
Journal of Combinatorial Optimization manuscript No.
(will be inserted by the editor)

Degree-constrained orientations of embedded graphs

Yann Disser · Jannik Matuschke

the date of receipt and acceptance should be inserted later

Abstract We investigate the problem of orienting the edges of an embed-
ded graph in such a way that the resulting digraph fulfills given in-degree
specifications both for the vertices and for the faces of the embedding. This
primal-dual orientation problem was first proposed by Frank for the case of
planar graphs, in conjunction with the question for a good characterization of
the existence of such orientations. We answer this question by showing that a
feasible orientation of a planar embedding, if it exists, can be constructed by
combining certain parts of a primally feasible orientation and a dually feasible
orientation. For the general case of arbitrary embeddings, we show that the
number of feasible orientations is bounded by 22g, where g is the genus of the
embedding. Our proof also yields a fixed-parameter algorithm for determining
all feasible orientations parameterized by the genus. In contrast to these pos-
itive results, however, we also show that the problem becomes NP -complete
even for a fixed genus if only upper and lower bounds on the in-degrees are
specified instead of exact values.

Keywords graph orientation · graph embeddings · planar graphs · fixed-
parameter tractability · complexity theory

An extended abstract of this article has appeared in the proceedings of the 23rd Interna-
tional Symposium on Algorithms and Computation (ISAAC 2012), Taipei, 2012 (Disser and
Matuschke, 2012).

Y. Disser, J. Matuschke
Institut für Mathematik, TU Berlin
Straße des 17. Juni 136, 10623 Berlin, Germany
E-mail: {disser,matuschke}@math.tu-berlin.de



2 Yann Disser, Jannik Matuschke

1 Introduction

Graph orientation is an area of combinatorial optimization that deals with the
assignment of directions to the edges of an undirected graph, subject to certain
problem-specific requirements. Besides yielding useful structural insights, e.g.,
with respect to connectivity of graphs (Robbins, 1939; Nash-Williams, 1960)
and hypergraphs (Frank et al, 2003), research in graph orientation is moti-
vated by applications in areas such as evacuation planning (Wolshon, 2001),
graph drawing (Eades and Wormald, 1990), or efficient data structures for
planar graphs (Chrobak and Eppstein, 1991).

A particularly well-studied class of orientation problems are degree-con-
strained problems, where the in-degree of each vertex in the resulting digraph
has to lie within certain bounds. Hakimi (1965) and Frank and Gyárfás (1976)
provided good characterizations1 for the existence of such orientations. In this
paper, we answer a question raised by András Frank2, asking for a good char-
acterization for the following problem: Given an embedding of a graph in the
plane, is there an orientation of the edges that meets prescribed in-degrees
both in the primal and the dual graph at the same time? We show that if such
an orientation exists, it is unique and can be computed by combining a feasible
orientation for the primal graph with a feasible orientation for the dual graph.
Our result generalizes to graph embeddings of higher genus, showing that the
number of feasible orientations is bounded by a function of the genus, and the
set of all solutions can be computed efficiently as long as the genus is fixed.
We also show that the problem becomes NP -complete as soon as upper and
lower bounds on the in-degrees are specified instead of exact values.

Outline. In the remainder of this section, we give a short introduction to
orientations and embedded graphs and discuss related work. Section 2 then
deals with the fixed-degree primal-dual orientation problem, which asks for an
orientation of a given embedded graph, such that exact in-degree prescriptions
are met not only for every vertex but also for every face of the embedding. The
section contains two different proofs that yield the answer to Frank’s question
for a good characterization: Section 2.1 comprises a combinatorial proof for
the uniqueness of the solution in plane graphs, also reducing the problem to
solving the original degree-constrained orientation problem once in the primal
and once in the dual graph. In Section 2.2, an alternative proof based on a
simple linear algebra argument also yields a bound on the number of feasible
orientations in embeddings of higher genus. In Section 3, we show that if
we accept upper and lower bounds on the in-degrees instead of exact values,
the problem becomes NP -complete. Finally, we point out open questions in
Section 4.

