
Scheduling Bidirectional Traffic on a Path

Yann Disser, Max Klimm, and Elisabeth Lübbecke

Department of Mathematics, Technische Universität Berlin
{disser,klimm,eluebbecke}@math.tu-berlin.de

Abstract. We study the fundamental problem of scheduling bidirectional
traffic along a path composed of multiple segments. The main feature of
the problem is that jobs traveling in the same direction can be scheduled
in quick succession on a segment, while jobs in opposing directions cannot
cross a segment at the same time. We show that this tradeoff makes the
problem significantly harder than the related flow shop problem, by proving
that it is NP-hard even for identical jobs. We complement this result with
a PTAS for a single segment and non-identical jobs. If we allow some
pairs of jobs traveling in different directions are allowed to cross a segment
concurrently, the problem becomes APX-hard even on a single segment and
with identical jobs. We give polynomial algorithms for the setting with
restricted compatibilities between jobs on a single and any constant number
of segments, respectively.

1 Introduction

The scheduling of bidirectional traffic on a path is essential when operating single-
track infrastructures such as single-track railway lines, canals, or communication
channels. Roughly speaking, the schedule governs when to move jobs from one node
of the path to another along the segments of the path. The goal is to schedule
all jobs such that the sum of their arrival times at their respective destinations is
minimized. A central feature of real-world single-track infrastructures is that after
one job enters a segment of the path, further jobs moving in the same direction can
do so with relatively little headway, while traffic in the opposite direction usually
has to wait until the whole segment is empty again (cf. Figure 1a for a schematic
illustration).

Formally, in the bidirectional scheduling problem we are given a path of consec-
utive segments connected at nodes, and a set of jobs, each with a release date and a
designated start and destination node. The time job j needs to traverse segment i
is governed by two quantities: its processing time pij and its transit time τij . While
the former prevents the segment from being used by any other job (running in either
direction), the latter only blocks the segment from being used by jobs running in
opposite direction. For example, this allows us to model settings with bidirectional
train traffic on a railway line split into single-track segments that are connected
by turnouts (cf. Lusby et al. [16, Section 2]). In this setting, jobs correspond to
trains, the processing time of a job is the time needed for the train to fully enter the
next segment, and the transit time is the time to traverse the segment (and entirely
move into the next turnout). While a train is entering a single-track segment of
the line, no other train may do so. The next train in the same direction can enter
immediately afterwards, whereas trains in opposite direction have to wait until the
segment is clear again in order to prevent a collision.

Figure 2 shows the path-time-diagram of a feasible schedule for two segments
and four jobs. Jobs are represented by parallelograms of the same color. The



1 2 3

4

τi1pi1

segment ii−1 i+1

(a) without compatibilities

1 2 3

5
4

τi1pi1

segment ii−1 i+1

(b) with compatibilities

Fig. 1: Bidirectional scheduling of ship traffic through a canal, with and without com-
patibilities. The processing time pij of job j is the time needed to enter segment i with
sufficient security headway, i.e., the delay before other jobs in the same direction may enter
the segment. The travel time τij is the time needed to traverse the entire segment once
entered. In both (a) und (b), jobs 1, 2, 3 can enter the segment in quick succession, while
job 4 has to wait until they left the segment. In (b), job 5 is compatible with jobs 1, 2, 3 so
that they may cross concurrently. The time to cross turnouts is assumed to be negligible.

i = 1 i = 2

time
j

j

rj
p2j

τ2j

p1j

τ1j
Cj

Fig. 2: Representation of a schedule on two segments (i = 1, 2) and four jobs as a path-
time-diagram. In this example, all jobs are processed immediately at their release date.
Job j is released at time rj at the right end of segment 2 and needs to reach the left
end of segment 1. Since it never has to wait, its completion time is smallest possible:
Cj = rj + p2j + τ2j + p1j + τ1j .

processing time of a job on a segment is reflected by the height of the corresponding
parallelogram, while the transit time is the remaining time (y-distance) to the
lowest point of the parallelogram. In a feasible schedule, jobs may not intersect,
and, in particular, a job can only begin being processed at a segment once it has
fully exited the previous segment. Note that in the example it makes sense for the
two rightbound jobs to switch order while waiting at the central node.

We also study a generalization of the model to situations where some of the jobs
are allowed to pass each other when traveling in different directions (cf. Figure 1b).
This is a natural assumption, e.g., when scheduling the ship traffic on a canal, where
smaller ships are allowed to pass each other while larger ships are not (cf. Lübbecke
et al. [15]). In practice, the rules that decide which ships are allowed to pass each
other are quite complex and depend on multiple parameters of the ships such as
length, width, and draught (e.g., cf. [5]). We model these complex rules in the most
general way by a bipartite compatibility graph for each segment, where vertices
correspond to jobs and two jobs running in different directions are connected by an
edge if they can cross the segment concurrently.

2



Table 1: Overview of our results for bidirectional scheduling.
1 even if p = 0, τi = 1, 2 only if p = 1, τi ≤ const, 3 even if τi = p = 1.

Number m of segments
compatibilities m = 1 m const. m arbitrary

Different jobs pij = pj, τij = τi
PTAS [Thm. 2]

none/all compatible
NP-hard [14]

NP-hard1
[Thm. 1]

Identical jobs pij = p, τij = τi
none compatible

const. # types
polynomial [Thm. 5] polynomial2 [Thm. 6] NP-hard1

[Thm. 1]

arbitrary APX-hard3
[Thm. 4]

Our results. Table 1 gives a summary of our results. We first show that scheduling
bidirectional traffic is hard, even without processing times and with identical transit
times (Section 3). The proof is via a non-standard reduction from MaxCut. The
key challenge is to use the local interaction of the jobs on the path to model
global interaction between the vertices in the MaxCut. We overcome this issue by
introducing polynomially many vertex gadgets encoding the partition of each vertex
and synchronizing these copies along the instance. We complement this result with
a polynomial time approximation scheme (PTAS) for a single segment and arbitrary
processing times (Section 4) using the (1 + ε)-rounding technique of Afrati et al. [1].

We then show that bidirectional scheduling with arbitrary compatibility graphs is
APX-hard already on a single segment and with identical processing times (Section 5).
The proof is via a reduction from a variant of Max-3-Sat which is NP-hard to
approximate within a factor smaller than 1016/1015, as shown by Berman et al. [3].
As a byproduct, we obtain that also minimizing the makespan is APX-hard in this
setting. We again complement our hardness result by polynomial algorithms for
identical jobs on constant numbers of segments and with a constant number of
compatibility types (Section 6).

Significance. With this paper we initiate the mathematical study of optimized
dispatching of traffic in networks with bidirectional edges, e.g. train networks,
ship canals, communication channels, etc. In all of these settings, traffic in one
direction limits the possible throughput in the other direction. While in the past
decades a wealth of results has been established for the unidirectional case (i.e.,
classical scheduling, and, in particular, flow show models), surprisingly, and despite
their practical importance, bidirectional infrastructures have not received a similar
attention so far.

The bidirectional scheduling model that we propose captures the essence of
bidirectional traffic by distinguishing processing and transit times. This simple
framework already allows to exhibit the computational key challenges of this setting.
In particular, we show that bidirectional scheduling is already hard for identical jobs
on a path, which is in contrast to the unidirectional case. We observe another increase
in complexity when allowing specific types of traffic to use an edge concurrently
in both directions. In practice, this is reasonable e.g. for ship traffic in a canal,
where small vessels may pass each other. In that sense, we show that scheduling
ship traffic is already hard on a single edge and, thus, considerably harder than
scheduling train traffic.

3



While bidirectional scheduling is hard in general, we show that certain features
of real-world scenarios can make the problem tractable, e.g., a small number of
turnouts along a single path and/or a small number of different vessels. In this work
we restrict ourselves to simple paths, but we hope that our results are a first step
towards understanding traffic in general bidirectional networks.

Related work. Scheduling problems are a fundamental class of optimization
problems with a multitude of known hardness and approximation results (cf. Lawler
et al. [12] for a survey). To the best of our knowledge, the bidirectional scheduling
model that we propose and study in this paper has not been considered in the past
nor is it contained as a special case in any other scheduling model. We give an
overview of known results for related models.

For a single segment and jobs traveling from left to right, bidirectional scheduling
reduces to the classical single machine scheduling problem, which Lenstra et al.
[14] showed to be hard when minimizing total completion time. Afrati et al. [1]
gave a PTAS with generalizations to multiple identical or a constant number of
unrelated machines. Chekuri and Khanna [6] further generalized the result to
related machines. We give a different generalization for bidirectional scheduling. For
unrelated machines Hoogeveen et al. [10] showed that the completion time cannot
be approximated efficiently within arbitrary precision, unless P = NP.

Bidirectional scheduling also has similarities to scheduling of two job families
with a setup time that is required between jobs of different families. The general
comments in Potts and Kovalyov [18] on dynamic programs for such kinds of
problems apply in part to our technique for Theorem 5.

When all jobs need to be processed on all segments in the same order and all
transit times are zero, bidirectional scheduling reduces to flow shop scheduling.
Garey et al. [9] showed that it is NP-hard to minimize the sum of completion times
in flow shop scheduling, even when there are only two machines and no release
dates. They showed the same result for minimizing the makespan on three machines.
Hoogeveen et al. [10] showed that there is no PTAS for flow shop scheduling without
release dates, unless P = NP. In contrast, Brucker et al. [4] showed that flow shop
problems with unit processing times can be solved efficiently, even when all jobs
require a setup on the machines that can be performed by a single server only.

Job shop scheduling is a generalization of flow shop scheduling that allows jobs
to require processing by the machines in any (not necessarily linear) order, cf. Lawler
et al. [12, Section 14] for a survey. In this setting, the minimization of the sum of
completion times was proven to even be MAX-SNP-hard by Hoogeveen et al. [10].
Queyranne and Sviridenko [19] gave a O((log(mµ)/ log log(mµ))2)-approximation
for the weighted case with release dates, where µ denotes the maximum number of
operations per job.

Fishkin et al. [7] gave a PTAS for a constant number of a machines and operations
per job. It is worth noting that job shop scheduling does not contain bidirectional
scheduling as a special case, since it does not incorporate the distinction between
processing and transit times for jobs passing a machine in different directions.

Job shop scheduling problems with unit jobs are strongly related to packet
routing problems where general graphs are considered, see the discussion in seminal
paper by Leighton et al. [13]. They proved that the makespan of any packet routing
problem is linear in two trivial lower bounds, called the congestion and the dilation.
For more recent progress in this direction, see, e.g., Scheideler [20] and Peis and
Wiese [17]. All these works, however, consider minimizing the makespan and assume
that the orientation of the graph is fixed. Antoniadis et al. [2] also consider average

4



flow time on a directed line. They give lower bounds for competitive ratios in the
online setting and O(1) competitive algorithms with resource augmentation for the
maximum flow time.

