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Abstract. We review the space complexity of deterministically exploring undi-
rected graphs. We assume that vertices are indistinguishable and that edges have
a locally unique color that guides the traversal of a space-constrained agent. The
graph is considered to be explored once the agent has visited all vertices. We visit
results for this setting showing that © (logn) bits of memory are necessary and
sufficient for an agent to explore all n-vertex graphs. We then illustrate that, if
agents only have sublogarithmic memory, the number of (distinguishable) agents
needed for collaborative exploration is © (loglogn).
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1 Introduction

When working with large data sets it is no longer justified to assume the entire input,
or even a significant fraction of it, to be accessible at once. In particular, data may be
spatially distributed along a dynamic network structure, such as the Internet or social
networks. In this setting, the systematic navigation or crawling of the network becomes
an integral component of any algorithmic processing of the data it holds. The theoretical
framework of graph exploration is concerned precisely with the algorithmic problem of
systematically traversing an initially unknown graph.

Generally, the main questions in graph exploration are regarding feasibility, i.e.,how
much computational power is necessary for systematic exploration, and regarding effi-
ciency, i.e.,how quickly a graph can be explored algorithmically. In the context of deal-
ing with large data sets, the feasibility question is of particular importance. The neces-
sary computational power can be captured theoretically by the space complexity of the
exploration problem. Intuitively, the question is what portion of a graph we need to be
able to memorize in order to avoid running in circles.

In this chapter, we review the most important results regarding the space complexity
of undirected graph exploration. In Sect. 2, we introduce the graph exploration frame-
work in more detail. In Sect. 3, we outline a general lower bound on the space com-
plexity of graph exploration of Q (logn). Reingold’s algorithm for undirected graph
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exploration is presented in Sect. 4. We then turn to collaborative graph exploration by
a set of agents. In Sect. 5, we show that when all agents have sub-logarithmic memory
O (log' =€ n) for some & > 0, then Q (loglogn) agents are needed to explore any undi-
rected graph with n vertices. Finally, in Sect. 6, we provide a matching upper bound
showing that a team of & (loglogn) agents can explore deterministically any undirected
n-vertex graph, even if each agent has only constant memory.

The aim of this chapter is to survey the key ideas of these results, and we only sketch
proofs on a high level. Whenever possible, intuition is prefered over formal statements,
and many details are omitted to increase accessibility. For a more formal treatment, we
refer to the original papers. Pointers to the relevant literature are given in Sect. 7.

2 Exploration and Feasibility

In the following, we consider an agent initially located at a vertex vy of an unknown,
edge-colored, undirected graph G = (V,E). We assume the edge-coloring to be locally
unique in the sense that no two edges incident to a common vertex may share a color.
The agent’s perception of G is limited to observing the set of colors of the edges incident
to its current location. In every step, the agent may choose one of these colors and move
to the other endpoint of the corresponding edge. Importantly, vertices with the same
set of colors adjacent to them are indistinguishable to the agent. The objective of the
agent is to explore G, i.e.,to systematically visit all vertices of G in a finite number of
steps. We are looking for a deterministic traversal algorithm that guarantees to explore
every undirected graph. Regarding randomized traversal algorithms, it is known that a
random walk of length n° logn visits all vertices of any graph with n vertices with high
probability (Aleliunas et al. [1]). This yields a constant-space perpetual randomized
graph exploration algorithm, i.e., an algorithm that runs forever and eventually visits all
vertices. If n is known, combining this algorithm with a counter counting up to n> logn
yields a log-space randomized graph exploration algorithm.

To illustrate the difficulty of deterministic exploration in this weak agent model,
consider the exploration of a fully regular graph G, i.e.,a graph where all vertices are
incident to edges of the exact same set of colors (cf. Fig. 1). Even if the agent knows
that G is fully regular, after the first step where it learns the degree of the graph, its
observations contain no information at all. In particular, every deterministic exploration
algorithm must produce the same sequence of colors for any two fully regular graphs
using the same colors. Intuitively, this is the most challenging setting for exploration.
Then, the algorithmic problem reduces to asking for a universal traversal sequence,
i.e.,a sequence of colors that we can follow to eventually visit all vertices, irrespective
of G and vy. Here and throughout, following a color sequence means to perform a
sequence of movement decisions according to it, and we say that a color sequence
explores G if the agent visits all vertices when following it.

