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Abstract We introduce and study the Minimum Feasible Tileset problem: given
a set of symbols and subsets of these symbols (scenarios), find a smallest possible
number of pairs of symbols (tiles) such that each scenario can be formed by selecting
at most one symbol from each tile. We show that this problem is APX-hard and
that it is NP-hard even if each scenario contains at most three symbols. Our main
result is a 4/3-approximation algorithm for the general case. In addition, we show that
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the Minimum Feasible Tileset problem is fixed-parameter tractable both when
parameterized with the number of scenarios and with the number of symbols.

Keywords Set packing · Approximation algorithm · APX hardness · Parameterized
complexity · Minimum feasible tileset

1 Introduction

Consider the general assignment problemwhere several devices (e.g., workers, robots,
microchips, …) each can be used in one of k functions/modes at a time (e.g., employ-
ing different skills, tools, instruction sets, …) [2,24,26]. Given a set of scenarios, the
goal is to assign k different functions to each device, such that, for each scenario, all
functions requested by the scenario are available simultaneously. In this paper, we
initiate the study of this problem for k = 2 and the case that each function is requested
at most once by each scenario. Formally, we study the following problem (motivated
by board games where two-sided map tiles are often used to allow for a variety of sce-
narios, we use “tile” instead of “device” to intuitively capture the fact that a device/tile
has two modes/sides).

Minimum Feasible Tileset

Input: A universe of symbols F , scenarios S ⊆ 2F\{F}.
Problem: Find a minimum-size tileset T that is feasible for all scenarios in S.

In the above, a tile is a two-element subset of F and we refer to (multi-) sets of tiles
as tilesets. A tileset T is feasible for scenario S if we can produce all symbols in S by
taking at most one symbol from each tile in T . Formally, a tileset T is feasible for a
scenario S ⊂ F if there is a mapping φ : T → F , such that φ(T ) ∈ T for all T ∈ T ,
and S ⊆ φ[T ] := {φ(T ) | T ∈ T }. By definition, no scenario contains all symbols
of F . Note that such a scenario would require |F | tiles, making the problem trivial.
Similarly, we may assume that all symbols in F appear in at least one scenario, other-
wise we can simply remove each symbol that does not occur in any scenario. Finally,
the requirement that tiles contain no less than two symbols can be met by arbitrarily
assigning a second symbol to all tiles of cardinality one.

Example 1 Let us illustrate the problem with two instances of Minimum Feasible

Tileset:
If our set of symbols is F = {A, B,C, 1, 2, 3} and our set S of scenarios consists of

{A, B, 1, 2}, {A,C, 1, 3}, and {B,C, 2, 3}, then it is not hard to check that a feasible
tileset is

Herein, each tile is represented by two adjoined boxes which correspond to the two
modes in which we can use the tile. Clearly, the feasible tileset above is also of
minimum size since each scenario requires at least four tiles.

If we have n ∈ N, F = {1, . . . , 3n}, and our scenarios are all size-2 subsets of F ,
that is, S = (F

2

)
, then a feasible tileset with 2n tiles is
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Clearly, this tileset is feasible for all scenarios {a, b} ∈ S where a and b do not occur
together on a tile (because we can select different tiles for them). In the remaining
scenarios, the symbols a and b occur together on a tile, that is, for some i ∈ {1, . . . , n}
we have a = 3i − 2 and b = 3i − 1 or a = 3i − 1 and b = 3i (up to symmetry).
These scenarios are fine too, because all numbers 3i−1 occur twice on the tiles. It will
become clear later (see Example 2), that each feasible tileset for the instance (F,

(F
2

)
)

of Minimum Feasible Tileset contains at least 2n tiles.

Apart from practical motivations,Minimum Feasible Tileset is appealing from
a structural point of view. In this workwe exhibit equivalent definitions for the problem
which are interesting in their own right. At first glance,Minimum Feasible Tileset

is a covering problem since we must cover all scenarios using tiles that can each cover
one of the tile’s two symbols in each scenario. It turns out that the problem can also
be phrased as a packing/partitioning problem, but with an objective function different
from the classical one in terms of number of packed objects or sets (see Sect. 3).
In addition, having tiles be symbol sets of size two suggests a graph interpretation
where we are asked to find a minimum set of edges such that for each scenario there
is an orientation where each vertex has indegree at least one. For our presentation
however, we favor the tileset formulation, since it most naturally generalizes to the
original assignment problem with tiles of larger sizes and scenarios which contain
multiple copies of the same symbols. Also, the Minimum Feasible Tileset inter-
pretation appears suitable for studying the effect of parameters, such as the number of
symbols/scenarios, on the complexity.

Results and Outline We analyze the structure of the graph that has the tiles of a min-
imum cardinality tileset as its edges, and show that this graph is always (wlog.) a
forest. In fact, only the component structure of this forest matters: we may replace
trees by arbitrary trees spanning the same components without affecting the feasi-
bility of the corresponding tileset (Sect. 2). This lets us view Minimum Feasible

Tileset as a partitioning problem, which in turn allows us to prove NP-completeness
even when scenarios have size at most three and lets us show APX-hardness for
the general case (Sect. 3). As our main result, we complement the hardness with a
4/3-approximation algorithm (for scenarios of arbitrary sizes) inspired by the com-
ponent structure of the optimum solution (Sect. 4). We show that the problem is
fixed-parameter tractable with respect to the number of scenarios (Sect. 5) and the
number of symbols (Sect. 6), respectively. We also observe that, when each scenario
has size at most d, a polynomial-time compression of an arbitrary instance to O(|F |d)
bits is possible without loosing the information about the size of the optimum solution
and such a compression to O(|F |d−ε) bits is unlikely (Sect. 6). Finally, we provide a
preliminary result on the relevant variant of Minimum Feasible Tileset where the
scenarios are multisets rather than sets and show that also this case is fixed-parameter
tractable with respect to the number of symbols (Sect. 6).
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Related Work The problem most closely related to Minimum Feasible Tileset is
arguably Set Packing, as 3-Set Packing appears as a subproblem in our approx-
imation algorithm and also as the source problem for our NP-hardness reduction
(in the form of Maximum Three- Dimensional Matching). Set Packing has
been extensively studied for both approximability and parameterized complexity (see,
e.g., [1,7,30] and [8,22] for some recent results). The main difference between the
two problems is that Set Packing is a maximization problem whereas Minimum

Feasible Tileset seeks to minimize the size of a feasible tileset—a measure that
is only indirectly related to the number of sets (scenarios). In particular, Set Pack-

ing becomes trivial for a bounded number of sets, whereas for Minimum Feasible

Tilesetweget a nontrivial polynomial-time algorithmvia integer linear programming
(see Sect. 5).

As alluded to above, the Minimum Feasible Tileset problem can equivalently
be seen as designing an edge-minimal graph on the set of symbols such that, for each
scenario, the edges (tiles) can be oriented in such a way that all symbols in the scenario
have indegree at least one. The question whether a given graph admits an orientation
with certain properties has been studied in various settings. For example, Biedl et
al. [3] proposed an approximation algorithm for finding a balanced acyclic orienta-
tion. Another natural constraint on an orientation that has been studied is to prescribe
degrees for each vertex [11,14,18]. Abstracting from orientations,Minimum Feasi-

ble Tileset belongs to a class of problems in which we are given a set of symbols and
a family of scenarios and we are looking for a graph with symbols as vertices that ful-
fills a certain constraint for each scenario. The constraint where the subgraph induced
by each scenario has to be connected is well-studied [4,5,12,17,19,31]. In particular,
it isNP-hard to find the minimum number of edges needed [12] and to decide whether
a planar solution [4,19] or a solution of treewidth at most three [17] exists.

Preliminaries For some positive integer � ∈ N, we denote [�] := {1, 2, . . . , �}. For
a set family S we use

⋃
S as a shorthand for

⋃
S∈S S. Apart from standard Landau

notation for running times, we also use the O∗ notation, which disregards factors that
are polynomial in the input size. We use standard graph notation, see the book by
Diestel [27], for example. For the relevant notions from parameterized complexity
and approximation complexity we refer to textbooks [13,25,28] and Refs. [6,29],
respectively.

2 Graph Structure of Tilesets

The tiles in a tileset T over a universe of symbols F can be viewed as the edges of
the undirected (multi-) graph G(T ) := (F, T ). In this section, we establish that there
always exist optimal tilesets with a simple graph structure. This is made formal in the
following lemma which will be useful in later sections.