2 Preliminaries

In the bidirectional scheduling problem, we are given a set M = {1, . . . ,m} of
segments which we imagine to be ordered from left to right. Further, we are given
two disjoint sets of J r and J l of rightbound and leftbound jobs, respectively, with
J = J r ∪ J l and n = |J |. Each job is associated with a release date rj ∈ N, a start
segment sj and a target segment tj , where sj ≤ tj for rightbound jobs and sj ≥ tj for
leftbound jobs. A rightbound job j needs to cross the segments sj , sj+1, . . . , tj−1, tj ,
and a leftbound job needs to cross the segments sj , sj − 1, . . . , tj + 1, tj . We denote
by Mj the set of segments that job j needs to cross. Each job j is associated with a
processing time pj ∈ N and each segment i is associated with a transit time τi ∈ N.
Note that we restrict ourselves to identical processing times for a single job and
identical transit times for a single segment. We call pj + τi the running time of
job j on segment i.

A schedule is defined by fixing the start times Sij for each job j on each
segment i ∈ Mj . The completion time of job j on segment i is then defined as
Cij = Sij + pj + τi. The overall completion time of job j is Cj = Ctjj . A schedule
is feasible if it has the following properties.
1. Release dates are respected, i.e., rj ≤ Ssjj for each j ∈ J .
2. Jobs travel towards their destination, i.e., Cij ≤ Si+1,j (resp. Cij ≤ Si−1,j) for

rightbound (resp. leftbound) jobs j and i ∈Mj \ {tj}.
3. Jobs j, j′ traveling in the same direction are not processed on segment i ∈
Mj ∩Mj′ concurrently, i.e., [Sij , Sij + pj) ∩ [Sij′ , Sij′ + pj′) = ∅.

4. Jobs j, j′ traveling in different directions are neither processed nor in transit on
segment i ∈Mj ∩Mj′ concurrently, i.e., [Sij , Cij) ∩ [Sij′ , Cij′) = ∅.
We consider the objective of minimizing the total completion time

∑
Cj =∑

j∈J Cj .
Other natural objectives are the minimization of the makespan Cmax = max{Cj |

j ∈ J} or the total waiting time
∑
Wj =

∑
j∈JWj where the individual waiting

time of a job j is defined as Wj = Cj −
∑
i∈Mj

(pj + τi)− rj . Note that minimizing
the total waiting time is equivalent to minimizing the total completion time.

We also consider a generalization of the model, where some of the jobs traveling
in different directions are allowed to pass each other. Formally, for each segment
i, we are given a bipartite compatibility graph Gi = (J r ·∪J l, Ei) with Ei ⊆ J r × J l.
Two jobs j, j′ that are connected by an edge in Gi are allowed to run on segment i
concurrently, i.e., condition 4 above need not be satisfied. Specifically, jobs j, j′ may
be processed or be in transit simultaneously.

All proofs omitted in the following sections can be found in the appendix.

3 Hardness of bidirectional scheduling

In this section we show that scheduling bidirectional traffic is hard, even when all
processing times are zero and all transit times coincide. In other words, we eliminate
all interaction between jobs in the same direction and show that hardness is merely
due to the decision when to switch between left- and rightbound operation of each
segment. This is in contrast to one-directional (flow shop) scheduling with identical
processing times, which is trivial. Formally, we show the following result.

5



0
1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 3: Illustration of the vertex gadget in the leftbound (left) and the rightbound (right)
state. At each time t = 0, . . . , 11 multiple right- and leftbound jobs are released. Since all
jobs have processing time 0, jobs in the same direction can be processed simultaneously.
The only two sensible schedules differ in whether leftbound jobs are processed at even or
odd times.

Theorem 1. The bidirectional scheduling problem is NP-hard even if pj = 0
and τi = 1 for each j ∈ J and i ∈M .

We reduce from the MaxCut problem which is contained in Karp’s list of 21
NP-complete problems [11].

MaxCut
Input: An undirected graph G = (V,E) and k ∈ N.
Problem: Is there a partition V = V1 ·∪V2 with |E ∩ (V1 × V2)| ≥ k?

For a given instance I of MaxCut we construct an instance of the bidirectional
scheduling problem which can be scheduled without exceeding some specific waiting
time if and only if I admits a solution. The translation to sum of completion times
is then straightforward. We give an intuitive overview of our construction and defer
all details to Appendix A.

A cornerstone of our construction is the vertex gadget that occupies a fixed
time interval on a single segment and can only be (sensibly) scheduled in two
ways (cf. Figure 4), which we interpret as the choice whether to put the corresponding
vertex in the first or second part of the partition, respectively. We introduce multiple
vertex segments that each have exactly one vertex gadget for each vertex in I and
add further gadgets that ensure that the state of all vertex gadgets for the same
vertex is the same across all segments. These gadgets allow us to synchronize
vertex gadgets on consecutive vertex segments in two ways. We can either simply
synchronize vertex gadgets that occupy the same time interval on the two vertex
segments (copy gadget), or we can synchronize pairs of vertex gadgets occupying
the same consecutive time intervals on the two vertex segments by linking the
first gadget on the first segment with the second one on the second segment and
vice-versa, i.e., we can transpose the order of two consecutive gadgets from one
vertex segment to the next (transposition gadget).

We construct an edge gadget for each edge in I that incurs a small waiting time
if two vertex gadgets in consecutive time intervals and segments are in different
states and a slightly higher waiting time if they are in the same state. By tuning the
multiplicity of each job, we can ensure that only schedules make sense where vertex
gadgets are scheduled consistently. Minimizing the waiting time then corresponds to
maximizing the number of edge gadgets that link vertex gadgets in different states,
i.e., maximizing the size of a cut.

In order to fully encode the given MaxCut instance I, we need to introduce
an edge gadget for each edge in I. However, edge gadgets can only link vertex

6



Fig. 4: Illustration of our hardness construction for a single edge e = {u, v}. First, a
sequence of segments is used to change the order of vertex gadgets, such that the vertex
gadgets corresponding to u and v occupy consecutive time intervals. Then, an edge gadget
is added that incurs an increased waiting time if the vertex gadgets for u and v are in the
same state.

gadgets in consecutive time intervals. We can overcome this limitation by adding
a sequence of vertex segments and transposing the order of two vertex gadgets
from one segment to the next as described before. With a linear number of vertex
segments we can reach an order where the two vertex gadgets we would like to
connect with an edge gadget are adjacent. At that point, we can add the edge
gadget, and then repeat the process for all other edges in I (cf. Figure 4).

We can reformulate Theorem 1 for nonzero processing times, simply by making
the transit time large enough that the processing time does not matter.

Corollary 1. The bidirectional scheduling problem is NP-hard even if pj = 1
and τi = τ for each j ∈ J and i ∈M .

4 A PTAS for bidirectional scheduling

In this section, we give a polynomial time approximation scheme (PTAS) for
bidirectional scheduling on a single segment with general processing times. Lenstra
et al. [14] showed this problem to be hard even if all jobs have the same direction.
Afrati et al. [1] gave a PTAS, i.e., a polynomial (1 + ε)-approximation algorithm for
each ε > 0. Based on the same technique, we extend their result to the bidirectional
case, provided that the jobs are either all pairwise in conflict or pairwise compatible.
The main issue when trying to adopt the technique of [1] is to account for the
different roles of processing and transit times for the interaction of jobs in the same
and different directions.

Theorem 2. The bidirectional scheduling problem on a single segment and with
compatibility graph G1 ∈ {Knr,nl

, ∅} admits a PTAS.

The first part of the proof in [1] is to restrict to processing times and release
dates of the form (1 + ε)x for some x ∈ N and rj ≥ ε(pj + τ1). Allowing fractional
processing and release times we can show that any instance can be adapted to
have these properties, without making the resulting schedule worse by a factor of
more than (1 + ε). We may thus partition the time horizon into intervals Ix =
[(1 + ε)x, (1 + ε)x+1], such that every job is released at the beginning of an interval.
Since jobs are not released too early, we may conclude that the maximum number
of intervals σ covered by the running time of a single job is constant. This allows us

7



to group intervals together in blocks Bt = {Itσ, Itσ+1, . . . , I(t+1)σ−1} of σ intervals
each, such that every job scheduled to start in block Bt will terminate before the
end of the next block Bt+1.

To use the fact that each block only interacts with the next block in our dynamic
program, we need to specify an interface for this interaction. For that purpose we
introduce the notion of a frontier. A block respects an incoming frontier F = (fl, fr)
if no leftbound (rightbound) job scheduled to start in the block starts earlier
than fl (fr). Similarly, a block respects an outgoing frontier F = (fl, fr) if no
leftbound or rightbound job scheduled to start in the block would interfere with a
leftbound (rightbound) job starting at time fl (fr). The symmetrical structure of the
compatibility graph (Knr,nl

or ∅) allows us to use this simple interface. We introduce
a dynamic programming table with entries T [t, F, U ] that are designed to hold the
minimum total completion time of scheduling all jobs in U ⊆ J to start in block Bt
or earlier, such that Bt respects the outgoing frontier F . We define C(t, F1, F2, V )
to be the minimum total completion time of scheduling all jobs in V to start in Bt
with Bt respecting the incoming frontier F1 and the outgoing frontier F2 (and ∞
if this is impossible). We have the following recursive formula for the dynamic
programming table:

T [t, F, U ] = min
F ′,V⊆U

{T [t− 1, F ′, U \ V ] + C(t, F ′, F, V )}.

To turn this into an efficient dynamic program, we need to limit the dependencies
of each entry and show that C(·) can be computed efficiently. The number of blocks
to be considered can be polynomially bounded by logD, where D = maxj rj + n ·
(maxj pj + τ1) is an upper bound on the makespan. The following lemma shows that
we only need to consider polynomially many other entries to compute T [t, F, U ]
and we only need to evaluate C(·) for job sets of constant size, which we can do in
polynomial time by simple enumeration.

Lemma 1. There is a schedule with a sum of completion times within a factor
of (1 + ε) of the optimum and with the following properties:
1. The number of jobs scheduled in each block is bounded by a constant.
2. Every two consecutive blocks respect one of constantly many frontiers.

Proof (sketch). Partitioning the released jobs of each interval direction-wise by
processing time into small and large jobs and bundling small jobs into packages of
roughly the same size allows us to bound the number of released jobs per interval
by a constant, similarly as in [1]. Furthermore, we establish that we may assume
jobs to remain unscheduled only for constantly many blocks.

For the second property, we stretch all time intervals by a factor of (1 + ε),
which gives enough room to decrease the start times of those jobs interfering with
two blocks such that an 1/ε2-fraction of an interval separates jobs starting in two
consecutive blocks. Thus, we only need to consider σ

ε2 possible frontier values per

direction, or a total of
(
σ
ε2

)2
possible frontiers. ut

5 Hardness of custom compatibilities

In Section 3, we showed that bidirectional scheduling is hard on an unbounded
number of machines, even for identical jobs. As the main result of this section, we
show that for arbitrary compatibility graphs the problem is APX-hard already on a
single segment and with unit processing and transit times. For ease of exposition,

8



P1 and P2: variable assignment

xi

xi+1

xi

xi+1

...

