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Abstract. We consider classes of objective functions of cardinality-constrained maximization
problems for which the greedy algorithm guarantees a constant approximation. We propose the new
class of γ-α-augmentable functions and prove that it encompasses several important subclasses, such
as functions of bounded submodularity ratio, α-augmentable functions, and weighted rank functions
of an independence system of bounded rank quotient – as well as additional objective functions
for which the greedy algorithm yields an approximation. For this general class of functions, we
show a tight bound of α

γ
· eα

eα−1
on the approximation ratio of the greedy algorithm that tightly

interpolates between bounds from the literature for functions of bounded submodularity ratio and
for α-augmentable functions. In particular, as a by-product, we close a gap in [Math.Prog., 2020] by
obtaining a tight lower bound for α-augmentable functions for all α ≥ 1. For weighted rank functions
of independence systems, our tight bound becomes α

γ
, which recovers the known bound of 1/q for

independence systems of rank quotient at least q.
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1. Introduction. We consider cardinality-constrained maximization problems
of the form

max f(X)

s.t. |X| ≤ k

X ⊆ U,

with a monotone objective function f : 2U → R≥0 over a finite ground set U . Ad-
ditional constraints of the form X ∈ X can be modeled by the monotone objective
f ′(X) := max{f(Y )|Y ∈ 2X ∩ X}. In this way, every combinatorial, cardinality-
constrained maximization problem with monotone objective can be captured, and we
adopt this framework throughout the paper.1 For example, the maximum weighted
matching problem on a graph G = (V,E) with edge weights w : E → R≥0 yields the
objective function f(X⊆E) = max{

∑
e∈M w(e)|M ⊆ X,M is a matching in G}.

We focus on the performance of the greedy algorithm. This algorithm iteratively
produces a solution SG

f,k = {x1, . . . , xk} with

xi ∈ argmaxx∈U\{x1,...,xi−1}f({x1, . . . , xi−1} ∪ {x}),

for all i ∈ [k] := {1, . . . , k}, i.e., it adds elements such that the increase in objective
value is maximized in each step. The greedy algorithm is inherently incremental
and may be regarded as the most natural approach for incrementally building up
infrastructures that support changing active solutions (in the sense of the definition
f ′(X) above). While this algorithm is widely used in practical applications, greedy
solutions can be arbitrarily far away from optimal (e.g., for the knapsack problem).

∗An extended abstract of this paper appeared in [9].
Funding: Supported by DFG grant DI 2041/2.

†TU Darmstadt ({disser|weckbecker}@mathematik.tu-darmstadt.de).
1Note that the objective function f may be computationally hard to evaluate. If we assume that

the greedy algorithm has oracle access to f , it requires O(|U |k) queries to the oracle.
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A natural question in this context is, for which objective functions f the greedy
algorithm gives a good solution. We are interested in characterizing these objective
functions.

Note that we consider the adaptive greedy solution SG
f,k as opposed to the non-

adaptive greedy solution S̃G
f,k := SG

f,min{k,k̄}, where k̄ ∈ [|U |] is the smallest cardinality
such that f(SG

k̄
∪ {x}) = f(SG

k̄
) for all x ∈ U \ SG

k̄
. In other words, the non-adaptive

greedy algorithm terminates as soon as it cannot improve the solution further. This
non-adaptive variant of the greedy algorithm has often been considered in the early
literature (e.g., [15, 16, 22, 23]). Note, that for submodular functions, i.e., functions
with f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all X,Y ⊆ U , there is no difference
between these two variants, and for our purposes both variants are interchangeable
in the following sense.

Formally, we measure the quality of the greedy algorithm on a set of objec-
tives F by the approximation ratio supf∈F maxk∈[|Uf |]f(S

∗
f,k)/f(Xf,k), where Uf is

the ground set of the function f ∈ F , S∗
f,k ∈ argmaxX⊆U :|X|≤k f(X) denotes an

optimum solution of cardinality at most k, and Xf,k ∈ {SG
f,k, S̃

G
f,k} refers to the

(non-)adaptive greedy solution of cardinality k. We claim that the approximation
ratios of both variants of the greedy algorithm coincide. To see this, observe that the
non-adaptive setting is more restrictive, and that every lower bound instance in the
non-adaptive setting can be made adaptive by introducing additional elements that
add a vanishingly small but positive objective value when added to every solution.
This implies that all our bounds on the approximation ratio of the (adaptive) greedy
algorithm immediately apply to both variants.

