
Reconstructing a Simple Polygon from Its Angles

Yann Disser, Matúš Mihalák, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zürich
{ydisser,mmihalak,widmayer}@inf.ethz.ch

Abstract. We study the problem of reconstructing a simple polygon
from angles measured at the vertices of the polygon. We assume that
at each vertex, a sensing device returns the sequence of angles between
each pair of vertices that are visible. We prove that the sequence of
angle measurements at all vertices of a simple polygon in cyclic order
uniquely determines the polygon up to similarity. Furthermore, we pro-
pose an algorithm that reconstructs the polygon from this information
in polynomial time.

1 Introduction

The reconstruction of geometric objects from measurement data has attracted
considerable attention over the last decade [7,11,13]. In particular, many vari-
ants of the problem of reconstructing a polygon with certain properties have
been studied. For different sets of data this polygon reconstruction problem has
been shown to be NP-hard [4,8,10]. Recently, data from rather novel sensing
devices like range-finding scanners has been considered, and most of the recon-
struction problems that such devices naturally induce have been shown to be
NP-hard as well, while a few others are polynomial time solvable [1]. We study
the reconstruction problem induced by sensors that measure a sequence of angles.
Specifically, we assume that at each vertex v of a simple polygon, the sequence
of vertices visible from v is perceived in counterclockwise (ccw) order as seen
around v, starting at the ccw neighbor vertex of v on the polygon boundary. As
usual, we call two polygon vertices (mutually) visible, if the straight line segment
connecting them lies entirely in the polygon. In addition to seeing visible vertices
the angle sensor measures angles between adjacent rays from v to the vertices
it sees, and it returns the ccw sequence of these measured angles (cf. Figure 1).
Note that such an angle measurement indirectly also yields the angles between
any pair of rays to visible vertices (not only adjacent pairs). Our polygon re-
construction problem takes as input a ccw sequence of angle measurements, one
measurement at each vertex of a simple polygon, and asks for a simple polygon
that fits the measured angles; we call this problem the polygon reconstruction
problem from angles (cf. Figure 2).

Our contribution. We propose an algorithm that solves the polygon reconstruc-
tion problem from angles in polynomial time, and we show that the solution is
unique (up to similarity). More precisely, we focus on the visibility graph, i.e.,

H. Kaplan (Ed.): SWAT 2010, LNCS 6139, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 Y. Disser, M. Mihalák, and P. Widmayer

Fig. 1. Illustration of an angle measurement: the sensor returns the vector
(32◦, 66◦, 34◦)

Fig. 2. Given a sequence of angle measurements in ccw order along the boundary (left);
the goal is to find a polygon that fits these angles (right)

the graph with a node for every vertex of the polygon and an edge between two
nodes if the corresponding vertices see each other. It is sufficient to reconstruct
the visibility graph of a polygon, as, together with the angle data, it is then easy
to infer the shape of the polygon up to similarity.1 We show that only the visibil-
ity graph of the original polygon P is compatible with the information contained
in the angle data measured in P . Our algorithm finds this unique visibility graph
in polynomial time and thus reconstructs the original polygon up to similarity
in polynomial time. Note that if only the set of angle measurements is given,
i.e. the order of the vertices along the boundary is not known, it is impossible
to uniquely reconstruct the visibility graph of a polygon in general.2 While we
assume that the measured angles come from a simple polygon, our algorithm as
a side effect is also capable of detecting false inputs, i.e., measurements that do
not fit any simple polygon.

1 The shape of the polygon can be obtained in linear time from the visibility graph and
angle data. We can achieve this by first computing a triangulation and then fixing
the length of one edge. All other lengths in the triangulation can then be computed
in linear time.

2 To see this, consider a square and “attach” to every corner of it a triangle. Make the
shapes of the triangles all different and such that the vertices of a triangle that are
not at the corner of the square only see the corner vertices of the square they are
attached to (plus the vertices of the triangle of course). Now any permutation of the
triangles results in the same set of angle measurements but in different polygons.

