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Abstract. We consider the Minimum Feasible Tileset problem: Given
a set of symbols and subsets of these symbols (scenarios), find a small-
est possible number of pairs of symbols (tiles) such that each scenario
can be formed by selecting at most one symbol from each tile. We show
that this problem is NP-complete even if each scenario contains at most
three symbols. Our main result is a 4/3-approximation algorithm for the
general case. In addition, we show that the Minimum Feasible Tileset
problem is fixed-parameter tractable both when parameterized with the
number of scenarios and with the number of symbols.

1 Introduction

Consider the general assignment problem where several devices (e.g., workers,
robots, microchips, . . . ) each can be used in one of k functions/modes (e.g.,
employing different skills, tools, instruction sets, . . . ) at a time. Given a set of
scenarios, the goal is to assign k different functions to each device, such that,
for each scenario, all functions requested by the scenario are available simulta-
neously. In this paper, we initiate the study of this problem for k = 2 and the
case that each function is requested at most once by each scenario. Formally,
we study the following problem (we use “tile” instead of “device” to intuitively
capture the fact that a device/tile has two modes/sides).

Minimum Feasible Tileset
Input: A universe of symbols F , scenarios S ⊆ 2F \ {F}, and ` ∈ N.
Problem: Is there a tileset T of at most ` tiles T ∈

(
F
2

)
that is feasible

for all scenarios in S?

In the above, we refer to (multi-)sets of tiles as tilesets. A tileset T is feasible
for scenario S, if we can produce all symbols in S by taking at most one symbol
from each tile in T . Formally, a tileset T is feasible for a scenario S ⊂ F if there
is a mapping φ : T → F , such that φ(T ) ∈ T for all T ∈ T , and S ⊆ φ[T ] :=
{φ(T ) | T ∈ T }. By definition, no scenario contains all symbols of F . Note that
such a scenario would require |F | tiles, making the problem trivial. Similarly, we
may assume that all symbols in F appear in at least one scenario, otherwise we
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can simply remove each symbol that does not occur in any scenario. Finally, the
requirement that tiles contain no less than two symbols can be met by arbitrarily
assigning a second symbol to all tiles of cardinality one.

Apart from practical motivations Minimum Feasible Tileset is appealing
from a structural point of view. In this work we exhibit equivalent definitions for
the problem which are interesting in their own right. At first glance, Minimum
Feasible Tileset is a covering problem since we must cover all scenarios using
tiles that can each cover one of their two symbols in each scenario. It turns out
that the problem can also be phrased as a packing/partitioning problem, but
with an objective function different from the classical one in terms of number
of packed objects or sets (see Section 3). In addition, having tiles be symbol
sets of size two suggests a graph interpretation where we are asked to find a
minimum set of edges such that for each scenario there is an orientation where
each vertex has indegree at least one. We favor the tileset formulation, since it
most naturally generalizes to the original assignment problem with tiles of larger
sizes and scenarios which contain multiple copies of the same symbols. Also, the
Minimum Feasible Tileset interpretation appears suitable for studying the
effect of parameters, such as the number of symbols/scenarios, on the complexity.

Results and Outline. We analyze the structure of the graph that has the tiles
of a minimum cardinality tileset as its edges, and show that this graph is al-
ways (wlog.) a forest. In fact, only the component structure of this forest mat-
ters: We may replace trees by arbitrary trees spanning the same components
without affecting the feasibility of the corresponding tileset (Section 2). This
lets us view Minimum Feasible Tileset as a partitioning problem, which
in turn allows us to prove NP-completeness even when scenarios have size at
most three (Section 3). As our main result, we complement the hardness with
a 4/3-approximation algorithm (for scenarios of arbitrary sizes) inspired by the
component structure of the optimum solution (Section 4). Finally, we show that
the problem is fixed-parameter tractable with respect to the number of scenar-
ios (Section 5) and the number of symbols (Section 6), respectively. Due to space
constraints, we defer proofs for results marked by ? to a full version of the paper.

Related Work. The problem most closely related to Minimum Feasible Tile-
set is arguably Set Packing, as 3-Set Packing appears as a subproblem in
our approximation algorithm and also as the source problem for our NP-hardness
reduction. Set Packing has been extensively studied for both approximability
and parameterized complexity (see, e.g., [1,5,19] and [6,17] for some recent re-
sults). The main difference between the two problems is that Set Packing is
a maximization problem whereas Minimum Feasible Tileset seeks to mini-
mize the size of a feasible tileset—a measure that is only indirectly related to
the number of sets (scenarios). In particular, Set Packing becomes trivial for
a bounded number of sets, whereas for Minimum Feasible Tileset we get a
nontrivial polynomial-time algorithm via integer linear programming.