Lemma 1 Let F be a universe of symbols, S a family of scenarios over F, and T a
tileset feasible for S. There is a tileset T ′ ⊆ (F

2

)
feasible for S such that |T ′| ≤ |T |

and G(T ′) is a forest.
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Note that each connected component of G(T ′) has size at least two because each
symbol occurs in at least one scenario and hence is incident with at least one edge.

In the proof of Lemma 1 it is convenient to think of feasibility of T via orientations
of the graphG(T ). Let us say that an orientation ofG(T ) is feasible for the scenario S
if each vertex in S has indegree at least one. It is easy to see that deciding whether T is
feasible for some scenario S ⊂ F is equivalent to deciding whether there is a feasible
orientation of the edges of G(T ) for S. We obtain the following lemma.

Lemma 2 For every tileset T and scenario S over a universe of symbols F the fol-
lowing are equivalent.

(i) T is feasible for S,
(ii) there is a feasible orientation of G(T ) for S,
(iii) for every connected component C of G(T ), there is a feasible orientation of G(T )

for S ∩ C,
(iv) for every connected component C of G(T ), tileset T is feasible for S ∩ C.

Proof Note that it suffices to prove the equivalence of the first three statements, since
equivalence of (i) and (ii) implies equivalence of (iii) and (iv). In the following, we
use the notation φ[T ] = ⋃

T∈T φ(T ).
(i) ⇒ (ii): Assume that T is feasible for S and let φ : T → F be the corresponding

mapping with φ(T ) ∈ T for all T ∈ T , and S ⊆ φ[T ]. We obtain an orientation
of G(T ) by orienting each edge T ∈ T towards φ(T ). Since S ⊆ φ[T ], each symbol
in S has indegree at least one and we have a feasible orientation of G(T ) for S.

(ii) ⇒ (iii): Clearly, a feasible orientation of G(T ) for S is, in particular, a feasible
orientation for S ∩ C for every connected component C of G(T ).

(iii)⇒ (i) : Let C1, . . . ,Ck denote the connected components of G(T ) and assume
that there are feasible orientations �G1, . . . , �Gk for S ∩ C1, . . . , S ∩ Ck , respectively.
Since S ⊆ ⋃

i Ci , we obtain a feasible orientation �G of G(T ) for S as �G1[C1] � · · · �
�Gk[Ck]. We define the mapping φ : T → F by setting φ(T ) = s for each T ∈ T ,
where s is the symbol towards which the edge T is oriented in �G. By definition,
φ(T ) ∈ T for all T ∈ T , and, since �G is feasible for S, we have S ⊆ φ[T ]. The
existence of the mapping φ hence proves that T is feasible for S. 
�

Using thenotionof feasible orientationswenowobserve that connected components
in G(T ) yield feasibility for each of their strict subsets.

Lemma 3 Let T be a tileset, C a connected component of G(T ) and C ′
� C. Then,

T is feasible for C ′.

Proof The proof is by induction over the size of C ′. If C ′ contains a single symbol,
that is, C ′ = {s}, then we obtain a feasible orientation by orienting an arbitrary edge
towards s; such an edge exists becauseC ′ is part of the (larger) connected componentC .
Consider the case |C ′| > 1. First assume that G(T )[C ′] contains no edges, i.e., C ′
is an independent set. Then, there is an edge in G(T )[C] for each symbol s ∈ C ′,
connecting s toC\C ′. A feasible orientation forC ′ can simply be obtained by orienting
these edges towardsC ′. Now, assume there is an edge {s, s′} inG(T )[C ′] and consider
the graphG ′ obtained by contracting {s, s′}. By induction, there is a feasible orientation
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of G ′ for C ′′, where C ′′ is obtained from C ′ by identifying s and s′. Hence, there is an
orientation of G(T ) such that all vertices in C ′ except one of {s, s′} have indegree at
least one. We orient the edge {s, s′} towards the vertex of smaller indegree to obtain
the desired feasible orientation of G(T ). 
�

We are ready for a proof of Lemma 1. Intuitively, we observe that cycle components
in G(T ) yield feasibility for any of their subsets and hence are a safe replacement for
every component with a large number of edges. Then we show how to break cycle
components into trees.

Proof (Lemma 1) We replace connected components inG(T ), maintaining feasibility
of T and without increasing the cardinality of T .

Let C1, . . . ,Ck be the connected components of G(T ) that contain a cycle, and
let C = ⋃k

i=1 Ci . We obtain a new tileset T ′ by replacing the edges in G(T )[C] with
a cycle on C . (If |C | = 1, we introduce a self-loop and if |C | = 2, we introduce two
parallel edges.) Each connected component Ci , i ∈ [k], contains at least |Ci | edges
since it is connected and contains a cycle. Since we introduced |C | ≤ ∑k

i=1 |Ci | new
edges, the cardinality of T ′ is not larger than the cardinality of T . We observe that T ′
is still feasible. Consider an arbitrary scenario S ∈ S. Clearly, if S∩C = ∅, then T ′ is
feasible for S. Hence, assume S ∩C �= ∅. By Lemma 2 there is a feasible orientation
ofG(T ) for S\C . This implies that there is still a feasible orientation ofG(T ′) for S\C .
By Lemma 2 it suffices to prove that there is a feasible orientation of G(T ′) for S∩C .
Indeed, since G(T ′)[C] is a cycle, orienting the edges in one direction along the cycle
yields a feasible orientation for any subset of C , and, in particular, for S ∩ C . Hence,
T ′ is still feasible for every S ∈ S.

By definition, every connected component C ′ of G(T ) outside of C is a tree.
Hence, the connected components of G(T ′) are trees, with the exception of at most
one componentC that is a cycle. We nowmodifyC in order to obtain our final feasible
tileset T ′′ with the desired structure.

First, consider the case that C is the only connected component of G(T ′). Then,
we can remove an arbitrary tile from T ′ to obtain T ′′: Since, by definition, S does not
contain F as a scenario, by Lemma 3, T ′′ is feasible for all scenarios S ∈ S. Clearly,
G(T ′′) is a tree, as required.

Nowassume that there is at least one tree componentC ′ inG(T ′) alongwithC . Con-
sider an arbitrary edge {s, s′} in C and an arbitrary vertex s′′ ∈ C ′. We remove {s, s′}
from T ′ and instead add the edge {s, s′′} to obtain the tileset T ′′. Clearly, G(T ′′) is a
forest. It remains to prove that T ′′ is feasible for every scenario S ∈ S. By Lemma 2,
T ′ is feasible for S\C and, hence, so is T ′′. Because C ∪C ′ is a connected component
in G(T ′′), Lemma 3 guarantees that T ′′ is feasible for every S′

� (C ∪ C ′) and, in
particular, T ′′ is feasible for S ∩ C . Hence, as T ′′ is feasible for S ∩ C and S\C ,
applying Lemma 2 we obtain that T ′′ is feasible for S. Clearly, G(T ′′) is a forest, as
required. 
�

Intuitively, Lemmas 2 and 3 imply that only the partition of the symbols induced
by the component structure of the graph of a tileset matters, but not the exact topology
of each of the trees. This leads to the following.
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Theorem 1 Let S be a family of scenarios and T be a tileset over symbols F. If G(T )

is a forest, then T is feasible for S if and only if no connected component C of G(T )

is fully contained in any scenario S ∈ S, i.e., C � S for all scenarios S ∈ S and all
connected components C of G(T ).

Proof “⇒”: Assume towards a contradiction that T is feasible, G(T ) is a forest, and
there is a scenario S ∈ S and a component C of G(T ) such that C ⊆ S. By Lemma 2
there is a feasible orientation ofG(T ) for S∩C = C . But this is absurd, becauseG(T )

is a forest and hence G(T )[C] contains only |C | − 1 edges.
“⇐”: For each component C of G(T ) and every scenario S ∈ S, we have that

C ∩ S � C , since C � S. By Lemma 3, we get that T is feasible for C ∩ S. Since this
is true for all choices of C and S, Lemma 2 implies that T is feasible for S. 
�
Example 2 We can now observe that for the instance (F = {1, . . . , 3n},S = (F

2

)
)

from Example 1 each feasible tileset contains at least 2n tiles: let T be a feasible
tileset for S. No connected component of G(T ) can be contained in any set in S.
Thus, each connected component has size at least three, meaning that there are at
most n connected components. Each component contains at least � − 1 tiles if it is
of size �. In other words, for each connected component, we save at most one tile
compared with simply using one tile for each symbol. Thus, a feasible tileset for S
contains at least 3n − n = 2n tiles.

3 NP-Hardness and APX-Hardness of Minimum Feasible Tileset

In this section we establish the following result.