1 A good characterization of a decision problem in the sense of Edmonds (1965) is a de-
scription of polynomially verifiable certificates for both yes- and no-instances of the problem.

2 Personal communication at the Seminar of the Egerváry research group on combinatorial
optimization, February 2010.
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1.1 Preliminaries

We give a short introduction to graph embeddings and orientations of those
embeddings. Throughout this paper we will assume all graphs to be connected
but not necessarily simple, i.e., loops and multi-edges are allowed. While the
connectedness assumption is very common in the context of graph embed-
dings, all results presented here can be extended to non-connected graphs by
temporarily introducing additional edges (and adjusting the in-degree specifi-
cations accordingly) so as to render the graph connected.

Embedded graphs. An embedding of a graph is a mapping of its vertices and
edges onto a closed surface (e.g., a sphere or a torus) such that edges meet
only at common vertices. This mapping partitions the surface into several
regions, called faces. The dual of an embedded graph is the graph that is
obtained by the following procedure: For every face in the embedding, intro-
duce a vertex in the dual graph. For every edge of primal graph, introduce
an edge in the dual graph that connects the faces that are adjacent to the
original edge. The genus g of the embedding is determined by Euler’s formula:
If E is the set of edges, V is the set of vertices and V ∗ is the set of faces,
then |V |+ |V ∗| − |E| = 2− 2g.

Planar graphs and cycle/cut duality. If g = 0, i.e., the graph is embedded in a
sphere, the embedding is called planar (as embeddings in spheres and planes
are combinatorially equivalent). Planar embeddings have several features that
make them particularly interesting. In this work, we will make use of the
following fact, called cycle/cut duality, which holds—exclusively—in planar
embeddings: A set of edges is a simple cycle in the primal if and only if it is
a simple cut3 in the dual and vice versa (Whitney, 1932).

Orientation of primal an dual graphs. An orientation of a graph is an assign-
ment of directions to its edges, i.e., for every edge we specify one of the two
endpoints of the edge as its head and the other as its tail. By convention, we
orient the edges in the dual graph in such a way that they cross their primal
“alter egos” from right to left; see Fig. 1 for an example. Thus every orientation
of the primal graph induces an orientation of the dual graph and vice versa.
Given an orientation D, we denote the set of edges whose head is the vertex v
by δ−D(v) and the set of edges whose tail is v by δ+D(v). In accordance with our
convention for dual orientations, we let δ−D(f) be the set of edges whose left
face is f , and δ+D(f) be the set of edges whose right face is f . We mention that
our convention for primal and dual orientations extends cycle/cut duality in
the sense that a directed simple cycle in the primal is a directed simple cut
in the dual and vice versa, where a cut or cycle is directed if all its edges are
oriented in the same direction.

3 A simple cut is a cut whose edge set is minimal w.r.t. inclusion. In a connected graph,
a cut is simple if and only if it splits the graph into two connected components.
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Fig. 1 Induced orientations of the edges in the dual graph. Primal edges are drawn as
solid lines, dual edges are drawn as dashed lines. An edge in the dual graph crosses its
corresponding edge in the primal graph from right to left.

1.2 Related work

Research in graph orientation has a long history that revealed many interesting
structural insights and applications. Classic results include the orientation the-
orem by Robbins (1939) stating that an undirected graph is 2-edge-connected
if and only if it has an orientation that is strongly connected; see also the
generalizations by Nash-Williams (1960) and Frank et al (2003). Graph ori-
entation is also closely related to both graph drawing (Eades and Wormald,
1990; Biedl et al, 2005) and network flow theory. We will discuss the latter
connection in more detail below.