The exploration problem is feasible in the sense that a universal traversal sequence
always exists for fully regular graphs. To see this, follow any path in an edge-colored
graph and then return to the starting location by backtracking along the same path to
get a color sequence that is a palindrome. Conversely, following a color sequence that
is a palindrome guarantees to yield a closed tour, irrespective of the graph and the start-
ing location. This means that we can obtain a universal traversal sequence by chaining
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Fig. 1. A regular graph with two different starting locations. By following the color sequence
«“ , blue, red”, the agent either moves on a cycle (left) or not (right), but there is no way to
distinguish between these two cases as vertices are indistinguishable. (Color figure online)

together all color sequences that are palindromes in order of increasing lengths. The
resulting sequence is guaranteed to follow every path from the starting location, irre-
spective of the graph, and thus to eventually visit all vertices.

For non-regular graphs, a universal traversal sequence seems unattainable since not
every color needs to be available at every vertex. However, the exploration of an arbi-
trary non-regular graph G = (V,E) can be reduced to the exploration of a fully regular
graph Gireg = (Vfreg7Efreg) via the construction shown in Fig.2. To this end, we first
construct a regular graph Gz = (Vreg,Ereg) with bi-colored edges. For every vertex
v € V and each color ¢ of its adjacent edges, we introduce a color copy (v,¢) € Vieg,
connect the color copies of v in a cycle and add the original edges between the respec-
tive color copies. The resulting graph has only three colors. The edges in the cycles are
bi-colored with one color pointing to the next color copy, and one color pointing to the
previous color copy. Edges between color copies of different vertices have a third color.
We proceed to eliminate the bi-colored edges in G, and obtain a fully regular graph
Gireg. This can be done by first adding an intermediate vertex for each bi-colored edge,
and then mirroring (i.e.,copying) the entire construction and connecting each vertex of
degree 2 with its reflection with the third color.

As explained above, there is a universal traversal sequence for 3-regular graphs and,
thus, the sequence also explores Greg. Given a universal traversal sequence for Gereg, We
can explore G with an additional memory overhead that is logarithmic in the maximum
degree of the original graph and, thus, in & (logn). The idea is to perform a virtual
traversal of Gyep and only actually move in G whenever the virtual traversal transitions
between color copies of different vertices of G. The memory is used to store which color
copy of its location in G the agent is (virtually) located at in Gy, as well as whether
it is at a vertex or its reflection and whether it is located on the intermediate vertex of a
bi-colored edge.

While we have now established the general feasibility of the exploration problem,
the constructed exploration algorithm is not very satisfactory in the sense that it enu-
merates an exponential number of sequences before all vertices are guaranteed to have
been visited. This means that the algorithm requires an exponential number of moves
and a linear memory size to keep track of its current state. Note that as long as the color
sequence remains aperiodic, linear memory is needed to perform an exponential number
of steps and, conversely, making use of a linear number of memory bits means visiting
an exponential number of memory states and thus an exponential running time. In that
sense, there is a direct correspondence between exponential time and linear memory.
From now on, we focus on memory usage only. The natural question in this context
becomes: Can we solve the exploration problem in sub-linear memory?
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Fig. 2. Turning an arbitrary graph G into a regular graph Grep With bi-colored edges and further
into a fully regular graph Gyeg. In the construction, we order the four colors of G cyclically as

-red-green-blue. In Greg, brown edges point to the next color available at the corresponding
vertex in G, teal edges point to the previous color, and purple edges move to a color copy of
another vertex. To construct Gyep from Greg, an intermediate vertex is added to the center of each
bi-colored edge, the graph is copied, and two corresponding intermediate vertices are connected
by a purple edge. Starting with the color on the left copy in Gyeg, the color sequence
“teal-purple-brown-teal-brown-purple-brown-teal-purple” for Gy, leads to the movement along
a blue edge and a edge as indicated in G. (Color figure online)



156 Y. Disser and M. Klimm
3 Trapping a Single Agent

To approach the question of how much memory is necessary in general to deterministi-
cally explore a graph G of size n, we first need to realize how insufficient memory can
manifest itself in terms of the inability of the agent to explore: Essentially, the only way
that the agent may fail to explore G in finite time is by getting “trapped” in periodic
behavior that forces it to move on a closed tour eternally, without having visited all
vertices. With this in mind, we make the following definition.