Theorem 2 Minimum Feasible Tileset isAPX-hard.Minimum Feasible Tile-

set is NP-hard even if each scenario has size at most three.

Before proving Theorem 2, let us check that the decision variant of Minimum Fea-

sible Tileset, in which we want to check for feasible tilesets of size at most a given
integer, is contained inNP: a feasible tileset can be encoded using polynomially many
bits with respect to |F |. Verifying feasibility comes down to solving one bipartite
matching problem for each scenario on an auxiliary graph that has an edge between
each symbol in the scenario and every tile containing that symbol, which is possible
in polynomial time. Thus we can infer from Theorem 2 that the decision variant of
Minimum Feasible Tileset is NP-complete.

We now prove NP- and APX-hardness of Minimum Feasible Tileset. For this,
we first give a relation of Minimum Feasible Tileset to a partitioning problem.
Let us say that, for a finite set of symbols F and a family of scenarios S ⊆ 2F , a
partition P of F is admissible, if for every P ∈ P and every S ∈ S we have P � S.
We obtain the following.

Lemma 4 Let F be a set of symbols and S ⊆ 2F\{F} a family of scenarios. There
is a feasible tileset of size � for S if and only if there is a partition of F which is
admissible for S and comprises |F | − � parts.
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Proof “⇒”: By Lemma 1 there is a feasible tileset T ′ for S of cardinality � such
that G(T ′) is a forest. The connected components C1, . . . ,Ck of G(T ′) induce a
partition P ′ which we claim to be admissible: Indeed, by Theorem 1 we have Ci � S
for all connected components Ci , i ∈ [k], and scenarios S ∈ S. Furthermore, since
there are exactly � edges in G(T ′) and each connected component is a tree, we have
� = ∑k

i=1(|Ci |−1) = |F |−k. Hence, our partition has k = |F |−� parts, as required.
“⇐”: Let P = {P1, . . . , Pp} be an admissible partition with |F | − � parts. We

construct a tileset T by settingG(T )[Pi ] to an arbitrary spanning tree for each i ∈ [p].
Since Pi � S for each S ∈ S and each i ∈ [p], by Theorem 1, T is feasible for S.
The number of tiles in T is

∑p
i=1(|Pi | − 1) = |F | − p = |F | − (|F | − �) = �, as

required. 
�
Thus,Minimum Feasible Tileset is equivalent to finding a finest-possible partition,
i.e. with maximum number of parts, of the symbols such that no part in the partition
is contained in any scenario.

We nowgive a reduction fromMaximum Bounded 3- Dimensional Matching

which is both NP-hard and APX-hard [20]:

Maximum Bounded 3- Dimensional Matching

Input: Three pairwise disjoint sets X,Y, Z , and a set D ⊆ X ×Y × Z of triples
such that each element in X ∪ Y ∪ Z occurs in at most three triples in D.
Problem: Find a maximum-size three-dimensional matching for D, i.e., a
maximum-size subset D′ ⊆ D such that no element of X ∪ Y ∪ Z occurs
in two triples in D′.

Proof (Theorem 2) We give a PTAS-reduction from Maximum Bounded 3-

Dimensional Matching [6]. More precisely, given an instance (X,Y, Z , D) and
a desired approximation ratio r , we construct an instance (F,S) of Minimum Fea-

sible Tileset in time polynomial in the instance size for every fixed r , subject to the
following condition. There is a function f : (0, 1) → Q such that for every r ∈ (0, 1)
we have f (r) > 1 and for an arbitrary given f (r)-approximate feasible tileset T
for (F,S) we can construct an r -approximate three-dimensional matching M for
(X,Y, Z , D) in polynomial time. We specify the function f below (while ensuring
that f (r) > 1).

Wefirst describe how to construct theMinimum Feasible Tileset instance (F,S)

from a Maximum Bounded 3- Dimensional Matching instance (X,Y, Z , D).
Set the universe F := X ∪Y ∪ Z . We choose a function g : (0, 1) → N with g(r) ≥ 3
for all r ∈ (0, 1). The precise function is given below. The scenarios S consist of all
subsets of F that have size atmost g(r) anddonot contain any triple in D as a subset (we
interpret D as a family of three-element sets). Formally, S := {S ⊆ F | |S| ≤ g(r) ∧
∀E ∈ D : E\S �= ∅}. This concludes the construction. Let n := |X ∪ Y ∪ Z | = |F |.
Clearly, for any fixed r , we can carry out the construction in time O(ng(r)+1), that is,
in polynomial time in the instance size.

Before we show how to compute an approximate three-dimensional matching from
an approximate feasible tileset, we find a relation between the optimal solution sizes
of the two instances. Note that, from each three-dimensional matching N we can
construct an admissible partition R of F for S satisfying |R| = |N | as follows.
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Initially, takeR = N (where N is interpreted as a family of three-element sets). Then,
replace an arbitrary part P ∈ R with P ∪ ((X ∪ Y ∪ Z)\ ⋃

R). That is, add to P all
elements not covered by N . By definition of S, there is no set S ∈ S that contains
any P ∈ R, and henceR is admissible. Letting opt3DM denote the size of an optimal
solution to theMaximum Bounded 3- Dimensional Matching instance, we thus
have |P∗| ≥ opt3DM for an admissible partition P∗ containing the maximum number
of parts. Lemma 4 implies that |P∗| = n − optFT, where optFT denotes the size of an
optimal solution for the Minimum Feasible Tileset instance. Rearranging terms
hence yields optFT = n − |P∗|. Because of |P∗| ≥ opt3DM, we have

optFT ≤ n − opt3DM . (1)

Now let T be an arbitrary f (r)-approximate feasible tileset T for (F,S). We
construct an r -approximate three-dimensional matching M for (X,Y, Z , D) in poly-
nomial time as follows. Along the way, we gather observations that allow us to prove
that M is r -approximate in the end.

First, by Lemma 4 there is a partition P of F which is admissible for S and has
n − |T | parts. In other words, T has n − |P| tiles. (As the proof of Lemma 4 is
constructive, it is not hard to check thatP can be computed in polynomial time.) As T
is f (r)-approximate, |T | ≤ f (r) optFT and hence, n − |P| ≤ f (r) optFT. Applying
Inequality (1) we thus obtain

n − |P| ≤ f (r)
(
n − opt3DM

)
. (2)

We create a partition P1 = P1
3 ∪ P1

g(r)+1 from P as follows. Obtain P1
3 by picking,

for each part P ∈ P which contains a triple of D, one triple E ∈ D with E ⊆ P and
putting E (as a set) into P1

3 . To create P1
g(r)+1, if |F\⋃

P∈P1
3
P| < g(r) + 1, then

put F\⋃
P∈P1

3
P into P1

g(r)+1 as a single set of size at most g(r). In this case we call

P1
g(r)+1 degenerate. Otherwise, putP1

g(r)+1 to be an arbitrary partition of F\ ⋃
P∈P1

3
P

into parts of size g(r) + 1 and, perhaps, one part of size at least g(r) + 2 and at most
2g(r)+ 1. Note that P1

3 is admissible for S because each triple in P1
3 is not contained

in any set in S by definition of S. We claim that |P1| ≥ |P|. Clearly, for each part in
P that contains a triple of D there is at least one part also in P1. Furthermore, since S
contains all g(r)-element sets which do not contain any triple of D, each set P ∈ P
that does not contain a triple from D must contain at least g(r) + 1 elements because
P is admissible for S. Hence, |P1| ≥ |P|. From Inequality (2) it follows that

n − |P1| ≤ f (r)
(
n − opt3DM

)
. (3)

Note that the three-element sets in P1, i.e., P1
3 , form a three-dimensional match-

ing for the instance (X,Y, Z , D). The sets in P1
3 will form our r -approximate

three-dimensional matching M after one further augmentation step. The aim of this
augmentation is to bound |P1

3 | by a function of |P1
g(r)+1|. This enables us to give a

lower bound on |M | via the size of P1.
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Consider the following modification of P1. If there is a triple in D that is disjoint
from

⋃
P∈P1

3
P , then add this triple toP1

3 . If we now have |F\⋃
P∈P1

3
P| < g(r)+1,

then replace the sets in P1
g(r)+1 by the single set F\⋃

P∈P1
3
P . Otherwise, replace

P1
g(r)+1 by an arbitrary partition of F\⋃

P∈P1
3
P into parts of size g(r) + 1 and,

perhaps, one part of size at least g(r) + 2 and at most 2g(r) + 1.
We claim that the above two modification steps do not decrease the number of sets

in P1. This is clear if P1
g(r)+1 was degenerate before applying them. Otherwise, we

have |F\⋃
P∈P1

3
P| > g(r) + 3 before applying the modification. Hence, each set

in P1
g(r)+1 had size at least g(r) + 1 ≥ 4. Since we moved only three elements from

these sets to P1
3 and afterwards repartition the remaining elements with sets of size at

least 4, the total number of sets cannot decrease.
As before,P1

3 remains admissible forS. LetP2 be the partition obtained by exhaus-
tively applying the abovemodification, letP2

3 equal the resulting setP1
3 and letP2

g(r)+1

be the resulting setP1
g(r)+1.We define the three-dimensional matchingM as the family

of three-element parts inP2∩D, that isM = P2
3 . Asmentioned, we have |P2| ≥ |P1|.