P3: clauses

ck
ck+1

...

...

P4: leftover jobs

...

Fig. 5: Illustration (colored) of the four parts of our construction. Time is directed down-
wards, rightbound (leftbound) jobs are depicted on the left (right) of each figure.

we first show that the minimization of the makespan is NP-hard. Later we extend
thus result towards minimum completion time and APX-hardness.

Theorem 3. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is NP-hard even if pj = τ1 = 1 for each j ∈ J .

We give a reduction from an NP-hard variant of Sat (cf. [8]). Note the difference
to the polynomially solvable (3, 3)-Sat, where each variable appears in exactly three
clauses [21].

(≤3, 3)-Sat
Input: A formula with a set of clauses C of size three over a set of variables
X, where each variable appears in at most three clauses.
Problem: Is there a truth assignment of X satisfying C?

For a given (≤3, 3)-Sat formula we construct a bidirectional scheduling instance
that can be scheduled within some specific makespan T if and only if the given
formula is satisfiable. Our construction is best explained by partitioning the time
horizon [0, T ] into four parts (cf. Figure 5 along with the following).

We use a frame of blocking jobs that need to be scheduled at their release
date. We can enforce this by making sure that at least one blocking job is released
at (almost) each unit time step and that blocking jobs that are not supposed
to run concurrently are incompatible. We release variable jobs that have to be
scheduled into gaps between the blocking jobs. More precisely, in the first part of
the construction we release 6 jobs within a separate time interval for each variable.
Two of these jobs are leftbound and need to be scheduled within the first two parts
of the construction, which implies that one of the two remaining pairs of rightbound
jobs must be scheduled after the second part. If the first pair is delayed we interpret
this as an assignment of true to the variable and otherwise as false.

The third part of the construction has a gap for each clause, with compatibilities
ensuring that only variable jobs can be scheduled into the gap which satisfy the
clause. Since each literal can only appear in at most two clauses, there are enough
variable jobs to satisfy all clauses if the formula is satisfied. Finally, the last part
has 2|X| − |C| gaps that fit any variable job. In order to schedule all variable jobs
before the end of the last part, we thus need to schedule a variable job into each gap
of a clause. This is possible if and only if the given (≤3, 3)-Sat formula is satisfiable.
We can easily extend our result to completion or waiting times by adding many
blocking jobs after the last part, such that violating the makespan also ruins the
the total completion time.

9



With a slight adaption of the construction and more involved arguments, we
can even show APX-hardness of the problem. We reduce from a specific variant
of Max-3-Sat, where each literal occurs exactly twice, and which is NP-hard to
approximate within a factor of 1016/1015, see Berman et al. [3].

Theorem 4. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is APX-hard even if pj = τ1 = 1 for each j ∈ J .

6 Dynamic programs for restricted compatibilities

After establishing the hardness of bidirectional scheduling with a general compat-
ibility graph in the last section, in this section we turn to the case of a constant
number of different compatibility types. We first show that the problem is easy for
a single segment, and then expand our result to any fixed number of segments. Due
to the identical processing times, the jobs in each direction can simply be scheduled
in the order of their release dates. The only decision left is when to switch between
left- and rightbound operation of the segments. This decision is hard in the general
case (Theorem 1), but we are able to formulate a dynamic program for any constant
number of segments.

Our result generalizes to the case when some jobs of different directions are
compatible (i.e., may pass each other), as long as the number of compatibility types
is constant, where two jobs j1, j2 in the same direction are defined to have the
same compatibility type if the set of jobs compatible with j1 is equal to the set
of jobs compatible with j2 on each segment. Formally, j1 and j2 have the same
compatibility type if

{
j : {j1, j} ∈ Ei

}
=
{
j : {j2, j} ∈ Ei

}
for the compatibility

graphs Gi = (J l ·∪J r, Ei) of each segment i.
We partition J into κ subsets of jobs J1, . . . , Jκ where all jobs of Jc, c ∈ 1, . . . , k,

have the same compatibility type c, and let nc = |Jc|. Since the jobs of each subset
only differ in their release dates, they can again be scheduled in the order of their
release dates. This allows us to expand the dynamic program to encompass any
constant number of compatibility types. We obtain the following result for a single
segment.

Theorem 5. The bidirectional scheduling problem can be solved in polynomial time
if m = 1, κ is constant and pj = p for each j ∈ J .

Proof. We consider each subset Jc ordered non-increasingly by release dates and
denote by Jci the i-th job of Jc in this order, i.e., the (nc − i)-th job to be released.
Each entry T [i1, t1, . . . , iκ, tκ; c] of our dynamic programming table is designed to
hold the minimum sum of completion times that can be achieved when scheduling
only the ic′ jobs of largest release date of each compatibility type c′, such that Jc

′

ic′

is not scheduled before time tc′ and Jcic is the first job that is scheduled. We start
by setting T [0, t1, . . . , 0, tκ; c] = 0 and define the dependencies between table entries
in the following.

Let C(j, t) = max{t, rj}+ p+ τ1 denote the smallest possible completion time
of job j when scheduling it not before t. Depending on the types of jobs j1, j2
(and in particular of their directions), we can compute in constant time the earliest
time θ(j1, t1, j2, t2) not before t1 that job j1 can be scheduled at, assuming that j2
is scheduled earlier at time max{t2, rj2}. We let δcc′ = 1 if c = c′ and δcc′ = 0

otherwise, abbreviate θc′ = θ(Jc
′

ic′
, tc′ , J

c
ic
, tc), and get the following recursive formula

for ic > 0:

T [i1, t1, . . . , iκ, tκ; c] = min
c′:ic′ 6=0

{T [i1 − δ1c, θ1, . . . , iκ − δκc, θκ; c′] + C(Jcic , tc)}.

10



We can fill out our table in order of increasing sums
∑
ic and finally obtain the

desired minimum completion time as minc T [n1, 0, . . . , nκ, 0; c]. We can reconstruct
the schedule from the dynamic programming table in straightforward manner. It
remains to argue that we only need to consider polynomially many times tc. This is
true, since all relevant times are contained in the set {rj + kτ + `p | j, k, ` ≤ n} of
cardinality O(n3). ut

We now consider a constant number of segments m > 1. The main complication
in this setting is that decisions on one segment can influence decisions on other
segments, and, in general, every job can influence every other job in this way. In
particular, we need to keep track of how many jobs of each type are in transit at
each segment, and we can thus not easily adapt the dynamic program for a single
segment. We propose a different dynamic program that relies on all transit times
being bounded by a constant.

Theorem 6. The bidirectional scheduling problem can be solved in polynomial time
if m, κ, and τi are constant for each i ∈M , and pj = 1 for each j ∈ J .

Proof. Again, we consider subsets of identical jobs. In addition to their conflict
type c, we further distinguish jobs by their start and target segments s, t and form
subsets Jcs,t correspondingly. The number of subsets is bounded by κm2. Since all
release times are integer and since pj = 1, we only need to consider integer points in
time. Hence, only τi + 1 possible positions need to be considered for a job running
on segment i, and no two jobs of the same direction can occupy the same position.
The state of the system can be fully described by (i) the number of available jobs
per segment and Jcs,t, and (ii) for each position on each segment and each Jcs,t,
the fact whether a job of Jcs,t is occupying this position. The number of states is

bounded by
∏m
i=1 n

κm2 ·
∏m
i=1 2κm

2(τi+1) = poly(n).
We define the successors of each state to be all states that can be reached in one

time step where not all jobs wait, or by waiting for the next release date. This way,
the state representation changes from one state to the next. The system always
makes progress towards the final state where each job has arrived at its target. The
state graph can thus not have a cycle, and we may consider states in a topological
order. We formulate a dynamic program that computes for each state the smallest
partial completion time to reach the state, where the partial completion time is
defined as the sum of completion times of all completed jobs plus the current time
for each uncompleted job. The dynamic program is well-defined as each value only
depends on predecessor states. ut

We conclude a complementary result to Theorem 1.

Corollary 2. The bidirectional scheduling problem can be solved in polynomial time
if m and κ are constant, τi = 1 for each i ∈M , and pj = 0 for each j ∈ J .

Proof. Since all release dates are integer, at each integer point in time no jobs are
running on any segment. We can thus use a simpler version of the dynamic program
we introduced in the proof of Theorem 6. ut

11



References

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes
for minimizing average weighted completion time with release dates. In Proc. 40th
Symposium on Foundations of Computer Science (FOCS), pages 32–43, 1999.

2. A. Antoniadis, N. Barcelo, D. Cole, K. Fox, B. Moseley, M. Nugent, and K. Pruhs.
Packet forwarding algorithms in a line network. In Proc. 11th Latin American
Theoretical Informatics Symposium (LATIN), volume 8392 of LNCS, pages 610–621.
2014.

3. P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of short symmetric
instances of MAX-3SAT. Electronic Colloquium on Computational Complexity (ECCC),
10(49), 2003.

4. P. Brucker, S. Knust, and G. Wang. Complexity results for flow-shop problems with a
single server. European J. Oper. Res., 165:398–407, 2005.

5. Bundesamt für Seeschifffahrt und Hydrographie (BSH). German Traffic Regulations
for Navigable Maritime Waterways. Hamburg and Rostock, Germany, 2013.

6. C. Chekuri and S. Khanna. A PTAS for minimizing weighted completion time on
uniformly related machines. In Proc. 28th Colloquium on Automata, Languages and
Programming (ICALP), pages 848–861. 2001.

7. A. V. Fishkin, K. Jansen, and M. Mastrolilli. On minimizing average weighted
completion time: A PTAS for the job shop problem with release dates. In Proc. 14th
Symposium an Algorithms and Computation (ISAAC), volume 2906 of LNCS, pages
319–328. 2003.

8. M. R. Garey and D. S. Johnson. Computers and intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, 1979.

9. M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop
scheduling. Math. Oper. Res., 1(2):117–129, 1976.

10. H. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results
for scheduling problems with minsum criteria. In Proc. 6th Conference on Integer
Programming and Combinatorial Optimization (IPCO), pages 353–366. 1998.

11. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computations, The
IBM Research Symposia Series, pages 85–103. 1972.

12. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Handbooks in Operations Research and
Management Science, volume 4, pages 445–522. 1993.

13. F. T. Leighton, Bruce M. Maggs, and Satish B. Rao. Packet routing and job-shop
scheduling in o(congestion+dilation) steps. Combinatorica, 14(2):167–186, 1994.

14. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problems. Ann. Discrete Math., 1:343–362, 1977.