Definition 1. A trap for an exploration algorithm is given by an edge-colored graph G
together with an initial location vy, such that the algorithm never visits all vertices of G
when starting at vy.

We fix a deterministic exploration algorithm 7 with a finite number b € N of memory
bits and construct a trap of some size n for this algorithm. The size of our trap then
bounds the largest size of graphs that the algorithm can explore. Conversely, since the
construction can be carried out for any deterministic algorithm, we obtain a lower bound
on the required number of memory bits necessary to explore graphs of size (up to) n.

To construct a trap G for .27, first observe that .7 has at most 2 different memory
states at its disposal. Our construction ensures that G is a fully regular graph of degree 3,
using a fixed set of three colors C. As observed in the previous section, .¢7 is sure to yield
the same sequence S of colors for all fully regular graphs using colors C and irrespective
of the initial location vy. Since 7 has at most 2b different states, it must enter at least
one state for the second time within the first 2° steps. Assume the same state is entered
in steps 1 <i < j < 2. Then the behavior of &7 and, consequently, S must become
periodic after step i, i.e.,S = (c1,...,¢i—1) ® Sy where @’ denotes concatenation of
sequences, and S, is a finite subsequence of S of length j —i.

Consider the infinite walk W = (vg,v1,V2,...) induced by S in the infinite 3-regular
tree where the set of colors of the edges incident to each vertex is C; cf. Fig. 3 (top). By
definition, < is in the same memory state after steps i and j, implying that it follows
the same infinite color sequence starting at v; in steps i+ 1,i+2,... as it does starting at
vjinsteps j+1,j+2,.... Assume that v; = v;. Then, the algorithm moves on a closed
tour of length j — i after step i while having visited at most i + j —i = j < 2” differ-
ent vertices. We can now take the subgraph G of the infinite tree induced by all edges
incident to vertices in W as our trap. Note that this graph need not be fully regular, but
we can add missing edges by mirroring G as before (cf. Sect. 2) and connecting corre-
sponding vertex pairs of degree smaller three by an edge of a color they are missing.
This decreases the number of missing colors at all vertices of degree smaller three and
needs to be repeated at most once to make the graph fully regular.

In the case v; # v; the algorithm may visit an infinite number of different vertices.
The intuitive idea now is to “close a loop” by ensuring that both the edges of color
ciy1 = Cj4+1 atv; and at v; lead to the same vertex. Of course, we cannot simply replace
the edge of color ¢;1 at v; by the edge {v;,vi;1} of the same color, since we also need
to keep the edge {v;,viy1} of this color. However, we can achieve the same result by
“folding” v; onto v}, i.e.,by identifying v; = v; and identifying the predecessors of v;
along W and their neighborhoods accordingly. More precisely, we identify each vertex
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Fig. 3. Construction of a trap for a single agent with b bits of memory. Top: After at most 2 steps
in a fully regular graph, the same memory state must repeat (purple vertices). Bottom: Closing a
loop to trap the agent on a closed walk. (Color figure online)

v adjacent to v; with the unique vertex v’ adjacent to v; such that the colors of the edges
{vi,v} and {v;,V'} coincide. We repeat this process for all vertices v;_1,...,vo along
W; cf Fig. 3 (bottom). Afterwards, we again take the subgraph induced by {vo,...,v;}
together with their neighbors as our trap, making it fully regular as before.

In either case, we have constructed a trap of size n = & (2°). Since we can perform
this construction for any deterministic algorithm with & memory bits, this implies a
lower bound of Q2 (logn) on the required number of memory bits to explore every graph
of size up to n € N. We have shown the following.

Theorem 1 (Fraigniaud et al. [12]). The number of memory bits needed for undi-
rected, deterministic graph exploration is Q (logn).