Degree-constrained orientations. Hakimi (1965) considered the fundamental
fixed-degree orientation problem: Given a graph G = (V,E) and in-degree
specifications α ∈ ZV+, find an orientation D such that |δ−D(v)| = α(v) for
every vertex v ∈ V . He showed that a feasible orientation exists if and only
if
∑
v∈V α(v) = |E| and

∑
v∈S α(v) ≥ |E[S]| for all S ⊆ V , where E[S] denotes

the set of edges with both endpoints in S. He also gave similar characteriza-
tions for the existence of orientations that fulfill either lower or upper bounds
on the in-degrees. Frank and Gyárfás (1976) observed that the results for
lower and upper bounds can easily be combined in a constructive way to find
orientations that fulfill upper and lower bounds at the same time. Also op-
timization versions of the degree-constrained orientation problem have been
studied. Gabow (2006) considered the problem of finding a subset of edges
with maximum cardinality that can be oriented without violating any degree
constraints, leaving the other edges unoriented. He derives a 3

4 -approximation
algorithm for this problem, which he also shows to be MAXSNP-hard. Asahiro
et al (2012) investigated a version where a penalty function on the violated
degree-bounds is to be minimized. They found that the problem is solvable in
polynomial time if the penalty function is convex, but APX-hard in case of
concave penalty functions.
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Orientations of planar graphs. Orientations of planar graphs received special
attention by the research community because they reveal several interesting
properties. Based on the insight that every planar graph allows for an ori-
entation with maximum in-degree 3, Chrobak and Eppstein (1991) designed
a highly efficient data structure for adjacency queries in planar graphs. In a
distinct line of research, Felsner (2004) showed that the set of orientations
fulfilling a prescribed in-degree in a planar graph carries the structure of a
distributive lattice.

Graph orientation and network flows. Graph orientation is connected to net-
work flow theory both from a structural point of view as well as in the context
of applications, e.g., in evacuation planning (Wolshon, 2001) and traffic man-
agement (Hausknecht et al, 2011), where certain arcs of the network may be
reversed in order to enable faster evacuation or to resolve traffic jams; see
also the recent complexity results by Rebennack et al (2010) and Arulselvan
et al (2013). In the next section, we will make use of the fact that the fixed-
degree orientation problem is equivalent to the maximum flow problem with
unit capacities. This in particular implies that the problem can be solved in
time O(|E| 32 ) using the classic algorithm by Dinic (1970). In the case of planar
graphs, this further improves to a time of O(|E| log3 |E|) using the recently de-
veloped multiple-source multiple-sink maximum flow algorithm by Borradaile
et al (2011).

2 Orientations with fixed in-degrees

We consider the problem of finding an orientation that meets given fixed in-
degrees for both the vertices and faces of the embedded graph, called the
fixed-degree primal-dual orientation problem.

Problem: Fixed-degree primal-dual orientation problem

Input: An embedded graph G = (V,E), in-degree specifications
α ∈ ZV+ and α∗ ∈ ZV ∗+ .

Task: Find an orientation D of G such that |δ−D(v)| = α(v) for
all v ∈ V and |δ−D(f)| = α∗(f) for all f ∈ V ∗, or prove
that there is no such orientation.

Primal and dual feasibility. The following notation will be useful throughout
the proofs in this section. Given an instance of the fixed-degree primal-dual
orientation problem, we say an orientation D is

– primally feasible if |δ−D(v)| = α(v) for all v ∈ V .
– dually feasible if |δ−D(f)| = α∗(f) for all f ∈ V ∗.
– totally feasible if it is primally and dually feasible.
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The fixed-degree primal-dual orientation problem thus asks for a totally fea-
sible orientation. It is clear that the existence of both a primally feasible ori-
entation and a dually feasible orientation is necessary for the existence of a
totally feasible orientation. However, it can easily be checked that this is not
sufficient.

Example 1. Consider a planar graph with two vertices and two parallel edges
connecting them, i.e., a cycle of length two. Let α(v) = 1 and α∗(f) = 1 for
all v ∈ V and f ∈ V ∗. While orienting both edges in opposite directions in
the primal graph is primally feasible, orienting them in the same direction—
which corresponds to orienting them in oposite directions in the dual graph—is
dually feasible. However, neither of the orientations is totally feasible.

We now present two distinct approaches for obtaining necessary and sufficient
conditions for the existence of a totally feasible orientation.

