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INTRODUCTION

Many problems from mathematics and engineering can be described in terms of
reconstruction from geometric information. Reconstruction is the algorithmic
problem of combining the results of measurements of some aspect of a physical or
mathematical object to obtain desired information about the object.

In this chapter, we consider three different classes of geometric reconstruction
problems. In Section 34.1, we examine static reconstruction problems, where we are
given a geometric structure derived from an original structure, and seek to invert
this transformation. In Section 34.2, we consider interactive reconstruction prob-
lems, where we are permitted to repeatedly “probe” an unknown object at arbitrary
places and seek to reconstruct the object using the fewest such probes. Finally, in
Section 34.3, we turn to exploration and mapping of unknown environments, where
we take the perspective of a mobile agent that locally observes its surroundings and
aims to infer information about the global layout of the environment.

Our focus in this chapter is on exact, theoretical reconstruction problems from a
perspective of computational geometry. In contrast, a significant body of theoretical
work in computational geometry is concerned with the approximate reconstruction
of shapes and surfaces (see Chapter 35). Practical reconstruction problems beyond
the scope of this chapter arise in many fields, with examples including computer
vision, computer-aided tomography, and the reconstruction of 3D objects from
2D images. In these settings, quality criteria for good solutions are not always
mathematically well-defined and may rely on aesthetics, practical applicability, or
consistency with reference data.

34.1 STATIC RECONSTRUCTION PROBLEMS

Here we consider inverse problems of the following type. Let A be a geometric
structure, and T a transformation such that T (A) → B, where B is some different
geometric structure. Now, given T and B, construct a structure A′ such that
T (A′) → B. If T is one-to-one, then A = A′. If not, we may be interested in
finding or counting all solutions.

GLOSSARY

Gabriel graph: A graph whose vertices are points in R
2, with an edge (x, y) if

points x and y define the diameter of an empty circle.

Relative neighborhood graph: A graph whose vertices are points in R
2, with
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an edge (x, y) if there exists no point z such that z is closer to x than y is and
z is closer to y than x is. See Section 32.1.

Interpoint distance: Distance between a pair of points in R
2. The distance is

labeled if the identities of the two points defining the distance are associated
with the distance, and unlabeled otherwise.

Stabbing Information: For every vertex v of a polygon the (at most) two edges
that are first intersected by the rays wv and uv, where w, u are the neighbors
of v along the boundary.

Line cross-sections: A set of lines L together with the line segments that
constitute the intersection of L with a polygon P .

Visibility polygon: The subset of points in a polygon P visible to a fixed
point x ∈ P , i.e., all points y ∈ P for which the line segment xy is contained
in P .

Direction edge/face count: A vector d together with a number k of edges/faces
visible in an orthogonal projection in direction d.

Cross-ratio in a triangulation: The ratio bd
ce
, where a, b, c and a, d, e are the

lengths of the edges (in ccw order) of two touching triangles.

Vertex visibility graph: The graph with a node for every vertex of a polygon,
and with edges between pairs of vertices that mutually see each other, i.e., whose
straight-line connection lies inside the polygon. See Section 33.3.

Point visibility graph: The graph for a set of points with an edge between two
points that mutually see each other, i.e., whose straight-line connection does not
contain other points. See Section 33.3.

Angle measurement: The ordered list of angles in counter-clockwise order be-
tween the edges of the visibility graph at a vertex.

Distance measurement: The ordered list of distances in counter-clockwise or-
der to the vertices visible from a given vertex.

Corner: A vertex of a polygon with an interior angle different from π.

Complex moment of order k: The complex value
∫∫

B
zk dxdy for a re-

gion B ⊂ C and z = x+ iy.

Extended Gaussian image: A transform that maps each face of a convex
polyhedron to a vector normal to the face whose length is proportional to the
area of the face.

X-ray projection: The length of the intersection of a line with a convex body.

Determination: A class of sets is determined by n directions if there are n fixed
directions such that all sets can be reconstructed from X-ray projections along
these directions.

Verification: A class of sets is verified by n directions if, for each particular set,
there are n X-ray projections that distinguish this set from any other.