From now on, we write SG
k := SG

f,k and S∗
k := S∗

f,k, whenever f is clear from the
context. In these terms, we are interested in characterizing the set of objectives for
which the greedy algorithm has a bounded approximation ratio. Known examples
include the objectives of maximum (weighted) (b-)matching, maximum (weighted)
coverage, and many more [2, 3, 8, 18, 30], and we additionally introduce a multi-
commodity flow problem (Section 2), where the greedy algorithm yields an approxi-
mation.

A well-known class of functions for which the greedy algorithm has a bounded
approximation ratio of (exactly) e

e−1 are the monotone, submodular functions [22].
This class includes the maximum coverage problem, but fails to capture many other
greedily approximable settings. See Figure 1 along with the following.

Das and Kempe [8] introduced the class of functions of bounded submodularity
ratio as a generalization of submodular functions. Importantly, its definition depends
on the greedy solutions for different cardinalities. We adapt and weaken the definition
from [8] for consistency, by restricting ourselves to greedy solutions and by minimizing
over all cardinalities.

Definition 1.1 ([8]). The weak submodularity ratio of f : 2U → R≥0 is (using
0
0 := 1)

γ(f) := min
X∈{SG

0 ,...,SG
k̄
},Y⊆U\X

∑
y∈Y (f(X ∪ {y})− f(X))

f(X ∪ Y )− f(X)
∈ [0, 1].

Das and Kempe [8] showed an upper bound of eγ

eγ−1 on the approximation ratio of
the greedy algorithm for the set of all monotone functions with submodularity ratio
at least γ > 0, and Bian et al. [3] extended this to a tight bound that is additionally
parameterized by the curvature of the objective. Since submodular functions have
submodularity ratio 1, this bound generalizes the submodular bound. Crucially, it is
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easy to verify that these results carry over to the set F̃γ of all monotone functions
with weak submodularity ratio at least γ > 0.2

Another generalization of submodularity was proposed by Bernstein et al. [2].
We extend the definition by a weakened variant in order to bring it more in line with
Definition 1.1.

Definition 1.2 ([2]). The function f : 2U → R≥0 is (weakly) α-augmentable for
α ≥ 1, if, for every X ⊆ U (X ∈ {SG

0 , . . . , SG
k̄
}) and Y ⊆ U with Y ⊈ X, there exists

an element y ∈ Y \X with

f(X ∪ {y})− f(X) ≥ f(X ∪ Y )− αf(X)

|Y |
.

Bernstein et al. showed that the greedy algorithm has an approximation ratio of at
most α· eα

eα−1 on the set Fα of monotone, α-augmentable functions, for α ≥ 1, and that
this bound is tight for α ∈ {1, 2} and in the limit α → ∞. Since submodular functions
are 1-augmentable, this bound again generalizes the submodular bound. The class
of α-augmentable problems captures the objective of the maximum (weighted) α-
dimensional matching problem, which is not submodular. In this paper, we introduce
a natural α-commodity flow variant that is α-augmentable, and we prove a tight lower
bound on the approximation ratio for all α ≥ 1.