2.1 A combinatorial approach for planar embeddings

Using the duality of cycles and cuts in planar graphs yields a combinatorial
proof for the uniqueness of a feasible solution to the fixed-degree primal-dual
orientation problem in the case of planar embeddings. We will also show how
to construct a totally feasible solution from an orientation that is feasible in
the primal graph and an orientation that is feasible in the dual graph.

Rigid edges. Consider a subset S ⊆ V with
∑
v∈S α(v) = |E[S]|. Observe

that each edge in E[S] contributes 1 to the in-degree of a vertex in S, no
matter how it is oriented, and thus all edges on the cut induced by S must be
oriented from S to V \ S in all primally feasible orientations. We call edges
whose orientation is fixed in this way primally rigid4 and denote the set of
all primally rigid edges by R. Analogously, we define the set of dually rigid
edges R∗ as those that are fixed for all dually feasible orientations due to a
tight set S∗ ⊆ V ∗ of faces with

∑
f∈S∗ α

∗(f) = |E[S∗]|. It is easy to check
that an edge is primally rigid if and only if it is on a directed cut in the primal
graph with respect to any primally feasible orientation. Likewise, an edge is
dually rigid if it is on a directed cut in the dual graph with respect to any
dually feasible orientation. Note that this also implies that the set of edges on
directed cuts is invariant for all feasible orientations.

Our main result in this section follows from this characterization of rigid edges
and the duality of cycles and cuts in planar graphs.

Theorem 2. In case of a planar embedding, there exists a totally feasible
orientation if and only if the following three conditions are fulfilled.

4 The term “rigid” for edges that are oriented in an identical way in all feasible orientations
was introduced by Felsner (2004).
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(1) There exists both a primally feasible orientation D and a dually feasible
orientation D∗.

(2) The edge set can be partitioned into primally rigid edges and dually rigid
edges, i.e., E = R ∪̇R∗.

(3) The orientation obtained by orienting all primally rigid edges in the same
direction as they are oriented in D and all dually rigid edges in the same
orientation as they are oriented in D∗ is totally feasible.

If it exists, the solution is unique.

Proof. The sufficiency of the conditions is trivial, as the third condition re-
quires the existence of a totally feasible orientation.

In order to show necessity, assume there exists a totally feasible orienta-
tion D0. As D0 is both primally and dually feasible, it fulfills condition (1) of
the theorem. An edge is primally rigid if and only if it is on a directed cut with
respect to D0 in the primal graph. It is dually rigid if and only if it is on a
directed cut in the dual graph. Thus, by cycle/cut duality of planar graphs, an
edge is dually rigid if and only if it is on a directed cycle in the primal graph.
As every edge in the primal graph is either on a directed cut or on a directed
cycle, the sets of primally and dually rigid edges comprise a partition of E,
proving condition (2). Now, let D be a primally feasible orientation and D∗ be
a dually feasible orientation. As D0 equals D on all primally rigid edges and
equals D∗ on all dually rigid edges, the construction described in condition (3)
yields D0 and is feasible.

As all edges are either primally or dually rigid, they must have the same
orientation in all totally feasible solutions, and D0 is unique.

Note that the totally feasible solution constructed in the third condition
does not depend on the choice of D and D∗. As primally and dually feasible
solutions can be found in polynomial time, and rigid edges can be identified
by determining the strongly connected components with respect to D and D∗,
respectively, Theorem 2 yields a polynomial time algorithm for solving the
problem for planar embeddings.

Corollary 3. The fixed-degree primal-dual orientation problem for planar em-
beddings can be solved in time O(|E| log3 |E|).

Proof. By Theorem 2, the problem can be solved by computing a primally
feasible solution and a dually feasible solution and identifying the correspond-
ing rigid edges. Let D be an arbitrary orientation of G and let (V,A) be
the resulting digraph. Define b(v) := α(v) − |δ−D(v)| for all v ∈ V . Observe
that x ∈ {0, 1}A is a flow fulfilling the supplies/demands specified by b if and
only if reversing all arcs a with x(a) = 1 results in a primally feasible orienta-
tion. We can find such a flow, if it exists, by using the multiple-source multiple-
sink planar maximum flow algorithm of Borradaile et al (2011), which runs
in time O(|E| log3 |E|). The same procedure can be applied to find a dually
feasible orientation. Finally, note that finding all rigid edges corresponds to
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identifying directed cuts, which is equivalent to identifying strongly connected
components and can be done in time O(|E|).