From Inequality (3) it thus follows that

n − |P2| ≤ f (r)
(
n − opt3DM

)
. (4)

It remains to show that M is r -approximate (for appropriate functions f (r) and g(r)).
We now claim that 12|P2

3 |/(g(r) + 1) ≥ |P2
g(r)+1|. If P1

g(r)+1 is degenerate and

if this relation does not hold, then |F | is upper bounded by 3|P2
3 | + g(r) − 1 <

3(g(r)+1)/12+g(r)−1, that is, |F | is upper bounded by a constant. Hence, we may
compute the optimal solution in constant time in this case. Thus, we may, without loss
of generality, assume that the relation holds if P1

g(r)+1 is degenerate.

IfP1
g(r)+1 is not degenerate,we claim that the abovemodification ofP1 is applicable

as long as 12|P1
3 | < (g(r)+1)|P1

g(r)+1|, where the right hand side bounds the number
of unmatched elements. Indeed, since each element in F = X ∪Y ∪ Z is contained in
at most three triples in D, for each triple E in P1

3 , there are at most twelve elements
of F whose incident triples in D cannot be added to P1

3 , because they overlap with E .
Hence, if 12|P1

3 | < (g(r) + 1)|P1
g(r)+1|, then there exists at least one element of F

whose incident triples do not overlap with any triple in P1
3 . This means that at least

one triple will be added to P1
3 in the above modification step, because, without loss of

generality, each element is in at least one triple. This indeed implies for partition P2

(after exhaustive modification) that 12|P2
3 |/(g(r) + 1) ≥ |P2

g(r)+1|. We thus have

n − |P2| = n −
(∣∣∣P2

3

∣∣∣ +
∣∣∣P2

g(r)+1

∣∣∣
)

≥ n −
(
1 + 12

g(r) + 1

) ∣∣∣P2
3

∣∣∣ ,
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and since P2
3 = M , in combination with Inequality (4) we have

n −
(
1 + 12

g(r) + 1

)
|M | ≤ f (r)

(
n − opt3DM

)
.

Thus,

g(r) + 1

g(r) + 13
· (

(1 − f (r))n + f (r) opt3DM
) ≤ |M |. (5)

The same modification that we applied above to (the three-element sets of) P1 works
for each three-dimensional matching. As we cannot improve a maximum three-
dimensional matching, each element of F is either matched—of this type there are
3 opt3DM elements—or it is in a triple together with a matched element—of this type
there are at most 12 opt3DM elements because each element is in at most three triples
in D. Hence, n ≤ 3 opt3DM +12 opt3DM = 15 opt3DM. Note that 1 − f (r) < 0.
Inequality (5) thus implies

g(r) + 1

g(r) + 13
· (15 − 14 f (r)) · opt3DM ≤ |M |. (6)

We now define f and g by setting g(r) := max{3, �13r/(1 − r)�} and

f (r) := − rg(r) − 13r + 15g(r) + 15

14g(r) + 14
.

Clearly, g(r) ≥ 3 as required. We claim also that f (r) > 1. To see this, consider
subtracting the denominator from the numerator in f (r) to obtain x , that is,

x := − rg(r) − 13r + 15g(r) + 15 − 14g(r) − 14

= − rg(r) − 13r + g(r) + 1 = (1 − r)g(r) − 13r + 1.

If 3 ≤ 13r/(1 − r), then x ≥ (1 − r) · 13r
1−r − 13r + 1 > 0, that is f (r) > 1. If

3 > 13r/(1 − r) then r < 3/16. Thus, x ≥ (1 − 3/16) · 3 − 13 · 3/16 + 1 = 1 > 0
and again f (r) > 1. Thus, these are suitable definitions. All that remains is to show
that the approximation factor in Inequality (6) is at least r , that is,

g(r) + 1

g(r) + 13
· (15 − 14 f (r)) ≥ r. (7)

Observe that

15 − 14 f (r) = 15g(r) + 15

g(r) + 1
− 15g(r) + 15 − rg(r) − 13r

g(r) + 1
= rg(r) + 13r

g(r) + 1
.
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Hence,

g(r) + 1

g(r) + 13
· (15 − 14 f (r)) = rg(r) + 13r

g(r) + 13
= r.

This implies that Inequality (7) holds. Hence, there is a PTAS-reduction from Max-

imum Bounded 3- Dimensional Matching toMinimum Feasible Tileset.
NP-hardness of the decision version of Minimum Feasible Tileset follows from

the following modification to the reduction above. Instead of Maximum Bounded

3- Dimensional Matching we reduce from the NP-hard decision problem which
asks whether there is a three-dimensional matching with n/3 triples [16]. We use
the reduction above and set g(r) = 3 and the desired feasible tileset size to 2n/3.
As mentioned, this can be done in polynomial time. For the correctness, each three-
dimensional matching of size n/3 is also an admissible partition for S. Hence, it
implies a feasible tileset of size n−n/3 = 2n/3 by Lemma 4. In the reverse direction,
each feasible tileset of size 2n/3 implies an admissible partition with n/3 parts by
Lemma 4. Each of these parts is of size three because S contains all size-two subsets
of F . Among sets of size three, the only sets not contained in S are precisely the
sets in D; hence, each part of an admissible partition is in D. That is, any admissible
partition is a three-dimensional matching as well. 
�

4 A 4/3-Approximation for Minimum Feasible Tileset

In this section, we propose an approximation algorithm for Minimum Feasible

Tilesetwith unbounded scenario size. Motivated by the structural insights of Sect. 2,
we construct a tileset that induces a forest in the corresponding graph, with the prop-
erty that none of its components are contained in a single scenario. Since a component
of size k requires k − 1 tiles, we additionally aim for small components in order to
keep the resulting tileset small.

We first take as many components of size two as possible among all disjoint sets
of two symbols that are not both contained in the same scenario. This can easily be
achieved by computing a maximum matching in the graph that has an edge for each
candidate component. Similarly, among all remaining symbols, we try to form many
(disjoint) components of size three, without creating components that are contained
in a single scenario. For this, we employ a simple greedy strategy, that repeatedly
takes any possible component until no possible candidates remain. (While there are
better packing strategies available for sets of size three, we will see that improving the
packing strategy alone does not improve our approximation ratio.) Finally, for each
leftover symbol we add an individual tile (pairing that symbol in such a way as to
prevent cycles).

We give a more formal listing in Algorithm A. We use F̄i (F ′) = {C ∈ (F ′
i

) |
∀S ∈ S : C � S} to denote the family of all sets of symbols in F ′ that are of size i
and not fully contained in a single scenario. In the following, we identify connected
components with their sets of vertices.
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Algorithm A: 4/3-approximation for minimum feasible tilesets

Input: A set F of symbols and a set S of scenarios, where S ⊆ 2F\{F}.
Output: A set of tiles T .
T2 ← maximum matching in graph G(F̄2(F)).
P ← greedy set packing of F̄3(F\ ⋃

t∈T2 t).
T3 ← ⋃

{ f1, f2, f3}∈P {{ f1, f2}, { f2, f3}}.
if T2 ∪ T3 �= ∅ then take froot to be an arbitrary element of

⋃
t∈T2∪T3 t else take froot to be an

arbitrary element of F .
T1 ← {{ f, froot} | f ∈ F\ ⋃

t∈T2∪T3 t , f �= froot}.
return T = T1 ∪ T2 ∪ T3.

Theorem 3 Algorithm A computes a 4/3-approximation for Minimum Feasible

Tileset.