Another well-known setting, besides submodularity, where the greedy algorithm
has a bounded approximation ratio, are weighted rank functions of independence sys-
tems of bounded rank quotient [17]. An independence system is a tuple (U, I ⊆ 2U ),
where I is closed under taking subsets and ∅ ∈ I. For a given weight
function w : U → R≥0, the weighted rank function of (U, I) is given by
f(X) = max{

∑
x∈Y w(x)|Y ∈ I ∩ 2X}. The rank quotient of an independence sys-

tem (U, I) is q(U, I) := minX⊆U minB,B′∈B(X) |B|/|B′|, where we set 0
0 := 1, and

the set B(X) of all bases of some set X ⊆ U is defined to be the set of inclusion-
wise maximal subsets of I∩2X , i.e., B(X) := {B ∈ I ∩ 2X |∀x ∈ X \B : B ∪ {x} /∈ I}.
Jenkyns [15] and Korte and Hausmann [16] showed that the greedy algorithm has an
approximation ratio of exactly 1/q on the set Fq of all weighted rank functions of
independence systems with rank quotient at least q > 0.3

Our results. Our goal is to unify and to generalize the above classes of functions
on which the greedy algorithm has a bounded approximation ratio. To this end, we
first observe that each one of the classes F̃γ , Fα, and Fq uniquely captures greedily
approximable objectives (cf. Figure 1 and Propositions 3.1, 3.2, 3.3, and 4.10). In par-
ticular, we construct a natural α-augmentable variant of multi-commodity flow that
does not have bounded (weak) submodularity ratio (for α ∈ N \ {1}) and cannot be
expressed as the maximization of a weighted rank function. Besides the α-dimensional
matching problem, to our knowledge, the problem introduced in Section 2 is the only
other natural α-augmentable problem to date.

Proposition 1.3. For every γ, q ∈ (0, 1) and α ≥ 1, it holds that

F̃γ ⊈ (Fα ∪ Fq) and Fα ⊈ (F̃γ ∪ Fq) and Fq ⊈ (F̃γ ∪ Fα).

This motivates the following definition to consolidate all three classes.

2Here and throughout we use the notation F̃ as opposed to F to refer to a function class based
on a weak definition.

3Note that we abuse notation, since, e.g., Fα ̸= Fq for α = q = 1. However, the set of functions
we are referring to will always be clear by the naming of the indices.
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Definition 1.4. The function f : 2U → R≥0 is (weakly) γ-α-augmentable for
γ ∈ (0, 1] and α ≥ γ if, for all sets X ⊆ U (X ∈ {SG

0 , ..., SG
k̄
}) and all Y ⊆ U with

Y ⊈ X, there exists y ∈ Y with

f(X ∪ {y})− f(X) ≥ γf(X ∪ Y )− αf(X)

|Y |
.

Note that we need to consider the weak variant of this definition if we hope to
encompass the class F̃γ , which enforces its defining property only for “greedy sets”,
however, any upper bound on the approximation ratio immediately carries over to
the same bound in the stronger definition. Also note that γ-α-augmentability only
requires α ≥ γ, unlike α-augmentability where α ≥ 1. This is in line with the
definitions of α-augmentability where γ = 1 and of the submodularity ratio where
α = γ. We let F̃γ,α denote the set of all weakly γ-α-augmentable functions. The first
part of our main result is that this set encompasses all functions in F̃γ ∪ Fα ∪ Fq

and captures additional functions (cf. Figure 1). Formally, we show the following
(cf. Propositions 4.2 and 4.9).

Theorem 1.5. For every γ, q ∈ (0, 1], every γ′ ∈ (0, 1), every α ≥ 1, and every
α′ ≥ γ′, it holds that

F̃γ,max{α,1/q} ⊇ F̃γ ∪ Fα ∪ Fq and F̃γ′,α′ ⊈ F̃γ ∪ Fα ∪ Fq.

Note that α′ and γ′ in Theorem 1.5 do not depend on α, γ and q. The second
part of our main result is a tight bound on the approximation ratio of the greedy
algorithm on F̃γ,α (cf. Theorems 4.3 and 4.7).

Theorem 1.6. The approximation ratio of the greedy algorithm on the class F̃γ,α

of monotone, weakly γ-α-augmentable functions, with γ ∈ (0, 1] and α ≥ γ, is exactly

α

γ
· eα

eα − 1
.

