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Abstract. The question whether the Simplex method admits a polyno-
mial time pivot rule remains one of the most important open questions
in discrete optimization. Zadeh’s pivot rule had long been a promis-
ing candidate, before Friedmann (IPCO, 2011) presented a subexponen-
tial instance, based on a close relation to policy iteration algorithms for
Markov decision processes (MDPs). We investigate Friedmann’s lower
bound construction and exhibit three flaws in his analysis: We show that
(a) the initial policy for the policy iteration does not produce the required
occurrence records and improving switches, (b) the specification of occur-
rence records is not entirely accurate, and (c) the sequence of improving
switches described by Friedmann does not consistently follow Zadeh’s
pivot rule. In this paper, we resolve each of these issues. While the first
two issues require only minor changes to the specifications of the initial
policy and the occurrence records, the third issue requires a significantly
more sophisticated ordering and associated tie-breaking rule that are in
accordance with the Least-Entered pivot rule. Most importantly, our
changes do not affect the macroscopic structure of Friedmann’s MDP,
and thus we are able to retain his original result.

1 Introduction

The Simplex method, originally proposed by Dantzig in 1947 [2], is one of the
most important algorithms to solve linear programs in practice. At its core, it
operates by maintaining a subset of basis variables while restricting non-basis
variables to trivial values, and repeatedly replacing a basis variable according to
a fixed pivot rule until the objective function value can no longer be improved.
Exponential worst-case instances have been devised for many natural pivot rules
(see, for example, [1,5,7,8]), and the question whether a polynomial time pivot
rule exists remains one of the most important open problems in optimization.
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Zadeh’s Least-Entered pivot rule [11] was designed to avoid the exponen-
tial behavior on known worst-case instances for other pivot rules. It is memo-
rizing in that it selects a variable to enter the basis that improves the objective
function and has previously been selected least often among all improving vari-
ables. For more than thirty years, Zadeh’s rule defied all attempts to construct
superpolynomial instances, and seemed like a promising candidate for a polyno-
mial pivot rule.

It was a breakthrough when Friedmann eventually presented the first super-
polynomial lower bound for Zadeh’s pivot rule [4]. His construction uses a connec-
tion between the Simplex Algorithm and Howard’s Policy Iteration Algorithm [6]
for computing optimal policies in Markov decision processes (MDPs). For a given
n ∈ N, Friedmann’s construction consists of an MDP of size O(n2), an initial
policy, and an ordering of the improving switches obeying the Least-Entered
pivot rule. This ordering results in an exponential number of iterations when
beginning with the initial policy and repeatedly making improving switches in
the specified order. The construction translates into a linear program of the same
asymptotic size for which the Simplex Algorithm with Zadeh’s pivot rule needs
Ω(2n) steps. Since the input size is O(n2), this in turn results in a superpoly-
nomial lower bound. Recently, an exponential lower bound for Zadeh’s pivot
rule was found for AUSOs [10], but it is not clear whether this construction
can be realized as a linear program. However, the construction is simpler than
Friedmann’s construction with more natural tie-breaking, and thus presents an
alternative approach to devising lower bounds for memorizing pivot rules.

Our Contribution. In this paper, we expose different flaws in Friedmann’s
construction and present adaptations to eliminate them. We first show that the
chosen initial policy does not produce the claimed set of improving switches,
and propose a modified initial policy that leads to the desired behavior. Second,
we observe that the given formula describing the occurrence records (that count
the number of times an improving switch was made) is inaccurate, and provide
a (small) correction that does not disturb the overall argument.

Most importantly, we exhibit a significant problem with the order in which
the improving switches are applied in [4]. More precisely, we show that this order
does not consistently obey Zadeh’s pivot rule, and, in fact, that no consistent
ordering exists that updates the MDP “level by level” in each phase according
to a fixed order. This not only rules out Friedmann’s ordering, but shows that
a fundamentally different approach to ordering improving switches is needed.
To amend this issue, we show the existence of an ordering and a tie-breaking
rule compatible with the Least-Entered rule, such that applying improving
switches according to the ordering still proceeds along the same macroscopic
phases as intended by Friedmann. In this way, we are able to quantitatively
retain Friedmann’s superpolynomial lower bound.