15. Elisabeth Lübbecke, Marco E. Lübbecke, and Rolf H. Möhring. Ship traffic optimization
for the Kiel Canal. Technical Report 4681, Optimization Online, 12 2014.

16. R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models
and methods. OR Spectrum, 33(4):843–883, 2011.

17. B. Peis and A. Wiese. Universal packet routing with arbitrary bandwidths and
transit times. In Proc. 15th Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 362–375, 2011.

18. C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European J.
Oper. Res., 120(2):228 – 249, 2000.

19. M. Queyranne and M. Sviridenko. New and improved algorithms for minsum shop
scheduling. In Proc. 11th Symposium on Discrete Algorithms (SODA), pages 871–878,
2000.

20. C. Scheideler. Offline routing protocols. In Universal Routing Strategies for Intercon-
nection Networks, pages 57–71. 1998.

21. C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85 – 89, 1984.

12



A Proofs of Section 3 – Hardness of bidirectional
scheduling

In this section, we give a detailed proof of the hardness of the bidirectional scheduling
problem for a constant number of segments and identical processing and transit
times. We describe our reduction from MaxCut. Let an instance I = (GI , k) of
MaxCut be given, with G = (VI , EI), |VI | = nI , and |EI | = mI . We introduce
a set of jobs on polynomially many segments that can be scheduled with a total
waiting time of W if and only if I admits a solution. Our construction is comprised
of various gadgets which we describe in the following. We make use of suitably large
parameters x� y � z � 1 that we will specify later. For example, x is chosen in
such a way that if ever x jobs are located at the same segment, these jobs need to be
processed immediately in order to achieve a waiting time of W . Note that because
jobs take no time in being processed (i.e., pj = 0), we can schedule any number
of jobs sharing direction simultaneously on a single segment. Also, since τ = 1,
it makes no sense for a segment to stay idle if jobs are available. This allows us
to restrict our analysis to schedules that are sensible in the sense that for each
segment and at every time step all jobs in one direction available at the segment get
scheduled. On the other hand, the non-zero transit time induces a cost of switching
the direction of jobs that are processed at a segment.

Vertex gadget. Each of the segments 1, 10, 19, 28, . . . hosts one vertex gadget for
each of the vertices in VI (cf. Figure 3 with the following). Each vertex gadget gt
on segment 9`+ 1 occupies a distinct time interval [13t, 13(t+ 1)), t < nI , on the
segment and is associated with one of the vertices v ∈ VI . The gadget comes with
24y vertex jobs that only need to be processed at segment 9`+ 1, half of them being
leftbound, half being rightbound. Exactly y jobs of each direction are released at
times 13t, 13t+ 1, . . . , 13t+ 11. We say that gt is scheduled consistently if either
all leftbound vertex jobs are processed immediately when they are released and
all rightbound jobs wait for one time unit, or vice-versa. We say the gadget is in
the leftbound (rightbound) state and interpret this as vertex v being part of set
V1 (V2) of the partition of VI = V1 ·∪V2 we are implicitly constructing. A schedule
is consistent if all vertex gadgets are scheduled consistently. The following lemma
allows us to distinguish consistent schedules.

Lemma 2. The vertex jobs of a single vertex gadget can be scheduled consistently
with a waiting time of 12y, while every inconsistent schedule has waiting time at
least 13y.

Proof. Since p = 0, we can schedule all available jobs with the same direction
simultaneously. It follows that both consistent schedules are valid, and, since in
both exactly half of the vertex jobs wait for one unit of time, the total waiting time
of such a schedule is 12y. Any inconsistent (sensible) schedule would have to send
jobs in the same direction in two consecutive unit time intervals, which means that
in addition to the minimum waiting time of 12y, at least y jobs have to wait an
extra unit of time. ut

Synchronizing vertex gadgets. Since every vertex v ∈ VI is represented by
multiple vertex gadgets on different segments, we need a way to ensure that all
vertex gadgets for v are in agreement regarding which part of the partition v is
assigned to. We introduce two different gadgets that handle synchronization. The

13



0
1
2
3
4
5
6
7
8
9
10
11
12
13

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 6: Illustration of the copy gadget between two vertex gadgets. The dashed lines depict
all sensible trajectories of the synchronizing jobs, assuming that the vertex gadgets are in
the same state.

copy gadget synchronizes the vertex gadgets gt occupying the same time interval on
segments 9`+ 1 and 9`+ 10, while the transposition gadget synchronizes gadgets
gt, gt+1 on segment 9` + 1 with gadgets gt+1, gt on segment 9` + 10. Using a
combination of copy and transposition gadgets, we can transition between any two
orders of vertex gadgets on distant segments.

We first specify the copy gadget that synchronizes the vertex gadgets gt on two
segments 9`+ 1 and 9`+ 10 (cf. Figure 6 with the following). The gadget consists of
2z rightbound synchronization jobs, half of which are released at time 13t and half
at time 13t+ 1. The jobs need to be processed on all segments 9`+ 1, . . . , 9`+ 10 in
this order. In addition, we introduce 3x blocking jobs that are used to enforce that
specific time intervals on a segment are reserved for leftbound/rightbound operation.
Essentially, releasing x blocking jobs at time t on a single segment prevents any jobs
to be processed in opposite direction during the time interval [t, t+ 1) (and even
earlier). In this manner, we block the interval starting at time 13t+ 3 on segments
9`+ 2, 9`+ 3, 9`+ 4.

Lemma 3. In any consistent schedule, the synchronization jobs of a single copy
gadget can be scheduled with a waiting time of 3z if the two corresponding vertex
gadgets are in the same state, otherwise their waiting time is at least 5z.

Proof. Since x � z, we need to schedule all blocking jobs as soon as they are
released. If both vertex gadgets gt linked by the copy gadget are in the rightbound
state, the synchronization jobs released at time 13t only have to wait for one time
unit at segment 9`+ 4, while the other jobs have to wait at segments 9`+ 1 and
9`+ 2. Similarly, if the vertex gadgets are in the leftbound state, the first half of
the jobs have to wait at segments 9`+ 1 and 9`+ 3, while the other half only has to
wait at segment 9`+ 3. The waiting time in either case is 3z. If the vertex gadgets
are in opposite states, all jobs have to additionally wait at segment 9`+ 10, which
results in a total waiting time of at least 5z. ut

We now describe the transposition gadget that synchronizes the vertex gadgets
gt, gt+1 on segment 9` + 1 with the vertex gadgets gt+1, gt on segment 9` + 10
(cf. Figure 7 with the following). The challenge here is that jobs synchronizing the
different pairs of vertex gadgets need to pass each other without interfering. We
achieve this by making sure that the jobs never meet while being in transit at the
same segment. The gadget consists of 4z synchronization jobs, half being rightbound
and half being leftbound. Half of each are released at times 13t + 6 and 13t + 7,
and all need to be processed at segments 9`+ 1, . . . , 9`+ 10 (in different directions).

14



0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Fig. 7: Illustration of the transposition gadget. The dashed lines depict all sensible tra-
jectories of the synchronizing jobs, assuming that the vertex gadgets are pairwise in the
same states. Note that jobs in different directions never meet while in transit through the
same segment.

In addition, we introduce 12x blocking jobs to block the intervals starting at the
following times: at times 13t+ 9, 13t+ 10 for rightbound jobs and at times 13t+ 14,
13t+ 15 for leftbound jobs on segment 9`+ 2, at times 13t+ 9 for rightbound and
at 13t+ 15 for leftbound on segment 9`+ 3, and the corresponding (symmetrical)
intervals in opposite direction on segments 9`+ 8 and 9`+ 9 (cf. Figure 7).

Lemma 4. In any consistent schedule, the synchronization jobs of a single trans-
position gadget can be scheduled with a waiting time of 10z if each of the two pairs
of corresponding vertex gadgets are in the same state, otherwise their waiting time
is at least 12z.

Proof. Since x � z, we need to schedule all blocking jobs as soon as they are
released. It is easy to verify that all synchronization jobs wait at exactly 2 segments
due to blocking jobs. In addition, half of the jobs wait for one unit of time at the
segment where they are released – for a total of 10z time units. If the pair of vertex
gadgets is in opposite states, all connecting synchronization jobs need to wait at
least one additional unit of time at their last segment. Observe that synchronization
jobs in opposite directions are never in transit on the same segment at the same
time. ut

Edge gadget. The purpose of an edge gadget between vertex gadget gt on seg-
ment 9`+ 1 and gt+1 on segment 9`+ 10 is to produce a small additional waiting
time if the two vertex gadgets are in the same state (cf. Figure 8 with the following).
We will introduce edge gadgets between vertex gadgets representing two vertices
u, v that share an edge in G. This way, every edge that connects vertices in different
parts of the partition is beneficial for the resulting waiting time. The edge gadget
itself consists of 2 rightbound edge jobs, one being released at time 13t+ 7 and the

15



0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Fig. 8: Illustration of the edge gadget. The dashed lines depict all sensible trajectories of
the synchronizing jobs, assuming that the vertex gadgets are in opposite states. Note that
edge jobs do not interact with synchronization jobs of copy gadgets for both vertices.

other at time 13t+8. Both jobs need to be processed on segments 9`+1, . . . , 9`+10.
We add 3x blocking jobs to block the unit time interval starting at time 13t+ 15
on segments 9`+ 7, 9`+ 8, 9`+ 9.

Lemma 5. In any consistent schedule, the edge jobs of a single edge gadget can
be scheduled with a waiting time of 3 if the two connected vertex gadgets are in
opposite states, otherwise their waiting time is at least 5.

Proof. One job always has to wait for a time unit at the first segment. Both jobs
have to wait for the blocking jobs (since x� 1). If the vertex gadgets are in the
same state, both jobs have to wait an additional unit of time at the last segment.

ut

Construction. We are now ready to combine our gadgets and explain the final
construction.

Theorem 1. The bidirectional scheduling problem is NP-hard even if pj = 0
and τi = 1 for each j ∈ J and i ∈M .

Proof. We start by introducing a vertex gadget gt on segment 1 for each vertex vt ∈
VI of the given MaxCut-instance. For each edge {u, v} we extend the construction
by appending more segments as follows. We add a sequence of blocks of 9 segments,
the last of which contains again a vertex gadget for each vertex. In between we add
copy and transposition gadgets in such a way that on the last segment i the vertex
gadgets g0 and g1 represent the vertices u and v. We can achieve this by adding less
than nI segments. We add an additional block of 9 segments, and add copy gadgets
for each of the variables. Finally, we add an edge gadget connecting vertex gadget
g0 on segment i with g1 on the last segment. Observe that the edge jobs do not
interfere with any of the synchronization jobs for the copy gadgets for the first two

16



vertices (cf. Figure 8). We repeat the process once for each edge. The total number
of segments is O(nImI), and the total number of jobs is O(n2ImI(x+ y + z)). The
number of vertex gadgets is nv < n2ImI , and the number of transposition and copy
gadgets is nt < nc < nv.