Importantly, this bound recovers exactly the known bound for functions of
bounded submodularity ratio, since F̃γ ⊆ F̃γ,γ , as well as the known bound for
α-augmentable functions, since Fα ⊆ F̃1,α. In that sense, our new bound inter-
polates tightly between these two bounds and generalizes them. In addition, our tight
lower bound for F̃1,α is obtained with an α-augmentable function. This means that,
in particular, we are able to close the gap left in [2], by showing a tight lower bound
for α-augmentable objectives, for all α ≥ 1 (cf. Propositions 4.6 and 4.8).

Corollary 1.7. The approximation ratio of the greedy algorithm on the class Fα

of monotone, α-augmentable functions is exactly α · eα

eα−1 for all α ≥ 1.

Finally, we are also able to show a tight bound of α/γ for γ-α-augmentable,
weighted rank functions on independence systems (cf. Propositions 4.11 and 4.12).
Since Fq ⊆ F̃1,1/q (by Theorem 1.5), our bound recovers exactly the known bound
of 1/q for the approximation ratio of the greedy algorithm when the rank quotient is
bounded from below by q > 0. This means that the class of monotone, weakly γ-α-
augmentable functions truly unifies and generalizes the three classes F̃γ , Fα, and Fq

of greedily approximable functions (cf. Figure 1). Note that, in particular, the lower
bound is tight already for α-augmentable functions, which implies a tight bound of α
for the approximation ratio of the greedy algorithm on α-augmentable weighted rank
functions.
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Fig. 1. Relation of the different problem classes (nodes) and objective properties (ellipses).
Anything that is contained within one ellipse has the property the ellipse stands for. Newly introduced
classes and problems are marked in red with dashed lines and round nodes. The parameter k′ is
chosen sufficiently large, depending on γ and α.

Theorem 1.8. Let FIS :=
⋃

q∈(0,1] Fq be the set of weighted rank functions on
some independence system. The approximation ratio of the greedy algorithm on the
class F̃γ,α ∩ FIS, with γ ∈ (0, 1] and α ≥ γ, is exactly α

γ .

Related Work. We can view our cardinality-constrained maximization framework
as a special case of maximization over an independence system. In particular, the
cardinality-constraint can be expressed as a uniform matroid constraint [17]. From
that perspective, the most basic, non-trivial setting is the maximization of a lin-
ear (i.e., modular) objective over an independence system. Regarding the approxima-
tion ratio of the greedy algorithm, this classic setting is equivalent to the maximiza-
tion of a weighted rank function, as considered in Theorem 1.8. This is easy to see
by considering the non-adaptive variant of the greedy algorithm, and by observing
that the greedy solution is guaranteed to remain feasible while the algorithm makes
progress (cf. Lemma 4.1).

In that sense, the perfomance of the greedy algorithm for weighted rank function
maximization has extensively been studied in the past. Rado [25] showed that the
greedy algorithm is optimal for all weight functions if the underlying independence sys-
tem is a matroid, and Edmonds [10] established the reverse implication. Jenkyns [15]
extended this result by showing an upper bound of 1/q for the approximation ratio
of the greedy algorithm on independence systems with rank quotient q, and Korte
and Hausmann [16] gave a tight lower bound. Years later, Mestre [21] indepen-
dently proved this tight bound for the subclass of k-extendible independence systems.
Bouchet [4] gave a different generalization of the result by Rado and Edmonds by
showing that the greedy algorithm remains optimal on symmetrical matroids.

Another prominent setting is the maximization of a submodular function over an
independence system. Again, this includes cardinality-constrained maximization of a
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submodular objective, which is equivalent to submodular maximization over a uniform
matroid. Nemhauser, Wolsey, and Fisher [23] showed that the greedy algorithm has a
tight approximation ratio of e

e−1 for maximizing a monotone, submodular function un-
der a cardinality-constraint. Krause et al. [19] observed that the approximation ratio
is unbounded when maximizing the minimum of two monotone, submodular func-
tions. Non-monotone submodular maximization over a cardinality-constraint (and
knapsack constraints) was considered by Lee et al. [20]. Feldman et al. [14] analyzed
a variant of the continuous greedy algorithm [28] and showed an upper bound on
its approximation ratio of (1/e − o(1))−1. This bound for the non-monotone case
with cardinality-constraint was later improved by Buchbinder et al. [5] and Ene and
Nguyen [11] by further adapting the (continuous) greedy algorithm. For maximiz-
ing a submodular function subject to k-extentible system and k-systems constraints,
Feldman et al. [12, 13] considered three variants of the greedy algorithm, a repeated
greedy, a sample greedy and a simultaneous greedy. They were able to show approx-
imation ratios of k + O(1) for k-extendible system constraints and k + O(