As mentioned above, the Minimum Feasible Tileset problem can equiv-
alently be seen as designing an edge-minimal graph on the set of symbols such
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that, for each scenario, the edges (tiles) can be oriented in such a way that all
symbols in the scenario have indegree at least one. The question whether a given
graph admits an orientation with certain properties has been studied in various
settings. For example, Biedl et al. [2] proposed an approximation algorithm for
finding a balanced acyclic orientation. Another natural constraint on an orien-
tation that has been studied is to prescribe degrees for each vertex [8,10,14].

More abstractly, we are looking for a graph on the set of symbols that fulfills
a certain constraint for each scenario. The case where the subgraph induced by
each scenario has to be connected is well-studied [3,4,9,13,15]. In particular, it is
NP-hard to find the minimum number of edges needed [9] and to decide whether
a planar solution [3,15] or a solution of treewidth at most three [13] exists.

2 Graph structure of tilesets

The tiles in a tileset T over a universe of symbols F can be viewed as the edges
of the undirected (multi-) graph G(T ) := (F, T ). In this section, we establish
that there always exist optimal tilesets with a simple graph structure. This is
made formal in the following lemma which will be useful in later sections.

Lemma 1 (?). Let F be a universe of symbols, S a family of scenarios over F ,
and T a tileset feasible for S. There is a tileset T ′ ⊆

(
F
2

)
feasible for S such that

|T ′| ≤ |T | and G(T ′) is a forest.

Note that each connected component of G(T ′) has size at least two because
each symbol occurs in at least one scenario and hence is incident with at least one
edge. We show that only the partition of the symbols induced by the component
structure of a tileset matters, but not the exact topology of each of the trees.

Theorem 1 (?). Let S be a family of scenarios and T be a tileset over sym-
bols F . If G(T ) is a forest, then T is feasible for S if and only if no connected
component C of G(T ) is fully contained in any scenario S ∈ S, i.e., C * S for
all scenarios S ∈ S and all connected components C of G(T ).

3 NP-Completeness of Minimum Feasible Tileset

In this section we establish the following completeness result.

Theorem 2. Minimum Feasible Tileset is NP-complete, even if each sce-
nario has size at most three.

Let us check that Minimum Feasible Tileset is contained in NP: A feasible
tileset can be encoded using polynomially many bits with respect to |F |. Veri-
fying feasibility comes down to solving one bipartite matching problem for each
scenario on an auxiliary graph that has an edge between each symbol in the sce-
nario and every tile containing that symbol, which is possible in polynomial time.

It remains to prove NP-hardness. For this, we first give a reduction from the
following partition problem, and later prove this problem to be NP-hard.

3



Fine Constrained Partition
Input: A universe U , constraints V ⊆ 2U \ U , and p ∈ N.
Problem: Is there a partition P of U , |P| ≥ p, such that P 6⊆ V for all
parts P ∈ P and all V ∈ V?

Lemma 2. Minimum Feasible Tileset and Fine Constrained Partition
are equivalent if we identify scenarios and constraints.

Proof. We claim that an instance (F,S, `) of Minimum Feasible Tileset ad-
mits a solution if and only if the instance (F,S, |F | − `) of Fine Constrained
Partition admits a solution.

“⇒”: By Lemma 1 there is a feasible tileset T ′ for S of cardinality at most `
such that G(T ′) is a forest. The connected components C1, . . . , Ck of G(T ′)
induce a partition that is a solution for the Fine Constrained Partition
instance: By Theorem 1 we indeed have Ci * S for all connected components Ci,
i ∈ [k], and scenarios S ∈ S. Furthermore, since there are at most ` edges

in G(T ′) and each connected component is a tree, we have ` ≥
∑k

i=1 |Ci| − 1 =
|F | − k. Hence, our partition has at least k ≥ |F | − ` parts.