MAIN RESULTS

An example of an important class of reconstruction problems is visibility graph re-
construction, i.e., given a graph G, construct a polygon P whose visibility graph is
G (see Section 33.3). Results for this and other static reconstruction problems are
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summarized in Table 34.1.1. We characterize each problem by its input and the in-
verted structure we wish to reconstruct. We also specify whether the corresponding
transformation is one-to-one, i.e., the result of the reconstruction is unique.

TABLE 34.1.1 Static reconstruction problems.

INPUT INVERTED STRUCTURE RESULT UNIQ SOURCE

MST with degree ≤ 5 point embedding in R
2

always realizable no [MS91]

MST with degree 6 point embedding in R
2

NP-hard no [EW96]

MST with degree ≥ 7 point embedding in R
2

never realizable – [MS91]

Gabriel graph point embedding in R
2

partial charact. no [MS80]

rel. neighborhood graph point embedding in R
2

partial charact. no [LS93]

Delaunay triangulation point embedding in R
2

partial charact. no [Dil90][Sug94]

Voronoi diagram point embedding in R
2

partial charact. no [AB85]

point visibility graph point embedding in R
2 ∃R-complete no [GR15][CH17]

labeled interpoint distances points realizing these in R
d

NP-hard no [Sax79]

all unlab. interpoint dists points realizing these in R
1

O(2nn logn) no [LSS03]

all unlab. interpoint dists points realizing these in R
d

NP-hard no [LSS03]

vertex visibility graph polygon realizing it ∈PSPACE no [Eve90]

distance visibility graph polygon realizing it O(n2) yes [CL92]

endpoints V ⊂ R
2

orthogonal line segments O(n logn) no [RW93]

endpoints V ⊂ R
2

disjoint orth. line segments NP-hard no [RW93]

corners V ⊂ R
2

orthogonal polygon O(n logn) yes [O’R88]

corners V ⊂ R
2
, 3 slopes polygon with these slopes NP-hard no [FW90]

vertices V ⊂ R
2

orthogonal polygon NP-hard no [Rap89]

angle measurements compatible polygon O(n2) yes [DMW11][CW12]

stabbing information compatible orthogonal poly O(n logn) no [JW02]

set of s line cross-sections all compatible polygons O(s log s) /poly no [SBG06]

cross-ratios, bound. angles compatible polygon uniqueness yes [Sno99]

set of visibility polygons compatible polygon NP-hard no [BDS11]

direction edge counts convex polygon charact., algo. no [BHL11]

direction face counts convex 3D polyhedron NP-hard no [BHL11]

ext. Gaussian image convex 3D polyhedron O(n logn) /iter. yes [Lit85]

4 complex moments triangle in C uniqueness yes [Dav77]

2n complex moments vertices of polygon in C algorithm yes [MVK+95]

X-ray projections convex body if unique algorithm yes [GK07]

Another class of problems concerns proximity drawability. Given a graph G,
we seek a set of points corresponding to vertices of G such that two points are
“sufficiently” close if and only if there is an edge in G for the corresponding vertices.
Examples of proximity drawability problems include finding points to realize graphs
as minimum spanning trees (MST), Delaunay triangulations (Chapter 29), Gabriel
graphs, and relative neighborhood graphs (RNGs) (Chapter 32). Although many of
the results are quite technical, Liotta [Lio13] provides an excellent survey of results
on these and other classes of proximity drawings; see also Chapter 55.
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To provide some intuition about the minimum spanning tree results, observe
that low degree graphs are easily embedded as point sets. If the maximum degree is
2, i.e., the graph is a simple path, then any straight line embedding will work. One
can show that any two line segments vu, vw corresponding to adjacent edges of the
tree need to form an angle not smaller than π/3, since the segment uw cannot be
shorter than vu or vw. This implies that degrees larger than 6 cannot be realized,
and forces the neighbors of degree 6 vertices to be spaced at equal angles of π/3, a
very restrictive condition leading to the hardness result.