Reconstructing a Simple Polygon from Its Angles 15

The key difficulty of the reconstruction of the visibility graph lies in the fact
that vertices in our setting have no recognizable labels, i.e., an angle measure-
ment at a vertex returns angles between distant vertices but does not identify
these distant vertices globally. Instead, our algorithm needs to identify these
vertices in a consistent way across the whole input. In this sense, our problem
has a similar flavor as the turnpike reconstruction problem (also known as one
dimensional partial digest problem), whose complexity is still open [12].

Related Work. For our purposes, the combinatorial nature of a polygon is en-
coded in its visibility graph. Solving the visibility graph reconstruction problem
for certain data may be a step towards understanding visibility graphs in gen-
eral. Their characterization has been an open problem for many years that has
attracted considerable attention [5,6].

A question closely related to the offline reconstruction of the visibility graph
of a polygon appears in the area of robotic exploration, namely what sensory
and motion capabilities enable simple robots inside a polygon to reconstruct
the visibility graph [2,14]. The idea to reconstruct it from angle data was first
mentioned in this context [2], but was also discussed earlier [9]. In all these
models a simple robot is assumed to sense visible vertices in ccw order (but
does not sense the global identity of visible vertices). In [2], the problem of
reconstructing the visibility graph of a polygon was solved for simple robots
that can measure angles and additionally are equipped with a compass. In the
case of robots that can only distinguish between angles smaller and larger than
π, it was shown in the same study that adding the capability of retracing their
movements empowers the robots to reconstruct the visibility graph (even if they
do not know n, the number of vertices of the unknown polygon). In both cases
a polynomial-time algorithm was given. Recently, it was shown that the ability
to retrace their movements alone already enables simple robots to reconstruct
the visibility graph (when at least an upper bound on the number of vertices of
the polygon is given), even though only an exponential algorithm was given [3].
Our result implies that measuring angles alone is also already sufficient. On the
other hand, it is known that the inner angles (the angles along the boundary)
of the polygon do not contain sufficient information to uniquely reconstruct the
visibility graph, even when combined with certain combinatorial information [2].

The general problem of reconstructing polygons from measurement data has
mainly been studied in two variants. The first variant asks to find some polygon
P! that is consistent with the data measured in the original polygon P . For
example, it was studied how a polygon P! compatible with the information
obtained from “stabbing” P or compatible with the set of intersection points of
P with some lines can be constructed [7,11]. The problem we consider falls in the
second variant in which generally the problem is to reconstruct P itself uniquely
from data measured in P , i.e., we have to show that only P is compatible with
the data. A previous study in this area shows that the inner angles of P together
with the cross-ratios of its triangulation uniquely determine P [13].

16 Y. Disser, M. Mihalák, and P. Widmayer

Outline. We introduce the visibility graph reconstruction problem in detail in
Section 2. In Section 3 we show that there is a unique solution to the problem,
and give an algorithm that finds the unique solution in polynomial time.

2 The Visibility Graph Reconstruction Problem

Let P be a simple polygon with visibility graph Gvis = (V, Evis), where V de-
notes the set of vertices of P and n = |V |. We fix a vertex v0 ∈ V and denote the
other vertices of P by v1, v2, . . . , vn−1 in ccw order along the boundary starting
at v0’s ccw neighbor. For ease of presentation only, we assume polygons to be in
general position, i.e. no three vertices are allowed to lie on a line. All definitions
and results can be adapted to be valid even without this assumption (note that
our definition of visible vertices implies that the line segment connecting two
mutually visible vertices can have more than two points on the boundary of the
polygon in this case). The degree of a vertex vi ∈ V in Gvis is denoted by d(vi)
and the sequence vis(vi) =

(
vi, u1, u2, . . . , ud(vi)

)
is defined to enumerate the

vertices visible to vi ordered in ccw order along the boundary starting with vi

itself. We write vis0(vi) to denote vi itself and visk(vi) , 1 ≤ k ≤ d(vi) to de-
note uk. For two distinct vertices vi, vj ∈ V , chain(vi, vj) denotes the sequence
(vi, vi+1, . . . , vj) of the vertices between vi and vj along the boundary in ccw
order. Similarly, chainv(vi, vj) denotes the subsequence of chain(vi, vj) that con-
tains only the vertices that are visible to v. Note that here and in the following
all indices are understood modulo n.