We claim that if the MaxCut instance admits a solution S, we can schedule
all jobs with waiting time at most W = 12nvy + 3ncz + 10ntz + 5mI − 2k. We do
this by scheduling all vertex gadgets consistently in the state corresponding to the
part of the partition the corresponding vertex belongs to in S. Lemmas 2 through 4
guarantee that we can schedule everything but the edge jobs without incurring a
waiting time greater than 12nvy + 3ncz + 10ntz. Finally, since at least k edges in
the MaxCut solution are between vertices in different sets of the partition, and the
vertex gadgets are set accordingly, by Lemma 5, we obtain an additional waiting
time of at most 5mI − 2k as claimed.

It remains to establish that the waiting time exceeds W in case the MaxCut
instance does not admit a solution. We set x = W + 1, such that all blocking
jobs have to be scheduled as soon as they are released. By Lemma 2, scheduling
at least one vertex gadget inconsistently produces a total waiting time of at least
12nvy + y. We now set y = 18n2ImIz > 3ncz + 10ntz + 5mI for the vertex jobs,
such that a single inconsistent vertex gadget results in a waiting time greater than
W . Hence, each vertex gadget needs to be scheduled consistently. By Lemmas 3
and 4, we have that if not all vertex gadgets corresponding to the same vertex are
in the same state, the waiting time for vertex and synchronization jobs is at least
12nvy+3ncz+2ntz+z. We set z = 5mI , which allows us to conclude that all vertex
gadgets are in agreement regarding the partition of the vertices. Finally, Lemma 5
enforces that there are at least k edge gadgets between vertices in different states.
This however is impossible as our MaxCut instance does not admit a solution. ut

Corollary 1. The bidirectional scheduling problem is NP-hard even if pj = 1
and τi = τ for each j ∈ J and i ∈M .

Proof. We adapt our construction by setting p = 1 and τ = n2m and scaling all
release times by n2m, where n,m are the number of jobs and segments, respectively.
We claim that the original instance admits a solution of some waiting time W if and
only if it now admits a solution with waiting time in [Wτ, (W + 1)τ). This proves
the Corollary, as the intervals are pairwise disjoint for different (integer) values of
W .

If the original construction (with p = 0 and τ = 1) does not admit a solution
with waiting time at most W , then a scaled version with p = 0 and τ = n2m does
not admit a solution with waiting time at most Wτ . But the lowest possible waiting
is monotonically increasing with increasing processing times, hence the adapted
instance with p = 1 does not admit a solution of waiting time at most Wτ .

Conversely, assume we have a solution of the original instance with waiting
time W . We fix the order in which jobs are processed along each segment and
construct a schedule for the setting p = 1, τ = n2m by introducing additional
waiting periods for each job. Clearly, each job has to wait at most one time unit for
each other job to be processed at each segment. Hence, the additional waiting time
overall is smaller than n2m = τ . ut

17



B Proofs of Section 4 – A PTAS for bidirectional
scheduling

In this Section we state the Lemmas with detailed proofs that are necessary to show
the existence of a PTAS if the processing times of the jobs are not restricted to be
equal in the case of a single segment. More precisely, we consider the bidirectional
scheduling problem on a single segment with compatibility graph G1 ∈ {Knr,nl

, ∅}.
Following the proof scheme of [1], we introduce several lemmas that allow us
to make assumptions at “O(1 + ε)-loss”, meaning that we can modify any input
instance and optimum schedule to adhere to these assumptions, such that the
resulting schedule is within a factor polynomial in (1 + ε) of the optimum schedule
for the original instance. To not complicate matters unnecessarily, in the following
we allow fractional release dates and processing times.

Lemma 6. With O(1+ε)-loss we can assume that rj , pj ∈ {(1+ε)x | x ∈ N}∪{0},
rj ≥ ε(pj + τ1), and rj ≥ 1 for each job j ∈ J .

Proof. Increasing any value v ∈ R to the smallest power of (1 + ε) not smaller
than v yields a value v′ = (1+ε)x = (1+ε)(1+ε)x−1 ≤ (1+ε)v. Hence, multiplying
all start times of a schedule by (1 + ε) gives a feasible schedule even when rounding
up all nonzero processing times to the next power of (1 + ε). The total completion
time does not increase by more than a factor of (1 + ε).

By shifting the completion times of a schedule with adapted processing times
by a factor of (1 + ε), we obtain increased start times S′j for each job j:

S′j = (1 + ε)Cj − (pj + τ1) = (1 + ε)(Sj + pj + τ1)− (pj + τ1) ≥ ε(pj + τ1).

Hence, by losing not more than a (1 + ε)-factor we may assume that all jobs have
release dates of at least an ε fraction of their running time. Now, we can scale the
instance by some power of (1 + ε), such that the earliest release date is at least one
(since jobs with rj = pj = τ1 = 0 can be ignored).

Finally, multiplying again all start times of a schedule with adapted processing
times and release dates by (1 + ε) yields a feasible schedule even when rounding up
all nonzero release dates to the next power of (1 + ε). ut

We define Rx = (1 + ε)x and consider time intervals Ix = [Rx, Rx+1] of
length εRx.

Lemma 7. Each job runs for at most σ := dlog1+ε
1+ε
ε e intervals, i.e., a job

starting in interval Ix is completed before the end of Ix+σ.

Proof. Consider some job j and assume that j starts in Ix in some schedule. By
Lemma 6 we get

|Ix| = εRx ≥ εrj ≥ ε2(pj + τ1).

Thus, the running time of j is bounded by |Ix|/ε2. The constant upper bound
of 1/ε2 for the number of used intervals can still be improved since the length of
the next σ succeeding intervals with increasing size is sufficient to cover a length

of |Ix|/ε2. Using the fact that
∑n
k=0 z

k = 1−zn+1

1−z we get

σ∑
i=0

|Ix+i| =
σ∑
i=0

(Rx+i+1 −Rx+i) = |Ix|
σ∑
i=0

(1 + ε)i

= |Ix|
1− (1 + ε)σ+1

1− (1 + ε)

≥ |Ix|
1− 1+ε

ε

−ε
= |Ix|

1 + ε− ε
ε2

=
|Ix|
ε2

,

18



which concludes the proof. ut

We use the common technique of time-stretching. We shift each start time (or
completion time) to the next interval while maintaining the same offset to the
beginning of the interval. This way, the schedule remains feasible and the objective
is increased by a factor of at most (1+ε). Intuitively, this process can be interpreted
as stretching the length of each time interval Ix by a factor of (1 + ε), i.e., its length
is increased by ε|Ix|. When applying (multiple) time-stretches we use the following
observation to assess the additional empty space created between jobs:

Lemma 8. Consider two distinct times T1 < T2 with T1 ∈ Ix(1) and T2 ∈ Ix(2).
Applying ` time-stretches yields shifted times T ′1 < T ′2 with

(T ′2 − T ′1) ≥ (T2 − T1) +Ξ[x(1), x(2)], (1)

where Ξ[x(1), x(2)] :=
∑
x(1)≤x<x(2) `ε|Ix|.

Proof. We calculate

(T ′2 − T ′1) = Rx(2)+` + (T2 −Rx(2))− [Rx(1)+` + (T1 −Rx(1))]
= ((1 + ε)` − 1)Rx(2) + T2 − ((1 + ε)` − 1)Rx(1) − T1
≥ (T2 − T1) + (1 + `ε− 1)(Rx(2) −Rx(1))

= (T2 − T1) + `ε
∑

x(1)≤x<x(2)

|Ix|.

ut

We can now apply time-stretches to the start or completion times of all jobs
and use the above observation to quantify the additional space created in the
schedule. Consider two jobs j, k ∈ J with starting times Sj < Sk, and let s(j), s(k)
(resp. c(j), c(k)) denote the intervals in which their start (completion) times fall,
i.e., Sj ∈ Is(j) (and Cj ∈ Ic(j)). E.g., if we apply ` time-stretches to starting
times, we obtain an additional gap of Ξ[s(j), s(k)] between the new starting and
completion times. Table 2 summarizes the resulting gaps depending on whether start
or completion times are stretched and whether j, k travel in the same or opposite
directions.

Table 2: Summary of the increased differences between start and completion times of
jobs j, k ∈ J , Sj < Sk, when stretching start times (denoted by ′) or completion times
(denoted by ′′). We use Lemma 8 together with the fact that j and k did not overlap
before the time-stretch.

time-stretch on same direction opposite direction

start times (1) S′
k ≥ S′

j + pj + Ξ[s(j), s(k)] S′
k ≥ S′

j + pj + τ + Ξ[s(j), s(k)]
⇒ C′

k ≥ C′
j + pk + Ξ[s(j), s(k)] C′

k ≥ C′
j + pk + τ + Ξ[s(j), s(k)]

compl. times (1) C′′
k ≥ C′′

j + pk + Ξ[c(j), c(k)] C′′
k ≥ C′′

j + pk + τ + Ξ[c(j), c(k)]
⇒ S′′

k ≥ S′′
j + pj + Ξ[c(j), c(k)] S′′

k ≥ S′′
j + pj + τ + Ξ[c(j), c(k)]

To analyze the set of jobs released within each interval we partition them as

follows. A job j released at Rx is called small if pj ≤ ε2

4 |Ix| and large otherwise. With

19



this, we partition for each direction d ∈ {r, l} the jobs Jd
x := {j ∈ Jd | rj = Rx}

released at Rx into the subsets Sd
x = {j ∈ Jd

x | j is small} and Ld
x = {j ∈ Jd

x |
j is large}. We will see that the arrangement of jobs of each Sd

x does not influence
the remaining jobs too much such that we can assume a fixed order for each of
these sets. To do so, we say that a subset J ′ ⊆ J of jobs is scheduled in SPT
order (shortest processing time first) if Sj1 ≤ Sj2 for any pair of jobs j1, j2 ∈ J ′
with pj1 < pj2 . Furthermore, we denote the sum of processing times of J ′ as p(J ′)
and the union of small jobs released up to some point Rx with direction d ∈ {r, l}
by Sd

≤x =
⋃
x′≤x S

d
x .

Lemma 9. With O(1 + ε)-loss we can restrict to schedules such that for each x ≥ 0
and each d ∈ {r, l}:
1. the processing of no small job contains a release date,
2. jobs contained in Sd

≤x are scheduled in SPT order within Ix, and

3. p(Sd
x) ≤ |Ix|.

Proof. To prove claim 1 we consider some schedule and apply a time-stretch via
start times. Observe that no further crossing of a processing over a release date
is produced for small jobs. If there was a release date Rs(j)+1 contained in the
processing interval of a small job of Is(j) it is moved behind the processing since we
get by Lemma 8 that Rs(j)+2 − S′j ≥ Rs(j)+1 − Sj + ε|Is(j)| which gives an increase
larger than the processing time of this job.