4 Reingold’s Algorithm

We will see that the lower bound shown in Sect. 3 on the memory needed to explore an
undirected graph deterministically is tight, i.e.,undirected graphs with n vertices can be
explored deterministically with &' (logn) memory. This algorithmic result follows from
a famous result of Reingold [16] in which he established that USTCON € .Z. Here, .Z is
the class of problems solvable with logarithmic memory and USTCON is the problem of
deciding, for a given undirected graph G = (V,E) and two designated vertices s,z € V,
whether s and ¢ are connected in G. The algorithm devised by Reingold for his proof
can be turned into a log-space exploration algorithm, which we outline in the following.
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We first argue that fully regular graphs with constant degree and good vertex expan-
sion can be explored with logarithmic memory. Suppose the graph G is fully regular
with constant degree d and enjoys the property that there is a constant € > 0 such that
for all vertex sets S C V with |S| < n/2 there are at least (1 + €)|S| vertices that are
connected by an edge to a vertex in S. An upshot of this vertex expansion property is
that the graph has at most logarithmic diameter. Indeed, for an arbitrary vertex u € V
there are more than n/2 vertices within a distance of k = ll(g)ggﬂnfs)) + 1 of u, so that every
pair of vertices has a common vertex within distance k and, thus, the diameter is at most
2k € O(logn). Similar to the argument in Sect. 2, it suffices to enumerate all returning
color sequences of length 2k which can be done with & (logn) space.

Regularity can be achieved with the transformation from G to Gyreg explained in
Sect. 2. Here, we stick to Gyeg with its bi-colored edges instead of transforming Gieg
further into Gyeg since the bi-colored edges of Greg do not harm our further arguments.
We proceed to describe further transformations that turn G into another regular graph
Gexp With good vertex expansion. Let G be a fully d-regular graph with n vertices and
let H be a c-regular graph with d vertices where ¢ and d are constants. Then the replace-
ment product GOH is the graph where each vertex v in G is replaced by a copy of H
that we call the cloud of v. The edges within a cloud keep the colors that they have in
H. For each edge of G, we introduce an edge with a new inter-cloud color between the
respective vertices in the corresponding clouds; cf. Fig. 4. The resulting graph GOH is
fully regular with degree c 4 1. Based on the replacement product GOH, we introduce
another graph product, the zig-zag product G@H. The zig-zag-product G®H has the
same set of vertices as the replacement product GOH, but only edges between vertex
clouds of different vertices. Specifically, let (u,i) be a vertex belonging to the cloud of
u, and (v, j) be a vertex belonging to the cloud of v. Then, the edge {(u,i), (v, )} is
contained in the replacement product if and only if there is path of length three from
(u,i) to (v, j) in GOH where the middle edge is an edge between different clouds. For
a vertex (u,i) there are exactly ¢ such paths starting in (u,i): the first degree of free-
dom is to choose one of ¢ colors (within the current cloud), then change the cloud with
an inter-cloud edge, and then choose one of ¢ colors for the second cloud. Associating
each of these ¢2 color combinations with a new color in G®H, we obtain that G@H
is fully regular with degree c>. We note that this construction also works if G has bi-
colored edges by allowing inter-cloud edges also between different copies of vertices
of H. In any case, we may end up with a graph G@H having bi-colored edges. Sup-
pose that H is of constant size and that we have a traversal sequence for G@H. Then,
every edge traversal in G@H corresponds to three edge traversals in GOH. We maintain
a stack of future edge traversals in GOH. Since H has constant degree, so has GOH,
and we can store this stack with up to three colors in constant memory. In this way, we
obtain a traversal sequence for G®H with constant memory overhead. From a traversal
sequence for GOH, we further obtain a traversal sequence for G by memorizing the
current copy of the vertex of H within the current cloud similar to the virtual traversal
of Gfreg in Sect. 2. As H has constant size, this requires only constant memory overhead.
We conclude that a traversal sequence for G®H can be used to traverse G with constant
memory overhead.
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Fig. 4. The replacement product GOH and the zig-zag-product G®H for two graphs G and H. In

the replacement product GOH, edges within a cloud keep the colors they had in H, here brown

or teal. The edges between clouds get a new inter-cloud color, here purple. Every edge in G®H

corresponds to a path of length three in GOH where the middle edge is purple, e.g.,an edge color
in G@H corresponds to a path in GOH that is teal-pink-brown. (Color figure online)

It is left to show that we can transform G, into a graph with good vertex expansion.
In order to show that a d-regular graph has good vertex expansion, it suffices to show
that the second largest eigenvalue A of the normalized adjacency matrix is bounded
from above by a constant strictly smaller than 1; cf. Tanner [21], Alon and Milnan [3],
and Alon [2]. For the normalized adjacency matrix M = (my )y vev, the entry m,,,, is
defined as 1/d times the number of edges from u to v. For ease of notation, we call a d-
regular graph on n vertices an (n,d, )-graph if A < a. We use the following properties
of the second largest eigenvalues of regular graphs:

1. Alon and Sudakov [5]:
A d-regular, connected, non-bipartite n-vertex graph is a (n,d 1= d—iz)—graph.

2. Basic linear algebra:
Taking the k-th power of a graph means introducing an edge for each k-edge path
in the original graph. If G is an (n,d, A )-graph, then its k-th power is an (n,d*, A*)-
graph.
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3. Alon and Roichman [4] (cf.discussion in Reingold et al. [17, § 5]):
There exists a (c'%, ¢, 1/2)-graph for some constant c.