Outline. Throughout this paper, we assume some basic familiarity with the
construction given in [4] and Markov decision processes in general. We review
the most important aspects and notation of [4] in Sect. 2. Section 3 treats issues
with the initial policy and the description of the occurrence records and our
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adaptations to address them. The main part of this paper is Sect. 4, where we
show that the sequence of improving switches can be reordered such that the
Least-Entered rule is obeyed.

2 Friedmann’s Lower Bound Construction

In [4], Friedmann uses the connection between the Simplex Algorithm and the
Policy Iteration Algorithm for obtaining optimal policies in MDPs. Similarly, we
also restrict our discussion to policy iteration for MDPs, with the understand-
ing that results carry over to the Simplex Algorithm. We assume knowledge of
MDPs and the connection to the Simplex Algorithm and refer to [9] for more
information. For convenience, we refer to improving switches simply as switches.

Let n ∈ N. Friedmann’s construction emulates an n-bit binary counter by a
Markov decision process Gn. For every n-digit binary number b, there is a pol-
icy σb for Gn representing b. We denote the i-th bit of b by bi, so b = (bn, . . . , b1).
The MDP Gn is constructed such that applying the Policy Iteration Algorithm
using the Least-Entered rule enumerates the policies σ0 to σ2n−1. According
to the pivot rule, the algorithm always chooses a switch chosen least often in the
past. More specifically, an occurrence record φ is maintained, and, in every step,
a switch minimizing φ is chosen. The rule does however not determine which
switch minimizing φ should be chosen, so a tie-breaking rule is needed. For an
edge e and a policy σ, we denote the occurrence record of e once σ is reached
by φσ(e). We denote the set of improving switches with respect to σ by Iσ.

We fix the following notation. The set of n-digit binary numbers is denoted
by Bn. For b ∈ Bn, b �= 0, �(b) denotes the least significant bit of b equal to 1.
The unique policy representing b ∈ Bn constructed in [4] is denoted by σb.

The process Gn can be interpreted as a “fair alternating binary counter” as
follows. Usually, when counting from 0 to 2n − 1 in binary, less significant bits
are switched more often than more significant bits. As the Least-Entered
pivot rule forces the algorithm to switch all bits equally often, the construction
must ensure to operate correctly when all bits are switched equally often. This
is achieved by representing every bit by two gadgets where only one actively
represents the bit. The gadgets alternate in actively representing the bit.

The construction consists of n structurally identical levels, where level i rep-
resents the i-th bit. A large number N ∈ N is used for defining the rewards and a
small number ε ≥ 0 is used for defining the probabilities. The i-th level is shown
in Fig. 1(a), the coarse structure of the whole MDP in Fig. 1(b).

A number nv below or next to a vertex v in Fig. 1(a) denotes a reward
of (−N)nv associated with every edge leaving v. Other edges have a reward of 0.

Each level i contains two gadgets attached to the entry vertex ki, called
lanes. We refer to the left lane as lane 0 and to the right lane as lane 1. Lane j
of level i contains a randomization vertex Aj

i and two attached cycles with
vertices bj

i,0 and bj
i,1. These gadgets are called bicycles, and we identify the bicycle

containing Aj
i with that vertex. For a bicycle Aj

i , the edges (bj
i,0, A

j
i ), (b

j
i,1, A

j
i )

are called edges of the bicycle. For a policy σ, the bicycle Aj
i is closed (w.r.t. σ)

if and only if σ(bj
i,0) = σ(bj

i,1) = Aj
i . A bicycle that is not closed is called open.
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randomization vertices. Bold vertices can be reached from
other levels, dashed vertices do not belong to level i.

s

k1 k2 k3 . . . kn

kn+1

t

(b) The entry vertices are
all connected to s and t.
Connections between lev-
els and from the levels to s
are not shown here. The
vertex kn+1 is needed for
technical reasons.

Fig. 1. Level i of Gn (left) and coarse structure of Gn (right)

The i-th level of Gn corresponds to the i-th bit of the counter. Which of the
bicycles of level i is actively representing the i-th bit depends on bi+1. When
this bit is equal to 1, A1

i is considered active. Otherwise, A0
i is considered active.