For a proof of claim 2 consider a schedule S where no processing of a small job
contains a release date and apply one time-stretch via start times. This increases
the objective value by at most a 1 + ε factor. Denote the resulting schedule as S′.
To achieve the demanded properties, apply the following procedure for each direc-
tion d ∈ {r, l}. First, remove all small jobs from schedule S′. Now consider each
interval Ix, x = 0, 1, . . . . Denote by Ax the set of removed jobs from Ix. If jobs
have been removed in Ix there are idle intervals where jobs in direction d can be
scheduled. Denote the subset of Sd

≤x already scheduled in earlier intervals by B<x
and order the subset Cx := Sd

≤x \ B<x of unscheduled jobs in SPT order. Define
for t ∈ Ix by pt(Ax) := p({j ∈ Ax | S′j ≤ t}) the amount of processing time of jobs
started before time t in S′. Now let Cx(t) be the smallest SPT-subset of Cx such
that p(Cx(t)) ≥ pt(Ax) or Cx(t) = Cx. Iterate from the earliest created maximal
empty interval to the latest and fill each interval [t1, t2] in SPT order such that

the jobs of p(Cx(t2)) start before t2. Note that p(Cx(t2)) ≤ pt2(Ax) + ε2

4 |Ix| since
we consider only small jobs. To maintain feasibility we increase the start of the
following jobs from J \ Cx, if necessary. (This decreases eventually the size of the
following empty interval which is no problem). Nevertheless, the start time of no

job from J \ Cx is increased by more than ε2

4 |Ix|. Hence, their completion time is
increased by less than a 1+ε factor and the jobs starting after Rx+1 are not affected.
Note that no processing of the assigned small jobs Bx := Cx(Rx+1) contains Rx+1.

Since we used in each interval an assignment via SPT order we know that at
each point in time the number of already started small jobs has not been decreased.
Therefore, the total completion time of small jobs overall has not been increased.

To prove claim 3 consider for each x = 0, 1, . . . the largest SPT-subset J ′x of Sd
x ,

such that p(J ′x) ≤ |Ix|. By assumptions 2 and 1 we can be sure that all jobs of Sd
x \J ′x

are not scheduled within Ix and thus, we can move their release dates to Rx+1. ut

Once, we have a fixed order to schedule small jobs with the same release date
we are able to glue them to job packs of a certain minimum size. For this purpose
we apply a further time-stretch to join the processing of jobs assigned to the same

20



pack. This increases for each interval Iy the amount of processing per direction
and each earlier interval Ix by at most the size of one job being small at time Rx.
The following lemma yields that the extra space of one interval created by one
time-stretch is sufficient to cover this amount for all earlier Intervals.

Lemma 10. We have
∑
x<y ε

2|Ix| ≤ ε|Iy|.

Proof. To prove the claim we again use that
∑n
k=0 z

k = 1−zn+1

1−z :

ε3
∑
x<y

(1 + ε)x = ε3
1− (1 + ε)y

1− (1 + ε)
= ε2((1 + ε)y − 1) ≤ ε|Iy|.

ut

Lemma 11. With O(1+ε)-loss we can restrict to schedules such that for each x ≥ 0
and each d ∈ {r, l} the jobs of Sd

x in SPT order are joined to unsplittable job packs

with size of at most ε2

4 |Ix| and at least ε2

8 |Ix| each.

Proof. Consider a schedule satisfying at O(1 + ε)-loss the properties of Lemma 9
and apply one time-stretch via start times. We now apply the following procedure
for each direction d ∈ {r, l} and each x = 0, 1, . . . . Recall that the jobs of Sd

x are

scheduled in SPT order. Let T d
x = {j ∈ Sd

x | pj < ε2

8 |Ix|} be the subset of jobs being
too small. Remove the jobs of T d

x from the current schedule and join the jobs of T d
x

successively in SPT order to minimal job packs such that the processing times of

each job pack sum up to at least ε2

8 |Ix|. (The processing time of the last pack is
artificially increased if necessary.) We now reassign complete job packs to the empty
intervals similarly to the procedure in the proof of Lemma 9. Hence, no start time
of T d

x has been increased and the start time of no job in J \ T d
x has been increased

by more than ε2

4 |Ix|.
In total, the start time of no job starting in interval Iy+1 has been increased

by more than 2 ·
∑
x<y

ε2

4 |Ix|+ 2 · ε
2

4 |Iy| ≤ ε|Iy| due to Lemma 10. By Lemma 8
(or Table 2) we can conclude that no job has been delayed to a later interval by
the rearrangement. Note that properties 1 and 3 of Lemma 9 still hold whereas
property 2 (SPT order) remains true only within each Sd

x . ut

Therefore, we can consider each job pack simply as one small job. Nevertheless,
the original jobs must be used for the evaluation of the completion times. Besides
the scheduling restrictions for small jobs we can also bound the amount of large
jobs released at the beginning of each interval.

Lemma 12. With O(1 + ε)-loss we can assume for each x ≥ 0 and each d ∈ {r, l}
that:
1. the number of possible processing times in Ld

x is bounded by 5 log(1+ε)
1
ε , and

2. the number of jobs per processing time in Ld
x is bounded by 4

ε2 .

Proof. Consider some scheduling instance, some d ∈ {r, l} and some x ≥ 0. The

processing time of the jobs in Ld
x are, by definition, at least ε3

4 (1 + ε)x. On the
other hand, by Lemma 6, the processing times are at most 1

ε (1 + ε)x. Let xj be
such that pj = (1 + ε)xj . We get

ε3

4 ≤
(1+ε)xj

(1+ε)x ≤
1
ε

=⇒ log(1+ε)
ε3

4 ≤ xj − x ≤ log(1+ε)
1
ε

21



The difference of these bounds is 4 log(1+ε)
1
ε + log(1+ε) 4 which gives a constant

number of possible integer values for xj and, hence, a constant number of possible
processing times for each job in Ld

x. Finally, since each large job in Ix has a processing

time of at least ε2

4 |Ix|, we can schedule at most 4/ε2 jobs per direction within Ix,
and the remaining jobs need to start after Rx+1. ut

Lemma 13. With O(1 + ε)-loss we can assume, that each job is finished within a
constant number of intervals after its release.

Proof. Consider the set of jobs Jx released at time Rx. By Lemma 6 the running
time of each such job is at most Rx/ε. Therefore, applying Lemmas 9 and 12 we
can bound the time needed to first schedule all jobs of one direction and afterward
all jobs of the other direction:∑

d∈{r,l}

[
p(Sd

x) + p(Ld
x) + τ1

]
≤ 2

[
ε(1 + ε)x

+
4

ε2
· 1

ε
(1 + ε)x · 5 log(1+ε)

1

ε

]
= ε2(1 + ε)x · 2

[
1

ε
+

20

ε5
log(1+ε)

1

ε

]
≤ ε2(1 + ε)x(1 + ε)σ

′−1 = ε|Ix+σ′−1|,

where σ′ is the smallest possible integer such that 2
[
1
ε + 20

ε5 log(1+ε)
1
ε

]
≤ (1+ε)σ

′−1.

Note, that σ′ is constant.
Applying one time-stretch on the start times creates idle time for each interval Ix

somewhere after σ′ intervals that is sufficient to host all unfinished jobs of Jx,
cf. Lemma 8 and Table 2. If no job was running at time Rx+σ′ before the time-
stretch this created idle time is now part of interval Ix+σ′ . Otherwise let j be the
latest of these jobs with start time Sj ∈ Is(j) and completion time Cj ∈ Ic(j) before
the time-stretch. Note that s(j) ≤ x+ σ′ − 1 which induces c(j) ≤ x+ σ′ + σ − 1
due to Lemma 7. By Lemma 8 we can be sure that after the time-stretch there is

idle time of
∑c(j)−1
x=s(j) ε|Ik| before 1. the start of the next job after j and 2. the end

of interval Ixc+1. By definition of σ′, this time is sufficient to first schedule all jobs
of Jx in heading of j and then all remaining. This way, all jobs of Jx are scheduled
before the end of interval Ix+σ′+σ.

Note that this argument assumes that there are no compatibilities. An analog
reasoning concerning only the processing times works if all opposed jobs are com-
patible. ut

We can now limit the interface of our dynamic program by showing Lemma 1 of
Section 4.

Lemma 1. There is a schedule with a sum of completion times within a factor
of (1 + ε) of the optimum and with the following properties:
1. The number of jobs scheduled in each block is bounded by a constant.
2. Every two consecutive blocks respect one of constantly many frontiers.

Proof. By Lemma 11 we may assume that small jobs in Sd
x have processing time at

least ε2|Ix|/8. By Lemma 9, the total processing time of these jobs is at most |Ix|,
and hence the number of jobs in Sd

x is bounded by a constant. The same is true for

22



large jobs, by Lemma 12. Finally, together with Lemma 13, this implies that the
number of jobs running during each interval is bounded by a constant.

For the second property, we apply one time-stretch on the completion times.
Consider now the latest job j of each direction that starts within block Bt and
is completed in interval Ic(j) of the following block. By Lemma 8 (and Table 2)
we know that there is idle time of at least ε|Ic(j) − 2| before the start of job j (or
before the start of the earliest job aligned with j with completion time in Ic(j) and
start time in Bt. Hence, we can decrease the start time of these jobs such that the
values Cj and Sj +pj fall below the next 1

ε2 fraction of Ic(j), i.e., by an amount of at
most ε2|Ic(j)| ≤ ε|Ic(j) − 2|. Hence, the first job starting in Bt+1 (of each direction

in case of compatibilities) can be scheduled at an 1
ε2 fraction of Ic(j) without any

further loss. Thus, we only need to consider σ
ε2 possible frontier values per direction,

or a total of
(
σ
ε2

)2
possible frontiers.

ut

23



C Proofs of Section 5 – Hardness of custom compatibilities

In this section we give a detailed hardness proof for bidirectional scheduling on
a single segment where jobs can be compatible. Our proof holds even for unit
processing and transit times. We first consider the makespan objective and extend
the proof in a second step to waiting time and total completion time.

C.1 NP-Hardness of Makespan Minimization

Theorem 7. Minimizing the makespan for m = 1 with an arbitrary compatibility
graph G1 is NP-hard even if pj = τ1 = 1 for each j ∈ J .

In the following, we explain the construction of a bidirectional scheduling instance
for a given (≤ 3, 3)-Sat instance with variable set X = {xi | i = 0, . . . , |X| − 1} and
clause set C = {ck | k = 0, . . . , |C|−1}. The constructed instance yields a demanded
makespan Cmax if and only if the given (≤ 3, 3)-Sat formula is satisfiable. For the
construction, we partition the time horizon into four parts P1, . . . , P4 with start
time A1 = 0, A2 = 6|X|, A3 = 10|X|, and A4 = 10|X|+ 2|C|. There is a (virtual)
last part starting at time A5 = 12|X|+ |C|. The demanded makespan Cmax = A5 +1
will enforce that all jobs start before the end of the fourth part.