We define the visibility segments of v to be the segments vu1, vu2 . . . , vud(v)

in this order. Similarly, we define the visibility angles of v to be the ordered
sequence of angles between successive visibility segments, such that the i-th
visibility angle is the angle between vui and vui+1, for all 1 ≤ i ≤ d(v) − 1.

Let v, vi, vj ∈ V . We write !v(vi, vj) to denote the angle between the lines
vvi and vvj (in that order) even if v, vi, vj do not mutually see each other. Let
1 ≤ l < r ≤ d(v). We write ∠v(l, r) to denote !v(visl(v) , visr(v)). We will
need the notion of the approximation !↑

v(vi, vj) of the angle !v(vi, vj), which is
defined as follows (cf. Figure 3): Let vi′ be the last vertex in chainv(vi+1, vi) and
vj′ be the first vertex in chainv(vj , vj−1). We then define !↑

v(vi, vj) = !v(vi′ , vj′).
Observe that if {v, vi}, {v, vj} ∈ Evis, we have !↑

v(vi, vj) = !v(vi, vj). Also note
that knowing the visibility angles of a vertex v is equivalent to knowing ∠v(lv, rv)
for all 1 ≤ lv < rv ≤ d(v).

In terms of the above definitions, the goal of the visibility graph reconstruction
problem is to find Evis when we are given n, V , d(v) for all v ∈ V , and ∠v(lv, uv)
for all v ∈ V and all 1 ≤ lv < uv ≤ d(v), as well as the (ccw) order in which the
vertices appear along the boundary.

3 Triangle Witness Algorithm

The key question when trying to reconstruct the visibility graph of a polygon is
how to identify a vertex u visible to some known vertex v. Knowing all angles at

Reconstructing a Simple Polygon from Its Angles 17

Fig. 3. Illustration of the approximation !↑
v(vi, vj) = !v(vi′ , vj′) of the angle !v(vi, vj)

every vertex may seem to be far too much information and the reconstruction
problem may thus seem easily solvable by some greedy algorithm. Before we
actually present the triangle witness algorithm that solves the reconstruction
problem, we show that some natural greedy algorithms do not work in general.

Greedy Approach. It is a natural idea to first orient all angles w.r.t. a single,
global orientation (e.g. the line vn−1v0) by summing angles around the polygon
boundary. Then, if a vertex v sees some other vertex u under a certain global
angle α, u must see v under the inverse angle α + π, as the line uv has a single
orientation. A simple greedy approach to identify the vertex u in the view from
v could be to walk from v along the boundary and find the first vertex that sees
some other vertex under the global angle α + π. The example in Fig. 4 however
shows that this approach does not work in general.

A similar but somewhat stronger approach is to allow global angles to go
beyond [0, 2π) while summing up around the polygon boundary, cf. Figure 4
(there, for instance, vertex v1 sees the second visible vertex in ccw order under
the angle α − π which is less than 0). This would prevent the pairing of vertex
v0 with vertex v1 in that example. Nevertheless, there are still examples where
this strategy fails and in fact it is not possible to greedily match angles:3 inspect
Figure 5 for an example of two polygons for which no matter how a greedy
algorithm chooses to pair vertices, it has to fail for one of the two.