The i-th bit is equal to 1 if and only if the active bicycle in level i is closed.
As initial policy, the MDP is provided the policy σ� representing 0. Then,

a sequence of policies σ1, . . . , σ2n−1 is enumerated by the Policy Iteration Algo-
rithm using the Least-Entered pivot rule and an (implicit) tie-breaking rule.
For b ∈ Bn, b �= 0, the policy σb should fulfill the following invariants.

1. Exactly the bicycles A
bi+1
i corresponding to bits bi = 1 are closed.

2. For all other bicycles Aj
i , it holds that σb(b

j
i,0) = σb(b

j
i,1) = k�(b).

3. All entry vertices point to the lane containing the active bicycle if bi = 1 and
to k�(b) otherwise.

4. The vertex s points to the entry vertex of the least significant set bit.
5. All vertices h0

i point to the entry vertex of the first level after level i + 1
corresponding to a set bit, or to t if no such level exists.

6. The vertex dj
i points to hj

i if and only if bi+1 = j and to s otherwise.

The Policy Iteration Algorithm is only allowed to switch one edge per iteration.
However, the policy σb+1 cannot be reached from σb by performing a single
switch. Therefore, intermediate policies need to be introduced for the transition
from σb to σb+1. These intermediate policies are divided into six phases. In each
phase, a different “task” is performed within the construction. Let �′ := �(b+1).

1. In phase 1, switches inside of some bicycles are performed to keep the occur-
rence records of the bicycle edges as balanced as possible. For every open
bicycle Aj

i , at least one of the edges (bj
i,0, A

j
i ), (b

j
i,1, A

j
i ) is switched. Some
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bicycles are allowed to switch both edges such that their occurrence record
can “catch up” with the other edges. In the active bicycle of level �′, we also
switch both edges, as this bicycle needs to be closed with respect to σb+1.

2. In phase 2, the new least significant set bit is “made accessible”. Thus, k�′ is
switched to cj

�′ , where j is the lane containing the active bicycle.
3. In phase 3, we perform the “resetting process”. The entry vertices of all levels i

corresponding to bits with (b+1)i = 0 switch to k�′ . The same is done for all
vertices bj

i,l contained in inactive bicycles and all vertices bj
i,l corresponding

to levels i with (b + 1)i = 0.
4. In phase 4, the vertices h0

i are updated according to �(b + 1).
5. In phase 5, we switch s to the entry vertex corresponding to �(b + 1).
6. In phase 6, we update the vertices dj

i such that h0
i is the target of d0i if and

only if (b + 1)i+1 = 0 and h1
i is the target of d1i if and only if (b + 1)i+1 = 1.

Before discussing our findings, we need to introduce notation related to
binary counting. We further briefly describe the tables contained in [4].

Let b ∈ Bn. By binary counting, we refer to the process of enumerating the
binary representations of all numbers b̃ ∈ {0, 1, . . . , b}. These numbers are used
to determine how often and when edges of Gn are improving and will be applied.

Intuitively, we are interested in schemes that we observe when counting
from 0 to b, or, more precisely, in the set of numbers that match a scheme.
A scheme is a set S ⊆ N × {0, 1} and b matches S if bi = q for all (i, q) ∈ S.
Since the occurrence records of the edges depend on how often a specific scheme
occurred when counting from 0 to b, we introduce the following terms.

Definition 1 ([4]). Let b ∈ Bn, i ∈ {1, . . . , n} and let S be a scheme. The flip
set F (b, i, S) is the set of all numbers between 0 and b matching S whose least
significant bit is the i-th bit. The flip number is defined as f(b, i, S) := |F (b, i, S)|
and we set f(b, i) := f(b, i, ∅).

We now briefly describe the tables of [4]. For p ∈ {1, . . . , 6}, [4, Table 2]
defines the term phase p policy. As we prove later, there is an issue concerning
the side conditions of phase 3. For a phase p policy σ, [4, Table 3] contains
subsets Lp

σ and supersets Up
σ of the set of improving switches. The last table is [4,

Table 4]. For b ∈ Bn, it contains the occurrence records φσb of the edges with
respect to the unique policy representing b. We discuss an issue regarding this
table in Sect. 3. Other than correcting these issues, we rely on [4, Tables 2, 3, 4].