2.2 A linear algebra analysis for general embeddings

The fixed-degree primal-dual orientation problem can be formulated as a sys-
tem of linear equalities over binary variables. To this end, we fix an arbitrary
orientation D of the graph and let (V,A) denote the resulting directed graph.
We then introduce for every arc a ∈ A a decision variable x(a) that deter-
mines whether the orientation of the arc should be reversed (if it is 1) or not
(if it is 0) in order to become totally feasible. The vector x ∈ {0, 1}A yields a
feasible orientation if and only if it satisfies the following system of equalities:

∑
a∈δ+D(v)

x(a)−
∑
a∈δ−D(v)

x(a) = α(v)− |δ−D(v)| ∀ v ∈ V (1)

∑
a∈δ+D(f)

x(a)−
∑

a∈δ−D(f)

x(a) = α∗(f)− |δ−D(f)| ∀ f ∈ V ∗ (2)

The matrix corresponding to the equalities (1) is the incidence matrix of
the primal graph, while the matrix corresponding to the equalities (2) is the in-
cidence matrix of the dual graph. As we assume the graph to be connected, we
know that the rank of the former matrix is |V |−1, while the rank of the latter
matrix is |V ∗|−1. Using the fact that the boundary of a face is a closed walk in
the primal graph, it is easy to see that the rows of the first matrix are orthog-
onal to the rows of the second matrix. This implies that all feasible solutions
are contained in a subspace of RA of dimension |E| − |V | − |V ∗|+ 2 = 2g.

Theorem 4. There are at most 22g distinct solutions to the fixed-degree
primal-dual orientation problem. The set of all totally feasible orientations
can be determined in time O(22g|E|2 + |E|3). The bound on the number of
orientations is tight, i.e., for every g there is an embedded graph of genus g
that allows for 22g distinct orientations.

Proof. By basis augmentation, there is a set A′ ⊆ A of 2g arcs such that
adding the equalities x(a) = b(a) with b(a) ∈ {0, 1} for all a ∈ A′ to the
system (1) and (2) results in a system with full rank, i.e., it has at most one
solution. If for some b ∈ {0, 1}A′ the unique solution exists and is a 0-1-vector,
it corresponds to the unique totally feasible orientation that orients the edges
of A′ according to the values b(a). Otherwise, there is no such totally feasible
orientation. Thus, solving the equality system for all |{0, 1}A′ | = 22g possible
values of b yields all possible solutions to the fixed-degree primal-dual orienta-
tion problem. This takes time O(|E|3) for inverting the |E| × |E|-matrix and
O(22g|E|2) for multiplying the 22g distinct right hand side vectors.

To see that the bound on the number of orientations is tight, consider the
example depicted in Fig. 2. The example is constructed from a base graph
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Fig. 2 Construction of an instance with 22g feasible orientations, showing the tightness of
the bound in Theorem 4. The base graph consists of two cycles of length 3 intersecting in a
common vertex and is embedded in a torus. Examples of genus g are obtained by introducing
g copies of the base graph.

consisting of a cycle of length 3 with vertices a, b, c and an additional loop at
vertex c. The base graph is embedded in a torus, thus featuring only a single
face f . When setting α∗(f) = |E| = 4, any orientation is dually feasible as all
dual edges are loops. We set the in-degree specifications to α(a) = α(b) = 1
and α(c) = 2. Now, an orientation of the base graph is primally feasible if
and only if the edges of the cycle are all oriented in the same direction. As the
cycle and the loop can be oriented independently, the base graph has 4 feasible
orientations.

