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Abstract. We study the problem of packing a knapsack without knowing its capacity. Whenever3
we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include4
it in the packing. We show that there is always a policy that packs a value within factor 2 of the5
optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a6
factor equal to the golden ratio ϕ ≈ 1.618. Both factors are shown to be best possible.7

In fact, we obtain the above factors using packing policies that are universal in the sense that8
they fix a particular order of the items in the beginning and try to pack the items in this order,9
without changing the order later on. We give efficient algorithms computing these policies. On the10
other hand, we show that, for any α > 1, the problem of deciding whether a given universal policy11
achieves a factor of α is coNP-complete. If α is part of the input, the same problem is shown to be12
coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for13
given α, whether a set of items admits a universal policy with factor α, even if all items have unit14
densities.15
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1. Introduction. In the standard knapsack problem we are given a set of items,18

each associated with a size and a value, and a capacity of the knapsack. The goal19

is to find a subset of the items with maximum value whose size does not exceed the20

capacity. In this paper, we study a variant of the knapsack problem where the capacity21

of the knapsack is not given. Whenever we try to pack an item, we observe whether22

or not it fits the knapsack. If it does, the item is packed into the knapsack and cannot23

be removed later. If it does not fit, we discard it and continue packing with the24

remaining items. We call the problem knapsack problem with unknown capacity. The25

central question of this paper is how much we lose by not knowing the capacity, in26

the worst case.27

A solution to the knapsack problem with unknown capacity is a policy that gov-28

erns the order in which we attempt to pack the items, depending only on the observa-29

tion which of the previously attempted items did fit into the knapsack and which did30

not. In other words, a policy is a binary decision tree with the item that is tried first31

at its root. The two children of the root are the items that are tried next, which of32

the two depends on whether or not the first item fits the knapsack, and so on. We aim33

for a solution that is good for every possible capacity, compared to the best solution34

of the standard knapsack problem for this capacity. Formally, a policy has robustness35

factor α if, for any capacity, packing according to the policy results in a value that is36
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at least a 1/α-fraction of the optimum value for this capacity.37

Direct applications of the knapsack problem with unknown capacity include set-38

tings where the capacity remains uncertain until it is (nearly) exhausted. For example,39

this may be the case when mining natural ressources and serving orders for different40

quantities before the ressource is depleted, or when cutting steel plates of given sizes41

from steel coils of varying lengths. The capacity-oblivious variant of the knapsack42

problem also naturally arises whenever items are prioritized by a different entity or43

at a different time than the actual packing of the knapsack. This is for instance the44

case in settings where cargo is loaded onto a vessel with varying remaining capacity,45

in case we cannot expect the loading personnel to reoptimize on the fly and, instead,46

have to provide a policy before knowing the capacity. Recently, parts of our results47

where applied to a different model related to the optimization of energy consumption48

in mobile telecommunication [12].49

1.1. Our results. We show that the knapsack problem with unknown capacity50

always admits a robustness factor of 2. In fact, this robustness factor can be achieved51

with a policy that packs the items according to a fixed order, irrespective of the52

observations made while packing. Such a policy is called universal. We provide an53

algorithm that computes a 2-robust, universal policy in time Θ(n log n) for a given set54

of n items. We complement this result by showing that no robustness factor better55

than 2 can be achieved in general, even by policies that are not universal. In other56

words, the cost of not knowing the capacity is exactly 2.57

We give a different efficient algorithm for the case that all items have unit density,58

i.e., size and value of each item coincide. This algorithm produces a universal policy59

with a robustness factor of at most the golden ratio ϕ ≈ 1.618. Again, we show that60

no better robustness factor can be achieved in general, even by policies that are not61

universal.62

While good universal policies can be found efficiently, it is intractable to compute63

the robustness factor of a given universal policy and it is intractable to compute the64

best robustness factor an instance admits. Specifically, we show that, for any fixed65

α ∈ (1,∞), it is coNP-complete to decide whether a given universal policy is α-robust.66

For unit densities we establish a slightly weaker hardness result by showing that it is67

coNP-complete to decide whether a given universal policy achieves a given robustness68

factor α. Finally, we show that, for given α, it is coNP-hard to decide whether an69

instance of the knapsack problem with unknown capacity admits a universal policy70

with robustness factor α, even when all items have unit density.71

1.2. Related work. The knapsack problem has been studied for various models72

of imperfect information. In the majority of the studied models, the lack of full73

information concerns the items and their arrival but not the knapsack capacity.74

Marchetti-Spaccamela and Vercellis [31] introduced the online knapsack problem75

in which the knapsack capacity is known and items arrive online one by one. When an76

item is presented, it must be accepted or rejected before the next item arrives. In this77

seminal paper it is shown that the problem in its full generality does not admit online78

algorithms with a guaranteed profit within a constant of the offline optimum solution.79

Various problem variants have been studied since then and non-trivial bounds have80

been derived. Examples include online knapsack with resource augmentation (Iwama81

and Zhang [24]), the removable online knapsack problem (Iwama and Taketomi [23],82

Han et al. [20, 19, 18]), the online partially fractional knapsack problem ([36]), items83

arriving in a random order (Babaioff et al. [1]), the stochastic online knapsack prob-84

lem (Marchetti-Spaccamela and Vercellis [31], Kleywegt and Papastavrou [27, 28], van85
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Slyke and Young [40]) and online knapsack with advice (Böckenhauer et al. [5]).86

In the stochastic knapsack problem, the set of items is known but sizes and values87

of the items are random variables. It is known that a policy maximizing the expected88

value is PSPACE-hard to compute, see Dean et al. [10]. The authors assume that89

the packing stops when the first item does not fit the knapsack, and give a universal90

policy that approximates the value obtained by an optimal, not necessarily universal,91

policy by a factor of 2. Bhalgat et al. [4] complement this result by giving a universal92

PTAS for the case that the knapsack capacity may be violated by a factor of 1 + ε.93

In robust knapsack problems, a set of possible scenarios for the sizes and values94

of the items is given. Yu [43], Bertsimas and Sim [3], Goetzmann et al. [17], and95

Monaci and Pferschy [35] study the problem of maximizing the worst-case value of96

a knapsack under various models. Büsing et al. [7] and Bouman et al. [6] study the97

problem from a computational point of view. Both allow for an adjustment of the98

solution after the realization of the scenario. Similar to our model, Bouman et al. [6]99

consider uncertainty in the capacity.100

The notion of a robustness factor that we adopt in this work is due to Hassin101

and Rubinstein [22] and is defined as the worst-case ratio of solution and optimum,102

over all realizations. Kakimura et al. [26] analyze the complexity of deciding whether103

an α-robust solution exists for a knapsack instance with an unknown bound on the104

number of items that can be packed. Recently, Kobayashi and Takazawa [29] studied105

randomized strategies for this setting.106

Megow and Mestre [33] study a variant of the knapsack problem with unknown107

capacity closely related to ours. In contrast to our model, they assume that the108

packing stops once the first item does not fit the remaining capacity. In this model,109

no algorithm can guarantee to achieve a constant robustness factor, and, thus, the110

authors resort to instance-sensitive performance guarantees. They provide a PTAS111

that constructs a universal policy with robustness factor arbitrarily close to the best112

possible robustness factor for every particular instance. Diodati et al. [12] propose113

to add to this model the mild assumption that no item size exceeds the unknown114

knapsack capacity. Interestingly, they achieve results very similar to ours in the115

model that allows to discard non-fitting items. While our lower bounds (given in116

our extended abstract [13]) apply to their model, Diodati et al. [12] also give a best-117

possible 2-robust algorithm.118

The incremental knapsack problem is another related problem that has been119

studied by Hartline and Sharp [21]. The key difference to our model is that the120

different possible knapsack capacities are known in advance and that their number121

is constant. The authors give an FPTAS for approximating the optimal robustness122

factor for the special case of proportional values. Thielen et al. [41] investigate an123

online variant of the incremental knapsack problem in which in each time period new124

items arrive online and the knapsack capacity increases incrementally. They present125

deterministic and randomized upper and lower bounds on the competitive ratio as a126

function of the time horizon.127

The concept of universal solutions is used in various other contexts (explicitly or128

implicitly), such as hashing (Carter and Wegman [8]), caching (Frigo et al. [15], Ben-129

der et al. [2]), routing (Valiant and Brebner [42], Räcke [38]), TSP (Papadimitriou [37],130