3 Initial Policy and Occurrence Records

In this section, we discuss the initial policy σ� used in [4] and the description
of the occurrence records given in [4, Table 4]. We show that σ� contradicts
several aspects of [4], and provide an alternative initial policy resolving these
issues. Then, we discuss why the description of the occurrence records given in
[4, Table 4] is not entirely accurate and provide a correction of this inaccuracy.
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On [4, page 11], the following is stated regarding σ�: “As designated initial
policy σ�, we use σ�(dj

i ) = hj
i and σ�( ) = t for all other player 0 nodes with non-

singular out-degree.” This initial policy, however, is inconsistent with the sub-
and supersets of improving switches given in [4, Table 3] and [4, Lemma 4].1

Issue 1. The initial policy σ� described in [4, page 10] contradicts [4, Table 3]
since Iσ� �= {(bj

i,r, A
j
i ) : σ�(bj

i,r) �= Aj
i}. In addition, when the Policy Iteration

Algorithm is started with σ�, at least one of [4, Tables 3, 4] is incorrect for b = 1.

Thus, the initial policy needs to be changed. We propose the following policy
that resolves both issues. Note that it also fulfills [4, Lemma 1] and can thus
indeed be used as initial policy for Gn.

Theorem 1. Define the policy σ∗ via σ∗(d0i ) := h0
i and σ∗(d1i ) := s for all

i ∈ {1, . . . , n} and σ∗(·) := t for all other player-controlled vertices with non-
singular out-degree. Then Iσ∗ = {(bj

i,r, A
j
i ) : σ∗(bj

i,r) �= Aj
i} and starting the

Policy Iteration Algorithm with σ∗ does not contradict [4, Tables 3, 4] for b = 1.

We next prove an issue related to the occurrence records of the bicycles as
specified in [4, Table 4].

Issue 2. Let b < 2n−k−1−1 for some k ∈ N. Assume that the occurrence records
of the edges are given by [4, Table 4]. Then, there is a pair (bj

i,0, A
j
i ), (b

j
i,1, A

j
i )

such that at least one of them has a negative occurrence record.

The problem is that the given description does not properly distinguish
between inactive bicycles that need to catch up with the counter and inactive
bicycles that do not need to do so. Informally, for b ∈ Bn the occurrence records
once the policy σb is reached can be described as follows: (a) Every closed and
active bicycle has an occurrence record corresponding to the last time it was
closed, (b) every open and active bicycle has an occurrence record of b and
(c) inactive bicycles are either “catching up” with other bicycles and thus have
an occurrence record less than b or already finished catching up and have an
occurrence record of b.

To resolve Issue 2, we formulate an additional condition. It is used to dis-
tinguish inactive bicycles that might need to catch up with the counter because
they have already been closed once (if b ≥ 2i−1 +j ·2i), and inactive bicycle that
do not need to catch up because they have not been closed before.

To formulate this condition, we need more notation. Let b ∈ Bn and Aj
i be

a fixed bicycle. We define g as the largest number smaller than b such that the
least significant set bit of g has index i and the (i + 1)-th bit is equal to j. In
addition, we define z := b − g − 2i−1 and φσb(Aj

i ) := φσb(bj
i,0, A

j
i ) + φσb(bj

i,1, A
j
i ).

According to the proof of [4, Lemma 5], the switches inside a cycle center Aj
i

should then be applied according to the following rules.

1 Proofs for all statements can be found in the full paper [3].
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1. If Aj
i is open and active, we switch one edge of the bicycle.

2. Let j := b�(b+1)+1. In addition to 1., the second edge of Aj
�(b+1) is switched.

3. If Aj
i is inactive and b < 2i−1 + j · 2i, one edge of the bicycle is switched.

4. If Aj
i is inactive, b ≥ 2i−1 + j · 2i and z < 1

2 (b − 1 − g), both edges of Aj
i are

switched. If z ≥ 1
2 (b − 1 − g), only one edge is switched.

The following theorem gives a correct description of the occurrence records.