4. Reingold et al. [17]:
Let G be an (n,d,A)-graph and let H be a (d,c,1/2)-graph. Then G®H is an
(nd,c?, £(3A + V942 +16))-graph.

Let H be a (c'®,¢,1/2)-graph with ¢ constant as in Property 3.. For an arbitrary graph
G on n vertices, first construct Greg. Let Go be equal to Greg except that cl0 — 3 gelf
loops are added to each vertex. Let £ = 2[log(c'%n*)]. For i = 1,...,¢, define G; =
(Gi—1@H )8, i.e.,to obtain the next graph in the sequence, we first apply the zig-zag
product with H and then take the 8-th power of the resulting graph. Note that this is
well-defined since G, @H has degree ¢?, so that G; = (G,_1@H)® has degree c'®,
and G;@H is defined. Any traversal sequence for G; can be transformed with constant
memory overhead to a traversal sequence for G;_1, since it involves taking the zig-zag
product with a graph of constant size and power 8 (which requires to memorize up to
7 additional steps). Thus, a traversal sequence for Gy can be transformed to a traversal
sequence for Gy and, hence, an exploration sequence for G with memory overhead of
0 (£) = € (logn). It remains to show that Gy has good vertex expansion. We claim that
A(G)) <max{A(G;_1)?,1/2} foralli = 1,... £. To prove the claim, let A = A(G,_)
and note that, by Property 4.,

A(Gi1@H) < (37L+\/97Lz+1 )

(31 +5)

:1—%(1—1)@—%(1—1),

implying A(G;) < (1— %(l —l)) by Property 2. If A < 1, then A(G;) < (6) <3
Otherwise, it is straightforward to verify that the function f(x) = (1—%(1— ))4
convex on [0,1] and 1 > f(1) as well as 1/2 > f(1/2). We conclude that f(x) < x for

all x € [1/2,1], in particular
4
1
— (1= <
(1 3(1 x)) <2,

implying A (G;) < A?. Finally, the graph Gy is regular with degree c'® and has at most
n? nodes. By Property 1. this implies that A (Gp) < 1 — 16 . With the claim above, we
obtain

A(Gy) < max{ <1 - 6161’1“)2£7;}
(32

As we sketched above, the transformation from G to G, requires only logarithmic
memory and can be conducted locally, i.e.,a traversal sequence for G, can be trans-
formed into an exploration sequence for G with logarithmic space overhead. Finally,

<1
8
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we eliminate the bi-colored edges of Gy as in Sect. 2. Since this construction increases
the diameter of the graph by at most a factor of 2, it has still a logarithmic diameter,
so that a traversal sequence can be constructed with logarithmic space. This yields the
following result.

Theorem 2 (Reingold [16]). Undirected graphs can be deterministically explored with
an agent that has O (logn) bits of memory.

5 Trapping Multiple Agents

After having established that © (logn) memory bits are necessary and sufficient for
deterministic exploration with a single agent, we now investigate whether this bound
can substantially be lowered by allowing additional agents. More precisely, we con-
sider a setting with k > 2 deterministic and distinguishable agents that behave as before
individually, but move in a synchronized fashion and may exchange information while
co-located at a vertex. To see that allowing collaboration makes a fundamental differ-
ence, even for k = 2, observe that, for example, two agents can distinguish closed tours
simply by leaving one of them at the starting location; cf. Fig. 1. This additional power
is also evidenced by a drastically increased difficulty of constructing traps: For a long
time, the smallest known traps for k agents, with s memory states each, had a size of
0 (s“'" ) with & (k) levels in the exponent (Fraigniaud et al. [13], Rollik [18]), compared
to the singly exponential bound of Theorem 1.