“⇐”: Let P = {P1, . . . , Pp} be a solution for the Fine Constrained Par-
tition instance. We construct a tileset T by setting G(T )[Pi] to an arbitrary
spanning tree for each i ∈ [p]. Since Pi * S for each S ∈ S and each i ∈ [p],
by Theorem 1, T is feasible for S. The number of tiles in T is

∑p
i=1 |Pi| − 1 =

|F | − p ≤ |F | − (|F | − `) = `, as required. ut

Note that the corresponding optimization problems are dual to each other in
the sense that one is to minimize ` and the other to maximize |F | − `. We are
now ready to give a reduction to Fine Constrained Partition from Exact
Cover by 3-Sets, which is well known to be NP-hard [12], hence, completing
the proof of Theorem 2

Exact Cover by 3-Sets
Input: A universe X and a family C of three-element sets C ∈

(
X
3

)
.

Problem: Is there an exact cover for X, i.e., a partition of X into a
family C′ ⊆ C of disjoint sets?

Lemma 3. There is a polynomial-time reduction from Exact Cover by 3-
Sets to Fine Constrained Partition with constraints of size at most three.

Proof. Let an instance (X, C) of Exact Cover by 3-Sets be given. Without
loss of generality, we may assume that |X| = 3q for some integer q, as otherwise
no exact cover exists. We construct an instance of Fine Constrained Par-
tition with universe X asking for a partition of size at least q. First, we add
constraints V2 =

(
X
2

)
that exclude every two-element subset of X from all solu-

tion partitions. Since every solution partition needs to contain at least q parts
and |X| = 3q, each such partition consists of sets of size exactly three. Next,
we exclude partitions that contain sets outside of C by simply adding the con-
straints VC̄ =

(
X
3

)
\C. This concludes the construction of the Fine Constrained

Partition instance (X,V2 ∪ VC̄ , q). Clearly, this takes polynomial time.
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Now, if there is a partition P with at least q parts for the Fine Constrained
Partition instance, by the above, we know that each of its parts is a set in C.
Hence P is an exact cover of X for family C. Conversely, let C′ ⊆ C be an exact
cover for X. Then |C′| ≥ q and for all C ∈ C′ and V ∈ V2 ∪ VC̄ we have C * V ,
because C has size three and is not from VC̄ . Hence also the Fine Constrained
Partition instance has a solution. ut

4 A 4/3-approximation for Minimum Feasible Tileset

In this section, we propose an approximation algorithm for Minimum Feasible
Tileset with unbounded scenario size. Motivated by the structural insights of
Section 2, we construct a tileset that induces a forest in the corresponding graph,
with the property that none of its components are contained in a single scenario.
Since a component of size k requires k − 1 tiles, we additionally aim for small
components in order to keep the resulting tileset small.

We first take as many components of size two as possible among all disjoint
sets of two symbols that are not both contained in the same scenario. This can
easily be achieved by computing a maximum matching in the graph that has
an edge for each candidate component. Similarly, among all remaining symbols,
we try to form many (disjoint) components of size three, without creating com-
ponents that are contained in a single scenario. For this, we employ a simple
greedy strategy, that repeatedly takes any possible component until no possible
candidates remain. (While there are better packing strategies available for sets
of size three, we will see that improving the packing strategy alone does not
improve our approximation ratio.) Finally, for each leftover symbol we add an
individual tile (pairing that symbol in such a way as to prevent cycles).

We give a more formal listing in Algorithm A. We use F̄i(F
′) = {C ∈

(
F ′

i

)
|

∀S ∈ S : C * S} to denote the family of all sets of symbols in F ′ that are of
size i and not fully contained in a single scenario. In the following, we identify
connected components with their sets of vertices.

Algorithm A: 4/3-approximation for minimum feasible tilesets

Input: A set F of symbols and a set S of scenarios, where S ⊆ 2F \ {F}.
Output: A set of tiles T .
T2 ← maximum matching in graph G(F̄2(F )).

P ← greedy set packing of F̄3(F \
⋃

t∈T2 t).

T3 ←
⋃
{f1,f2,f3}∈P{{f1, f2}, {f2, f3}}.

if T2 ∪ T3 6= ∅ then take froot ∈
⋃

t∈T2∪T3 t else take froot ∈ F .

T1 ← {{f, froot} | f ∈ F \
⋃

t∈T2∪T3 t , f 6= froot}.

return T = T1 ∪ T2 ∪ T3.
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Theorem 3. Algorithm A computes a 4/3-approximation for Minimum Fea-
sible Tileset.