Deineko et al. [11], Jia et al. [25]), Steiner tree and set cover (Jia et al. [25]), match-131

ing (Hassin and Rubinstein [22], Matuschke et al. [32]), and scheduling (Epstein et132

al. [14], Megow and Mestre [33]). In all of these works, the general idea is that specific133

parameters of a problem instance are unknown, e.g., the cache size or the set of ver-134

tices to visit in a TSP tour, and the goal is to find a universal solution that performs135
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well for all realizations of the hidden parameters.136

Universal policies for the knapsack problem with unknown capacity play a role in137

the design of public key cryptosystems. One of the first such systems – the Merkle-138

Hellman knapsack cryptosystem [34] – is based on particular instances that allow139

for a 1-robust universal policy for this knapsack variant. The basic version of this140

cryptosystem can be attacked efficiently, e.g., by the famous attack of Shamir [39].141

This attack uses the fact that the underlying knapsack instance has exponentially in-142

creasing item sizes. A better understanding of universal policies may help to develop143

knapsack-based cryptosystems that avoid the weaknesses of Merkle and Hellman’s.144

2. Preliminaries. An instance of the knapsack problem with unknown capacity145

is given by a set of n items I, where each item i ∈ I has a non-negative value146

v(i) ∈ Q≥0 and a strictly positive size l(i) ∈ Q>0. For a subset S ⊆ I of items, we147

write v(S) =
∑
i∈S v(i) and l(S) =

∑
i∈S l(i) to denote its total value and total size,148

respectively, of the items in S. A solution for instance I is a policy P that governs149

the order in which the items are considered for packing into the knapsack. The policy150

must be independent of the capacity of the knapsack, but the choice which item to151

try next may depend on the observations which items did and which items did not152

fit the knapsack so far. Formally, a solution policy is a binary decision tree that153

contains every item exactly once along each path from the root to a leaf. The packing154

P(C) ⊆ I of P for a fixed capacity C is obtained as follows: We start with an empty155

knapsack X = ∅ and check whether the item r at the root of P fits the knapsack,156

i.e., whether l(r) + l(X) ≤ C. If the item fits, we add r to X and continue packing157

recursively with the left subtree of r. Otherwise, we discard r and continue packing158

recursively with the right subtree of r. Once we reached a leaf, we set P(C) = X.159

A universal policy Π for instance I is a policy that does not depend on observa-160

tions made while packing, i.e., the decision tree for a universal policy has a fixed per-161

mutation of the items along every path from the root to a leaf. We identify a universal162

policy with this fixed permutation and write Π = (Π1,Π2, . . . ,Πn). Analogously to163

general policies, the packing Π(C) ⊆ I of a universal policy Π for capacity C ≤ l(I) is164

obtained by considering the items in the order given by the permutation Π and adding165

every item if it does not exceed the remaining capacity. We measure the quality of166

a policy for the knapsack problem with unknown capacity by comparing its packing167

with the optimal packing for each capacity. More precisely, a policy P for instance I168

is called α-robust for capacity C, α ≥ 1, if it holds that v(Opt(I, C)) ≤ α · v(P(C)),169

where Opt(I, C) denotes an optimal packing for capacity C. We say P is α-robust170

if it is α-robust for all capacities. In this case, we call α the robustness factor of171

policy P.172

3. Solving the Knapsack Problem with Unknown Capacity. In this sec-173

tion, we describe an efficient algorithm that constructs a universal policy for a given174

instance of the knapsack problem with unknown capacity. The solution produced by175

our algorithm is guaranteed to pack at least half the value of the optimal solution for176

any capacity C. We show that this is the best possible robustness factor.177

The analysis of our algorithm relies on the classical modified greedy algorithm178

(cf. [30]). We compare the packing of our policy, for each capacity, to the packing179

obtained by the modified greedy algorithm instead of the actual optimum. As the180

modified greedy is a 2-approximation, to show that our policy is 2-robust it is sufficient181

to show that its packing is never worse than the one obtained by the modified greedy182

algorithm. We briefly review the modified greedy algorithm.183

Let d(i) = v(i)/l(i) denote the density of item i. The modified greedy algorithm184
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Algorithm 1 MGreedy(I, C)

Input: set of items I, capacity C
Output: subset S ⊆ I such that l(S) ≤ C and v(S) ≥ v(Opt(I, C))/2

1: D ← 〈items in {i ∈ I | l(i) ≤ C} sorted non-increasingle by density d〉
2: k ← max{j | l({D1, . . . , Dj}) ≤ C}
3: P ← (D1, . . . , Dk), s← Dk+1

4: if v(P ) ≥ v(s) then
5: return P
6: else
7: return {s}
8: end if

(MGreedy) for a set of items I and known knapsack capacity C first discards all185

items that are larger than C from I. The remaining items are sorted in non-increasing186

order of their densities, breaking ties arbitrarily. The algorithm then either takes the187

longest prefix P of the resulting sequence that still fits into capacity C, or the first188

item s that does not fit anymore, depending on which of the two has a greater value,189

see Algorithm 1 for a formal description.190

We evaluate the quality of our universal policy by comparing it for every capacity191

with the solution of MGreedy. This analysis suffices because of the following well-192

known property of the modified greedy algorithm.193

Theorem 1 (cf. [30]). For every instance (I, C) of the standard knapsack prob-194

lem with known capacity, v(Opt(I, C)) ≤ 2 · v(MGreedy(I, C)).195

For our analysis, it is helpful to fix the tie-breaking rule under which MGreedy196

initially sorts the items. To this end, we assume that there is a bijection t : I →197

{1, 2, . . . , n}, that maps every item i ∈ I to a tie-breaking index t(i), and that the198

modified greedy algorithm initially sorts the items decreasingly with respect to the199

tuple d̃(·) = (d(·), t(·)), i.e., the items are sorted non-increasingly by density and200

whenever two items have the same density, they are sorted by decreasing tie-breaking201

index. In the following, for two items i, j, we write d̃(i) � d̃(j) if and only if d(i) >202

d(j), or d(i) = d(j) and t(i) > t(j), and say that i has higher density than j.203

We are now ready to describe our algorithm Universal (Algorithm 2) that pro-204

duces a universal policy inspired by the the behavior of MGreedy but with the crucial205

difference that the capacity is unknown. Our algorithm starts with an empty permu-206

tation and then inserts items at specific places in the permutation. When inserting207

items into the permutation, we use the following wording. Let Π = (Π1, . . . ,Πk) be208

a permutation of k items and let i be an item not contained in Π. When we say that209

we insert item i directly in front of item Πj this means that after the insertion, the210

permutation is Π′ = (Π1, . . . ,Πj−1, i,Πj , . . . ,Πk). In contrast, after inserting item i211

in front of all items, the permutation is Π′ = (i,Π1, . . . ,Πk). For a permutation212