Triangle Witness Algorithm. We now give an algorithm for the reconstruction
of the visibility graph from the visibility angles of all vertices. Note that from
now on we map all angles to the range [0, 2π). Our algorithm considers all ver-
tices at once and gradually identifies edges connecting vertices that lie further
and further apart along the boundary. Intuitively, once we know all vertices in
{vi+1, vi+2, . . . , vk−1} that are visible to vi, there is only one candidate vertex
which might be vk, namely the next unidentified vertex in vis(vi). Our algorithm
thus only needs to decide whether vi sees vk. The key ingredient here is the use of
a triangle witness vertex that indicates whether two other vertices see each other.
Because any polygon can be triangulated, we know that for every two vertices
{vi, vj} ∈ Evis with vj $= vi+1, there is a “witness” vertex vl ∈ chain(vi+1, vj−1)
3 We do not aim, however, to give complete proof or to fully characterize all failing

greedy algorithms based on the idea of angle matching.

18 Y. Disser, M. Mihalák, and P. Widmayer

Fig. 4. Illustration of the idea behind the greedy pairing algorithm for a single angle
α and starting vertex v0. If we map angles to the range [0, 2π), we allow v0 and v1 to
be paired which is obviously impossible.

Fig. 5. An example in which only one visibility graph can correctly be reconstructed
by any greedy pairing algorithm

that they both see, such that vi, vl, vj form a triangle (of angle sum π). We now
extend this notion to the case where {vi, vj} /∈ Evis.

Definition 1. Let vi, vj ∈ V be two different vertices and vj $= vi+1. Let further
vl ∈ chain(vi+1, vj−1) with {vi, vl}, {vj , vl} ∈ Evis. Then we say vl is a triangle
witness of (vi, vj), if it fulfills the generalized angle-sum condition

!↑
vi

(vl, vj) + !↑
vj

(vi, vl) + !vl(vj , vi) = π.

In the following we motivate the definition of a triangle witness (cf. Figure 6).
As before, we know that if two vertices vi, vj ∈ V, vj $= vi+1 see each other, there
must be a vertex vl ∈ chain(vi+1, vj−1) which sees both of them. For any choice
of vl, the condition !vi(vl, vj) + !vj (vi, vl) + !vl(vj , vi) = π is trivially fulfilled.
In the case that vi does not see vj , the only difference from vi’s perspective is
that for any choice of vl, !vi(vl, vj) does not appear in its visibility angles. We
want to modify the condition to capture this difference. The idea is to replace vj

in !vi(vl, vj) by an expression that happens to be vj , if and only if vi sees vj . We
choose “the first vertex in chainvi(vj , vj−1)”, which is vj , exactly if vi sees vj . If,

Reconstructing a Simple Polygon from Its Angles 19

similarly, we also replace vi in !vj (vi, vl) by “the last vertex in chainvj (vi+1, vi)”,
we obtain the generalized angle-sum condition of Definition 1. We will later see
(stated as Lemma 4) that there is a triangle witness for a pair (vi, vj), if and
only if {vi, vj} ∈ Evis.

We can now describe the triangle witness algorithm. It iterates through in-
creasing number of steps k along the boundary, focusing at step k on all edges
of the form {vi, vi+k}. Throughout it maintains two maps F , B that store for
every vertex all the edges identified so far that go at most k steps forward or
backward along the boundary, respectively. We write F [vi] [vj] = s, if {vi, vj} is
the s-th edge incident to vi in ccw order, and B[vi] [vj] = s, if {vi, vj} is the s-th
edge incident to vi in ccw order. Note that B[vi] is filled in cw order during the
algorithm, i.e. its first entry will be B[vi] [vi−1] = d(vi). Whenever convenient,
we use F [vi] and B[vi] like a set, e.g. we write vl ∈ F [vi] to denote that there is
an entry vl in F [vi] and write |F [vi]| to denote the number of entries in F [vi].
Observe also that |F [vi]| + 1 is the index of the first vertex (in ccw order) in
vis(vi) that is not yet identified. It is clear that once we completed the maps for
k up to

⌈
n
2

⌉
, we essentially have computed Evis.