Proof The samemodification thatwe of tilesT = T1∪T2∪T3 computed byAlgorithm
A is feasible for S. First observe thatG(T ) is a forest. This is true, becauseG(T2∪T3)
consists of trees of sizes 2 and 3, G(T1) is a star, and T1 ∩ (T2 ∪ T3) contains at
most one node ( froot). Using Theorem 1 it only remains to show that no connected
component C of G(T ) is contained in any scenario S ∈ S, i.e. C ∩ S � C . By
the definition of Algorithm A this is true for all connected components of the graph
G(T2∪T3). If T2∪T3 �= ∅, then each component ofG(T ) is a superset of a component
ofG(T2∪T3), and is thus not contained in any scenario. IfT2∪T3 is empty, thenG(T ) =
G(T1) consists of a single component that is not contained in any scenario, since, by
definition, F /∈ S. Thus T is feasible for S.

We now bound the size of T with respect to a minimum cardinality tileset T �. To
do this we distribute virtual currency (gold) to the symbols in F , such that the total
gold distributed is 4/3 times the size of T �. We later use this gold to pay one unit of
gold to certain symbols that these can in turn use to provide for (at most) one tile of
T that involves this symbol. To complete the proof, we establish that each tile of T is
provided for by one of its two symbols.

Let G� := G(T �) be the graph induced by T � and F̄�
i be the set of connected

components of size i ∈ {2, . . . , |F |} in G�. By Lemma 1, we may assume that G� is a
forest. Furthermore, because each symbol appears in at least one scenario, graph G�

does not contain components of size 1. Since the symbols in a component of size i > 1
are part of exactly i − 1 tiles in T �, we may distribute all the available gold by giving
4/3 · i−1

i gold to each symbol in a component of F̄�
i , for all i ∈ {2, . . . , |F |}. This gold

is used to pay symbols in what follows.We call a symbol s ∈ F sufficiently paid if one
of the following holds: (i) s is paid, (ii) s appears in a tile T ∈ T2 and the other symbol
of T is paid, or (iii) s appears in a tile T ∈ T3 and the other two symbols in the same
component of G(T3) are paid. Below, we show how to sufficiently pay all symbols.
This completes the proof, since then all tiles in T1 ∪ T2 ∪ T3 can be provided for (note
that then each tile in T1 contains its own paid symbol). We call a component of G�

sufficiently paid, if all its symbols are sufficiently paid. Let F�≥4 := F\⋃
C∈F̄�

2 ∪F̄�
3
C

be the set of all symbols not in components of size two or three in G�. In paying
the symbols we will maintain the invariant that each element of F̄�

2 ∪ F̄�
3 ∪ F�≥4 is
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Fig. 1 Illustration of the graph H that has as its nodes the components of sizes 2 and 3 in G� and all
symbols that appear in components of other sizes. An edge between symbols corresponds to a tile in T2

either sufficiently paid, or it still holds its gold (all its symbols still hold their gold,
respectively).

We define a graph H = (V, E) that has the components in F̄�
2 ∪ F̄�

3 as its vertices,
as well as the symbols that are not part of these components, i.e., V = F̄�

2 ∪ F̄�
3 ∪ F�≥4

(see Fig. 1). In this way, each vertex of H represents up to three symbols. For each
tile T ∈ T2 we introduce an edge connecting the vertices of H representing the two
symbols of T , possibly introducing self-loops. Since T2 is a matching, and since the
vertices in H represent at most three symbols each, all vertices in H have degree at
most 3. We partition the edges of H into paths, cycles, and self-loops, and show for
each how to use the gold remaining at its vertices to pay all symbols in the components
ofG� that are intersected by the path/cycle/self-loop.Wewill ensure that every symbol
(except possibly froot) on a tile in T1 is paid. Since each symbol on a tile of T2 appears
only exactly on this and no other tile of T2 ∪ T3, it is thus sufficient to pay only one of
the two symbols on each tile of T2.

Let P be the set of all paths in H connecting (different) vertices of degree 1 or 3
with internal nodes of degree 2. Consider the paths in P one by one. We use the gold
available along the path P ∈ P of length k as follows (cf. Fig. 2). Let N2, N3 be the
number of internal nodes of P that represent 2 and 3 symbols, respectively. Note that
P has no inner nodes that represent a single symbol, since T2 is a matching, and hence
k = 1+N2+N3. Also, P is the only path visiting these inner nodes and hence they all
still hold their gold. Let N end

1 , N end
2 , N end

3 ≤ 2 be the number of endpoints of P that
still hold gold and represent 1, 2, and 3 symbols, respectively. Similarly, let N end

0 be
the number of endpoints without gold. By our invariant, the symbols or components
represented by the endpoints without gold left have already been sufficiently paid
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Fig. 2 Illustration of our procedure for paying all symbols represented by the nodes along a path in graph H .
Shaded components have been sufficiently paid for previously. For the top path we have N end

1 = N end
3 = 1,

N2 = 3, N end
0 = N end

2 = N3 = 0. For the bottom path we have N end
0 = N end

2 = 1, N2 = 2, N3 = 1,

N end
1 = N end

3 = 0

before. We make sure that all other nodes along P are sufficiently paid. We do this by,
for all tiles that form the path P , paying one of the two corresponding symbols, and,
in addition, paying every further symbol represented by nodes along P . Note that this
preserves the invariant. The total cost is

C− = k+N end
2 + 2N end

3 + N3 − N end
0 = 1 + N end

2 + 2N end
3 + N2 + 2N3 − N end

0 .

(8)

Using the fact that each endpoint of P that contributes to N end
1 represents a symbol

that is part of a component in G� of size i ≥ 4, we get that the gold available at this
symbol is at least 4

3 · i−1
i ≥ 1. Hence, the gold available to us is at least

C+ = 4

3

(
N end
2 + 2N end

3 + N2 + 2N3 + 3

4
N end
1

)
. (9)

Since N end
0 + N end

1 + N end
2 + N end

3 = 2, we get

C+ − C− = 1 − 2

3
N end
2 − 1

3
N end
3 + 1

3
N2 + 2

3
N3.

Hence, we have C+ ≥ C−, unless N end
2 = 2 and N end

0 = N end
1 = N end

3 = N2 =
N3 = 0, i.e. P is of length one, connecting two tiles p1, p2 ∈ F̄�

2 by an edge which
corresponds to a tile t ∈ T2. To see that this case cannot occur, observe that, first, p1
and p2 are of degree 1 in H . Second, since T � is feasible, no component of G� is
contained in a single scenario (Theorem 1), and thus p1, p2 ∈ F̄�

2 ⊆ F̄2(F). This is a
contradiction to T2 being a maximum matching in graph G(F̄2(F)), as the matching
can be augmented by removing t and adding p1 and p2.

Similarly to the above, we can consider all cycles in H with at most one node of
degree 3 one by one. (Note that cycles with at least two nodes of degree 3 contain a
path as before.) If a cycle of length k does not contain a node of degree 3, or the node
of degree 3 is not yet sufficiently paid (and thus still holds its gold), the cost for the
cycle and its available gold are

C− = k + N3 = N2 + 2N3 = 3

4
C+ < C+,
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8, 8 16
3 , 5 8

3 , 2 0, 0 16
3 + 1, 6 8

3 + 1, 3

1, 0 8
3 + 2, 4 2, 1 3, 2 16

3 , 5 8
3 , 2

8
3 , 2

0, 0 8
3 + 1, 3 1, 0 16

3 , 5 8
3 , 2 0, 08

3 , 2
8
3 , 2

Fig. 3 Possible intersections of components of G(T3) (arcs) and G� (ellipses). Shaded components have
been sufficiently paid previously. Configurations are labeled by the available goldC+ and the required gold
C−. Symmetrical configurations are omitted

where N2, N3 are the numbers of nodes of P that represent 2 and 3 symbols, respec-
tively. If the node of degree 3 has no gold left, then it has already been sufficiently
paid and C− = N2 + 2N3 − 3 < 3

4C
+. In either case, the available gold allows to

sufficiently pay all nodes along the cycle. Finally, each self-loop in H connects two
symbols in the same component C of size 2 or 3 in G�. If |C | = 2, then the gold
available among the two symbols is C+ = 4

3 , while we require only C− = 1 unit of
gold. If |C | = 3, then we have C+ = 8

3 and C− = 2.
After processing all paths, cycles, and self-loops all nodes of H intersecting a tile of

T2 are sufficiently paid. In particular, since T2 is a maximummatching, all components
in F̄�

2 are sufficiently paid. In the next step we ensure that all components of F̄�
3 are

sufficiently paid. By construction, every element of F̄�
3 , that is not sufficiently paid

yet, intersects at least one tile of T3. We can thus consider the components of G(T3)
one by one and make sure to sufficiently pay each element of F̄�

3 that intersects the
considered component of G(T3).