Other typical reconstruction problems are concerned with constructing poly-
gons that are compatible with given geometrical parameters. See Figure 34.1.1
for three such examples (taken from [CD+13b]). In the first example, the angles
between lines-of-sight are known at each vertex, and it turns out that this infor-
mation uniquely determines the polygon (up to scaling and rotation) [DMW11].
In the second example, a polygon has to be constructed from its intersection with
a set of lines. In this case, the polygon is not uniquely determined, but all com-
patible polygons can be enumerated efficiently [SBG06]. The third example shows
the “orthogonal connect-the-dots” problem, where an orthogonal polygon has to
be recovered from the coordinates of its vertices. This is uniquely and efficiently
possible if vertices of degree π are forbidden [O’R88], and otherwise it is NP-hard
to find any compatible polygon [Rap89].

FIGURE 34.1.1

From left to right: Reconstruction from angle measurements, line cross-sections, and vertices.

Another important set of problems concern reconstructing objects from a fixed
set of X-ray projections, conventionally called Hammer’s X-ray problem [Ham63].
Different problems arise depending upon whether the X-rays originate from a point
or line source, and whether we seek to verify or determine the object. A selection
of results on parallel X-rays (line sources) are listed in Table 34.1.2. For example,
parallel X-rays in certain sets of four directions suffice to determine any convex
body if the directions are not a subset of the edges of an affinely regular polygon.
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If the directions do form such a subset, then there exist noncongruent polygons
that are not distinguished by any number n of parallel X-rays in these directions.
Nevertheless, any pair of nonparallel directions suffice to determine “most” (in the
sense of Baire category) convex sets.

There is also a collection of results on point source X-rays. For example, convex
sets in R

2 are determined by directed X-rays from three noncollinear point sources.
The substantial literature on such X-ray problems is very well covered by Gardner’s
monograph [Gar06], from which two of the open problems listed below are drawn.

The related field of discrete tomography is inspired by the use of electron mi-
croscopy to reconstruct the positions of atoms in crystal structures. A typical
problem is placing integers in a matrix so as to realize a given set of row and
column sums. The problem becomes more complex when the reconstructed body
must satisfy connectivity constraints or simultaneously satisfy row/column sums
of multiple colors. Collections of survey articles on discrete tomography include
Herman and Kuba [HK99, HK07].

TABLE 34.1.2 Selected results on Hammer’s X-ray problem.

DIM PROBLEM SETS RESULT SOURCE

2 verify convex polygons 2 parallel X-rays do not suffice [Gar83]

verify convex set 3 parallel X-rays suffice [Gie62]

determine convex set 4 parallel X-rays suffice [GM80][GG97]

determine convex set n arb. paral. X-rays do not suffice [Gie62]

determine star-shaped poly. finite num. paral. X-rays insufficient [Gar92]

determine convex body 3 point X-rays suffice [Vol86]

3 determine convex body 4 parallel, coplanar X-rays suffice [Gar06]

determine convex body 4 arb., paral. X-rays do not suffice [Gar06]

d determine convex body 2 parallel X-rays “usually” suffice [VZ89]

verify compact sets no finite number of directions suffice [Gar92]

OPEN PROBLEMS

1. Give an efficient algorithm to reconstruct a set of n points on the line from
the set of

(

n
2

)

unlabeled interpoint distances it defines: see [LSS03]. Note
that the problem indeed remains open as of this writing, despite published
comments to the contrary: see [DGN05].

2. Is a polygon uniquely determined by its distance measurements?

3. Give an algorithm to determine whether a graph is the visibility graph of a
simple polygon [GG13, Problem 29].

4. Characterize the convex sets in R
2 that can be determined by two parallel

X-rays [Gar06, Problem 1.1].

5. Are convex bodies in R
3 determined by parallel X-rays in some set of five

directions [Gar06, Problem 2.2]?
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34.2 INTERACTIVE RECONSTRUCTION PROBLEMS

In static reconstruction problems all available data about the structure that has
to be reconstructed is revealed in a one-shot fashion. In contrast, interactive re-
construction allows to request data in multiple rounds, and allows each request to
depend on the data gathered so far. This process is generally modeled via geo-
metric probing , which defines access to the unknown geometric structure via a
mathematical or physical measuring device, a probe. A variety of problems from
robotics, medical instrumentation, mathematical optimization, integral and com-
putational geometry, graph theory, and other areas fit into this paradigm.