Π = (Π1, . . . ,Πk), we also say that item Πj, j ∈ {1, . . . , k − 1} is directly in front of213

item Πj+1, and that item Πj+1 is directly behind item Πj. We also say that the items214

Π1, . . . ,Πj−1 are in front of item Πj and the items Πj+1, . . . ,Πk are behind item Πj.215

To get some intuition for our universal algorithm, recall that for a given capacity,216

MGreedy has to make the choice between taking the maximum prefix in the density-217

order or a single item of greater value. For a different capacity, the prefix will only218

be shorter/longer but the single item might be a completely different one. Now, the219

key to our universal algorithm is that we identify all items which might be a crucial220
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Algorithm 2 Universal(I)

Input: set of items I
Output: sequence of items Π

1: L← 〈items in I sorted by non-decreasing size〉
2: Π(0) ← ∅
3: for r ← 1, . . . , n do
4: if Lr is a swap item then
5: Π(r) ← (Lr,Π

(r−1))
6: else
7: j ← 1

8: while j ≤ |Π(r−1)| and d̃(Π
(r−1)
j ) � d̃(Lr) do

9: j ← j + 1
10: end while
11: Π(r) ← (Π

(r−1)
1 , . . . ,Π

(r−1)
j−1 , Lr,Π

(r−1)
j , . . . )

12: end if
13: end for
14: return Π(n)

single item for some capacity. We call an item i swap item if it is worth more than221

all denser items that are not larger than i. Formally, we define it as follows.222

Definition 2 (Swap Item). Item i is a swap item if and only if223

v(i) > v({j ∈ I | l(j) ≤ l(i) and d̃(j) > d̃i}).224

Note that whenever MGreedy for a given capacity and a given tie-breaking rule225

chooses a single item instead of the prefix of densest items, then this item is a swap226

item as defined above.227

Our algorithm, Universal, works as follows. First, we identify all swap items.228

Then we start with an empty permutation and consider all items for insertion in order229

of non-decreasing sizes. We place a swap item in front of all items that are already230

in the permutation, and we place any other item directly in front of the first item in231

the permutation that has a lower density; see Algorithm 2.232

While it is important for our analysis that ties between items of equal density are233

broken according to the fixed tie-breaking rule given by d̃, it does not matter how ties234

are handled between items of equal size.235

We prove the following result.236

Theorem 3. The algorithm Universal constructs a universal policy of robust-237

ness factor 2.238

Before we prove this theorem, we analyze the structure of the permutation pro-239

duced by Universal in terms of density, size, and value. First, we prove that the240

item directly behind a non-swap item Πk has lower density than Πk.241

Lemma 4. For a sequence Π returned by Universal, we have d̃(Πk) � d̃(Πk+1)242

for every non-swap item Πk, 1 ≤ k < n.243

Proof. For j ∈ {k, k + 1}, let r(j) ∈ {1, . . . , n} be the index of the iteration in244

which Universal inserts Πj into Π. We distinguish two cases.245

If r(k) < r(k + 1), then the item Πk+1 cannot be a swap item, since it would246

appear in front of the item Πk if it was. As each non-swap item is inserted into Π247

such that all items in front of it are larger with respect to d̃, the claim follows.248
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If r(k) > r(k+ 1), since it is not a swap item, Πk is put in front of Πk+1 because249

it has a higher density.250

We prove that no item in front of a swap item Πk has smaller size than Πk.251

Lemma 5. For a permutation Π returned by Universal, we have l(Πj) ≥ l(Πk)252

for every swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.253

Proof. Since Πk is a swap item, it stands in front of all items inserted earlier into254

Π. Hence, all items that appear in front of Πk in Π have been inserted in a later255

iteration of Universal. Since Universal processes items in order of non-decreasing256

sizes, we have l(Πj) ≥ l(Πk).257

We prove that no item in front of a swap item Πk has smaller value than Πk.258

Lemma 6. For a permutation Π returned by Universal, we have v(Πj) ≥ v(Πk)259

for every swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.260

Proof. We distinguish three cases.261

First case: Πj is a swap item and d̃(Πj) � d̃(Πk). By Lemma 5, we have l(Πj) ≥262

l(Πk), and the claim trivially holds.263

Second case: Πj is a swap item and d̃(Πj) ≺ d̃(Πk). Since Πj is a swap item,264

(1) v(Πj) > v({i ∈ I | l(i) ≤ l(Πj) and d̃(i) � d̃(Πj)}).265

Since, by Lemma 5, l(Πj) ≥ l(Πk), the item Πk is included in the set on the right266

hand side of (1). We conclude that v(Πj) ≥ v(Πk).267

Third case: Πj is not a swap item. Let Πj′ be the first swap item behind Πj in Π,268

i.e.,269

j′ = min{i ∈ {j + 1, . . . , k} | Πi is a swap item }.270271

Note that the minimum is well-defined as Πk is a swap item. The analysis of the first272

two cases implies that v(Πj′) ≥ v(Πk). By Lemma 4 we have d̃(Πj) � d̃(Πj+1) � · · · �273

d̃(Πj′), and by Lemma 5 we have l(Πj) ≥ l(Πj′). Hence, v(Πj) ≥ v(Πj′) ≥ v(Πk).274

Finally, the next lemma gives a legitimation for the violation of the density order in275

the output permutation. Essentially, whenever an item is in front of denser items, we276

guarantee that it is worth at least as much as all of them combined.277

Lemma 7. For a permutation Π returned by Universal, we have278

v(Πk) ≥ v
({

Πj | j > k and d̃(Πj) � d̃(Πk)
})

279

for every item Πk, 1 ≤ k < n.280

Proof. We distinguish whether Πk is a swap item, or not.281

First case: Πk is a swap item. By definition,282

v(Πk) > v
({

Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)
})
.283284

Since items whose size is strictly larger than l(Πk) are inserted into Π at a later285

iteration of Universal, they can only end up behind Πk if they are smaller with286

respect to d̃. Hence,287

{Πj | j > k and d̃(Πj) � d̃(Πk)} ⊆ {Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)},288289

and thus v(Πk) > v({Πj | j > k and d̃(Πj) � d̃(Πk)}), as claimed.290
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Second case: Πk is not a swap item. let Πk′ be the first swap item behind it in291

Π. If no such item exists, the claim holds by Lemma 4, since292 {
Πj | j > k and d̃(Πj) � d̃(Πk)

}
= ∅.293294

Otherwise, by Lemma 4, we obtain d̃(Πk) � d̃(Πk+1) � · · · � d̃(Πk′) and hence295

{Πj | j > k and d̃(Πj) � d̃(Πk)} = {Πj | j > k′ and d̃(Πj) � d̃(Πk)}296

⊆ {Πj | j > k′ and d̃(Πj) � d̃(Πk′)}.297298

Consequently, and by the argument above for swap items,299

v(Πk′) > v({Πj | j > k′ and d̃(Πj) � d̃(Πk′)})300

≥ v({Πj | j > k and d̃(Πj) > d̃(Πk)})).301302

Finally, by Lemma 6, we have v(Πk) ≥ v(Πk′) ≥ v({Πj | j > k and d̃(Πj) � d̃(Πk)}).303

304

We now prove Theorem 3.305

Proof (Theorem 3). We show that for every item set I, the permutation Π re-306

turned by Universal satisfies v(Opt(I, C)) ≤ 2v(Π(C)) for every capacity C ≤ l(I).307

By Theorem 1, it suffices to show v(Π(C)) ≥ v(MGreedy(I, C)) for all capacities.308

We distinguish between capacities for which MGreedy outputs the maximal prefix of309

the densest items that fits the capacity, and capacities for which MGreedy outputs310

the first item after this prefix. We proceed to distinguish these two cases.311

First case: MGreedy outputs the maximal prefix of the densest items that still312

fits the capacity. Let G+ = MGreedy(I, C) \ Π(C) be the set of items packed by313