Consider a component of G(T3) involving the three symbols f1, f2, f3 (cf. Fig. 3
in the following). Let C3 ⊆ F̄�

3 be the set of components of size 3 in G� that involve at
least one of these symbols and have not yet been sufficiently paid (i.e., still hold their
gold). Further, let Nn be the number of symbols among { f1, f2, f3} ∩ F�≥4 that are

not yet sufficiently paid. Since all components in F̄�
2 are sufficiently paid, the gold we

have available is at least C+ ≥ 4
3 (2|C3|+ 3

4Nn). We ensure that (at least) two symbols
among f1, f2, f3 are paid, as well as all other symbols appearing in C3. In this way,
each component in C3 is sufficiently paid. Note that this preserves our invariant that
each element of F̄�

2 ∪ F̄�
3 ∪ F�≥4 is either sufficiently paid, or still holds its gold. The

cost for paying the symbols f1, f2, f3 is at most 2. Since in addition to f1, f2, f3
there are 3|C3|+ Nn −3 symbols needing pay in

⋃
C∈C3 C ∪{ f1, f2, f3}, and because

|C3| ≤ 3, the total cost is

C− ≤ 3|C3| + Nn − 1 ≤ 8

3
|C3| + Nn ≤ C+.
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At this point, we have sufficiently paid all components in F̄�
2 ∪ F̄�

3 using gold only
from these components. Thismeans that all remaining symbols that are not sufficiently
paid yet have at least 43 · 4−1

4 = 1 gold available, whichwe can use to pay these symbols
themselves. Now all elements of F̄�

2 ∪ F̄�
3 ∪ F�≥4 have been sufficiently paid and the

proof is complete. 
�

Our analysis of Algorithm A is tight in three different spots: (i) a path of length
1 in the graph H defined above that visits a component of size 2 and a component
of size 3 of the optimum solution T may lead to 4 tiles in our solution compared
with the 3 tiles required in the optimum solution, i.e., Eqs. (8) and (9) coincide if
N end
2 = N end

3 = 1 and all other terms vanish. (ii) The first intersection of a component
ofG(T3)with components ofG� illustrated in Fig. 3 may lead to 8 tiles in our solution
compared with the 6 tiles required in the optimum solution. (iii) Each symbol of a
component of size 4 in G� might result in a single tile for this symbol only, in which
case the optimum solution requires 3 tiles for the symbols of the component, while
our solution requires 4 tiles. To improve AlgorithmAwe have to address each of these
three bottlenecks. For (i), we either would have to alter the matching T2 to prevent
the described situation, or combine the analysis to account for the loss in other places.
The aspect (ii) can easily be prevented by employing a more sophisticated set packing
algorithm (e.g., the (4/3+ ε)-approximation of Cygan [7]). Finally, to avoid (iii), we
would need to pack sets of size 4 similarly to our packing of sets of size 3. In addition
to requiring one more level of analysis, this would also complicate the other levels, as
we would have to include sets of size 4 in our reasoning there.

5 Bounded Number of Scenarios

In this section, we prove that Minimum Feasible Tileset can be solved in polyno-
mial time when the number |S| of scenarios is some constant. For convenience, for
the course of this section, we switch to the decision variant of Minimum Feasible

Tileset. That is, we equip each instance (F,S) of Minimum Feasible Tileset

with an additional integer � and we ask whether there is a feasible tileset for S with at
most � tiles. Clearly, solving the decision variant in polynomial time implies that also
the optimization variant is solvable in polynomial time. We provide an algorithm that
solves any instance (F,S, �) in time f (|S|)|(F,S, �)|c, i.e., in time O(|(F,S, k)|c)
for bounded values of |S|. In other words, Minimum Feasible Tileset is fixed-
parameter tractable with respect to the number of scenarios.

Our algorithm works by first translating the input instance (F,S, �) into an integer
linear program (ILP) in such a way that the ILP is feasible (i.e., contains at least one
integer point) if and only if (F,S, �) admits a feasible tileset with at most � tiles.
The ILP usesO(|S||S|) variables. Lenstra [23] proved that deciding feasibility of any
ILP is fixed-parameter tractable with respect to the number of variables; the currently
fastest algorithm was obtained by Frank and Tardos [15], modifying an algorithm by
Kannan [21].
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Theorem 4 (Frank and Tardos [15]) In O∗(pO(p)) time we can decide whether a
given ILP with p variables is feasible.1

Using this, we can prove the following result.

Theorem 5 Minimum Feasible Tileset on instances with at most k scenarios can
be solved in time O∗(kO(kk+1)).

Intuitively, a bounded number of scenarios also implies a bound on the number of
different subsets of scenarios in which a tile can appear. Thus, one would like to forget
the actual identities of the symbols and only remember how many symbols appear,
say, exactly in scenarios S1, S5, and S6. It appears, however, that grouping symbols
in this way is insufficient since symbols from the same group can nevertheless have
different patterns for how they are provided by tiles: e.g., one tile could provide such a
symbol in all three scenarios S1, S5, and S6, whereas other symbols of the same group
might need three separate tiles for S1, S5, and S6. To cope with this, the constructed
ILP has separate variables for all partitions of scenario subsets as well as variables
for all ways of using a tile (recall that a tile has two symbols, meaning that it has two
disjoint subsets of the scenario that express when either symbol is provided by the
tile).

Proof (Theorem 5) We formulateMinimum Feasible Tileset as an ILP and employ
Kannan’s algorithm. Intuitively, each tile contributes both of its symbols to different
(disjoint) subsets of the scenarios. For example, if we have 5 scenarios, a tile might
contribute one of its symbols to scenarios 1 and 4, the other to scenarios 3 and 5, and
neither to scenario 2. Each tile is associated with such a pattern of how it contributes to
scenarios, and one part of the variables of our ILP track the number of tiles having each
of the possible patterns. On the other hand, each symbol has a pattern associated with
it, depending on which occurrences of the symbol are provided by the same tile. In our
example, a symbol appearing in scenarios 1, 2, and 4 might be provided by the same
tile in scenarios 1 and 4, and by a different tile in scenario 2. The remaining variables of
the ILP track the number of symbols having each of the possible patterns. We provide
exchange arguments to show that enforcing correct totals for these variables by linear
constraints is sufficient to ensure that a feasible assignment of tiles to symbols exists
for each scenario.

ILP Formulation To make our description precise, let an instance (F,S, �) with
k scenarios S = {S1, . . . , Sk} be given. For brevity, we refer to a subset of S by
the corresponding index set. For every subset I ⊆ [k] of scenarios we count the
number of symbols that occur exactly in these scenarios and denote this number
by cI = |⋂i∈I Si\

⋃
i /∈I Si |. The family of all partitions of I is denoted by�(I ). The

ILP is constructed as follows.

1. For each set I ⊆ [k] and each partition I = {I1, . . . , Is} ∈ �(I ) we introduce a
variable yI . The intention is that variable yI counts the number of symbols that
occur (exactly) in scenarios I := I1 ∪ . . . ∪ Is and have the pattern I associated

1 Recall that O∗-notation ignores factors that are polynomial in the input size.
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with them, in the following way: exactly s tiles, say, T1, . . . , Ts , are used for such
a symbol and the symbol is provided by tile Ti in the scenarios Ii .
For each I we add a constraint that enforces the total number of patterns to equal
the number cI of symbols that occur in the scenarios I :

cI =
∑

I∈�(I )

yI ∀ I ⊆ [k].

For example, if I = {1, 2, 3}, the following variables are created:

y{{1,2,3}}, y{{1,2},{3}}, y{{1,3},{2}}, y{{2,3},{1}}, y{{1},{2},{3}}.

The number of y-variables equals the number of subpartitions of the set [k]. This is
upper bounded by kk + 1: we can k-color all subpartitions other than the partition
into singletons by using color k for all unused elements and colors 1, . . . , k − 1
for the elements of each set in the partition (only the partition into singletons has k
sets). Thus, we get an injective mapping of all but one subpartition into the k
colorings of [k]; this gives a total of kk + 1.

2. For the tiles, we introduce variables xI,J for all I, J ⊆ [k] with I ∩ J = ∅ and I ∪
J �= ∅; for convenience we identify xI,J = xJ,I . Intuitively, the variable xI,J
stands for the number of tiles that provide one of their symbols for scenarios I and
the other symbol for scenarios J .
For example, for k = 3 we create the following variables:

x∅,{1}, x∅,{2}, x∅,{3}, x∅,{1,2}, x∅,{1,3}, x∅,{2,3}, x∅,{1,2,3},
x{1},{2}, x{1},{3}, x{1},{2,3}, x{2},{3}, x{2},{1,3}, x{3},{1,2}.