The model of geometric probing was introduced by Cole and Yap [CY87] and
inspired by work in robotics and tactile sensing. A substantial body of work has
followed, which is extensively surveyed in [Ski92]. A collection of open problems in
probing appears in [Ski89a]. More recent probing models include proximity probes
[ABG15], wedge probes [BCSS15], and distance probes [AM15].

GLOSSARY

Determination: The algorithmic problem of computing how many probes of
a certain type are necessary to completely determine or reconstruct an object
drawn from a particular class of objects.

Verification: The algorithmic problem of, given a supposed description of an
object, computing how many probes of a certain type are necessary to test
whether the description is valid.

Model-based: A problem where any object is constrained to be one of a known,
finite set of m possible objects.

Point probe: An oracle that tests whether a given point is within the object.

Finger probe: An oracle that returns the first point of intersection between a
directed line and the object.

Hyperplane probe: An oracle that returns the first time when a hyperplane
moving parallel to itself intersects the object.

X-ray probe: An oracle that measures the length of the intersection between a
line and the object.

Silhouette probe: An oracle that returns a (d−1)-dimensional projection (in a
given direction) of the d-dimensional object.

Halfspace probe: An oracle that measures the area or volume of the intersection
between a halfspace and the object.

Cut-set probe: An oracle that, for a specified graph and partition of the vertices,
returns the size of the cut-set determined by the partition.

Proximity probe: An oracle that returns the nearest point of the object to a
specified origin point.

Wedge probe: An oracle that, for a specified origin point and translation direc-
tion, returns the first contact points between the object and a moving wedge
with angle ω.
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Distance probe: An oracle that returns the distance between two named points.

Fourier probe: An oracle that for a given vector ξ ∈ R
2 returns

∫

D
e−i〈ξ,x〉 dx

with respect to a region D ⊂ R
2.

FIGURE 34.2.1

Determining the next edge of P using finger probes.

MAIN RESULTS

For a particular probing model, the determination problem asks how many probes
are sufficient to completely reconstruct an object from a given class. For example,
Cole and Yap’s strategy for reconstructing a convex polygon P from finger probes
is based on the observation that three collinear contact points must define an edge.
The strategy, illustrated in Figure 34.2.1, repeatedly aims a probe at the intersection
point between a confirmed edge (defined by three collinear points) and a conjectured
edge (defined by two contact points). If this intersection point is indeed a contact
point, another vertex is determined due to convexity; if not, the existence of another
edge can be inferred. Since we avoid probing the interior of any edge that has been
determined, roughly 3n probes suffice in total, since not more than one edge can
be hit four times. Table 34.2.1 summarizes probing results for a wide variety of
models. In the table, fi denotes the number of i-dimensional faces of P .

Cole and Yap’s finger probing model is not powerful enough to determine non-
convex objects. There are three major reasons for this. A tiny crack in an edge can
go forever undetected, since no finite strategy can explore the entire surface of the
polygon. Second, it is easy to construct nonconvex polygons whose features cannot
be entirely contacted with straight-line probes originating from infinity. Finally,
for nonconvex polygons there exists no constant k such that k collinear probes de-
termine an edge. To generalize the class of objects, enhanced finger probes have
been considered. One such probe [ABY90] returns surface normals as well as con-
tact points, eliminating the second problem. When restricted to polygons with no
two edges defined by the same supporting line, the first and third problems are
eliminated as well.

In the verification problem, we are given a description of a putative object,
and charged with using a small number of probes to prove that the description
is correct. Verification is clearly no harder than determination, since we are free
to ignore the description in planning the probes, and could simply compare the
determined object to its description. Sometimes significantly fewer probes suffice
for verification. For example, we can verify a putative convex polygon with 2n
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TABLE 34.2.1 Upper and lower bounds for determination for various probing models.