The rough idea is as follows: In the first four parts we release a tight frame
of blocking jobs B and dummy jobs H that have to start running immediately at
their release date in any schedule that achieves Cmax. We use these jobs to create
gaps for variable jobs that represent the variable assignments. By defining the
compatibilities for the blocking jobs we are able to control which of these variable
jobs can be scheduled into each gap. In the first part of our construction, we release
all variable jobs, which come in two types : one type representing a true assignment
to the corresponding variable and the other type representing a false assignment.
Our construction will enforce the following properties in each of its parts:

Lemma 14. In every feasible schedule with makespan Cmax, all jobs released be-
fore A3 are scheduled in parts P1 and P2, except for two rightbound variable jobs of
same type for each variable.

Lemma 15. In every feasible schedule with makespan Cmax, the only jobs released
before A3 and scheduled in P3 are rightbound variable jobs each corresponding to a
variable assignment satisfying a different clause.

Lemma 16. In every feasible schedule with makespan Cmax, the only jobs released
before A4 and scheduled in P4 are rightbound variable jobs, and there are not more
than 2|X| − |C| of them.

In the following we explicitly define the released jobs of each part achieving the
above properties. Each part is accompanied by a figure illustrating when jobs are
released, the respective compatibility graph and an example of a schedule. In all
figures, time is directed downwards, and all rightbound jobs are depicted to the
left and all leftbound jobs to the right of the segment. Since compatible jobs can
run concurrently, the schedules of the leftbound and the rightbound jobs are drawn
separately.

It is convenient to prove Lemmas 6 to 8 in reverse order. To this end, we start
by specifying the jobs released in P4.

24



Jobs released in P4. In the fourth part, we release a set of 2|X| − |C| leftbound
blocking jobs B4 = {bi | i = 0, . . . , 2|X| − |C| − 1}. Each blocking job bi is released
at time A4 + i. The purpose of a blocking job is to leaving space for a leftover
rightbound variable job that has not been scheduled until the beginning of this part.
Each blocking jobs bi ∈ B4 is only compatible with all rightbound variable jobs.

bi

bi+1

bi+2

.

.

.

.

.

.

.

.

.

bi

bi+1

bi+2

Fig. 9: Part P4 with blocking jobs reserving space for all remaining rightbound variable
jobs.

We are now in position to prove Lemma 16, i.e., in a schedule with makespan
Cmax the only jobs released before A4 that can be scheduled in P4 are up to
2|X| − |C| rightbound variable jobs.

Proof (Proof of Lemma 16). First, observe that with the required makespan
of A5 + 1 = A4 + 2|X| − |C| + 1 each blocking job of B4 must be scheduled
directly at its release date. Consequently, there is no room to delay the start of
any leftbound job released before P4 to this part. Due to the compatibilities, the
rightbound blocking and dummy jobs released before P4 are also forced to run
before the start of P4. Therefore, there are exactly 2|X| − |C| open slots within P4

reserved for rightbound variable jobs. ut

We proceed to explain the jobs released in the third part of our construction.

Jobs released in P3. The third part (Figure 10) is responsible for the as-
signment of satisfying literals to each clause. During that part, we release a
set of blocking jobs B3 = {bk | k = 0, . . . , |C| − 1} which contains one left-
bound blocking job bk for each clause ck. Each blocking job Bk is released at
time A3 + 2k and is compatible with each rightbound variable job that rep-
resents a variable assignment that satisfying the corresponding clause ck. The
gaps between the release times of the blocking jobs are filled with a set dummy
jobs H3 = {hrk | k = 0, . . . , |C| − 1} ∪ {hlk | k = 0, . . . , |C| − 1} containing one
rightbound job hrk and one leftbound job hlk with release date A3 + 2k + 1 each.
Each leftbound dummy job hlk is compatible with all rightbound variable jobs,
furthermore each rightbound dummy job hrk is compatible with the three leftbound
jobs released during the time interval [rhr

k
− 1, rhr

k
+ 1].

We are now in position to prove Lemma 15, i.e., in a schedule with makespan
Cmax the only jobs released before A3 that can be scheduled in P3 are one rightbound
variable job for each clause such that the variable assignment satisfies the clause.

Proof (Proof of Lemma 15). By Lemma 16 all jobs released within P3 must start
before the end of P3. Hence, each leftbound dummy and blocking job is forced to

25



bk

bk+1

hr
i

hr
i+1

hl
i

hl
i+1

ck

ck+1

bk

bk+1

tra,∗
trb,∗
f r
c,∗

f r
d,∗
tre,∗
f r
f,∗

Fig. 10: Part P3 for ck = (xa ∨ xb ∨ x̄c) and ck+1 = (x̄d ∨ xe ∨ x̄f ). Note that each variable
job can be adjacent with more than one clause job (although this does not occur in the
example).

start at its release date. Therefore, due to the compatibilities, each rightbound
dummy job must be scheduled directly when released. The only remaining |C| free
slots can be filled with rightbound variable jobs – exactly one free slot per clause ck
reserved for a variable job representing an assignment that satisfies ck. ut

We proceed to explain the jobs released in parts P1 and P2.

Jobs released in P1. The first two parts are responsible for obtaining a correct
assignment of the variables. In the first part, we release different types of jobs
for each variable xi, i = 0, . . . , |X| − 1, cf. Figure 11 with the following. For each
variable xi, i = 0, . . . , |X| − 1, we release

– two rightbound true variable jobs tri,1, tri,2 at times 6i and 6i+ 1, respectively,
– two rightbound false variable jobs f ri,1, f ri,2 at times 6i+3 and 6i+4, respectively,
– one leftbound true variable job tli at time 6i+ 4,
– one leftbound false variable job f li at time 6i+ 1,
– two leftbound indefinite variable jobs qti , q

f
i at times 6i+1 and 6i+4, respectively.

– two leftbound blocking jobs bti, b
f
i at times 6i and 6i+ 3, respectively.

– two leftbound dummy jobs hlti , hlfi at times 6i+ 2 and 6i+ 5, respectively.
– two rightbound dummy jobs hrti , hrfi at times 6i+ 2 and 6i+ 5, respectively.

In the following, we write T r = {tri,1, tri,2 | xi ∈ X} for the set of rightbound true
variable jobs, F r = {f ri,1, f ri,2 | xi ∈ X} for the set of rightbound false variable jobs

and Q = {qti , qfi | xi ∈ X} for the set of indefinite jobs.
The compatibility graph G1 is defined such that

– each blocking job bti is compatible with the corresponding true variable jobs tri,1
and tri,2,

– each blocking job bfi is compatible with with the corresponding false variable
jobs f ri,1 and f ri,2,

– each indefinite job qti is compatible with the corresponding rightbound true
variable jobs tri,1 and tri,2

– each indefinite job qfi is compatible with the corresponding rightbound false
variable jobs f ri,1 and f ri,2.

– each dummy job h is compatible with the opposed jobs released in [rh−1, rh+1],
– none of the remaining pairs of jobs are compatible.

26



tri,1

tri,2

hrt
i

f r
i,1

f r
i,2

hrf
i

bti

bfi

hlt
i

hlf
i

qti f l
i

qfi tli

tri,1

tri,2

f r
i,1

f r
i,2

hrt
i

hrf
i

bti

bfi

qti
f l
i

qfi
tli

hlt
i

hlf
i

Fig. 11: Released jobs per variable xi in P1, the corresponding compatibilities given by G1

and a scheduled example for a true variable assignment.

Jobs released in P2. In the second part (Figure 12), there is room for exactly
one indefinite job and one leftbound variable job per variable. This is realized by
a set of rightbound blocking jobs B2 = {bi,1, bi,2 | xi ∈ X} where each blocking
job bi,1 is released at time A2 + 4i and is compatible with the corresponding two

indefinite jobs qti and qfi . Each blocking job bi,2 is released at time A2 + 4i+ 2 and

is compatible with the corresponding two leftbound variable jobs f li and tli. The
gaps between two subsequent released blocking jobs are closed in both directions
by dummy jobs H2 = {hri,1, hli,1 | xi ∈ X} ∪ {hri,2, hli,2 | xi ∈ X} released at times
A2 + 4i + 1 and A2 + 4i + 3, respectively. Each dummy job is compatible with
all jobs of Q,T l, F l, or B2 and the corresponding opposed dummy job released
concurrently.

We are now in position to prove Lemma 14.

Proof (Proof of Lemma 14). By Lemmas 15 and 16, each rightbound dummy and
blocking job of H2 and B2 must be scheduled before the end of P2 and hence,
directly at its release. By the given compatibilities this is also true for the leftbound
dummy jobs of H2. Therefore, there are exactly two open slots per variable xi,
one reserved for the two corresponding indefinite jobs qti , q

f and one for the two
corresponding leftbound variable jobs f li , t

l
i. Since no further space is left, for both

pairs exactly one can be scheduled within P2. The remaining one must be completed
already by the end of P1.

Also, for the first part, we can conclude that no blocking and no dummy job
released in P1 can start after the end of P1. Consider now one variable xi and
assume that no job corresponding to xi can start within part P1 after 6i + 5.
This assumption holds obviously for xn. Then, hrfi and hlfi , the latest released jobs
corresponding to xi, must both start at their release.

If the leftbound job tli is scheduled within part P1 it must be scheduled at its
release and hence f ri,1 and f ri,2 must be postponed to the next parts. In this case,

also the second blocking job bfi as well as the first two dummy jobs hrti and hlti are
forced to start at their release, consequently also bti. In this case it is not possible
anymore to schedule qfi within part P1. For this reason, the counter part qti must be
scheduled at its release time and the leftbound f li must be postponed. With this,
there is exactly one free slot for tri,2 and one for tri,1.

If, on the other hand, the leftbound job tli is scheduled after part P1, we have
to schedule f li within part P1. Due to the conflicts with hrfi , the start time of f li
and the blocking and dummy jobs in between must in particular be scheduled at

27



bi,1

bi,2

hr
i,1

hr
i,2

hl
i,1

hl
i,2

xi

xi+1

bi,1

bi,2

hr
i,1 hl

i,1

qti

qfi

tli

f l
i

Fig. 12: Part P2 creates a structure of blocking and dummy jobs with respective compati-
bilities that create space for exactly one indefinite job per variable xi.

their release. For that reason qti must be postponed and qfi must be scheduled at
its release. Hence, also the rightbound true jobs tri and tri must be postponed and
there are exactly two slots for the two false jobs.

In both cases, the scheduled leftbound jobs ensure that no earlier released
variable job can start after 6(i− 1) + 5. Hence, it can be concluded by induction
that, for each variable, either all corresponding false jobs or all corresponding true
jobs must be scheduled after part P1. And since, by Lemmas 15 and 16, at least 2n
rightbound variable jobs must be scheduled within P1 the free spots ensure that
exactly the two counter parts are scheduled within P1. ut

We can conclude the following claim and hence, Theorem 7.
Claim. There is a satisfying assignment for the given (≤3, 3)− Sat instance if

and only if there is a feasible schedule for the constructed scheduling instance with
makespan Cmax = A5 + 1.