Examples of higher genus can be obtained by introducing g copies of the
embedding described above. The graphs are joined via an edge from vertex bi
to ai+1 for every i ∈ {1, . . . , g − 1}. The resulting embedding has 3g vertices
and 5g − 1 edges, and it still has only a single face. We increase the in-degree
specifications of each base graph by setting α(ai+1) = 2 for i ∈ {1, . . . , g − 1},
so that the new edges joining the copies have to be oriented from copy i to
copy i + 1. The in-degree specification of the face is set to |E| = 5g − 1.
Now each copy of the base graph still has its 4 feasible orientations, so in
total there are 4g feasible orientations. Note that while the primal graph in
the construction described in the proof could also be embedded in a plane,
an example where g is the actual genus of the graph can be constructed by
introducing additional vertices and edges.

3 Orientations with upper and lower bounds

A generalization of the fixed-degree primal-dual orientation problem asks for
an orientation that fulfills upper and lower bounds on the in-degrees of vertices
and faces instead of attaining fixed values. We show that this problem is NP -
complete, even when restricted to instances with embeddings of a fixed genus
as, e.g., planar embeddings.
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Problem: Degree-constrained primal-dual orientation
problem

Input: An embedded graph G = (V,E), in-degree bounds
α, β ∈ ZV+ and α∗, β∗ ∈ ZV ∗+ .

Task: Find an orientation D of G such that α(v) ≤ |δ−D(v)| ≤
β(v) for all v ∈ V and α∗(f) ≤ |δ−D(f)| ≤ β∗(f) for all
f ∈ V ∗, or prove that there is no such orientation.

In order to show the NP -completeness of the problem, we use a reduction from
planar 3-SAT, which was shown to be NP -complete by Lichtenstein (1982).

Problem: Planar 3-SAT

Input: A set of n variables V = {v1 . . . , vn} and a
set of m clauses C = {C1, . . . , Cm}, each contain-
ing exactly three literals over V , such that the bi-
partite graph G3SAT = (V ∪ C,E) with edges
E = {{vi, Cj} : Cj contains a literal of vi} is planar.

Task: Find a truth assignment for the variables in V such that
all clauses in C are satisfied.

Theorem 5. The degree-constrained primal-dual orientation problem is NP -
complete, even when restricted to embeddings with a fixed genus.

Proof. An orientation that solves the degree-constrained primal-dual orienta-
tion problem can easily be verified in polynomial time. Hence, it remains to
show that the problem is NP -hard. It is sufficient to do this for planar graphs.
We use a reduction from planar 3-SAT. In the following, we let G3SAT de-
note a fixed embedding of the planar graph corresponding to a given instance
of planar 3-SAT. We proceed to construct an instance (G,α, β, α∗, β∗) of the
degree-constrained primal-dual orientation problem that has a solution if and
only if the instance of planar 3-SAT has a solution. The construction consists
of three parts: a variable gadget for each variable in G3SAT, a clause gadget for
each clause in G3SAT, and an edge gadget for each edge in G3SAT, connecting
a clause and a variable gadget.

For each variable vi of degree di = |δG3SAT
(vi)| in G3SAT, we introduce a

variable gadget; see Fig. 3 for a depiction. The gadget consists of a cycle of
length 2di, and we refer to the vertices in this cycle as v1,Ti , v1,Fi , v2,Ti , . . . , vdi,Ti ,

and vdi,Fi . The cycle induces a single face which we call fi. We set degree
bounds α∗(fi) = 0 and β∗(fi) = 2di for this face. For now, in order to
understand the idea behind the variable gadget, we set α(v) = β(v) = 1

for every v ∈ {v1,Ti , . . . , vdi,Fi }, but we will change this when extending the
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1 v1,Ti

1 v1,Fi

1 v2,Ti

1 v2,Fi

1 v3,Ti

1v
di,F
i

1v
di−1,T
i

1v
di−2,F
i

1v
di−2,T
i

1v
di−3,F
i

fi

[0, 2di]

1 v1,Ti

1 v1,Fi

1 v2,Ti

1 v2,Fi

1 v3,Ti

1v
di,F
i

1v
di−1,T
i

1v
di−2,F
i

1v
di−2,T
i

1v
di−3,F
i

fi

[0, 2di]

Fig. 3 Illustration of the variable gadget for a variable vi, which has di occurrences in
clauses. The gadget admits only the depicted orientations, the one on the left is interpreted
as vi being ‘true’ and the other as vi being ‘false’.