Theorem 2. Suppose that improving switches within bicycles are applied as
described by rules 1 to 4. Let b ∈ Bn and Aj

i be a bicycle. Then, the occurrence
records of (bj

i,0, A
j
i ) and (bj

i,1, A
j
i ) are correctly specified by the system

|φσb(bj
i,0, A

j
i ) − φσb(bj

i,1, A
j
i )| ≤ 1 (3.1)

φσb(Aj
i ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g + 1, Aj
i is closed and active

b, Aj
i is open and active

b, Aj
i is inactive and b < 2i−1 + j · 2i

g + 1 + 2z, Aj
i is inactive and b ≥ 2i−1 + j · 2i

(3.2)

4 Improving Switches of Phase 3

We next discuss the application of improving switches in phase 3. There are
two contradictory descriptions in [4] how to apply these. We prove that nei-
ther of the given orderings obeys the Least-Entered rule. We additionally
show that a natural adaptation of Friedmann’s scheme still does not obey the
Least-Entered rule. We then go on to prove the existence of an ordering and
an associated tie-breaking rule that obey the Least-Entered rule while still
producing the intended behavior of Friedmann’s construction.

Throughout this section, for a fixed b ∈ Bn, we use � := �(b) and �′ := �(b+1).

4.1 Issues with Friedmann’s Switching Order

In Sect. 2, we stated that during phase 3, improving switches need to be applied
for every entry vertex ki contained in a level i with (b + 1)i = 0. In addition,
several bicycles need to be opened. However, according to the description given
in [4, pages 9–10], both of these updates should not be performed for all levels
but only those with an index smaller than �′. To be precise, the following is
stated:2 “In the third phase, we perform the major part of the resetting process.
By resetting, we mean to unset lower bits again, which corresponds to reopening
the respective bicycles. Also, we want to update all other inactive or active but
not set bicycles again to move to the entry point k�′ . In other words, we need
to update the lower entry points kz with z < �′ to move to k�′ , and the bicycle
nodes bj

z,l to move to k�′ . We apply these switches by first switching the entry
node kz for some z < �′ and then the respective bicycle nodes bj

z,r.”
However, there is an issue regarding this informal description.

2 The notation in the quote was adapted from [4] to be in line with our paper.
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Issue 3. For every b ∈ {1, . . . , 2n−2 − 1}, the informal description of phase 3
contradicts [4, Tables 2, 4]. It additionally violates the Least-Entered pivot
rule during the transition from σb to σb+1 for every b ∈ {3, . . . , 2n−2 − 2}.

In other parts of the construction, Friedmann seems to apply the switches
differently, by not only applying them for levels with a lower index than the least
significant set bit but for all levels. Especially, the side conditions of [4, Table 2]
for defining a phase p policy rely on the fact that these switches are applied
for all levels i with (b + 1)i = 0. According to the proof of [4, Lemma 5], the
switches need to be applied as follows: (See Footnote 2) “In order to fulfill all
side conditions for phase 3, we need to perform all switches from higher indices
to smaller indices, and ki to k�′ before bj

i,r with (b + 1)i+1 �= j or (b + 1)i = 0
to k�′”. However, applying improving switches in this way results in another
issue.3

Issue 4. Applying the improving switches as described in [4, Lemma 5] does
not obey the Least-Entered pivot rule.

We can show an even stronger statement. (See Footnote 3) Friedmann applies
improving switches of phase 3 as follows: During the transition from σb to σb+1,
switches are applied “one level after another” where the order of the levels
depends on �(b + 1). That is, depending on �(b + 1), an ordering S�(b+1) of
the levels is considered and when i1 appears before i2 in S�(b+1), all switches in
level i1 need to be applied before any switch of level i2. We prove that applying
improving switches in this way violates the Least-Entered pivot rule at least
once, independently of how S�(b+1) is chosen.

Issue 5. Consider some b ∈ Bn and the transition from σb to σb+1. Suppose
that the switches of phase 3 are applied “level by level” according to any fixed
ordering of the levels as described above. Further suppose that this ordering only
depends on �(b + 1). Then, the Least-Entered pivot rule is violated.

Observe that Issue 5 rules out a broader class of orderings. In some sense,
this shows that Friedmann’s ordering needs to be changed fundamentally, and
cannot be fixed by slight adaptation.

4.2 Fixing the Ordering of the Improving Switches

We now prove the existence of an ordering and an associated tie-breaking rule
for the application of the switches of phase 3 that obey the Least-Entered
rule. We then show that these can be used to prove the existence of an ordering
and an associated tie-breaking rule that obey the Least-Entered rule for all
phases that produces the intended behavior.