The number of x-variables is 3k−1
2 corresponding to all partitions of [k] into three

sets (i.e., I , J , and [k]\(I∪ J )), without I = J = ∅, and identifying xI,J with xJ,I .
We add constraints that enforce that the number of tiles of each pattern match the
sum of the corresponding y-variables. Concretely, we add

∑

I⊆J⊆[k]
J ∈�(J )
I∈J

yJ =
∑

J⊆[k]\I
xI,J ∀ I ⊆ [k], I �= ∅. (10)

We compare the number of tiles that provide one of their symbols for the scenar-
ios in I with the number of symbols that have I in their pattern. For the set of
scenarios J such symbols appear in we must have I ⊆ J ⊆ [k], and we need
partitions J ∈ �(J ) that contain I .
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3. As a final constraint we enforce that the total number of used tiles is no more
than �. To this end, we simply sum over all x-variables and add

1

2

∑

I,J⊆[k]
I∩J=∅
I∪J �=∅

xI,J ≤ �.

This completes our construction. We use p ≤ kk + 1 + 3k−1
2 = O(kk) variables

and, thus, Kannan’s algorithm decides feasibility of our ILP in time O∗(pO(p)) =
O∗((kk)O(kk )) = O∗(kO(kk+1)).

Correctness First assume that the given instance (F,S, �) of Minimum Feasible

Tileset admits a feasible tileset T of minimum cardinality |T | ≤ �. Since T is
feasible for each scenario Si ∈ S, we may let ϕi : Si → T be an injective function
that assigns each symbol in Si a unique tile in T that can provide it.We specify feasible
values for the x- and y-variables.

1. x-variables Each tile T ∈ T has two symbols, say, T = {s, s′}, and, hence, for
each i ∈ [k] it is the image of at most one of s and s′. Formally, let

I := {i ∈ [k] | ϕi (s) = T },
J := { j ∈ [k] | ϕ j (s

′) = T }.

That is, the set I contains all scenarios for which tile T provides symbol s, and J
is the analogue for symbol s′. Since the functions ϕi are injective, we must have
that I ∩ J = ∅.
Wehave I∪J �= ∅ as otherwise T would not be used for any scenario, contradicting
the minimality of T . We say that tile T has the pattern {I, J }.
For each I, J ⊆ [k] with I ∩ J = ∅ and I ∪ J �= ∅, we set xI,J to the number
of tiles with the pattern {I, J }. Clearly, the constraint forcing the total value of
the x-variables to be at most � is fulfilled since |T | ≤ �.

2. y-variables Similarly to the tiles in T we determine a pattern for each symbol s ∈
F . We let T (s) := {T ∈ T | ∃i ∈ [k] : ϕi (s) = T } = {T1, . . . , Tr }, i.e., the set
of tiles that provide s in at least one scenario. Let I ⊆ [k] be the set of scenarios
containing s. We define a partition {I1, . . . , Ir } of I by

Ip := {i ∈ [k] | ϕi (s) = Tp},

for all p ∈ [r ]. We say that symbol s has the pattern {I1, . . . , Ir } ∈ �(I ).
For each I ∈ [k] and each partition I ∈ �(I ) we set yI to the number of symbols
in F with the pattern I. Clearly, this fulfills the constraint that all y-variables
whose pattern is a partition of some set I ⊆ [k] equals the total number cI of
symbols that occur exactly among the scenarios in I .
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It remains to verify that the constraint relating x- and y-variables is satisfied. To this
end, let us fix some I ⊆ [k], I �= ∅, and consider the constraint

∑

I⊆J⊆[k]
J ∈�(J )
I∈J

yJ =
∑

J⊆[k]\I
xI,J .

For each tile T ∈ T that contributes to the right-hand side, there must be a unique
symbol s in F , such that ϕi (s) = T if and only if i ∈ I . For this symbol, we
have T ∈ T (s), the set of scenarios J containing s satisfies I ⊆ J ⊆ [k], and I is
part of the pattern of s. Hence, s contributes to the left-hand side. Conversely, if s is a
symbol contributing to the left-hand side, then I must be part of the pattern of s. This
means that there is a unique tile T ∈ T , such that ϕi (s) = T if and only if i ∈ I .
This tile has I in its pattern and thus contributes to the right-hand side. Overall, the
contribution to both sides is equal, and our assignment to x- and y-variables is feasible,
as claimed.

Now, assume that the ILP constructed from (F,S, �) is feasible and fix a feasible
assignment to the x- and y-variables. We derive a feasible tileset for all scenarios in S.
The set of all symbols can be partitioned according to the scenarios I ⊆ [k] that each
symbol appears in. The total count cI of the symbols in I is matched by the sum of
the y-variables that are indexed by the partitions I ∈ �(I ). We arbitrarily assign to
each symbol with scenario set I a pattern I ∈ �(I ) under the sole constraint that the
total number of symbols with the pattern I matches the corresponding variable yI .
For a symbol with the assigned pattern I = {I1, . . . , Ir } the intention is to use r
tiles T1, . . . , Tr that are each responsible for one set Ip ∈ I.

We will use a number of tiles that exactly matches the sum of the x-variables, and
thereby ensure that the final tileset has cardinality at most �. We do not pick symbols
for each tile but, according to the x-variables, we pick for each tile two disjoint sets
of scenarios in which its two symbols will be used. Concretely, exactly xI,J tiles will
be used in I -scenarios for one symbol and in J scenarios for their other symbol, i.e.,
we use xI,J tiles of the pattern {I, J }. Recall that I ∩ J = ∅ and that the sum of these
variables does not exceed the maximum number of allowed tiles �.

Finally, we assign symbols to tiles according to symbol and tile patterns in a canoni-
cal way. Specifically, symbols whose pattern contains some fixed I ⊆ [k] are assigned
to tiles that contain I in their pattern. By constraint (10) the number of symbols and
the number of tiles are equal. Note that each tile is used for two disjoint sets I, J ⊆ [k]
and each variable xI,J appears in two (10)-constraints (for I and for J ). Thus, each
tile with the pattern {I, J } is assigned two symbols, one requiring the tile for the
scenarios in I and the other requiring it the ones in J . Similarly, a symbol with the
pattern I = {I1, . . . , Ir } contributes to r constraints (10), one for each I1, . . . , Ir .
Accordingly, these constraints enforce the correct sum of the corresponding vari-
ables xI1,·, . . . , xIr ,·. (Recall that we identified xI,J with xJ,I .)

We argue that the constructed tileset is indeed feasible for all scenarios Si ∈ S.
Consider any symbol s ∈ Si with the pattern J . Since s appears in Si , we have i ∈
I ∈ J for some set I . By the above, we know that there is a tile T containing s that
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has I as a part of its pattern {I, J }. Since, by definition, I ∩ J = ∅, we have i /∈ J
and may safely use T for symbol s in scenario Si . 
�

6 Bounded Number of Symbols

We now analyze the influence of the number of symbols |F | on the complexity of
solving an instance (F,S, �) of the decision variant of Minimum Feasible Tileset.
(That is, as in Sect. 5, we want to decide whether there is a feasible tileset for S with
at most � tiles.) It is easy to see that the problem becomes solvable in polynomial time
when F is bounded: The instance is trivial if � ≥ |F | since, in that case, we can afford
to dedicate a separate tile for each symbol. Otherwise, there are only O(|F |2�) ⊆
O(|F |2|F |) ways to fix � tiles. As mentioned in Sect. 3, each candidate tileset can be
verified by solving a bipartite matching problem for each scenario, on a graph that has
an edge between each symbol in the scenario and every tile containing that symbol.
This yields an overall runtime ofO∗(|F |2|F |), and, hence, fixed-parameter tractability
in |F |. Using the structural insights of Sect. 2 we are able to improve on this naive
running time.

Theorem 6 Any instance (F,S, �) of the decision variant of Minimum Feasible

Tileset can be solved in time O∗(3|F |).

Note that, as every symbol occurs in a scenario, � ≥ |F |/2. Hence, Theorem 6
gives a fixed-parameter algorithm also for parameter �.

Proof (Theorem 6) We describe a dynamic programming algorithm for solving an
arbitrary instance (F,S, �). Recall thatwemayassume � < |F |; otherwise the instance
is trivial. Our algorithm uses a table M of size 2|F | that is indexed by subsets D ⊆ F ,
with each entry taking integer values from [|F |]∪{−∞}.At the endof the computation,
each entry M(D)will be set to−∞ if D ⊆ S for some scenario S ∈ S, and otherwise
to the maximum integer i ∈ [|F |] for which there is a partition of D into i sets
D1, . . . , Di such that no scenario contains any set in {D1, . . . , Di } as a subset.