The initialization of the maps for k = 1 is simple as every vertex sees its
neighbors on the boundary. In later iterations for every vertex vi there is always
exactly one candidate vertex for vi+k, namely the (|F [vi]| + 1)-th vertex visible
to vi. We decide whether vi and vi+k see each other by going over all vertices
between vi and vi+k in ccw order along the boundary and checking whether there
is a triangle witness vl ∈ chain(vi+1, vi+k−1). If and only if this is the case, we
update Evis, F, B with the edge {vi, vi+k}. For a listing of the triangle witness
algorithm see Algorithm 1.

In the following we prove the correctness of the triangle witness algorithm.
For this we mainly have to show that having a triangle witness is necessary and
sufficient for a pair of vertices to see each other. To show this, we will need the
notion of blockers and shortest paths in polygons.

Fig. 6. Illustration of the generalized angle sum condition of Definition 1. On the left
{vi, vj} ∈ Evis and the angles αi, αj and αl of the condition sum up to π. On the right,
{vi, vj} /∈ Evis and the sum of the angles is strictly less than π.

20 Y. Disser, M. Mihalák, and P. Widmayer

Algorithm 1. Triangle witness algorithm
input: n, d(·), ∠·(·, ·)
output: Evis

1. F ← [array of n empty maps], B ← [array of n empty maps], Evis ← ∅
2. for i← 0, . . . , n− 1
3. Evis ← Evis ∪ {vi, vi+1}
4. F [vi] [vi+1]← 1
5. B[vi+1] [vi]← d(vi)
6. for k ← 2, . . . ,

⌈
n
2

⌉

7. for i← 0, . . . , n− 1
8. j ← i + k
9. for l← i + 1, . . . j − 1

10. if vl ∈ F [vi] ∧ vl ∈ B[vj]
11. αi ← ∠vi(F [vi] [vl] , |F [vi]| + 1) (= !↑

vi
(vl, vj) , cf. proof of Th. 1)

12. αj ← ∠vj (d(vj)− |B[vj]| , B[vj] [vl]) (= !↑
vj

(vi, vl) , cf. proof of Th. 1)
13. αl ← ∠vl (F [vl] [vj] , B[vl] [vi]) (= !vl(vj , vi) , cf. proof of Th. 1)
14. if αi + αj + αl = π
15. Evis ← Evis ∪ {vi, vj}
16. F [vi] [vj] = |F [vi]| + 1
17. B[vj] [vi] = d(j) − |B[vj]|
18. abort innermost loop

Definition 2. Let vi, vj ∈ V . We say vb ∈ chain(vi+1, vj−1) is a blocker of
(vi, vj), if for all u ∈ chain(vi, vb−1) , v ∈ chain(vb+1, vj) we have {u, v} /∈ Evis

(cf. Figure 7 (left)).

Note that if vb is a blocker of (vi, vj), vb also is a blocker of (u, v) for all u ∈
chain(vi, vb−1), v ∈ chain(vb+1, vj).

A path between two vertices a, b ∈ V of a polygon P is defined to be a curve
that lies entirely in P and has a and b as its endpoints. A shortest path between
a and b is a path of minimum Euclidean length among all the paths between the
two vertices.

Lemma 1 (Lemmas 3.2.3 and 3.2.5. in [5]). Let vi, vj ∈ V . The shortest
path between vi and vj is unique and is a chain of straight line segments that
connect at vertices.

We can therefore write (a, u0, u1, . . . , b) to denote a shortest path, where we refer
to the ui’s as the path’s interior vertices. The following statements motivate the
term ’blocker’.

Lemma 2. Let vi, vj ∈ V with {vi, vj} /∈ Evis. Every interior vertex of the
shortest path from vi to vj is a blocker of either (vi, vj) or (vj , vi).