PROBE OBJECT LOWER UPPER SOURCE

finger convex polygon 3n 3n [CY87]

finger (n known) convex polygon 2n+ 1 3n− 1 [CY87]

finger convex polyhedron in R
d

df0 + fd−1 f0 + (d+2)fd−1 [LB88][DEY90]

finger (model based) convex polygon n− 1 n+ 4 [JS92]

k = 2 or 3 fingers convex polygon 2n− k 2n [LB92]

4 or 5 fingers convex polygon (4n− 5)/3 ⌊(4n + 2)/3⌋ [LB92]

k ≥ 6 fingers convex polygon n n+ 1 [LB92]

enh. fingers nondegenerate polygon 3n− 3 3n− 3 [ABY90]

Line convex polygon 3n+ 1 3n+ 1 [Li88]

Line (model based) convex polygon 2n− 3 2n+ 4 [JS92]

Silhouette convex polygon 3n− 2 3n− 2 [Li88]

Silhouette convex polyhedron in R
3

f2/2 5f0 + f2 [DEY90]

X-ray convex polygon 3n− 3 5n+ 19 [ES88]

Parallel X-ray convex polygon 3 3 [ES88]

Parallel X-ray nondegenerate polygon ⌊log n⌋ − 2 2n+ 2 [MS96]

Halfplane convex polygon 2n 7n+ 7 [Ski91]

Proximity convex polygon 2n 3.5n+ 5 [ABG15]

Wedge (ω ≤ π/2) convex polygon 2n+ 2 2n+ 5 [BCSS15]

Fourier nondegenerate polygon 3n [WP16]

Cut-set embedded graph
(

n

2

) (

n

2

)

[Ski89b]

Cut-set unembedded graph Ω(n2/ logn) O(n2/ logn) [Ski89b]

Distance (2 rounds) points in R
1

9n/8 9n/7 + O(1) [AM15]

probes by sending one finger probe to contact each vertex and the interior of each
edge. This gives three contact points on each edge, which, by convexity, suffices to
verify the polygon. Table 34.2.2 summarizes results in verification.

Of course, there are other classes of problems that do not fit so easily into the
confines of these tables. Verification is closely related to approximate geometric
testing; see [ABM+97, Rom95]. An interesting application of probing to nonconvex
polygons is presented in [HP99]. See [Ric97, Ski92] for discussions of probing with
uncertainty and tactile sensing in robotics.

TABLE 34.2.2 Upper and lower bounds for verification for various probing models.

PROBE OBJECT LOWER UPPER SOURCE

Finger convex polygon 2n 2n [CY87]

Finger (n known) convex polygon 3⌈n/2⌉ 3⌈n/2⌉ [Ski88]

Line convex polygon 2n 2n [DEY90]

X-ray convex polygon 3n/2 3n/2 + 6 [ES88]

Halfplane convex polygon 2n/3 n+ 1 [Ski91]
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OPEN PROBLEMS

1. Tighten the gap between the lower and upper bounds for determination for
finger probes in higher dimensions [DEY90].

2. Tighten the bounds for determination of convex n-gons with X-ray probes.
Does a finite number (i.e., f(n)) of parallel X-ray probes suffice to verify or
determine simple n-gons? Since each parallel X-ray probe provides a repre-
sentation of the complete polygon, there is hope to detect arbitrarily small
cracks in a finite number of probes; see [MS96].

3. Consider generalizations of halfplane probes to higher dimensions. How many
probes are necessary to determine convex (or nonconvex) polyhedra?

4. Silhouette probes return the shadow cast by a polytope in a specified direction.
These dualize to cross-section probes that return a slice of the polytope.
Tighten the current bounds [DEY90] on determination with silhouettes in R

3.

34.3 GEOMETRIC EXPLORATION AND MAPPING

In geometric mapping we face the problem of reconstructing a surrounding ge-
ometric structure using local perception. We take the perspective of an agent
exploring an initially unknown environment, while trying to piece together in-
formation gathered through its sensors in order to (partially) infer the global
structure, i.e., a map . Settings vary in the types of environments that are consid-
ered, the movement and sensor capabilities of the agent, its initial knowledge of the
environment, and the type of map that needs to be inferred. Similarly to interactive
reconstruction, the movements of the agent may depend on its past observations,
and we can view the setting as geometric probing with restricted transitions be-
tween consecutive probes.