To see that a substantially different approach is needed to trap multiple agents, recall
the construction in Sect. 3: The intuitive idea was to add vertices along a tree until the
agent enters a memory state for the second time, at which point we close a loop. Since
the number of memory states available to the agent is bounded by a constant, namely 2°,
this yielded a trap of singly exponential size in b. The key difference when allowing
multiple agents is that the behavior of the agents no longer only depends on their col-
lective memory state. It now might make a difference in the behavior of the algorithm at
what points agents meet — which is exactly the reason, why they can distinguish cycles,
as explained above. This means that the behavior of the algorithm may depend in a
non-trivial way on the positions of the agents in the graph, relative to each other. As we
increase the number of vertices 7, the number of such configurations grows as n*, and
we can no longer hope for configurations to ever repeat.

The key idea to overcome this is to force the agents to stay “close” to each other,
which ensures that the number of configurations stays bounded and allows us to use
the same general approach as before. The following informal definition generalizes the
notion of a trap to multiple agents.

Definition 2. A k-barrier By in a graph G for an algorithm <f is a subgraph of G whose
removal disconnects the graph into two connected components, with the property that
no agent ever traverses By from one component to the other without at least k other
agents entering By during the traversal.

In particular, a 1-barrier plays the role of a simultaneous trap for every individual agent.
Note that agents may behave differently from one another, so we need to deal with each
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Fig. 5. Sketch of the construction of an i-barrier. Boxes indicate (i — 1)-barriers.

one using a separate construction. We have seen in Sect. 3 how to construct a trap for
a single agent, and we can essentially chain traps together for the individual agents in
order to obtain a 1-barrier. We will now describe how to recursively construct i-barriers
forie {2,...,k}. Once we have constructed a k-barrier, we have the desired trap for the
set of all k-agents.

The idea of the recursive construction of an i-barrier is to use the same approach as
in the trap for a single agent, but replacing every edge by an (i — 1)-barrier; cf. Fig. 5.
More precisely, we fix any set of i agents and assume that only these agents enter our
construction. Since, on a meta-level, edges are now (i — 1)-barriers, the agents can only
traverse these “meta-edges” if they all enter the corresponding barrier, i.e.,if they stay
somewhat close together. Essentially, throughout the traversal, all agents are guaranteed
to be located in one of the three (i — 1)-barriers surrounding some meta-vertex. Of
course, the same is true recursively within every (i — 1)-barrier containing at most i — 1
of the agents. By a careful recursive inspection, the total number of configurations of
the agents can be bounded independently of the number of meta vertices. This allows
a similar approach as before: Add meta-vertices until a configuration repeats and close
a loop to obtain a trap. To obtain an i-barrier, we again need to chain traps for every
subset of i agents together.

With some refinement and a thorough analysis, it can be shown that this yields a
k-barrier, and thus a trap, of size & (s25 ) for k agents with s memory states each. In
other words, the agents can explore graphs of size up to n < 52, i.e.,logn < 25 -log s
has to hold. Assuming that each agent has & (log'~€n) bits of memory for some
€ € (0,1), i.e.,just shy of the number needed to explore the graph on its own, we
obtain logs = & (logl_‘S n). Combining both bounds and taking logarithms yields
k=Q (log(lololgf;n)) = Q (loglogn). This means that we need at least k = (loglogn)
agents to expfore undirected graphs of size n, even if every agent has almost enough
memory to explore on its own!

Theorem 3. (Disser et al. [10 SPP]). Deterministic exploration of undirected graphs
needs at least Q(loglogn) agents if we allow O(log'~€n) bits of memory for every
agent, where € > 0.
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6 Multi-agent Exploration

We outline the design of a collaborative exploration algorithm that matches the lower
bound of Theorem 3, i.e.,we show that & (loglogn) agents with sub-logarithmic mem-
ory are sufficient to explore unknown graphs of size up to n. Observe that & (logn)
agents are trivially sufficient by Reingold’s algorithm (Theorem 2), since we can let
agents move together and make each one responsible for maintaining a constant num-
ber of memory bits.

We start with a single agent with a constant number my € N of memory bits and
show how to iteratively boost its memory by using a small number of additional agents.
First consider how much progress, in terms of visiting vertices, the agent is able to
accomplish on its own. For a single agent, we already know Reingold’s algorithm which
needs logarithmic space. Expressed differently, executing Reingold’s algorithm with m
bits of available memory guarantees that the agent visits a number of distinct vertices
of order Q (2"0), or completes the exploration.