Proof. We first argue that the set of tiles T = T1 ∪ T2 ∪ T3 computed by Algo-
rithm A is feasible for S. First observe that G(T ) is a forest. This is true, because
G(T2 ∪ T3) consists of trees of sizes 2 and 3, G(T1) is a star, and T1 ∩ (T2 ∪ T3)
contains at most one node (froot). Using Theorem 1 it only remains to show
that no connected component C of G(T ) is contained in any scenario S ∈ S, i.e.
C ∩ S ( C. By definition of Algorithm A this is true for all connected compo-
nents of the graph G(T2 ∪ T3). If T2 ∪ T3 6= ∅, then each component of G(T ) is a
superset of a component of G(T2∪T3), and is thus not contained in any scenario.
If T2∪T3 is empty, then G(T ) = G(T1) consists of a single component that is not
contained in any scenario, since, by definition, F /∈ S. Thus T is feasible for S.

We now bound the size of T with respect to a minimum cardinality tileset T ?.
To do this we distribute virtual currency (gold) to the symbols in F , such that
the total gold distributed is 4/3 times the size of T ?. We later use this gold to
pay one unit of gold to certain symbols that these can in turn use to provide
for (at most) one tile of T that involves this symbol. To complete the proof, we
establish that each tile of T is provided for by one of its two symbols.

Let G? := G(T ?) be the graph induced by T ? and F̄ ?
i be the set of connected

components of size i ∈ {2, . . . , |F |} in G?. By Lemma 1, we may assume that G?

is a forest. Furthermore, because each symbol appears in at least one scenario,
graph G? does not contain components of size 1. Since the symbols in a com-
ponent of size i > 1 are part of exactly i − 1 tiles in T ?, we may distribute all
available gold by giving 4/3 · i−1

i gold to each symbol in a component of F̄ ?
i , for

all i ∈ {2, . . . , |F |}. This gold is used to pay symbols in what follows. We call a
symbol s ∈ F sufficiently paid if one of the following holds: (i) s is paid, (ii) s ap-
pears in a tile T ∈ T2 and the other symbol of T is paid, or (iii) s appears in a
tile T ∈ T3 and the other two symbols in the same component of G(T3) are paid.
Below, we show how to sufficiently pay all symbols. This completes the proof,
since then all tiles in T1∪T2∪T3 can be provided for (note that then each tile in
T1 contains its own paid symbol). We call a component of G? sufficiently paid, if
all its symbols are sufficiently paid. Let F ?

≥4 := F \
⋃

C∈F̄?
2 ∪F̄?

3
C be the set of all

symbols not in components of size two or three in G?. In paying the symbols we
will maintain the invariant that each element of F̄ ?

2 ∪F̄ ?
3 ∪F ?

≥4 is either sufficiently
paid, or it still holds its gold (all its symbols still hold their gold, respectively).

We define a graph H = (V,E) that has the components in F̄ ?
2 ∪ F̄ ?

3 as its
vertices, as well as the symbols that are not part of these components, i.e.,
V = F̄ ?

2 ∪ F̄ ?
3 ∪ F ?

≥4. In this way, each vertex of H represents up to three sym-
bols. For each tile T ∈ T2 we introduce an edge connecting the vertices of H
representing the two symbols of T , possibly introducing self-loops. Since T2 is
a matching, and since the vertices in H represent at most three symbols each,
all vertices in H have degree at most 3. We partition the edges of H into paths,
cycles, and self-loops, and show for each how to use the gold remaining at its
vertices to pay all symbols in the components of G? that are intersected by the
path/cycle/self-loop. We will ensure that every symbol (except possibly froot)
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on a tile in T1 is paid. Since each symbol on a tile of T2 appears only exactly on
this and no other tile of T2 ∪ T3, it is thus sufficient to pay only one of the two
symbols on each tile of T2.

Let P be the set of all paths in H connecting (different) vertices of degree 1
or 3 with internal nodes of degree 2. Consider the paths in P one by one. We use
the gold available along path P ∈ P of length k as follows. Let N2, N3 be the
number of internal nodes of P that represent 2 and 3 symbols, respectively. Note
that P has no inner nodes that represent a single symbol, since T2 is a match-
ing, and hence k = 1 + N2 + N3. Also, P is the only path visiting these inner
nodes and hence they all still hold their gold. Let N end

1 , N end
2 , N end

3 ≤ 2 be the
number of endpoints of P that still hold gold and represent 1, 2, and 3 symbols,
respectively. Similarly, let N end