Proof (Proof of Theorem 7). If there is a schedule with makespan Cmax we can
apply Lemmas 14 to 16. Within the resulting schedule we can therefore be sure
that |C| rightbound variable jobs are scheduled within the clause part. Since by
Lemma 14 the assignment of each variable is well defined we get by Lemma 15 a
satisfying truth assignment for the clauses.

If on the other hand a satisfying truth assignment is given, the described schedule
with demanded makespan can be created in straight-forward manner, by postponing
the assignment jobs corresponding to the truth assignment and scheduling all other
jobs within the part they are released in (or in part P2 in the case of leftbound
variable jobs or indefinite jobs). ut

C.2 NP-Hardness of Total Completion Time Minimization

Theorem 3. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is NP-hard even if pj = τ1 = 1 for each j ∈ J .

We give an analogous reduction as for Theorem 7. Note, that solutions optimal
for the total completion time and those optimal for the total waiting time are
equivalent. Hence, it is sufficient to prove the hardness for the latter. The goal is to
enforce the same structure as for makespan minimization when minimizing the total
waiting time. To do so, we start by calculating an upper bound of the resulting
waiting time.

We can trivially bound the total waiting time of a schedule that achieves a
makespan of Cmax by W = |J | ·Cmax = |J | · (A5 +1), where J is the set of all jobs in

28



our construction. With this polynomial bound we can extend the construction of a
scheduling instance for a given (≤3, 3)-Sat instance by part P5 with W + 1 further
leftbound blocking jobs B5 = {bi | i = 0, . . . ,W − 1} with release date A5 + i+ 1
for each b5i ∈ B5 that are not compatible to any of the previous jobs.

Claim. There is a satisfying truth assignment for the given (≤3, 3)-Sat instance
if and only if there is a feasible schedule for the constructed scheduling instance
with total waiting time of at most W .

Proof (Proof of Theorem 3). Assume first that there is a satisfying assignment for
the (≤3, 3)-Sat instance. In this case, there is a schedule where no job released in
the first four parts starts processing after A5 and hence the resulting total waiting
time does not exceed W .

Assume on the other hand, that there is a solution for the constructed scheduling
instance whose objective does not exceed W . For such a solution, either all jobs
released in the first four parts start before A5 or their is at least one starting later.
In the first case, we get, by Lemmas 16 to 14, a schedule together with a satisfying
truth assignment with waiting time bounded by W .

In the second case each postponed job j with starting time S′j increases the
already existing waiting time by at least an amount of (S′j−A5)+W+1−(S′j−A5) =
W + 1. Hence, the first case applies. ut

C.3 APX-Hardness of Makespan Minimization

In this section, we show the APX-hardness of bidirectional scheduling. As for the
NP-hardness proof, it is convenient to first prove the APX-hardness for minimizing
the makespan before turning to the minimization of the total completion time.

Theorem 8. Minimizing the makespan for m = 1 with an arbitrary compatibility
graph G1 is APX-hard even if pj = τ1 = 1 for each j ∈ J .

Proof. We reduce from a specific variant of Max-3-Sat which is NP-hard to
approximate to within a factor of 1016/1015, see Berman et al. [3]. An instance of
Symm-4-Occ-Max-3-Sat is given by a Boolean formula with a set C of clauses
of size three over a set of variables X, where both the positive and the negative
literal of each variable xi ∈ X appears in exactly two clauses. Berman et al. [3]
construct a family of instances of Symm-4-Occ-Max-3-Sat with 1016n clauses,
where n ∈ N. They show that for any δ ∈ (0, 1/2), it is NP-hard to distinguish
between the “bad” instances where at most (1015 + δ)n clauses can be satisfied and
the “good” instances where at least (1016− δ)n instances can be satisfied.

Let φ be a formula of the above family. Based on φ, we use the same construction
as in Theorem 7 with one small adaption: In the first part, for each variable xi,
i = 0, . . . , |X| − 1, we release additionally two virtual jobs vi,1 and vi,2 at times
6i and 6i+ 1, respectively. Both jobs are compatible with all leftbound blocking,
dummy and variable jobs of the same variable. We claim that for this bidirectional
scheduling instance the optimal makespan is 12|X|+ |C|+ 1 + c̃ if and only if the
minimum number of unsatisfied clauses of φ is c̃. Assuming the correctness of the
claim, we derive that for a good instance with 1016n clauses, the makespan is at
most 12|X|+ 1016n+ 1 + δn. Using the identity |X| = 3|C|/4 = 3 · 1016n/4, we
can bound the makespan from above by (10160 + δ)n+ 1. For bad instances, on
the other hand, the makespan is at least (10161− δ)n, i.e., the optimal makespan
cannot be approximated by a factor of 10161/10160 ≈ 1.000098.

It is left to prove the correctness of the claim. It is easy to see that the optimal
makespan is bounded from above by 12|X| + |C| + 1 + c̃ by a small adaption of

29



the arguments of the proof of Theorem 7. To see this, fix a variable assignment
satisfying all but c̃ clauses. In parts one and two (where the variable assignments
are fixed) we schedule all jobs as in the proof of Theorem 7 with respect to the
variable assignment. Additionally, the leftbound variable jobs not scheduled in the
first part, leave a gap in the schedule that is a perfect fit for the additional virtual
jobs, see also the right illustration in Figure 11. In the third part, we schedule one
satisfying variable for each clause that is satisfied. In the forth part, we schedule
any 2|X| − |C| variable jobs left over from previous parts. By construction, at the
end of the forth part, we are left with c̃ variable jobs (that could not be matched to
any clause job in the third part). Scheduling them one after another, we obtain the
claimed makespan of 12|X|+ |C|+ 1 + c̃.

To see that 12|X|+ |C|+ 1 + c̃ is lower bound on the optimal makespan, we
argue using the concept of matched jobs. First, note that there is always an optimal
schedule in which all jobs are processed at an integral point in time. Otherwise, we
could move the first job scheduled at a non-integral point in time to the previous
integral point in time without violating any constraints. Iterating this process, we
obtain a schedule in which all jobs are processed at integral times, as claimed. Given
such an integral schedule, we call a job processed at time t matched, if it is leftbound
and there is another rightbound job processed at time t, or vice versa. Otherwise
the job is called unmatched.

For the following arguments, fix an integral schedule. We proceed to argue that
there are at least c̃ unmatched jobs that are mutually incompatible.

First consider the (clause) blocking jobs released in part three. For k, l ∈ {0, 1, 2},
let Xk,l be the set of variables xi such that k rightbound true variable jobs tri,1, tri,2
are matched to a (clause) blocking job and l rightbound false variable jobs f ri,1, f ri,2
are matched to a (clause) blocking job. Intuitively, the sets X1,1, X2,1, X1,2, X2,2

contain the variables that are not set consistently according to a well-defined truth
assignment. Using that at most |C| − c̃ clauses of φ can be satisfied, we derive that
at least

c̃− |X1,1| − |X2,1| − |X1,2| − 2|X2,2| (2)

(clause) blocking jobs (or rightbound dummy jobs) are unmatched.
For any variable xi ∈ X2,2, the leftbound blocking jobs bti, b

f
i, dummy jobs hlti ,

hlfi , indefinite jobs qti , q
f
i , and variable jobs f li , t

r
i are matched by at most the two

rightbound dummy jobs hrti , hrti and the two virtual jobs vi,1, vi,2 released in part
1 as well as the two blocking jobs bi,1, bi,2 released in part 2, so that in the end,
at least two rightbound jobs are left unmatched. Equivalently, for any variable
xi ∈ X1,2 ∪X2,1 at least one of the rightbound jobs above is left unmatched.

For any variable xi ∈ X1,1, consider the leftbound variable jobs f li and tli as
well as the leftbound indefinite jobs qti and qfi . At most one indefinite job and one
variable job most can be matched with the blocking jobs bi,1 and bi,2 released in

part 2. The other two jobs, say the true variable job tli and the indefinite job qti , are
only compatible with the rightbound variable jobs, the virtual jobs and the dummy
jobs jobs, leaving at least one job unmatched. Using (2), we may conclude that the
total number of unmatched jobs is at least c̃.

As argued above, the unmatched jobs are either (clause) blocking jobs released
in part three or remainders of the different types of leftbound jobs associated
with variables and released in the first part. As none of them are compatible, the
makespan is at least 12|X|+ |C|+ 1 + c̃, as claimed. ut

We are now ready to prove the APX-hardness of the minimization of the total
completion time.

30



Theorem 4. The bidirectional scheduling problem on a single segment and with
an arbitrary compatibility graph is APX-hard even if pj = τ1 = 1 for each j ∈ J .

Proof (Sketch). Let φ be a formula with 1016n clauses for some n ∈ N with c̃
unsatisfiable clauses, as in Berman et al. [3] (cf. proof of Theorem 8). We use a
similar idea as in the proof of Theorem 3, i.e., we use the same construction as in
the reduction for the makespan but add an additional set of M leftbound blocking
jobs B5 = {bi|i = 0, . . . ,M−1} with release date M = 12|X|+ |C|+1 = 10160n+1.
With similar arguments as before, we can show that there is an optimum schedule
in which exactly c̃ (clause) jobs are unmatched before time M , with only exactly
c̃ incompatible variable jobs remaining unscheduled after time 2M . The sum of
completion times of this schedule is an2 +bnc̃+ c̃(c̃+1)/2+O(n) for some constants
a, b ∈ N.

Now consider a “good” instance with at most δn unsatisfiable clauses. The
optimum schedule has a sum of completion times of at most

an2 + bδn2 + n2δ2/2 +O(n).

On the other hand, a “bad” instance with at least (1 − δ)n unsatisfiable clauses
leads to a sum of completion times of at least

an2 + b(1− δ)n2 + n2(1− δ)2/2 +O(n).

Since, for n→∞, good and bad instance cannot be distinguished in polynomial
time unless P = NP (cf. [3]), no algorithm can approximate the sum of completion
times by a factor better than

a+ b(1− δ) + (1− δ)2

a+ bδ + δ2
→
δ→0

a+ b+ 1

a
,

which is constant. ut

31


	Scheduling Bidirectional Traffic on a Path
	Introduction
	Preliminaries
	Hardness of bidirectional scheduling
	A PTAS for bidirectional scheduling
	Hardness of custom compatibilities
	Dynamic programs for restricted compatibilities
	Proofs of Section 3 – Hardness of bidirectional scheduling
	Proofs of Section 4 – A PTAS for bidirectional scheduling
	Proofs of Section 5 – Hardness of custom compatibilities
	NP-Hardness of Makespan Minimization
	NP-Hardness of Total Completion Time Minimization
	APX-Hardness of Makespan Minimization