MGreedy for capacity C that are not packed by the permutation Π. Similarly, let314

U+ = Π(C) \MGreedy(I, C). If G+ = ∅, then v(Π(C)) ≥ v(MGreedy(I, C)) and315

we are done. Suppose now that G+ 6= ∅. Then, also U+ 6= ∅, since Π(C) is inclusion316

maximal. For all items i ∈ U+, we have l(i) ≤ C and i /∈ MGreedy(I, C). As317

MGreedy(I, C) is a maximal prefix of the densest items for capacity C, we have318

d̃(i) ≺ d̃(i′) for all i ∈ U+ and i′ ∈ G+. By definition of Π(C) and since U+ 6= ∅, we319

also have k = min{j | Πj ∈ U+} < min{k′ | Πk′ ∈ G+}, i.e., the first item Πk ∈ U+320

in Π is encountered before every item from G+. It follows that321

G+ ⊆
{

Πj | j > k and d̃(Πj) � d̃(Πk)
)}
.322323

By Lemma 7, v(Πk) ≥ v(G+), and hence we obtain324

v(Π(C)) = v
(
Π(C) ∩MGreedy(I, C)

)
+ v(U+)325

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(Πk)326

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(G+) = v(MGreedy(I, C)).327328

Second case: MGreedy outputs the first item after the maximal prefix of the329

densest items. Let {Πk} = MGreedy(I, C) be item returned by the modified greedy330

algorithm. Then, Π(C) contains at least one item Πj with j ≤ k. If j = k, then331

trivially v(Π(C)) ≥ v(MGreedy(I, C)). Otherwise, by Lemma 6, we have v(Π(C)) ≥332

v(Πj) ≥ v(Πk) = v(MGreedy(I, C)).333

While it is obvious that Universal runs in polynomial time, we show that it can334

be modified to run in time Θ(n log n).335
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Theorem 8. The algorithm Universal (Algorithm 2) can be implemented to336

run in time Θ(n log n).337

Proof. In a first phase the algorithm identifies all swap items, in a second phase it338

constructs the output permutation Π. We show that each phase can be implemented339

to run in time Θ(n log n).340

For the first phase, recall that an item is a swap item, if and only if it is worth341

more than all smaller items of higher density combined. To determine all swap-items,342

we first sort the items decreasing by density. Then we insert the items in this order343

into a balanced search tree which itself is ordered by size. As additional information,344

in each tree node j we store the total value of items in both subtrees below j. While345

traversing the search tree to insert an item j this additional information allows to346

calculate the sum of values of all smaller and denser (i.e., already inserted) items.347

Thus, by inserting an item into the tree we can determine whether it is a swap item.348

Sorting, inserting and updating the additional information takes Θ(n log n) time.349

We construct the output permutation Π by iterating over the items in order of350

increasing size, as in Algorithm 2. We maintain a list Λ of balanced search trees, each351

ordered by density. Except for the last tree in Λ, every tree contains exactly one swap352

item, which is the item of the smallest density in the tree. The density of a tree is353

the density of this swap item (or 0 if the tree has no swap item). Each tree stores the354

items in Π in front of the corresponding swap item (if it exists) and behind the swap355

item of the preceding tree in Λ (if it exists). We start with a list containing a single356

tree with no corresponding swap item, which eventually holds all non-swap items that357

end up behind the last swap item in Π. Whenever we encounter a new swap item, we358

add a new tree consisting of only this swap item to the front of Λ. For each non-swap359

item, we have to find the correct tree to insert it into. Once we know the tree, we360

can determine the position at which to insert the item into the tree, and thus in Π,361

in time Θ(log n) simply by searching the tree.362

To complete the proof, we need an efficient way to find the correct tree in Λ for363

a non-swap item. For this purpose, we maintain a sublist Λ′ of Λ that contains only364

those trees that are needed for the remainder of the algorithm. Whenever a new swap365

item s adds a tree to the front of Λ, we also add the tree to the front of Λ′. Observe366

that from this point on no items are inserted into trees of a higher density than s.367

Hence, before inserting the tree of s to Λ′, we may remove trees of higher density368

from the front of Λ′. This guarantees that Λ′ remains sorted by density. We can thus369

implement Λ′ as a balanced search tree ordered by density. This way, we can find the370

correct tree for each non-swap item in time Θ(log n). Since every tree is removed at371

most once from Λ′, the amortized cost for maintaining the sublist is constant for each372

swap item.373

Since Universal requires n iterations, the total running time is Θ(n log n).374

The running time of our algorithm is best-possible in the sense that we can use it375

for sorting a set of n elements at a running time that is best possible for comparison-376

based algorithms; see, e.g. [9].377

Theorem 9. Every algorithm that computes a universal policy with constant ro-378

bustness factor α ≥ 2 can be used as a sorting algorithm with the same running time.379

Proof. Fix α ≥ 2 arbitrarily. For a given set of n unique non-negative integers380

a1, a2, . . . , an to be sorted, we construct (in linear time) an instance of the knapsack381

problem with unknown capacity. For each integer ai, i ∈ {1, . . . , n}, we have an item382

of size and value l(i) = v(i) = α2ai . Notice that the exponential increase in the383
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10 Y. DISSER, M. KLIMM, N. MEGOW, AND S. STILLER

encoding length does not affect the running time of a universal policy as we make the384

standard assumption of the arithmetic running time model that arithmetic operations385

can be performed in constant time. In this model, the running time depends only on n.386

It suffices to show that an α-robust universal policy for this instance must place
elements in decreasing order of sizes. To that end, we consider capacities l(i), i ∈
{1, . . . , n}, and show that for each of these capacities, the corresponding item i must
be in the knapsack since no other subset has sufficiently large total value. For any
i ∈ {1, . . . , n}, let S(i) = {i′ | l(i′) < l(i)} denote the set of all items smaller than
item i, and let i∗ be the item with maximum size in S(i). Then, 2ai∗ + 1 ≤ 2ai − 1
and thus ∑

i′∈Si

v(i′) =
∑
i′∈Si

α2ai′ ≤
2ai∗∑
j=0

αj =
α2ai∗+1 − 1

α− 1
< α2ai−1 =

v(i)

α
.

Any α-robust algorithm thus needs to ensure that item i is indeed in the knapsack for387

capacity l(i), and, hence, item i must be in front every item in S(i) in its universal388

solution. Since this must hold for every item i, the universal solution must be sorted389

decreasingly. In other words, we can directly deduce the solution for the sorting390

problem from an α-robust universal solution.391

We now give a general lower bound on the robustness factor of any policy for392

the knapsack problem with unknown capacity. This shows that Universal is best393

possible in terms of robustness factor and running time in the sense of Theorem 9.394

Theorem 10. For every δ > 0, there are instances of the knapsack problem with395

unknown capacity where no policy achieves a robustness factor of 2− δ.396

Proof. We give a family of instances, one for each size n ≥ 3. We ensure that for397

every item i of the instance of size n, there is a capacity C, such that packing item i398

first can only lead to a solution that is worse than Opt(I, C) by a factor of at least399

(2− 4/n). This completes the proof, as the factor approaches 2 for increasing values400

of n. The instance of size n is given by I = {1, 2, . . . , n} with l(i) = Fn + Fi − 1, and401

v(i) = 1+ i
n , where Fi denotes the i-th Fibonacci number (F1 = 1, F2 = 1, F3 = 2, . . . ).402

We need to show that, no matter which item is tried first (i.e., no matter which403

item is the root of the policy), there is a capacity for which this choice ruins the404

solution. Observe that both values and sizes of the items are strictly increasing.405