0 be the number of endpoints without gold. By
our invariant, the symbols or components represented by the endpoints without
gold left have already been sufficiently paid before. We make sure that all other
nodes along P are sufficiently paid. We do this by, for all tiles that form the
path P , paying one of the two corresponding symbols, and, in addition, paying
every further symbol represented by nodes along P . Note that this preserves the
invariant. The total cost is

C− = k+N end
2 +2N end

3 +N3−N end
0 = 1+N end

2 +2N end
3 +N2 +2N3−N end

0 . (1)

Using that each endpoint of P that contributes to N end
1 represents a symbol

that is part of a component in G? of size i ≥ 4, we get that the gold available
at this symbol is at least 4

3 ·
i−1
i ≥ 1. Hence, the gold available to us is at least

C+ =
4

3
(N end

2 + 2N end
3 +N2 + 2N3 +

3

4
N end

1 ). (2)

Since N end
0 +N end

1 +N end
2 +N end

3 = 2, we get

C+ − C− = 1− 2

3
N end

2 − 1

3
N end

3 +
1

3
N2 +

2

3
N3.

Hence, we have C+ ≥ C−, unless N end
2 = 2 and N end

0 = N end
1 = N end

3 = N2 =
N3 = 0, i.e. P is of length one, connecting two tiles p1, p2 ∈ F̄ ?

2 by an edge which
corresponds to a tile t ∈ T2. To see that this case cannot occur, observe that,
first, p1 and p2 are of degree 1 in H. Second, since T ? is feasible, no component of
G? is contained in a single scenario (Theorem 1), and thus p1, p2 ∈ F̄ ?

2 ⊆ F̄2(F ).
This is a contradiction to T2 being a maximum matching in graph G(F̄2(F )), as
the matching can be augmented by removing t and adding p1 and p2.

Similarly to the above, we can consider all cycles in H with at most one node
of degree 3 one by one. (Note that cycles with at least two nodes of degree 3
contain a path as before.) If a cycle of length k does not contain a node of de-
gree 3, or the node of degree 3 is not yet sufficiently paid (and thus still holds
its gold), the cost for the cycle and its available gold are

C− = k +N3 = N2 + 2N3 =
3

4
C+ < C+,
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Fig. 1. Possible intersections of components of G(T3) (arcs) and G? (ellipses). Shaded
components have been sufficiently paid previously. Configurations are labeled by the
available gold C+ and the required gold C−. Symmetrical configurations are omitted.

where N2, N3 are the numbers of nodes of P that represent 2 and 3 symbols,
respectively. If the node of degree 3 has no gold left, then it has already been
sufficiently paid and C− = N2+2N3−3 < 3

4C
+. In either case, the available gold

allows to sufficiently pay all nodes along the cycle. Finally, each self-loop in H
connects two symbols in the same component C of size 2 or 3 in G?. If |C| = 2,
the gold available among the two symbols is C+ = 4

3 , while we require only
C− = 1 unit of gold. If |C| = 3, we have C+ = 8

3 and C− = 2.
After processing all paths, cycles, and self-loops all nodes of H intersecting

a tile of T2 are sufficiently paid. In particular, since T2 is a maximum matching,
all components in F̄ ?

2 are sufficiently paid. In the next step we ensure that all
components of F̄ ?

3 are sufficiently paid. By construction, every element of F̄ ?
3 ,

that is not sufficiently paid yet, intersects at least one tile of T3. We can thus
consider the components of G(T3) one by one and make sure to sufficiently pay
each element of F̄ ?

3 that intersects the considered component of G(T3).
Consider a component of G(T3) involving the three symbols f1, f2, f3 (cf. Fig-

ure 1 in the following). Let C3 ⊆ F̄ ?
3 be the set of components of size 3 in G?

that involve at least one of these symbols and have not yet been sufficiently
paid (i.e., still hold their gold). Further, let Nn be the number of symbols
among {f1, f2, f3}∩F ?

≥4 that are not yet sufficiently paid. Since all components

in F̄ ?
2 are sufficiently paid, the gold we have available is at least C+ ≥ 4

3 (2|C3|+
3
4Nn). We ensure that (at least) two symbols among f1, f2, f3 are paid, as well as
all other symbols appearing in C3. In this way, each component in C3 is sufficiently
paid. Note that this preserves our invariant that each element of F̄ ?

2 ∪ F̄ ?
3 ∪ F ?