1
c1,Fj

1

2
c1j

1

1

2

c2j

1

1

2
c3j

c1,Tj

c2,Fj

c2,Tjc3,Fj

c3,Tj
Fj

[4, 6]

Fig. 4 Illustration of the clause gadget for a clause Cj . All directed edges are rigid, and the
orientation of each of the three remaining edges represents a truth assignment to a literal
of the clause. At least one of these three edges needs to be oriented counter-clockwise with
respect to Fj . The dashed edges belong to edge gadgets connected to the clause gadget.

construction later. Let us analyze the construction so far. Since every ver-
tex requires an in-degree of exactly 1, all edges of the cycle need be ori-
ented the same with respect to fi, i.e., only two orientations of the gadget
are permitted. We interpret each of the two possible orientations as a truth
assignment for the variable vi, depending on the direction of the edges be-
tween vk,Ti and vk,Fi for k ∈ {1, . . . , di}. Directing the edge towards vk,Ti is
interpreted as setting vi to ‘true’, and directing it towards vk,Fi is interpreted
as setting vi to ‘false’.

For each clause Cj in G3SAT we introduce a clause gadget that is a cycle

with nine vertices c1j , c
1,F
j , c1,Tj , c2j , c

2,F
j , c2,Tj , c2j , c

2,F
j , c2,Tj enclosing a face Fj ;

see Fig. 4 for a depiction. We set α(c`j) = β(c`j) = 2 for ` ∈ {1, . . . , 3} and
set α∗(Fj) = 4 and β∗(Fj) = 6. We set the lower and upper bounds for the
remaining vertices to 1, and we remark that there will be one additional edge
incident to each of these vertices in the final construction. For now, observe
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1
c`,Fj

1
c`,Tj

2w1
ij 2 w2

ij

2
v`,Fi 2[1, 1]

v`,Ti

[0, 4]

[0, 4]

[1, 1]

Fj

fi

1
c`,Fj

1
c`,Tj

2
v`,Fi 2[1, 1]

v`,Ti

[0, 4]

Fj

fi

Fig. 5 Illustration of the edge gadget for an edge connecting variable vi with clause Cj .
The gadget on the left is used when vi appears in a positive literal in Cj , and the one on
the right is used when vi appears in a negative literal. In both cases, the orientation of the
edges in the variable gadgets induces an orientation of the edge in the clause gadget that
corresponds to the value of the literal.

that any valid orientation has to direct the edges incident to c1j , c
2
j , c

3
j towards

these vertices. Each of the three remaining edges can be oriented either way,
provided that at least one is in counter-clockwise orientation relative to the
face Fj . For each ` ∈ {1, . . . , 3}, the edge between c`,Fj and c`,Tj will determine
whether the corresponding literal of Cj is false or true. If it is directed from c`,Tj
to c`,Fj , the corresponding literal is considered ‘false’, otherwise it is considered
‘true’. In these terms, our construction enforces that at least one literal of Cj
has to be ‘true’.

So far, we have provided a construction for each variable that can be ori-
ented in two ways only, and we have given an interpretation of this orientation
as a truth assignment to the variable. Also, we have provided a construc-
tion for each clause together with an interpretation of each valid orienta-
tion as a truth assignment to the literals of the clause. It remains to show
how to connect the two constructions in a way that guarantees consistency
of the truth assignments to variables and literals. To this end, we introduce
an edge gadget for each edge eij = {vi, Cj} in G3SAT between variable vi
and clause Cj as follows; see Fig. 5 for an illustration. We assume a fixed
counter-clockwise ordering of the edges at each vertex in the embedding of
G3SAT. Suppose that eij is the k-th edge at vi and the `-th edge at Cj with

respect to this ordering. We introduce an additional edge between vk,Ti and

vk,Fi and set α∗(f) = β∗(f) = 1 for the new face f enclosed by the two parallel

edges. We reassign α(vk,Ti ) = β(vk,Ti ) = α(vk,Fi ) = β(vk,Fi ) = 2. The remaining
construction depends on whether vi appears in a positive or negative literal
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Fig. 6 Example for the reduction of a planar 3-SAT instance with four clauses and four
variables. The clauses are C1 = ¬v1 ∨ ¬v3 ∨ ¬v4, C2 = v1 ∨ ¬v2 ∨ v3, C3 = v1 ∨ v2 ∨ v3,
and C4 = ¬v1 ∨ ¬v3 ∨ v4. The depicted orientation corresponds to the assignment setting
v1, v2, and v4 to ‘true’ and setting v3 to ‘false’.