For every phase p policy σ, [4, Table 3] gives a subset Lp
σ and a superset Up

σ

of the improving switches Iσ for σ, see [4, Lemma 4]. The improving switch that

3 The proof can be found in Appendix A.
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is then applied in σ is always contained in Lp
σ, and Up

σ is analyzed instead of Iσ

to show that the intended switch can indeed be applied. Now, let σ be a phase 3
policy. We need to compare L3

σ and U3
σ since all switches that can possibly be

applied during phase 3 are contained in U3
σ . This is done via partitioning U3

σ . The
comparison then enables us to show that there is always a switch contained in L3

σ

minimizing the occurrence record. This justifies that “we will only use switches
from Lp

σ” [4, page 12] (at least for phase p = 3). We then show the following: All
improving switches that should be applied during phase 3 according to [4] can
be applied (in a different order) during phase 3, without violating the Least-
Entered pivot rule.

As outlined in Sect. 2, the transition from σb to σb+1 is partitioned into six
phases. During the third phase, the MDP is reset, that is, some bicycles are
opened and the targets of some entry vertices are changed. Therefore, a phase 3
policy σ is always associated with such a transition and we always implicitly
consider the underlying transition from σb to σb+1.

We begin by further investigating the occurrence records of switches that
should be applied during phase 3, i.e., we analyze the set L3

σ. First, the occurrence
record of these switches is bounded from above by the flip number f(b, �′).

Lemma 1. Let σ be a phase 3 policy. Then maxe∈L3
σ

φσ(e) ≤ f(b, �′).

The following lemma gives a matching lower bound of f(b, �′) on all improving
switches that should be applied after phase 3. It will also be used to estimate
the occurrence records of possible improving switches contained in U3

σ .

Lemma 2. Let σ be a phase 3 policy. Assume that the Policy Iteration Algo-
rithm is started with the policy σ∗. Then mine∈L4

σ∪L5
σ∪L6

σ
φσ(e) ≥ f(b, �′).

We now partition U3
σ as follows (note that U4

σ ⊆ U3
σ), cf. [4, Table 3]:

U3,1
σ := {(ki, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0}

U3,2
σ := {(bj

i,r, kz) : σ(bj
i,r) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0}}

U3,3
σ := {(bj

i,r, kz) : σ(bj
i,r) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i+1 �= j}

U3,4
σ := U4

σ

Lemma 2 can be used to show that the occurrence records of edges contained
in U3,4 are too large. To be precise, no switch contained in one of this sets will
be applied during phase 3 when following the Least-Entered rule.

Lemma 3. Let σ be a phase 3 policy. Then, for all e ∈ L3
σ and ẽ ∈ Iσ ∩ U3,4

σ , it
holds that φσ(e) ≤ φσ(ẽ).

It remains to analyze the sets U3,1
σ , U3,2

σ and U3,3
σ . We show that applying

certain switches contained in L3
σ prevent other switches contained in these sets

from being applied. To do so, we introduce subsets of U3,1
σ , U3,2

σ and U3,3
σ . The
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idea is to “slice” these sets such that for each slice, one improving switch prevents
the whole slice from being applied. We thus define the following sets:

S3,1
i,σ := {(ki, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0} ⊆ U3,1

σ

S3,2
i,j,r,σ := {(bj

i,r, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i = 0} ⊆ U3,2
σ

S3,3
i,j,r,σ := {(bj

i,r, kz) : σ(ki) /∈ {kz, k�′}, z ≤ �′ ∧ (b + 1)i �= j} ⊆ U3,3
σ

The informal idea discussed previously is formalized by the following lemma.

Lemma 4. The following statements hold.

1. Let σ be the phase 3 policy in which the switch (ki, k�′) is applied. Let σ′ be
a phase 3 policy of the same transition reached after σ. Then Iσ′ ∩ S3,1

i,σ′ = ∅.
2. Let σ be the phase 3 policy in which the improving switch (bj

i,l, k�′) with
σ(bj

i,l) �= k�′ and (b + 1)i = 0 is applied. Let σ′ be a phase 3 policy of the
same transition reached after σ. Then Iσ′ ∩ S3,2

i,j,l,σ′ = ∅.
3. Let σ be the phase 3 policy in which the improving switch (bj

i,l, k�′) with
σ(bj

i,l) �= k�′ and (b + 1)i+1 �= j is applied. Let σ′ be a phase 3 policy of
the same transition reached after σ. Then Iσ′ ∩ S3,3

i,j,l,σ′ = ∅.
This statement can then be used to prove the following lemma.