In the end, by Theorem1, the entryM(F) contains themaximumnumber of compo-
nents in the graph corresponding to a feasible tileset. Accordingly, every corresponding
tileset T has minimum cardinality. Hence, and since each connected component C in
the graph (F, T ) is composed of |C | − 1 tiles, the instance (F,S, �) admits a tileset
of size � if and only if M(F) ≥ |F | − �.

We fill out the entries of the table in order of increasing subset sizes. Each entry is
computed via the following recurrence. (Note that the 1 in the maximum taken over
subsets D′ of D stands for the trivial partition of D into just one set. This is the best
value in case that no split into at least two sets can be found such that both sets are not
subsets of scenarios.)

M(D) =
⎧
⎨

⎩

−∞, if D ⊆ S for some S ∈ S,

max D′⊂D
2≤|D′|≤|D|/2

{1, M(D′) + M(D\D′)}, otherwise.
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Thus, for each D ⊆ F that is not a subset of a scenario we need to compute the
maximum of M(D′) + M(D\D′) over less than 2|D| subsets D′ of D. By the well-
known binomial theorem the total number of evaluations taken over all D ⊆ F can
be upper bounded by 3|F | giving us the claimed runtime. 
�

After this fixed-parameter tractability result, and taking into account the trivial
bound of 2|F | for the number of scenarios (giving a worst-case size of instances
ofO(2|F ||F |)), it is natural to askwhether polynomial-time preprocessing can simplify
input instances to size polynomial in |F |. We show that this is impossible unless
NP ⊆ coNP/poly (and the polynomial hierarchy collapses).More generally,weprove
that for the restricted case d-Minimum Feasible Tileset, where scenarios have size
at most d, no polynomial-time algorithm can achieve a size of O(|F |d−ε). Note that
this restricted case has an essentially matching upper bound of |S| < (|F | + 1)d =
O(|F |d).2 As a consequence, there is no reduction to size polynomial in |F | for the
general Minimum Feasible Tileset problem: any size O(|F |c) preprocessing for
Minimum Feasible Tileset could be used for d-Minimum Feasible Tileset, for
any d > c, and violate the lower bound.

Theorem 7 Let d ≥ 3 and ε be a positive real. There is no polynomial-time algo-
rithm that reduces every instance of d-Minimum Feasible Tileset to an equivalent
instance (possibly of a different problem) of sizeO(|F |d−ε), unlessNP ⊆ coNP/poly.

To prove Theorem 7 we employ a similar result by Dell and Marx [8] for Exact
Cover by d- Sets, which is defined as follows.3

Exact Cover by d- Sets
Input: A universe X and a family C of d-element sets C ∈ (X

d

)
.

Problem: Is there an exact d-set cover for X , i.e., a partition of X into a family
C′ ⊆ C of disjoint sets?

Note that the original result by Dell and Marx [8] is given in terms of the size k of
an exact d-set cover. Clearly, k = |X |

d and, thus, we have O(kd−ε) = O(|X |d−ε) and
may instead phrase the result in terms of |X |. Furthermore, their result builds on work
by Dell and van Melkebeek [9] and, thus, extends to any polynomial time algorithms
(rather than just problem kernels as mentioned there) whose output instances can be
with respect to a different problem. We give the following paraphrased version of the
result.

Theorem 8 (Dell and Marx [8]) Let d ≥ 3 and ε be a positive real. There is no
polynomial-time algorithm that reduces every instance (X, C) of Exact Cover by

d- Sets to an equivalent instance of sizeO(|X |d−ε) (possiblywith respect to a different
problem), unless NP ⊆ coNP/poly.

The following lemma, together with Theorem 8, directly implies Theorem 7.

2 A compression to O(|F |d ) size can be achieved by specifying one bit for each possible scenario in S
and setting it to one if the scenario is present and zero otherwise.
3 Dell and Marx called this problem Perfect d- Set Matching.
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Lemma 5 There is a polynomial-time reduction from Exact Cover by d-
Sets to Minimum Feasible Tileset such that instances (X, C) are mapped to
instances (F,S, �) with F = X and scenario size at most d.

Proof (Lemma 5, Sketch) The proof is similar to the proof of NP-hardness in The-
orem 2. Given an instance of Exact Cover by d- Sets with universe X and a
family C we construct an instance (F,S, (d − 1)n/d) of Minimum Feasible Tile-

set with F = X and n = |X |. Applying the equivalence of finding a feasible tileset
of size (d − 1)n/d and finding an admissible partition for S of size n/d then gives
Lemma 5.

To construct the instance of Minimum Feasible Tileset, we simply set S =( X
d−1

) ∪ (
(X
d

)\C). Similarly to the reduction used for Theorem 2, the scenarios
( X
d−1

)

enforce that every admissible partition contains only parts of size exactly d. The
constraints

(X
d

)\C enforce that only sets of C occur in an admissible partition. Hence,
each admissible partition is also an exact d-set cover and vice-versa. 
�

We now consider a more general setting: In the Generalized Minimum Fea-

sible Tileset problem we are also given a set of symbols and a set of scenarios,
but here each scenario may be a multi-set of symbols (or, equivalently, each scenario
is a function S : F → N indicating the number of copies of each symbol f needed
for S). We prove that Generalized Minimum Feasible Tileset can be solved in
timeO∗(|F |O(|F |2)). Note that for this problem the solution size �may be much larger
than |F | and similarly the number of scenarios cannot in general be bounded in |F |.
Theorem 9 Generalized Minimum Feasible Tileset can be solved in time
O∗(|F |O(|F |2)), i.e., it is fixed-parameter tractable with respect to |F |.
Proof Let (F,S, �) be an instance of Generalized Minimum Feasible Tileset

and let k := |F |. We will construct an integer linear program (ILP) with
(k
2

) = O(k2)
variables andO∗(2k) constraints that is feasible if andonly if (F,S, �) admits a feasible
tileset with at most � tiles. Using Kannan’s algorithm (Theorem 4) then completes the
proof.

We introduce one variable xs,s′ ≥ 0 for each possible tile type, i.e., for each pair
of symbols s, s′ ∈ (F

2

)
. We interpret xs,s′ as the number of tiles of type s, s′ that the

solution will contain. We begin with the constraint ensuring that we do not use more
than � tiles overall:

∑

{s,s′}∈(F2)
xs,s′ ≤ �

We need to add constraints to the ILP to ensure that the resulting assignment to
the xs,s′ -variables corresponds to a feasible tileset, i.e., that each scenario S can be
implemented using the corresponding numbers of tiles of each type. This is the case if
and only if there is a matching from the symbols in S to the tiles that cover all symbols
in S. Clearly, in order not to use too many variables, we do not want to compute a
(one-sided perfect) matching for each scenario S. By Hall’s Theorem, it is instead
sufficient to ensure that for each subset I ⊂ F of symbols appearing at least once in
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scenario S there are at least that many tiles involving these symbols. If cs,S denotes the
number of occurrences of symbol s in scenario S, we obtain the following constraints:

∑

{s,s′}∩I �=∅
xs,s′ ≥

∑

s∈I
cs,S ∀ S ∈ S, ∀ I ⊆ F

In total we use
(k
2

) = O(k2) variables and 1 + m · 2k + (k
2

)
constraints. Using Kan-

nan’s algorithm for testing feasibility of an ILP with p variables in time O∗(pO(p))

(Theorem 4) we get a total running time of O∗(kO(k2)). 
�

7 Conclusion

We initiated the study of the Minimum Feasible Tileset problem and exposed an
interesting combinatorial structure. We proved the problem to be NP-complete even
in the restricted case with scenarios of size at most three and APX-hard in general. On
the positive side, we showed that the Minimum Feasible Tileset problem admits
a 4/3-approximation algorithm and that it is fixed-parameter tractable with respect to
the number of scenarios and number of symbols. The latter algorithm works also for
the Generalized Minimum Feasible Tileset problem where each scenario can
contain multiple copies of a symbol and we believe that it can be further generalized to
work also for the original assignment problem where also tiles of larger (but constant)
size are allowed. It would be interesting to see whether our other positive results
transfer to this more general setting. We note that our approximation algorithm relies
heavily on the structural observations from Sect. 2 which do not seem to generalize
well. Our integer linear program for a fixed number of scenarios does not seem easily
adaptable either.
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