Proof. Consult Figure 7 (right) along with the proof. For the sake of con-
tradiction assume that vb ∈ V is an interior vertex of the shortest path pij

from vi to vj that is not a blocker of either (vi, vj) or (vj , vi). W.l.o.g. assume

Reconstructing a Simple Polygon from Its Angles 21

Fig. 7. Left: a pair of vertices can have blockers on both sides. Right: illustration of
the objects in the proof of Lemma 2.

vb ∈ chain(vi+1, vj−1). As vb is not a blocker of (vi, vj), there are two ver-
tices u ∈ chain(vi+1, vb−1) , w ∈ chain(vb+1, vj−1) with {u, w} ∈ Evis. Thus, the
segment uw is entirely in the polygon and separates it in two parts, one part
containing vb and the other containing both vi and vj . As pij visits vb, it must
cross uw at least twice. Let x, y be the first and last intersection points of uw
with pij . Consider the curve C that follows pij until x, then follows uw until y
and finally follows pij until vj . Because of the triangle inequality, C is strictly
shorter than pij which is a contradiction with the assumption that pij is a short-
est path. %&

Corollary 1. Let vi, vj ∈ V . If {vi, vj} /∈ Evis, there is either a blocker of
(vi, vj) or of (vj , vi).

We now relate the definition of a blocker to the geometry of the polygon.

Lemma 3. Let vi, vj ∈ V with i = j + 2, {vi, vj} /∈ Evis. If w := vj+1 = vi−1 is
convex (inner angle < π), then vi′ = argminvb∈chainvi (vi+1,vj−1) !vi(vb, w) and
vj′ = argminvb∈chainvj (vi+1,vj−1) !vj (w, vb) are blockers of (vi, vj) that lie left of
the oriented line vivj.

Proof. As w is convex, the shortest path pij from vi to vj only contains vertices
of chain(vi, vj). As pij only makes right turns (i.e. any three consecutive vertices
on pij form a ccw triangle), all interior vertices of pij lie left of the oriented line
vivj . Furthermore vi′ and vj′ are the first and the last interior vertices of pij

respectively. By Lemma 2 we thus know that both vi′ and vj′ are blockers of
(vi, vj). From before we also know that they both lie left of the oriented line
vivj . %&

We now get to the central lemma that essentially states that the existence of a
triangle witness is necessary and sufficient for a pair of vertices to see each other.

Lemma 4. Let vi, vj ∈ V with |chain(vi, vj)| > 2. There is a triangle witness vl

for (vi, vj), if and only if {vi, vj} ∈ Evis.

22 Y. Disser, M. Mihalák, and P. Widmayer

Fig. 8. Sketch of the definitions in the proof of Lemma 4

Proof. If {vi, vj} ∈ Evis, because any polygon can be triangulated, there must
be a vertex vl ∈ chain(vi+1, vj−1) for which both edges {vi, vl} and {vl, vj} are in
Evis. For this vertex we have !↑

vi
(vl, vj)+!↑

vj
(vi, vl)+!vl(vj , vi) = !vi(vl, vj)+

!vj (vi, vl) + !vl(vj , vi) = π as all three relevant edges are in Evis and the sum
over the angles of any triangle is π.

For the converse implication assume there is a triangle witness vl of (vi, vj).
For the sake of contradiction, assume {vi, vj} /∈ Evis.

Consider the polygon P ′ induced by the vertices vi, vl, vj , chain(vj+1, vi−1),
cf. Figure 8. As {vi, vl}, {vl, vj} ∈ Evis, P ′ is simple and well defined. In P ′,
vl is a convex vertex, as it fulfills the generalized angle-sum condition of Def-
inition 1 and thus !vl(vj , vi) < π, because all angles are positive. We can
therefore apply Lemma 3 (on vj , vi) w.r.t. P ′ and conclude that both vj′ and
vi′ block (vj , vi), where vj′ = argminvb∈chainvi (vj+1,vi−1) !vi(vl, vb) and vi′ =
argminvb∈chainvj (vj+1,vi−1) !vj (vb, vl). This is then also true in our original poly-
gon P and thus vi′ ∈ chain(vj , vj′) as otherwise vj′ would block (vj , vi′) and
vi′ would block (vj′ , vi) contradicting the definition of vj′ and vi′ , respectively.
Observe that vi′ is the last vertex in chain(vi+1, vi) visible to vj and vj′ is the
first vertex in chain(vj , vj−1) visible to vi.