Importantly, we generally require the map to be uniquely reconstructed, and
thus the first question when studying a specific setting is whether mapping is fea-
sible, i.e., whether the movement and sensor capabilities suffice to uniquely infer
the map at some point (irrespective of running time). If this is the case, we are
interested in mapping strategies that minimize the required movement of the agent
(irrespective of computing time).

GLOSSARY

Exploration: The problem of navigating and covering an initially unknown
environment using local sensing.

Mapping: The exploration problem with the additional objective of (uniquely)
reconstructing a representation (map) of the environment.

Graph exploration: The problem of visiting all vertices of an initially unknown
graph with an agent moving between vertices along edges of the graph. The
edges of the graph are labeled with locally unique labels, and, in each step, the
agent chooses a label of an outgoing edge and moves to its other end.
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Anonymous graph: A graph with vertices that cannot be distinguished (unless
their degrees differ). In contrast, a labeled graph has unique node identifiers.

Combinatorial visibility vector (cvv): A vector c ∈ {0, 1}d−1 for a vertex v
of degree d of a polygon, with ci = 1 exactly if the i-th and (i + 1)-st vertex
visible from v (in ccw order) are neighbors along the boundary of the polygon.

Cvv sensor: Provides the combinatorial visibility vector at the current vertex.

Look-back sensor: Provides the label of the edge leading back to the previous
location of the agent.

Pebble: A device that can be dropped at a vertex of an anonymous graph to
make the vertex distinguishable, and can be picked up and reused later.

Angle sensor: Provides the angle measurement (see Section 34.1) at the current
vertex.

Angle type sensor: Provides a bit t ∈ {0, 1} for each pair of vertices u,w visible
from the current vertex v, with t = 1 exactly if the angle between the segments vu
and vw is larger than π.

Direction sensor: Provides the angle between some globally fixed line and the
line segments connecting the current vertex to each visible vertex (in ccw order).

Distance sensor: Provides the lengths of the line segments connecting the cur-
rent vertex to each visible vertex (in ccw order). A continuous distance sensor
provides the distance to the boundary of the environment in each direction, i.e.,
it provides the visibility polygon (see Section 34.1) of the current location.

Contact sensor: Provides a bit c ∈ {0, 1}, with c = 1 exactly if the agent’s
location corresponds to a point on the boundary of the environment.

Cut: The maximal extension vx of a boundary edge uv of a polygon P , such
that v is a reflex vertex of P , and vx is collinear to uv and lies inside P .

Cut diagram: A graph associated with a polygon, with a node for each point
where (two or more) cuts and/or boundary edges of the polygon intersect (in
particular for each vertex of the polygon), and an edge between two points that
are neighbors along a cut or a boundary edge.

FIGURE 34.3.1

From left to right: angle, angle type, distance, and direction sensor.
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MAIN RESULTS

Research on geometric exploration and mapping has mainly considered polygonal
environments, either with a focus on feasibility (weak sensors) or efficiency (strong
sensors). With regards to feasibility, a key question is how minimalistic an agent
model may be to still allow inferring a meaningful map of the environment. Suri et
al. [SVW08] introduced such a model, where an agent moves from vertex to vertex
along lines-of-sight in a simple polygon, and only observes the incident lines-of-sight
in counter-clockwise (ccw) order when at a vertex. Obviously, such a minimalistic
agent cannot hope to reconstruct the full geometry of the environment. Instead,
the goal in this model is to infer the visibility graph that has an edge for each
line-of-sight (see Section 34.1). Note that the visibility graph is a reasonable topo-
logical map, because, for example, it contains all shortest vertex-to-vertex paths in
the polygon (see Chapter 31). Suri et al. [SVW08] showed that, if the agent is addi-
tionally equipped with a pebble, it can always reconstruct the visibility graph. On
the other hand, Brunner et al. [BMS+08] showed that without pebbles the problem
is infeasible, and not even the total number n of vertices can be inferred. It remains
open, whether knowledge of n alone already allows mapping. Results for various
extensions of the basic model are in Table 34.3.1.