≥4

is either sufficiently paid, or still holds its gold. The cost for paying the symbols
f1, f2, f3 is at most 2. Since in addition to f1, f2, f3 there are 3|C3|+Nn−3 sym-
bols needing pay in

⋃
C∈C3 C∪{f1, f2, f3}, and because |C3| ≤ 3, the total cost is

C− ≤ 3|C3|+Nn − 1 ≤ 8

3
|C3|+Nn ≤ C+.
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At this point, we have sufficiently paid all components in F̄ ?
2 ∪ F̄ ?

3 using gold
only from these components. This means that all remaining symbols that are
not sufficiently paid yet have at least 4

3 ·
4−1

4 = 1 gold available, which we can
use to pay these symbols themselves. Now all elements of F̄ ?

2 ∪ F̄ ?
3 ∪ F ?

≥4 have
been sufficiently paid and the proof is complete. ut

Our analysis of Algorithm A is tight in three different spots: (i) A path of
length 1 in the graph H defined above that visits a component of size 2 and a
component of size 3 of the optimum solution T may lead to 4 tiles in our solu-
tion compared to the 3 tiles required in the optimum solution, i.e., Equations (1)
and (2) coincide if N end

2 = N end
3 = 1 and all other terms vanish. (ii) The first

intersection of a component of G(T3) with components of G? illustrated in Fig-
ure 1 may lead to 8 tiles in our solution compared to the 6 tiles required in the
optimum solution. (iii) Each symbol of a component of size 4 in G? might result
in a single tile for this symbol only, in which case the optimum solution requires
3 tiles for the symbols of the component, while our solution requires 4 tiles. To
improve Algorithm A we have to address each of these three bottlenecks. For (i),
we either would have to alter the matching T2 to prevent the described situation,
or combine the analysis to account for the loss in other places. The aspect (ii)
can easily be prevented by employing a more sophisticated set packing algorithm
(e.g., the (4/3 + ε)-approximation of Cygan [5]). Finally, to avoid (iii), we would
need to pack sets of size 4 similarly to our packing of sets of size 3. In addition to
requiring one more level of analysis, this would also complicate the other levels,
as we would have to include sets of size 4 in our reasoning there.

5 Bounded number of scenarios

We prove that Minimum Feasible Tileset can be solved in polynomial time
when the number |S| of scenarios is bounded. More precisely, we provide an
algorithm that solves any instance (F,S, k) in time f(|S|)|(F,S, k)|c, i.e., in time
O(|(F,S, k)|c) for bounded values of |S|. In other words, Minimum Feasible
Tileset is fixed-parameter tractable with respect to the number of scenarios.

Our algorithm works by first translating the input instance (F,S, `) into an
integer linear program (ILP) in such a way that the ILP is feasible (i.e., contains
at least one integer point) if and only if (F,S, `) admits a feasible tileset with at
most ` tiles. The ILP uses O(|S||S|) variables. Lenstra [18] proved that deciding
feasibility of any ILP is fixed-parameter tractable with respect to the number p
of variables; the currently fastest algorithm has O∗(pO(p)) running time and was
obtained by Frank and Tardos [11], modifying an algorithm by Kannan [16].
Using this, we can prove the following result.

Theorem 4 (?). Minimum Feasible Tileset on instances with at most k

scenarios can be solved in time O∗(kO(kk+1)).
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6 Bounded number of symbols

We analyze the influence of the number of symbols |F | on the complexity of
solving an instance (F,S, `) of Minimum Feasible Tileset. It is easy to see
that the problem becomes solvable in polynomial time when F is bounded: The
instance is trivial if ` ≥ |F | since, in that case, we can afford to dedicate a
separate tile for each symbol. Otherwise, there are only O(|F |2`) ⊆ O(|F |2|F |)
ways to fix ` tiles. As mentioned in Section 3, each candidate tileset can be
verified by solving a bipartite matching problem for each scenario, on a graph
that has an edge between each symbol in the scenario and every tile containing
that symbol. This yields an overall runtime of O∗(|F |2|F |), and, hence, fixed-
parameter tractability in |F |. Using structural insights of Section 2 we are able
to improve on this naive running time.

Theorem 5 (?). Instances (F,S, `) of Minimum Feasible Tileset can be
solved in time O∗(3|F |).

Note that, as every symbol occurs in a scenario, ` ≥ |F |/2. Hence, Theorem 5
gives a fixed-parameter algorithm also for parameter `.