By applying Lemma 3 to P ′, we know that both vj′ and vi′ are left of
the oriented line vjvi. This means !↑

vi
(vl, vj) = !vi(vl, vj′) < !vi(vl, vj) and

!↑
vj

(vi, vl) = !vj (vi′ , vl) < !vj (vi, vl) and thus !↑
vi

(vl, vj)+!↑
vj

(vi, vl)+!vl(vj , vi)
< !vi(vl, vj) + !vj (vi, vl) + !vl(vj , vi) = π, which is a contradiction with our
assumption that vl is a triangle witness of (vi, vj). %&

Theorem 1. The triangle witness algorithm is correct, computes a unique so-
lution, and can be implemented with a running time of O

(
n3 log n

)
.

Proof. As the edges in Evis are the same as the edges stored in F and the same as
the edges stored in B throughout the algorithm, it is sufficient to show that after
step k of the iteration both F and B contain exactly the edges between vertices
that are at most k steps apart along the boundary. As no two vertices can be
further apart than

⌈
n
2

⌉
steps along the boundary, this immediately implies that

Reconstructing a Simple Polygon from Its Angles 23

Evis eventually contains exactly the edges of the visibility graph. More precisely,
we inductively show that after step k of the iteration, F [vi] contains the vertices
of chainvi(vi+1, vi+k) and B[vi] contains the vertices of chainvi(vi−k, vi−1) for
all vi ∈ V . For sake sake of simplicity we write F [vi] = chainvi(vi+1, vi+k) and
B[vi] = chainvi(vi−k, vi−1).

The discussion for k = 1 is trivial as every vertex has an edge to both its
neighbors. The algorithm initializes F and B to consist of these edges. It remains
to show for all 0 ≤ i < n that assuming F [vi] = chainvi(vi+1, vi+k−1) and
B[vi] = chainvi(vi−k+1, vi−1) after step k−1, we have F [vi] = chainvi(vi+1, vi+k)
and B[vi] = chainvi(vi−k, vi−1) after step k.

The algorithm adds an edge between two vertices vi and vi+k, if and only if
there is a vertex vl ∈ chain(vi+1, vi+k−1) with vl ∈ F [vi] ∧ vl ∈ B[vi+k] for which
αi +αj +αl = π, where αi, αj , αl are defined as in Algorithm 1. As vi and vl are
less than k steps apart on the boundary, the induction assumption implies that
F [vi] = chainvi(vi+1, vi+k−1) and B[vi+k] = chainvi+k(vi+1, vi+k−1). Thus, vl ∈
F [vi] ∧ vl ∈ B[vi+k] is equivalent to {vi, vl}, {vi+k, vl} ∈ Evis and by Lemma 4 it
suffices to show that αi = !↑

vi
(vl, vi+k) , αj = !↑

vi+k
(vi, vl) , αl = !vl(vi+k, vi) for

all vl ∈ F [vi]∩B[vi+k]. Again by induction F [vi] = chainvi(vi+1, vi+k−1) and thus
visF [vi][vl](vi) = vl and vis|F [vi]|+1(vi) = argminvb∈chainvi (vi+k,vi−1) !vi(vi+1, vb)
and we thus get αi = ∠vi(F [vi] [vl] , |F [vi]| + 1) = !↑

vi
(vl, vi+k). Similarly as vl

and vi+k are less than k steps apart on the boundary, we get αj = !↑
vi+k

(vi, vl).
Further, with the induction assumption we also have visF [vl][vi+k](vl) = vi+k and
visB[vl][vi](vl) = vi and thus αl = ∠vl(F [vl] [vj] , B[vl] [vi]) = !vl(vi+k, vi).

