − 2)π
and the inner angles of any hole sum up to (n′ + 2)π . Proposition 5 provides a correspondence between the sequence of n′
observed angles from the boundary compass and the inner angles of P . As the sums of the inner angles are different for
vertices of P̄ and vertices of a hole, the sequence of observed angles have to be different, too. Therefore, a counterclockwise
walk along the boundary allows to distinguish between u and v . �

It remains to distinguish vertices of different holes Hi and H j for i �= j.

2.2.3. How to distinguish vertices of different holes
Recall that the vertices of P̄ can be uniquely distinguished in G∗ , i.e., they form a singleton class in G∗ . Therefore, as the

robot can navigate in G∗ to get to any class of G∗ , it can get to any vertex of P̄ .
We use the boundary of P̄ as a reference point to identify all other vertices of P uniquely. Consider an arbitrary vertex

v1 ∈ P̄ . We use it as a kind of “origin” of Gvis to distinguish any two vertices u ∈ Hi , v ∈ H j , i �= j. Observe that, because
Gvis is strongly connected, there exists a closed walk from v1 that visits all vertices of Gvis – a Hamiltonian walk. We will
now see the walk as a sequence L of both classes (vertices) of G∗ and of edge labels: every walk in Gvis translates to a walk
in G∗; we add the visited vertices of G∗ into L in the order induced by the walk. We will abuse the notation a bit, and use
L to sometimes refer to the walk and sometimes to the edge labels.

A sufficient condition to distinguish any two vertices u and v is that the walk L does not have a period smaller than
|L| (where |L| denotes the length of the sequence). Having such a walk at hand, we can easily distinguish the vertices u
and v . We consider L as an infinite sequence formed by an infinite concatenation of L. Let W u be the closed walk in L of
length |L| starting from the first occurrence of u in L, and let W v be the closed walk in L of length |L| starting from the
first occurrence of v in L. Obviously, because L has a period |L|, W u �= W v , and thus these paths are distinguishing paths
for u and v .

We now show that a Hamiltonian walk L of period |L| exists in Gvis. This then implies that any two vertices of different
holes are distinguishable.

Lemma 7. The visibility graph Gvis of any polygon P with holes contains a Hamiltonian walk L of period |L|.

Proof. We construct one such Hamiltonian walk as follows. Let v1 be a vertex of P̄ . We initially set L to be the walk
from v1 along the boundary of P̄ . If v1, . . . , vnP̄ denote the vertices of the boundary of P̄ , then initially L = (v1, . . . , vnP̄ ).
Obviously, L is not Hamiltonian. We extend L as follows. We mark all vertices of P̄ as visited; all other vertices are marked
as unvisited. For every vertex vi of P̄ we compute, in the order as the vertices appear on the boundary (starting from v1),
a depth-first search tree in the graph induced by the unvisited vertices of Gvis. The depth-first search from vi induces a
closed walk L(vi) on the computed depth-first search tree. We add this walk into the walk L in the place of v . We mark all
vertices from the depth-first search tree as visited and proceed with the next vertex v on the boundary of P̄ .

We have computed a closed walk L in Gvis of the form L(v1), L(v2), . . . , L(vnP̄ ). Obviously, the walk visits every vertex
of Gvis.

Moreover, the walk has period |L|: Recall that we can identify v1 and v2 (as they are from the boundary of P̄). Observe
that the occurrences of vi come consecutively in L without being “interrupted” by another vertex v j , i �= j. Thus, we can
uniquely identify the last occurrence of v1 in L as it comes before the first occurrence of v2. Thus, any two vertices u and
v are distinguishable by the different distances from u and v to the last occurrence of v1, respectively. �
Lemma 8. No two vertices from different holes appear in the same class of G∗ .

Now, Lemma 4, Lemma 6, and Lemma 8 imply the main result of the paper:

Theorem 9. The minimum base graph G∗ is equal to the edge-labeled visibility graph Gvis .
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Theorem 10. The robot can compute the visibility graph Gvis of any polygon P with holes, and it can localize its position in Gvis .

Proof. The robot can compute the minimum base graph G∗ of Gvis and its position therein using the algorithm in [4].
Theorem 9 implies that the computed graph G∗ is actually what we want – the visibility graph Gvis. �
3. Conclusions

We have studied the mapping and localization problem by a simple robot inside a polygon P with a boundary compass.
We have presented a black-box solution approach to show that such a robot can always compute the visibility graph Gvis of
P whenever it knows an upper bound on the number of vertices of P . The central part of the black-box approach is to prove
that the minimum base graph G∗ of Gvis is the visibility graph Gvis, i.e., G∗ = Gvis. Our algorithm uses the generic algorithm
of Chalopin et al. [4] for computing the minimum base graph of any edge-labeled, directed graph G by a robot that only
senses the edge labels of the outgoing edges and knows an upper bound on the number of vertices of G . This algorithm has
an exponential running time in the worst case. We leave it open whether the time complexity can be improved for a robot
with boundary compass. The inherent difficulty here is that while we have shown the existence of distinguishing paths of
polynomial length for any two vertices u and v of the polygon, the generic algorithm iterates (besides other combinatorial
objects) over all (exponentially many) polynomially long paths to find these. Thus, to achieve an overall polynomial-time
algorithm, one probably needs to give up the black-box approach, and try to construct the visibility graph Gvis directly,
step-by-step using the characterizations of the distinguishing paths that we presented in this paper. This could, perhaps, be
achieved, if the robot is initially placed on the outer boundary of the polygon (and the robot knows that it is so). Recall that
a polynomially long walk around the outer boundary uniquely distinguishes all vertices on it. An interesting question then
is whether one can uniquely use this kind of “origin” of the polygon to map the holes. The notorious difficulty remains,
however: once we leave the origin, it is unclear how one can return intentionally in a polynomial number of steps.

Due to the fundamental importance of the mapping problem, our solution has further implications for other tasks. For
example, it follows that a collection of robots with boundary compass and knowledge of an upper bound on the number of
vertices can solve the strong rendezvous problem, i.e., they can meet in a vertex of P (even in an asynchronous model with
no communication between the robots).
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