Assume that item i ≥ 3 is packed first. Since the smallest item has size l(1) = Fn,406

for capacity Ci = 2Fn + Fi − 2 < 2Fn + Fi − 1 = l(1) + l(i), no additional item fits407

the knapsack. However, the unique optimum solution in this case is Opt(I, Ci) =408

{i− 1, i− 2}. These two items fit the knapsack, as l(i− 1) + l(i− 2) = 2Fn + Fi−1 +409

Fi−2 − 2 = 2Fn + Fi − 2 = Ci. By definition,410

v(i− 1) + v(i− 2)

v(i)
=

2n+ 2i− 3

n+ i
= 2− 3

n+ i
≥ 2− 3

n
.411

412

Thus, policies that first pack item i ≥ 3 cannot attain a robustness factor better than413

2− 3/n.414

Now, assume that one of the two smallest items is packed first. For capacity415

C1,2 = l(n) = 2Fn − 1 < 2Fn = l(1) + l(2), no additional item fits the knapsack.416

The unique optimum solution, however, is to pack item n. It remains to compute the417

ratios418
v(n)

v(1)
>
v(n)

v(2)
=

2n

n+ 2
= 2− 4

n+ 2
> 2− 4

n
.419
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Algorithm 3 UniversalUD(I)

Input: set of items I
Output: sequence of items Π

1: L← 〈items in I sorted such that L1 ≺ · · · ≺ Ln〉
2: Π(0) ← ∅
3: for r ← 1, . . . , n do
4: j ← 1

5: while j ≤ |Π(r−1)| and v(Lr) < ϕv(Π
(r−1)
j ) do

6: j ← j + 1
7: end while
8: Π(r) ← (Π

(r−1)
1 , . . . ,Π

(r−1)
j−1 , Lr,Π

(r−1)
j , . . . )

9: end for
10: return Π(n)

Hence, policies that first pack item 1 or item 2 do not achieve a robustness factor420

better than 2− 4/n.421

4. Unit Densities. In this section we restrict ourselves to instances of the obliv-422

ious knapsack problem, where all items have unit density, i.e., v(i) = l(i) for all items423

i ∈ I. For two items i, j ∈ I we say that i is smaller than j and write i ≺ j if424

v(i) < v(j), or v(i) = v(j) and t(i) < t(j), where t is the tie-breaking index in-425

troduced in Section 3. We give an algorithm UniversalUD (cf. Algorithm 3) that426

produces a universal policy tailored to achieve the best possible robustness factor427

equal to the golden ratio ϕ ≈ 1.618. The algorithm considers the items from the428

smallest to the largest, and inserts each item into the output sequence as far to the429

end as possible, such that the item is not preceded by other items that are more430

than a factor ϕ smaller. Intuitively, the algorithm tries as much as possible to keep431

the resulting order sorted increasingly by size; only when an item dominates another432

item by a factor of at least ϕ the algorithm ensures that it precedes this item in the433

final sequence. Note that, even though ϕ is irrational, for rationals a, b the condition434

a < ϕb can be tested efficiently by testing the equivalent condition a/b < 1 + b/a.435

Theorem 11. The algorithm UniversalUD constructs a universal policy of ro-436

bustness factor ϕ when all items have unit density.437

Proof. Given an instance I of the knapsack problem with unknown capacity with438

unit densities and any capacity C ≤ v(I), we compare the packing Π(C) that results439

from the solution Π = UniversalUD(I) with an optimal packing Opt(I, C). We440

define the set M of items in Π(C) for which at least one smaller item is not in Π(C),441

i.e., more precisely, let M = {i ∈ Π(C) | ∃j ∈ I\Π(C) : j ≺ i}.442

We first consider the case that M 6= ∅ and set i = min≺M to be the smallest item443

in M with respect to ‘≺’. Consider the iteration r of UniversalUD in which i is444

inserted into Π, i.e., i = Lr. By definition of M , there is an item j ≺ i with j /∈ Π(C).445

Let j be the first such item in Π. Since j ≺ i, we have j ∈ Π(r). From i ∈ Π(C) and446

j /∈ Π(C), it follows that i precedes j in Π (and thus in Π(r)). Let i′ be the item directly447

preceding j in Π(r). If i′ = i, i was compared with j when it was inserted into Π(r),448

with the result that v(i) ≥ ϕv(j) and thus v(Π(C)) ≥ ϕv(j). If i′ 6= i, by definition of449

j, we still have i′ ∈ Π(C). Also, either i′ � j and thus v(i′) ≥ v(j), or j was compared450

with i′ when it was inserted into Π in an earlier iteration of UniversalUD, with the451

result that v(i′) > 1
ϕv(j). Again, v(Π(C)) ≥ v(i) + v(i′) > v(j) + 1

ϕv(j) = ϕv(j).452
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12 Y. DISSER, M. KLIMM, N. MEGOW, AND S. STILLER

In both cases it follows from j /∈ Π(C) that v(Opt(I, C)) ≤ C < v(Π(C)) + v(j),453

and using v(j) ≤ 1
ϕv(Π(C)) we get454

v(Opt(I, C))

v(Π(C))
<
v(Π(C)) + v(j)

v(Π(C))
< 1 +

1

ϕ
= ϕ.455

Now, assume that M = ∅. This means that Π(C) consists of a prefix of L (the456

smallest items). Let i1 � · · · � ik be the items in Π(C) \ Opt(I, C), and let j1 �457

· · · � jl be the items in Opt(I, C) \Π(C). As Π(C) consists of a prefix of L, we have458

|Π(C)| ≥ |Opt(I, C)| and thus k ≥ l. If k = 0, the claim trivially holds. Otherwise,459

since M is empty, we have jl � i1. It suffices to show v(jh) ≤ ϕv(ih) for all h ≤ l.460

To this end, we consider any fixed h ≤ l. From v({i1, . . . , ih−1}) ≤ v({j1, . . . , jh−1})461

it follows that462

v(jh) ≤ v(Opt(I, C))− v({j1, . . . , jh−1}) ≤ C − v({i1, . . . , ih−1}).463

This implies that jh cannot precede all items of {ih, . . . , ik} in Π, as jh /∈ Π(C).464

Hence, there is an item i′′ ∈ {ih, . . . , ik} that precedes jh in Π. Since jh � i′′, in the465

iteration when UniversalUD inserted jh into Π, i′′ was already present. From the466

fact that i′′ ended up preceding jh it follows that jk was compared with i′′ and thus467

v(jh) < ϕv(i′′) ≤ ϕv(ih). We obtain468

v(Opt(I, C))

v(Π(C))
≤ v(Opt(I, C) \Π(C))

v(Π(C) \Opt(I, C))
=

∑l
h=1 v(jh)∑k
h=1 v(ih)

≤
∑l
h=1 ϕv(ih)∑l
h=1 v(ih)

= ϕ.469

470471

A naive implementation of UniversalUD runs in time Θ(n2). We improve this472

running time to Θ(n log n). Observe that this is still best-possible in the sense of473

Theorem 9, since the proof only used unit densities.474

Theorem 12. The algorithm UniversalUD can be implemented to run in time475

Θ(n log n).476

Proof. To improve the running time from the nave Θ(n2), we maintain a balanced477

search tree T that stores a subset of the items in Π sorted decreasingly by their sizes.478