TABLE 34.3.1 Summary of results on visibility graph mapping.

SENSOR INFO FEASIBLE RUNTIME SOURCE

cvv, look-back – no [BMS+08]

pebble – yes poly [SVW08]

angle – yes poly [DMW11]

look-back n yes poly [CD+13a]

angle type n yes exp [CDD+15]

directions n yes exp [DGM+14]

distance n open exp

none n open exp

TABLE 34.3.2 Summary of results on mapping rooms with obstacles.

ROOM OBSTACLES COMP. RATIO SOURCE

orthogonal polygon none ≤ 2 [DKP98]

orthogonal polygon none ≥ 5/4 [Kle94]

polygon none ≤ 26.5 [HIKK01]

orthogonal polygon orthogonal O(n) [DKP98]

rectangle rectangular Ω(
√
n) [AKS02]

Another simplistic model was studied by Katsev et al. [KYT+11]. In their
model, the agent can only move along the boundary and across cuts of the polygon,
and the objective is to reconstruct the cut diagram of the environment. They show
that this is possible if the agent can distinguish convex from reflex vertices and
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distinguish the two cut edges at a reflex vertex in ccw order.
A much more powerful model was studied by Deng et al. [DKP98]. Here the

agent has a global sense of direction, can move freely in the interior of a polygonal
environment (the “room”) with polygonal obstacles, and has a continuous distance
sensor that provides the exact geometry of the visible portion of the environment
from the current location. Results in this model concern the competitive ratio be-
tween the length of the exploration path and an offline optimum path (of minimum
length) ensuring that all interior points of the environment are visible at some point
(see Table 34.3.2). Note the difference to the search problem where an object needs
to be located in the environment and the offline optimum only needs to establish
visibility to the corresponding location.

The general problem of mapping unknown discrete environments can be formu-
lated in terms of graph exploration (see Table 34.3.3). In this abstract setting, the
agent moves between vertices of an initially unknown, directed (strongly connected)
graph, with the goal of inferring the graph up to isomorphism. For this purpose, we
assume the outgoing edges at a vertex to have locally unique labels that the agent
sees and uses to specify its moves. Note that, in this model, there is no immediate
way to distinguish vertices with the same degrees, and, in particular, a single agent
cannot hope to distinguish two 3-regular graphs, even if it knows the number of ver-
tices. Bender and Slonim [BS94] showed that mapping is feasible for two agents in
polynomial time, and Bender et al. [BFR+02] showed that Θ(log logn) pebbles are
necessary and sufficient for a single agent to achieve polynomial time, i.e., “a friend
is only worth Θ(log log n) pebbles.” The main result of Bender et al. [BFR+02] is
that a single pebble suffices if (a bound on) n is known.

TABLE 34.3.3 Summary of results on graph exploration and mapping.

GRAPH #AGENTS EXTRAS RESULT SOURCE

anonymous digraph 1 n known infeasible

anonymous digraph 2 randomized O(n5∆2) algorithm [BS94]

anonymous digraph 1 1 pebble, n known O(n8∆2) algorithm [BFR+02]

anonymous digraph 1 O(log logn) pebbles poly time algorithm [BFR+02]

anonymous digraph 1 o(log logn) pebbles exp time needed [BFR+02]

labeled graph const comp. ratio: O(1) DFS

labeled tree k <
√
n CR: Ω(log k/ log log k) [DLS07]

labeled graph k =
√
n randomized CR: Ω(

√
log k/ log log k) [OS12]

labeled tree k comp. ratio: O(k/ log k) [FGKP06]

labeled graph n2+ε comp. ratio: O(1) [DDK+15]