Lemma 5. Let σ be a phase 3 policy. Then there is an edge e ∈ L3
σ minimizing

the occurrence record among all improving switches.

This lemma does not yet imply that all switches of phase 3 can be applied
since it is not clear why it cannot happen that phase 4 is reached although not
all switches of phase 3 were applied yet. However, the following theorem proves
that this is impossible (See footnote 3).

Theorem 3. There is an ordering of the improving switches and an associated
tie-breaking rule compatible with the Least-Entered pivot rule such that all
improving switches contained in L3

σb
are applied and the Least-Entered pivot

rule is obeyed during phase 3.

Although Theorem 3 shows that the improving switches of phase 3 can be
applied such that the Least-Entered rule is obeyed, it does not imply that
the transition from σb to σb+1 can be executed as intended in [4]. That is, it
does not imply that the improving switches of the other phases can be applied
as intended. This however can be shown using Theorem 3, yielding the following
result.

Theorem 4. Fix the transition from σb to σb+1 for some σ ∈ Bn. There is an
order in which to apply improving switches during this transition such that the
Least-Entered rule is obeyed, and the switches of phase p are applied before
any switches of phase p + 1, for every p ∈ {1, . . . , 5}.

Acknowledgments. The authors are very grateful to Oliver Friedmann for helpful
comments and discussions, as well as support in using his implementation of the original
construction to verify our findings.
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A Proofs of Selected Statements

This section contains the proofs of the main statements. The proofs use the
following two statements whose proofs can be found in [3].

Lemma A.1. Let i ∈ {2, . . . , n − 2} and l < i. Then, there is a number b ∈ Bn

with �(b + 1) = l such that for all j ∈ {i + 2, . . . , n}, φσb(ki, k�′) < φσb(kj , k�′)
and (ki, k�′), (kj , k�′) ∈ L3

σb
.

Lemma A.2. Assume that for any transition, the switches that should be
applied during phase 3 were applied in some order. Let i ∈ {2, . . . , n−2} and l <
i. Then there is a b ∈ Bn with �(b+1) = l such that φσb(ki+1, k�′) < φσb(b1i,r, k�′),
where r ∈ {0, 1} is arbitrary and (ki+1, k�′), (b1i,r, k�′) ∈ L3

σb
.

We now prove the main statements of this paper.

Issue 4. Applying the improving switches as described in [4, Lemma 5] does
not obey the Least-Entered pivot rule.

Proof. According to [4, Lemma 5], the switches of phase 3 should be applied
as follows (See footnote 2): “[ . . . ] we need to perform all switches from higher
indices to smaller indices, and ki to k�′ before bj

i,l with (b+1)i+1 �= j or (b+1)i =
0 to k�′”.

Let i ∈ {2, . . . , n − 2}, l < i and j ∈ {i + 2, . . . , n − 2}. By Lemma A.1,
there is a number b ∈ Bn such that l = �(b + 1) and φσb(ki, k�′) < φσb(kj , k�′).
In addition, (ki, k�′), (kj , k�′) ∈ L3

σb
. Therefore, the switch (kj , k�′) should be

applied before the switch (ki, k�′) during the transition from σb to σb+1 when
following the description of [4].

Consider the phase 3 policy σ of this transition in which the switch (kj , k�′)
should be applied. Then, since j > i and we “perform all switches from higher
indices to smaller indices”, the switch (ki, k�′) was not applied yet. However, it
still is an improving switch for the policy σ. This implies φσb(kj , k�′) = φσ(kj , k�′)
and φσb(ki, k�′) = φσ(ki, k�′). Consequently, φσb(ki, k�′) < φσb(kj , k�′) implies
that φσ(ki, k�′) < φσ(kj , k�′). Thus, since the edge (ki, k�′) is an improving
switch for σ having a lower occurrence record than (kj , k�′) and σ was chosen
as the policy in which (kj , k�′) should be applied, the Least-Entered rule is
violated. 
�
Issue 5. Consider some b ∈ Bn and the transition from σb to σb+1. Suppose
that the switches of phase 3 are applied “level by level” according to any fixed
ordering of the levels as described above. Further suppose that this ordering only
depends on �(b + 1). Then, the Least-Entered pivot rule is violated.