Whenever an item gets inserted to the front of Π, and only then, we also insert it479

into T . This way, the items in T remain sorted by their positions in Π throughout the480

execution of the algorithm. We need an efficient way of finding, in each iteration r481

of UniversalUD (Algorithm 3), the first item i in Π(r) for which v(Lr) ≥ ϕv(i), or482

detecting that no such item exists. We claim that, if such an item exists, it is stored483

in T and can thus be found in time Θ(log n).484

It suffices to show that for every item i ∈ T and its predecessor j in T we have485

that none of the items that precede i in Π are smaller than j. To see this, we argue486

that none of the items between j and i in Π are smaller than j. We can then repeat487

the argument for j and its predecessor j′, etc. For the sake of contradiction, let i′488

be the first item between j and i with v(i′) < v(j). None of the items between j489

and i′ are smaller than j, hence both j and i′ are inserted into Π earlier than all of490

them. Let r be the iteration in which j is inserted into Π. Since i′ is inserted earlier491

into Π, and since j is inserted to the front of Π(r), i′ is at the front of Π(r−1). This is492

a contradiction to i′ not being in T .493

We now establish that UniversalUD is best possible, even if we permit non-494

universal policies.495
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Theorem 13. There are instances of the knapsack problem with unknown capac-496

ity where no policy achieves a robustness factor of ϕ − δ, for any δ > 0, even when497

all items have unit density.498

Proof. Consider an instance of the knapsack problem with unknown capacity with499

five items of unit density and values equal to v1 = 1 + ε, v2 = 1 + ε, v3 = 2/ϕ, v4 =500

1 + 1/ϕ2, v5 = ϕ, for sufficiently small ε > 0, i.e., ε < δ/(ϕ − δ). We show that501

no algorithm achieves a robustness factor of ϕ − δ for this instance. To this end we502

consider an arbitrary algorithm A and distinguish different cases depending on which503

item the algorithm tries to pack first.504

(a) If A tries item 1 or item 2 first, it cannot fit any additional item for a capacity505

equal to v5 = ϕ, as even v1 + v2 > ϕ. For this capacity A is worse by a factor506

of ϕ/(1 + ε) > ϕ− δ than the optimum solution, which packs item 5.507

(b) If A tries item 3 first, it cannot fit any additional item for a capacity equal508

to v1 + v2 = 2 + 2ε, as even v3 + v1 > 2 + 2ε. For this capacity A is worse by509

a factor of (1 + ε)ϕ > ϕ− δ than the optimum solution which packs items 1510

and 2.511

(c) If A tries item 4 first, it cannot fit any additional item for a capacity equal512

to v2 + v3 = 1 + 2/ϕ+ ε, as even v4 + v1 = 2 + 1/ϕ2 + ε > 1 + 2/ϕ+ ε. For513

this capacity A is worse by a factor of 1+2/ϕ+ε
1+1/ϕ2 > ϕ+1/ϕ

1+1/ϕ2 = ϕ > ϕ − δ than514

the optimum solution which packs items 2 and 3.515

(d) If A tries item 5 first, it cannot fit any additional item for a capacity equal516

to v3 + v4 = ϕ + 1, as even v5 + v1 = ϕ + 1 + ε > ϕ + 1. For this capacity517

A is worse by a factor of ϕ+1
ϕ = ϕ > ϕ− δ than the optimum solution which518

packs items 3 and 4.519

5. Hardness. Although we can always find a 2-robust universal policy in poly-520

nomial time, we show in this section that, for any fixed α ∈ (1,∞), it is intractable to521

decide whether a given universal policy is α-robust. This hardness result also holds522

for instances with unit densities when α is part of the input. As the final – and ar-523

guably the most interesting – result of this section, we establish coNP-hardness of the524

problem to decide for a given instance and given α > 1, whether the instance admits525

a universal policy with robustness factor α. All proofs rely on the hardness of the526

following version of SubsetSum.527

Lemma 14. Let W = {w1, w2, . . . , wn} be a set of positive integer weights and528

T ≤
∑n
k=1 wk be a target sum. The problem of deciding whether there is a subset529

U ⊆W with
∑
w∈U w = T is NP-complete, even when530

1. T = 2k for some integer k ≥ 3,531

2. all weights are in the interval [2, T/2),532

3. for every weight w ∈W it holds that |2k − w| ≥ 2 for all k ∈ N.533

Proof. Without Properties 1 to 3, the SubsetSum problem is well known to534

be NP-complete (e.g., Garey and Johnson [16]). Given an instance (W,T ) of this535

classical problem, we construct an equivalent instance with Properties 1 to 3. We first536

multiply all weights in W as well as the target sum T with 6 to obtain an equivalent537

instance (W ′, T ′). In the new instance, all weights are even but not a power of 2,538

hence they have distance at least 2 to the closest power of 2. We set T ′′ = 2σ, with539

σ =
⌈
log2(T ′ +

∑
w′∈W ′ w

′)
⌉

+ 2 and define two new weights540

u =

⌊
T ′′ − T ′

2

⌋
, w =

⌈
T ′′ − T ′

2

⌉
.541
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We set W ′′ = W ′∪{u,w} to obtain the final instance (W ′′, T ′′). Properties 1 and 2 are542

satisfied by construction. Also, any solution to the instance (W ′′, T ′′) has to include543

both u and w, since T ′′ > 4 ·
∑
w′∈W ′ w

′. Hence, the instance remains equivalent to544

the original instance (W,T ). Since T ′′ − T ′ > 3T ′′/4, and since T ′′ is a power of two,545

the new items u and w are far enough from the closest power of 2 (which either is546

T ′′/2 or T ′′/4).547

We first show that it is intractable to determine the robustness factor of a given548

universal policy.549

Theorem 15. For any fixed and polynomially representable α > 1 it is coNP-550

complete to decide whether a given universal policy for the knapsack problem with551

unknown capacity is α-robust.552

Proof. Regarding the membership in coNP, note that if a universal policy Π is553

not α-robust, then there is a capacity C such that v(Π(C)) < v(Opt(I, C))/α. Thus,554

C together with Opt(I, C) is a certificate for Π not being an α-robust solution.555

For the proof of coNP-hardness, we reduce from the variant of SubsetSum speci-556

fied in Lemma 14. An instance of this problem is given by a set W = {w1, w2, . . . , wn}557

of positive integer weights in the range [2, T/2) and a target sum T = 2k for some558

integer k ≥ 3. Let α > 1 be polynomially representable. We may assume without loss559

of generality that α > T
T−1 as we can ensure this property by multiplying T and all560

items in W by a sufficiently large power of 2.561

We construct an instance I and a sequence Π such that Π is an α-robust universal562

policy for I if and only if the instance of SubsetSum given by W and T has no563

solution. To this end, we introduce for each weight w ∈ W an item with value and564

size equal to w. In this way, the optimal knapsack solution for capacity T is at least565

T if the instance of SubsetSum has a solution. Furthermore, we introduce a set of566

additional items that make sure that the robustness factor for all capacities except T567

is at most α while maintaining the property that the optimal knapsack solution for568

capacity T is strictly less than T if the instance of SubsetSum has no solution.569

We now explain the construction of I and Π is detail. Let ε = α(T−1)−T
α(T−1)−1 , i.e.,570

α = T−ε
(T−1)(1−ε) . Note that ε ∈ (0, 1) by our assumptions on T and α. For each weight571

w ∈ W , we introduce an item iw with l(iw) = v(iw) = w. The set of these items is572

called regular and is denoted by Ireg. Furthermore, we introduce a set of auxiliary573

items. Let m = log2 T−1. Then, for each k ∈ {0, 1, . . . ,m}, we introduce an auxiliary574

item jk with size l(jk) = 2k and value v(jk) = 2k (1− ε). Denoting the set of auxiliary575

items by Iaux, we have l(Iaux) =
∑m
k=0 2k = T − 1. Finally, we introduce a dummy576

item d with l(d) = T + 1 and577

v(d) =
1− ε
ε

(v(Iaux) + v(Ireg)) =
1− ε
ε

(
(T − 1)(1− ε) +

∑
w∈W

w

)
.578

The universal policy Π is defined as Π = (d, jm, jm−1, . . . , j0, iwn
, iwn−1

, . . . , iw1
). The579

hardness proof relies on the claim that Π is a 1
1−ε -robust universal policy for all580

capacities except T , i.e.,581

(2) v(Opt(I, C)) ≤ 1

1− ε
v(Π(C)) for all C 6= T.582

As all item sizes are integer, it suffices to consider integer capacities. To prove583