The uniqueness of the algorithm’s solution follows immediately from the fact
that the existence of a triangle witness is necessary and sufficient for two vertices
to see each other.

For every vertex vi and every k = 1, 2, . . . ,
⌈

n
2

⌉
, the algorithm has to iterate

over all candidates vl ∈ chain(vi+1, vi+k−1) of a triangle witness of (vi, vi+k). In
total at most O

(
n3

)
such combinations have to be examined. In order to decide

whether a particular vl is a triangle witness of (vi, vi+k), first the algorithm has
to decide whether vl is visible to both vi and vi+k. If we use a self-balancing
tree data structure for F [vi] and B[vi+k] for all choices of i and k, this decision
requires O(log n) time. Summing the corresponding angles and comparing the
result to π takes constant time. Hence the total running time is O

(
n3 log n

)
. %&

Note that as the triangle witness algorithm computes a unique solution, it
provides an immediate way of identifying inconsistent input, i.e. angle data
that does not belong to any polygon. If upon termination of the algorithm
|F [vi] ∪ B[vi]| $= d(vi) for some vertex vi, the input must be inconsistent. Other-
wise, we can compute a triangulation of the visibility graph and infer the shape
of it in the plane. Then the input was consistent if and only if the computed
shape is valid (i.e., if this gives a simple polygon that is consistent with the input
sequence of angle measurements).

24 Y. Disser, M. Mihalák, and P. Widmayer

References

1. Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 862–
871. Springer, Heidelberg (2009)

2. Bilò, D., Disser, Y., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Reconstruct-
ing visibility graphs with simple robots. In: Proceedings of the 16th International
Colloquium on Structural Information and Communication Complexity, pp. 87–99
(2009)

3. Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: How simple robots
benefit from looking back. In: Proceedings of the 7th International Conference on
Algorithms and Complexity (to appear)

4. Formann, M., Woeginger, G.: On the reconstruction of simple polygons. Bulletin
of the EATCS 40, 225–230 (1990)

5. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

6. Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graph theory. In:
Proceedings of the India-Taiwan Conference on Discrete Mathematics, pp. 44–54
(2009)

7. Jackson, L., Wismath, K.: Orthogonal polygon reconstruction from stabbing infor-
mation. Computational Geometry 23(1), 69–83 (2002)

8. Jansen, K., Woeginger, G.: The complexity of detecting crossingfree configurations
in the plane. BIT Numerical Mathematics 33(4), 580–595 (1993)

9. Kameda, T., Yamashita, M.: On the reconstruction of polygons with (simple)
robots. Personal communication (2009)

10. Rappaport, D.: On the complexity of computing orthogonal polygons from a set of
points. Technical Report SOCS-86.9, McGill University, Montréal, Canada (1986)

11. Sidlesky, A., Barequet, G., Gotsman, C.: Polygon reconstruction from line cross-
sections. In: Proceedings of the 18th Annual Canadian Conference on Computa-
tional Geometry, pp. 81–84 (2006)

12. Skiena, S., Smith, W., Lemke, P.: Reconstructing sets from interpoint distances.
In: Proceedings of the Sixth Annual Symposium on Computational Geometry, pp.
332–339 (1990)

13. Snoeyink, J.: Cross-ratios and angles determine a polygon. In: Proceedings of the
14th Annual Symposium on Computational Geometry, pp. 49–57 (1998)

14. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. International Journal of Robotics Research 27(9),
1055–1067 (2008)

	Reconstructing a Simple Polygon from Its Angles
	Introduction
	The Visibility Graph Reconstruction Problem
	Triangle Witness Algorithm
	References