These vertices can be visited multiple times, and, in general, there is no way of
knowing the order in which the vertices appear during the traversal 7 produced by
Reingold’s algorithm. However, using one additional agent to mark vertices and mul-
tiple repetitions of traversal with Reingold’s algorithms for different positions of the
additional agent, it can be shown that we can treat 7 as a simple cycle without self
intersections. Assuming that the agent has this cycle T of length Q (2"0), for some
constant ¢ € N, that it can navigate systematically, it can position a constant number
a € N of additional agents along T. Since agents are distinguishable, there are |T|*
configurations that can be established in this way. The key idea now is to use the con-
figuration of the agents along 7' as a form of virtual memory state, in order to boost the
amount of memory available to the agent.

The number of memory bits that can be encoded in this way is m; = log|T'|%, which
is of order amy. This means that we have boosted the initial memory capacity roughly
by a factor of a. Having more (virtual) memory at its disposal, the agent can now recur-
sively repeat the procedure, again boosting the memory by another factor of a, and
so on. After loglogn levels of recursion, the amount of virtual memory is of order
agloen .y — Q (logn). But we already know that this is sufficient to complete the
exploration, by Theroem 2.

For this approach to yield the claimed bound, it is crucial to argue that only a con-
stant number of agents and memory bits are needed in each recursive level, not only
to encode, but also to manipulate the virtual memory. In particular, in each move per-
formed in some level of the recursion, the agents encoding the virtual memory on lower
recursive levels need to be moved in the graph to stay in the same positions relative
to the agent. It can be shown that this is indeed possible with a constant overhead in
agents, and we obtain the following tight result.

Theorem 4. (Disser et al. [10 SPP]). Undirected graphs can be deterministically
explored with O (loglogn) agents, even if we only allow constant memory for every
agent.
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7 Bibliographic Notes

The first exploration algorithms were designed for mazes. A maze is a subgraph of
the two-dimensional grid where the vertices are indistinguishable and each edge is
labeled with its cardinal direction. To facilitative the exploration, the agent is sometimes
equipped with a set of distinguishable pebbles that can be dropped and retrieved at nodes.
After initial non-tight results (Blum and Sakoda [7], Budach [8], Shah [20]), it has been
proven that an agent with finite memory needs two pebbles to explore any maze (Blum
and Kozen [6]) and that one pebble does not suffice (Hoffmann [14]). Blum and Kozen [6]
further showed that also two agents with finite memory can explore all mazes.

General undirected graphs are harder to explore. The lower bound of © (logn) on
the memory needed by a single agent to explore all undirected vertex graphs determinis-
tically given in Sect. 3 is due to Fraigniaud et al. [12]. Aleliunas et al. [1] showed that a
random walk of length n° log n explores an undirected n-vertex graph with high probabil-
ity. The deterministic algorithm exploring undirected vertex graphs explained in Sect. 4
is due to Reingold [16]. We here follow the presentation of the algorithm and the analysis
of Reingold’s original paper. There are also alternative proofs for this result that avoid the
use of the zig-zag-product; see Rozenman and Vadhan [19]. Reingold’s algorithm con-
structs a universal exploration sequence. This concept was introduced by Koucky [15].

Regarding the exploration of a graph by a set of cooperating agents, Blum and
Kozen [6] showed that three agents with finite memory cannot explore all finite undi-
rected planar graphs. Rollik [18] strengthened this result showing that for any number
k € N of agents with s € N states, there is a trap of size (s“‘“) with 2k + 1 levels in the
exponent, i.e.,a graph that the agents cannot explore. Fraigniaud et al. [13] improved
this bound to k+ 1 levels in the exponent. The non-planar trap of size & (SZSk) given
in Sect.5 is due to Disser et al. [10 SPP]. This result implies that if each agent has a
sublogarithmic memory of & (log! ~¢ n) with £ > 0, then & (loglogn) agents are needed
to explore all undirected n-vertex graphs. Another consequence from their construc-
tion is that a single agent with sublogarithmic memory needs ¢ (loglogn) pebbles to
explore all undirected n-vertex graphs. The result that & (loglogn) agents with con-
stant memory can explore all undirected n-vertex graphs presented Sect.6 is due to
Disser et al. [10 SPP]. They actually showed that a single agent with constant memory
and O (loglogn) pebbles can explore the graph and provide a general reduction from
agents to pebbles. They further proved that their algorithm runs in polynomial time. For
results regarding the exploration time needed by an agent with unconstrained memory,
see Dudek et al. [11] and Chalopin et al. [9].
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