(2), let us first consider capacities C ≤ T − 1. Since the density of each item with584

size not larger than T − 1 is bounded from above by 1, it is sufficient to show that585
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v(Π(C)) = C(1−ε). To this end, we show that every capacity C ∈ {1, . . . , 2m+1−1 =586

T − 1} is packed without a gap by the exponentially decreasing sequence of items587

jm, jm−1, . . . , j0. We prove this statement by induction over m. For m = 0, the588

statement is true, since there is only a single item with length 1, which packs the589

capacity C = 1 optimally. Now assume that the statement is true for all m′ < m590

and consider the sequence jm, jm−1, . . . , j0. We distinguish two cases. For capacities591

C ∈ {2m, . . . , 2m+1 − 1}, item jm is packed and, using the induction hypothesis, the592

residual capacity C̃ = C−2m ≤ 2m+1−1−2m ≤ 2m−1 can be packed without a gap593

by the remaining sequence jm−1, jm−2, . . . , j0. For capacities C < 2m, item jm is not594

packed, and, again using the induction hypothesis, we derive that C can be packed595

by jm−1, . . . , j0. This completes the proof of our claim for C ≤ T − 1.596

Let us now consider our claim for capacities C ≥ T + 1. In this case, d ∈ Π(C)597

and we can trivially bound the robustness factor of Π by observing that598

v(Opt(I, C))

v(Π(C))
≤ v(I)

v(d)
= 1 +

(T − 1)(1− ε) +
∑
w∈W w

v(d)
= 1 +

ε

1− ε
=

1

1− ε
.599

We proceed to show that Π is an α-robust universal policy if and only if the600

instance of SubsetSum given by W and T has no solution. Let us first assume that601

the instance of SubsetSum has no solution. We prove that Π is α-robust. For all602

capacities except T this is clear from claim (2). For capacity T , we argue as follows:603

As there is no packing of T with items of density 1, we bound v(Opt(I, T )) from604

above by (T − 1) + (1− ε), whereas Π packs all auxiliary items. We get605

v(Opt(I, T ))

v(Π(T ))
≤ (T − 1) + (1− ε)

(T − 1)(1− ε)
= α.606

Now, assume that the instance of SubsetSum has a solution. Then, v(Opt(T )) =607

T and thus608

v(Opt(I, T ))

v(Π(T ))
=

T

(T − 1)(1− ε)
> α,609

610

and we conclude that Π is not α-robust.611

We give a result similar to Theorem 15 for unit densities. Note that this time we612

require α to be part of the input.613

Theorem 16. It is coNP-complete to decide whether, for given α > 1, a given614

universal policy for the oblivious knapsack problem is α-robust, even when all items615

have unit density.616

Proof. Membership in coNP follows from Theorem 15. To prove hardness, we617

again reduce from SubsetSum (Lemma 14) using a similar construction as in the618

proof of Theorem 15. Let the set W = {w1, . . . , wn} of weights and the target sum619

T ≥ 8 of an instance of SubsetSum be given, with w1 ≤ w2 ≤ · · · ≤ wn. We proceed620

to explain the construction of a universal policy Π for which the decision whether Π621

is α-robust is coNP-hard, for some α > 1.622

For each weight w ∈W , we introduce an item iw with value v(iw) = w. The set of623

these items is called regular and is denoted by Ireg. Let m = log2 T −1 and ε = 1/T 2.624

For each k ∈ {0, . . . ,m}, we introduce an auxiliary item jk with value v(jk) = 2k(1−ε).625

Denoting the set of auxiliary items by Iaux, we have v(Iaux) = (1 − ε)
∑m
k=0 2k =626

(1−ε)(T−1). We further introduce a set of dummy items Idum = {d0, . . . , dm′}, where627
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16 Y. DISSER, M. KLIMM, N. MEGOW, AND S. STILLER

m′ = dlog2 wne. We set v(dk) = T ·2k for each k ∈ {1, . . . ,m′}, and v(d0) = T+ε. The628

values of the dummy items sum up to v(Idum) = (T+ε)+T
∑m′

k=1 2k = T (2m
′+1−1)+ε.629

In total, the sum of the values of all dummy and auxiliary items is630

S = v(Iaux) + v(Idum) = (1− ε)(T − 1) + T (2m
′+1 − 1) + ε.(3)631632

Finally, we define the sequence Π as633

Π = (dm′ , dm′−1, . . . , d0, jm, jm−1, . . . , j0, iwn
, iwn−1

, . . . , iw1
),634635

i.e., Π first tries to pack the dummy items in decreasing order, then the auxiliary636

items in decreasing order, and finally the regular items in non-increasing order. Let637

α = T−ε
(1−ε)(T−1) . We proceed to prove the statement of the theorem by showing that638

Π is an α-robust universal policy if and only if the instance (W,T ) of SubsetSum639

has no solution. To this end, we first prove that Π is always an α-robust universal640

policy for all capacities except the critical capacities in the interval
[
T − εT, T + ε

)
.641

Then, we argue that Π is α-robust for the critical capacities if and only if the instance642

(W,T ) of SubsetSum has no solution.643

We start by proving that v(Π(C)) is within an α-fraction of v(Opt(C)) for all644

capacities C ∈ [0, T − εT ). Since the regular items are of integer values and the values645

of the auxiliary items each are an (1 − ε)-fraction of an integer, only capacities C646

for which the ratio C/dCe is not smaller than 1 − ε can be packed without a gap.647

Otherwise, the value of an optimal solution is bounded from above by bCc. For648

capacities C ∈ [0, T − εT ), we obtain649

(4) v(Opt(I, C)) ≤

{
C, if C/dCe ≥ 1− ε
bCc, otherwise.

650

The value packed by Π is given by651

(5) v(Π(C)) =

{
(1− ε)dCe, if C/dCe ≥ 1− ε
(1− ε)bCc, otherwise.

652

From (4) and (5) it follows that653

v(Opt(I, C)) ≤ 1

1− ε
v(Π(C)) < αv(Π(C))(6)654

655

for all C ∈ [0, T − εT ).656

Next, we prove that Π is within an α-fraction of an optimal solution for all657

capacities C ∈ [T + ε, S]. We distinguish two cases for each such capacity C.658

First case: Iaux ⊂ Π(C), i.e., all auxiliary items are packed by Π. Since, in Π,659

the dummy item d0 with value T +ε precedes all auxiliary items, and since C ≥ T +ε,660

this case can only occur for capacities661

(7) C ≥ v(d0) + v(Iaux) = T + ε+ (1− ε)(T − 1) = 2(T + ε)− (1 + εT ).662

On the other hand, the gap C − v(Π(C)) is at most the gap left after trying all663

dummy items and packing all auxiliary items, i.e., C − v(Π(C)) < v(d0)− v(Iaux) =664

T + ε− (1− ε)(T − 1) = 1 + εT . Thus,665
666

v(Opt(I, C))

v(Π(C))
<

C

C − (1 + εT )

(7)

≤ 2(T + ε)− (1 + εT )