After this fixed-parameter tractability result, and taking into account the
trivial bound of 2|F | for the number of scenarios (giving a worst-case size of in-
stances ofO(2|F ||F |)), it is natural to ask whether polynomial-time preprocessing
can simplify input instances to size polynomial in |F |. We show that this is im-
possible unless NP ⊆ coNP/poly (and the polynomial hierarchy collapses). More
generally, we prove that for the restricted case d-Minimum Feasible Tileset,
where scenarios have size at most d, no polynomial-time algorithm can achieve a
size of O(kd−ε). Note that this restricted case has an essentially matching upper
bound of |S| < (|F | + 1)d = O(|F |d).1 As a consequence there is no reduction
to size polynomial in |F | for the general Minimum Feasible Tileset problem:
Any size O(kc) preprocessing for Minimum Feasible Tileset could be used
for d-Minimum Feasible Tileset, for any d > c, and violate the lower bound.

Theorem 6. Let d ≥ 3 and ε be a positive real. There is no polynomial-time
algorithm that reduces every instance of d-Minimum Feasible Tileset to an
equivalent instance (possibly of a different problem) of size O(|F |d−ε), unless
NP ⊆ coNP/poly.

To prove Theorem 6 we employ a similar result by Dell and Marx [6] for
Exact Cover by d-Sets, which is defined as follows.2

Exact Cover by d-Sets
Input: A universe X and a family C of d-element sets C ∈

(
X
d

)
.

Problem: Is there an exact d-set cover for X, i.e., a partition of X into
a family C′ ⊆ C of disjoint sets?

1 A compression to O(|F |d) size can be achieved by specifying one bit for each possible
scenario in S and setting it to one if the scenario is present and zero otherwise.

2 Dell and Marx called this problem Perfect d-Set Matching.
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Note that the original result by Dell and Marx [6] is given in terms of the

size k of an exact d-set cover. Clearly, k = |U |
d and, thus, we have O(kd−ε) =

O(|U |d−ε) and may instead phrase the result in terms of |U |. Furthermore, their
result builds on work by Dell and van Melkebeek [7] and, thus, extends to any
polynomial time algorithms (rather than just kernels) whose output instances
can be with respect to a different problem. We give the following paraphrased
version of the result.

Theorem 7 (Dell and Marx [6]). Let d ≥ 3 and ε be a positive real. There
is no polynomial-time algorithm that reduces every instance (U,H) of Exact
Cover by d-Sets to an equivalent instance of size O(|U |d−ε) (possibly with
respect to a different problem), unless NP ⊆ coNP/poly.

The following lemma, together with Theorem 7, directly implies Theorem 6.

Lemma 4 (?). There is a polynomial-time reduction from Exact Cover by
d-Sets to Minimum Feasible Tileset such that instances (X, C) are mapped
to instances (F,S, `) with F = X and scenario size at most d.

We now consider a more general setting: In the Generalized Minimum
Feasible Tileset problem we are also given a set of symbols and a set of
scenarios, but here each scenario may be a multi-set of symbols (or, equivalently,
each scenario is a function S : F → N indicating the number of copies of each
symbol f needed for S). We prove that Generalized Minimum Feasible

Tileset can be solved in time O∗(|F |O(|F |2)). Note that for this problem the
solution size ` may be much larger than |F | and similarly the number of scenarios
cannot in general be bounded in |F |.

Theorem 8 (?). Generalized Minimum Feasible Tileset can be solved in

time O∗(|F |O(|F |2)), i.e., it is fixed-parameter tractable with respect to |F |.

7 Conclusion

We initiated the study of the Minimum Feasible Tileset problem and ex-
posed an interesting combinatorial structure. We proved the problem to be NP-
complete even in the restricted case with scenarios of size at most three. On the
positive side, we showed that the Minimum Feasible Tileset problem admits
a 4/3-approximation algorithm and that it is fixed-parameter tractable with re-
spect to the number of scenarios and number of symbols. The latter algorithm
works also for the Generalized Minimum Feasible Tileset problem where
each scenario can contain multiple copies of a symbol and we believe that it can
be further generalized to work also for the original assignment problem where
also tiles of larger (but constant) size are allowed. It would be interesting to see
whether our other positive results transfer to this more general setting. We note
that our approximation algorithm relies heavily on the structural observations
from Section 2 which do not seem to generalize well. Our integer linear program
for a fixed number of scenarios does not seem easily adaptable either.
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