labeled graph exp(n) comp. ratio: 1 BFS

In case the vertices of the graph are distinguishable and edges are undirected,
a single agent can map any graph simply using depth-first search until every edge
was visited. This strategy visits every edge at most twice, and thus trivially yields
a competitive ratio of 2, compared with an offline optimal traversal that visits all
edges. On the other hand, a team of exponentially many agents can execute a
breadth-first search style strategy by splitting all agents at a vertex evenly among
all unexplored neighbors in each step. Obviously, this strategy needs an optimal
number of steps. In general, a team of k agents needs at least O(D + n/k) steps,
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whereD is the maximum shortest path distance from the starting location to an un-
explored vertex. Dereniowski et al. [DDK+15] showed that a constant competitive
ratio can already be obtained with (roughly) quadratic team size k = Dn1+ε. The
asymptotically best-possible competitive ratios for smaller, super-constant team
sizes remain open. The best known lower bound on the competitive ratio of deter-
ministic algorithms of Ω(log k/ log log k) for the domain k <

√
n (with n/k > D)

is due to Dynia et al. [DLS07]. This bound holds already on trees. Fraigniaud et
al. [FGKP06] gave an algorithm for trees that achieves a ratio of O(k/ log k).

OPEN PROBLEMS

1. Can a visibility graph be mapped by an agent without additional sensors, i.e.,
by observing only degrees, if the number n of vertices is known? Note that
knowledge of (some bound on) n is necessary [BMS+08].

2. Can a visibility graph be mapped with an agent using a distance sensor?

3. Close the gaps for the mapping of rooms with/without obstacles.

4. What is the best-possible competitive ratio for mapping labeled graphs with k
agents in the domain k ∈ ω(1) ∩ o(n2+ε)?

34.4 SOURCES AND RELATED MATERIAL

SURVEYS

[Lio13]: Survey on embedding proximity graphs (Table 34.1.1).

[Gar06]: Survey of Hammer’s X-ray problem and related work in geometric tomog-
raphy (Table 34.1.2).

[HK99, HK07]: Surveys on discrete tomography.

[Rom95]: Survey on geometric testing.

[Ski92]: Survey on geometric probing (Table 34.2.1).

[CD+13b]: Survey on mapping polygons (Table 34.3.1).
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[BHL11] T. Biedl, M. Hasan, and A. López-Ortiz. Reconstructing convex polygons and convex

polyhedra from edge and face counts in orthogonal projections. Internat. J. Comput.

Geom. Appl., 21:215–239, 2011.

[BMS+08] J. Brunner, M. Mihalák, S. Suri, E. Vicari, and P. Widmayer. Simple robots in

polygonal environments: A hierarchy. In Proc. 4th Workshop on Algorithmic Aspects

of Wireless Sensor Networks, vol. 5389 of LNCS, pages 111–124, Springer, Berlin,

2008.

[BS94] M.A. Bender and D.K. Slonim. The power of team exploration: Two robots can learn

unlabeled directed graphs. In Proc. 35th IEEE Sympos. Found. Comp. Sci., pp. 75–85,

1994.

[CD+13a] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer.Mapping simple poly-

gons: How robots benefit from looking back. Algorithmica, 65:43–59, 2013.

[CD+13b] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer.Simple agents learn to

find their way: An introduction on mapping polygons. Discrete Appl. Math., 161:1287–

1307, 2013.

[CDD+15] J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer. Mapping simple

polygons: The power of telling convex from reflex. ACM Trans. Algorithms, 11:33–49,

2015.

[CH17] J. Cardinal and U. Hoffmann. Recognition and complexity of point visibility graphs.

Discrete Comput. Geom., 57:164–178, 2017.

[CL92] C.R. Coullard and A. Lubiw. Distance visibility graphs. Internat. J. Comput. Geom.

Appl., 2:349–362, 1992.



Chapter 34: Geometric reconstruction problems 911

[CW12] D.Z. Chen and H. Wang. An improved algorithm for reconstructing a simple polygon

from its visibility angles. Comput. Geom., 45:254–257, 2012.

[CY87] R. Cole and C.K. Yap. Shape from probing. J. Algorithms, 8:19–38, 1987.

[Dav77] P.J. Davis. Plane regions determined by complex moments. J. Approximation Theory,

19:148–153, 1977.

[DDK+15] D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznański. Fast collaborative
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