2(T + ε)− 2(1 + εT )
667

=
(T + ε)− (1 + εT )/2

(T + ε)− (1 + εT )

T≥8
<

T − ε
(1− ε)(T − 1)

= α.668
669
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Second case: Iaux \Π(C) 6= ∅, i.e., not all auxiliary items are packed. This implies670

that the gap C − v(Π(C)) is at most 1− ε. We calculate671

v(Opt(I, C))

v(Π(C))
<

C

C − (1− ε)
C≥T+ε

≤ T + ε

T + 2ε− 1

ε=1/T 2

<
T − ε

(1− ε)(T − 1)
= α.672

673

Next, we consider capacities C ∈ (S, v(Iaux ∪ Idum ∪ Ireg)]. For these capacities,674

all dummy items and all auxiliary items are packed by Π. Using that the gap C−Π(C)675

is at most wn, we obtain676

677

v(Opt(I, C))

v(Π(C))
≤ C

C − wn
C>S
<

S

S − wn
S>T2m

′

<
T2m

′

T2m′ − wn
678

≤ Twn
Twn − wn

=
T

T − 1
=

T (1− ε)
(1− ε)(T − 1)

<
T − ε

(1− ε)(T − 1)
= α.679

680

To finish the proof, let us finally consider the critical capacities C ∈
[
T−Tε, T+ε

)
.681

We proceed to show that v(Π(C)) is within an α-fraction of v(Opt(C)) for all C ∈682 [
T −Tε, T + ε

)
if and only if (W,T ) does not have a solution. Let us first assume that683

(W,T ) does not have a solution. Then, v(Opt(C)) ≤ T − ε and we obtain684

v(Opt(I, C))

v(Π(C))
≤ T − ε

(T − 1)(1− ε)
= α,685

for all C ∈
[
T − Tε, T + ε

)
. If, on the other hand, (W,T ) has a solution, then686

v(Opt(T )) = T , implying that687

v(Opt(I, T ))

v(Π(T ))
=

T

(T − 1)(1− ε)
> α,688

i.e., Π is not an α-robust universal policy.689

Finally, we prove that it is hard to decide whether a given instance admits an α-robust690

universal policy when α is part of the input.691

Theorem 17. It is coNP-hard to decide whether, for given α > 1, an instance692

of the knapsack problem with unknown capacity admits an α-robust universal policy,693

even when all items have unit density.694

Proof. We again reduce from SubsetSum. To this end, let (W,T ) be an instance695

of SubsetSum (Lemma 14), let I be the set of items constructed from (W,T ) in the696

proof of Theorem 16, and let α = T−ε
(1−ε)(T−1) . We proceed to show that I admits an697

α-robust universal policy if and only if the instance (W,T ) of SubsetSum has no698

solution.699

For the case that (W,T ) has no solution, an α-robust universal policy is con-700

structed in the proof of Theorem 16. Thus, it suffices to show that if (W,T ) has a701

solution, I does not admit an α-robust universal policy.702

First, we claim that any α-robust universal policy Π contains the auxiliary items in703

decreasing order. Otherwise, for the sake of contradiction, let j be the first auxiliary704

item in Π that is preceded by a smaller auxiliary item i. Consider the capacity705

C = v(j). As all dummy items are larger than T > C, only auxiliary and regular706

items can be in Π(C). Since i precedes j, we have j /∈ Π(C).707

If Π(C) contains only auxiliary items, since the sum of the values of the auxiliary708

items smaller than v(j) is v(j)−(1−ε), we can use that j /∈ Π(C) to obtain v(Π(C)) ≤709
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18 Y. DISSER, M. KLIMM, N. MEGOW, AND S. STILLER

v(j) − (1 − ε) < bv(j)c. If Π(C) contains a regular item i′, then C−v(i′)
dC−v(i′)e < 1 − ε,710

and hence the gap C − v(i′) cannot be packed with a value more than bC − v(i′)c. It711

follows that v(Π(C)) ≤ bv(j)c. In either case we have712

713

v(Opt(I, C))

v(Π(C))
≥ v(j)

bv(j)c
v(j)≤(1−ε)T/2

≥ (1− ε)T/2
b(1− ε)T/2c

714

=
(1− ε)T/2
T/2− 1

ε=1/T 2

>
T − ε

(T − 1)(1− ε)
= α.715

716

This is a contradiction to the assumption that Π is α-robust. We conclude that717

the auxiliary items appear in Π in decreasing order.718

Second, we claim that if Π(T ) contains a regular item, then Π is not α-robust.719

By the argument above, we may assume that the auxiliary items in Π are ordered720

decreasingly. Let i be the regular item contained in Π(T ) that appears first in Π.721

Consider the capacity C = (v(i) + 1)(1 − ε). The auxiliary items that appear before722

i in Π (if any) are ordered decreasingly. All of them must be larger than v(i), other-723

wise, the gap left after packing them for capacity T would be too small to fit i. By724

Lemma 14, we have that neither v(i) nor v(i)+1 are a power of 2, thus Π(C) does not725

contain any of the auxiliary items preceding i. All regular items that appear before i726

in Π are larger than v(i), since they are not in Π(T ). Hence, Π(C) does not contain727

any regular items except i. We conclude that Π(C) = {i}. On the other hand, C is728

an integer multiple of 1− ε and can be packed without a gap by auxiliary items only.729

We obtain730

v(Opt(C))

v(Π(C))
=

C

v(i)
=

(v(i) + 1)(1− ε)
v(i)

v(i)≤T/2
≥ (T/2 + 1)(1− ε)

T/2

ε=1/T 2

> α.731

We conclude that if an α-robust universal policy Π exists, then Π(T ) does not732

contain regular items. It follows that Π(T ) = Iaux and, thus, v(Π(T )) = (T−1)(1−ε).733

Using that the SubsetSum instance (W,T ) has a solution, we obtain734

v(Opt(I, T ))

v(Π(T ))
≥ T

(T − 1)(1− ε)
> α,

735

which implies that no α-robust universal policy exists.736

6. Final remarks. In this work, we presented universal sequencing algorithms737

for the knapsack problem with unknown capacity in which non-fitting items can be dis-738

carded. Our deterministic algorithms construct solutions which achieve best-possible739

robustness factors. Surprisingly, best-possible robustness factors can already be ob-740

tained by universal policies, i.e., policies that attempt to fix the items in a universal,741

non-adaptive order. We showed how such orders can be computed in O(n log n).742

It remains an interesting open question how much the robustness factors could743

be improved when allowing randomized strategies. Randomized universal sequences744

have been derived recently in the context of scheduling [14], matching [32], cardinality-745

constrained knapsack [29] and more general independence systems [32, 29]. Our algo-746

rithms do not seem to directly suggest a natural randomized procedure.747

Finally, we point out an interesting interpretation of the capacity-oblivious knap-748

sack models with and without discarding items by using feasibility oracles. The749

knapsack model without discarding items [21, 33] adds items until the first item does750
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not fit anymore, whereas in our model the packing would proceed after discarding751

the not-fitting item. The latter behaviour can be modelled by considering the model752

without discarding items and giving access to a certain weak feasibility oracle. For a753

given item, the feasibility oracle either returns the information that the item does not754

fit in the knapsack, or it irrevocably packs the item if it fits. Our results transfer di-755

rectly to such a model. Along these lines one may ask for the gain when an algorithm756

is granted access to an even stronger oracle that receives as input an item and returns757

the information whether this item fits into the knapsack—without enforcing to pack758

the item. It is straightforward to verify that our lower bounds in Theorems 10 and 13759

are still valid in this case. Thus, our algorithms are optimal even though they utilize760

only a weak oracle. The case of even more powerful oracles that answer queries for761

item sets is left for future research.762
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