Proof. To prove Issue 5, we show that applying the improving switches as dis-
cussed before violates Zadeh’s Least-Entered rule several times by showing
the following statement: Let Si be an ordering of {1, . . . , n} for i ∈ {1, . . . , n}.
Suppose that the improving switches of phase 3 of the transition from σb to σb+1

are applied in the order defined by S�(b+1) for all b ∈ Bn. Then, for every possible
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least significant bit l ∈ {1, . . . , n − 4}, assuming that the ordering Sl obeys the
Least-Entered rule results in a contradiction.

Fix some l ∈ {1, . . . , n − 4}. Consider the ordering Sl = (s1, . . . , sn). For any
k ∈ {1, . . . , n}, we denote the position of k within Sl by k�. Towards a contra-
diction, assume that applying the improving switches level by level according to
the ordering Sl obeys the Least-Entered rule. We show that this assumption
yields (l + 1)� < (n − 1)� and (n − 1)� < (l + 1)�.

Let i ∈ {l+1, . . . , n−2}. Then, i > l and therefore, by Lemma A.2, there is a
number b ∈ Bn with �(b+1) = �′ = l and φσb(ki+1, k�′) < φσb(b1i,r, k�′) such that
(ki+1, k�′), (b0i,r, k�′) ∈ L3

σb
. Thus, both switches need to be applied during the

transition from σb to σb+1. Because of φσb(ki+1, k�′) < φσb(b1i,r, k�′), level i + 1
needs to appear before level i within the ordering Sl. Since this argument can
be applied for all i ∈ {l + 1, . . . , n − 2}, the sequence

(n − 1, n − 2, . . . , l + 1)

needs to be a (not necessarily consecutive) subsequence of Sl. In particular,
(n − 1)� < (l + 1)� since l + 1 �= n − 1 by assumption.

Let i = l + 1 and j ∈ {i + 2, . . . , n}. Then, by Lemma A.1, there is a
number b ∈ Bn with �(b + 1) = l such that φσb(ki, k�′) < φσb(ki+2, k�′) and
(ki, k�′), (ki+2, k�′) ∈ L3

σb
. Now, both switches need to be applied during the

transition from σb to σb+1. Therefore, for all i ∈ {l + 1, . . . , n − 2}, level i needs
to appear before any of the levels level j ∈ {i + 2, . . . , n} within Sl. But this
implies that the sequence

(l + 1, l + 3, l + 4, . . . , n − 1, n)

needs to be a (not necessarily consecutive) subsequence of Sl. In particular,
(l + 1)� < (n − 1)� since n − 1 ≥ l + 3 as we have l ≤ n − 4 by assumption. This
however contradicts (n − 1)� < (l + 1)�. 
�
Theorem 3. There is an ordering of the improving switches and an associated
tie-breaking rule compatible with the Least-Entered pivot rule such that all
improving switches contained in L3

σb
are applied and the Least-Entered pivot

rule is obeyed during phase 3.

Proof. Let σ denote the first phase 3 policy of the transition from σb to σb+1.
Then, L3

σ = L3
σb

. By Lemma 5, there is an edge e1 ∈ L3
σ minimizing the occur-

rence record Iσ. Applying this switch results in a new phase 3 policy σ[e1] such
that L3

σ[e1]
= L3

σ \ {e1}. Now, again by Lemma 5, there is an edge e2 ∈ L3
σ[e1]

minimizing the occurrence record Iσ[e1].
We can now apply the same argument iteratively until we reach a phase 3 pol-

icy σ̂ such that
∣
∣L3

σ̂

∣
∣ = 1 while only applying switches contained in L3

σb
. Then, by

construction and by Lemma 5, (e1, e2, . . . ) defines an ordering of the edges of L3
σb

and an associated tie-breaking rule that always follow the Least-Entered rule.
When the policy σ̂ with

∣
∣L3

σ̂

∣
∣ = 1 is reached, applying the remaining improving

switch results in a phase 4 policy. Then, all improving switches contained in L3
σb

were applied and the Least-Entered pivot rule was obeyed. 
�
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