in Cj . If vi appears in a positive literal, we add two vertices w1
ij , w

2
ij connected

by two parallel edges with α∗(f) = β∗(f) = 1 for the induced face f . We

add the edges {vk,Fi , w1
ij}, {w1

ij , c
`,F
j }, {v

k,T
i , w2

ij}, and {w2
ij , c

`,T
j }, which yields

two additional faces f1, f2. We set α(w1
ij) = β(w1

ij) = α(w2
ij) = β(w2

ij) = 2,
α∗(f1) = α∗(f2) = 0, and β∗(f1) = β∗(f2) = 4. Observe that in any valid ori-

entation, the edge {c`,Fj , c`,Tj } is directed towards c`,Tj (i.e., the corresponding
literal is ‘true’) if and only if vi is ‘true’. Now, if vi appears in a negative literal,

we instead simply add the two edges {vk,Fi , c`,Fj }, {v
k,T
i , c`,Tj }. This yields an

additional face f , for which we set α∗(f) = 0, β∗(f) = 4. Observe that in any

valid orientation, the edge {c`,Fj , c`,Tj } is directed towards c`,Tj (i.e., the corre-
sponding literal is ‘true’) if and only if vi is ‘false’. Fig. 6 shows an example of
the complete construction for a 3-SAT instance.
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The construction described above admits an orientation if and only if the
corresponding instance of planar 3-SAT admits a satisfying truth assignment.
If it exists, the truth assignment can easily be inferred from the orientation
by the interpretation given above. Finally, the construction can be made in
polynomial time, which concludes our reduction.

Corollary 6. The degree-constrained primal-dual orientation problem is NP -
complete even when restricted to instances with either α = β or α∗ = β∗.

Proof. The corollary follows from the fact that the construction in the proof
of Theorem 5 fulfills α = β. By duality, the reduction can also be achieved by
an instance with α∗ = β∗.

4 Conclusion

In this paper, we have studied orientation problems in embedded graphs with
constraints on the in-degrees both in the primal graph and in the dual graph.
Using the orthogonality of cycles and cuts, we have shown that the fixed-
degree primal-dual orientation problem for embedded graphs of genus g has at
most 22g feasible solutions and that the set of all solutions can be computed in
time O(22g|E|2 + |E|3). In particular, the solution is unique if the embedding
is planar, which answers the question by Frank that motivated our study.
However, the problem becomes NP -complete immediately, even in the planar
case, if only upper and lower bounds on the in-degrees are specified.

Although our results give an almost complete characterization of the com-
plexity of the primal-dual orientation problem, a few interesting open ques-
tions remain. The running time of our algorithm for the fixed-degree primal-
dual orientation problem is exponential in the genus of the embedding. It is
open whether it is possible to devise an algorithm that finds a totally feasible
orientation in time polynomial in the genus of the embedding. Furthermore,
while we showed the degree-constrained primal-dual orientation problem to be
NP -complete, even when restricted to instances where all vertices require a
fixed in-degree and only the faces allow for intervals of different degrees, the
complexity of the following special case, suggested by Woeginger5, remains
unclear: Consider only instances where for each vertex v ∈ V either α(v) = 0
or β(v) = |δ(v)|, and for each face f ∈ V ∗ either α∗(f) = 0 or β∗(f) = |δ(f)|.
Both constructing a reduction from an NP -hard problem or devising an ex-
act polynomial algorithm appears to be challenging in this case, as the one-
sidedness of the bounds leaves very wide degree of freedom.
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