√
k) for

k-system constraints.
Maximization of a monotone, submodular function over a matroid was considered

by Vondrák [28] and by Calinescu et al. [6], who showed that the continuous greedy
algorithm has an approximation ratio of e

e−1 in this setting. Nemhauser, Wolsey,
and Fisher [23], showed an upper bound of p + 1 for the regular greedy algorithm
when maximizing over the intersection of p matroids. A generalization of this upper
bound to the setting of maximizing subject to a p-system constraint was later proven
by Calinescu et al. [6]. Conforti and Cornuejols [7] gave an upper bound of p + c
depending on the curvature c of the monotone submodular function – this interpolates
between the submodular bound of [23] (c = 1) and the linear bound of [16] (c = 0).
Vondrák [29] showed that the continuous greedy algorithm has an approximation ratio
of at most c ec

ec−1 over an arbitrary matroid, and Sviridenko, Vondrák, and Ward [27]
showed an improved upper bound of e

e−c for the approximation ratio of a modified
continuous greedy algorithm over a uniform matroid (i.e., a cardinality-constraint).

Other variants of the problem setting include the maximization of a monotone,
submodular function over a knapsack constraint [26], and robust submodular maxi-
mization [1, 24].

1.1. Paper organization. This paper is structured as follows. In Section 2 we
present an α-augmentable multi-commodity flow problem. We show that the greedy
algorithm cannot achieve an approximation ratio smaller than the known upper bound
of α · eα

eα−1 for this problem class for α ∈ N, i.e., we show Corollary 1.7 for α ∈ N. In
Section 3 we prove most of Proposition 1.3, i.e., we show that of the function classes
F̃γ , Fα and Fq, neither is contained within the other two. Lastly, in Section 4 we show
Theorems 1.5, 1.6 and 1.8. I.e., we show that the class of γ-α-augmentable functions
contains the three previously mentioned classes, and show a tight approximation ratios
for the greedy algorithm on this class. Furthermore, we close the gaps left in the proofs
of the previous sections.

2. The Multi-Sink α-Commodity Flow problem. In this section, we
introduce a natural α-commodity flow problem that models, e.g., production processes
where output is limited by availability of all components. The objective of this prob-
lem is (exactly) α-augmentable, but, for α ∈ N\{1}, does not have a bounded (weak)
submodularity ratio and cannot be expressed as a weighted rank function over an
independence system. We will show that this problem also gives a tight lower bound
for the approximation ratio of the greedy algorithm on α-augmentable functions, for
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α ∈ N. We will extend this lower bound to all α ≥ 1 in Section 4.1, and thus close a
gap left by [2].

Definition 2.1. For a directed graph G = (V,E) with source s ∈ V , sinks T ⊆ V ,
and arc capacities µ : E → R≥0, we define an s-T -flow to be a function ϑ : E → R≥0

that satisfies

ϑ(e) ≤ µ(e) ∀e ∈ E (capacity constraint),
exϑ(v) = 0 ∀v ∈ V \ ({s} ∪ T ) (flow conservation),
exϑ(t) ≥ 0 ∀t ∈ T (T are sinks),

where (using δ+(v) := ({v} × V ) ∩E, δ−(v) := (V × {v}) ∩E) the excess of a vertex
v ∈ V is defined as

exϑ(v) :=
∑

e∈δ−(v)

ϑ(e)−
∑

e∈δ+(v)

ϑ(e).

We extend this notion to multi-commodity flows, where each commodity has an
independent capacity function.

Definition 2.2. Let α ∈ N and G = (V,E) be a graph with s ∈ V and T ⊆ V .
Furthermore, let µ = (µi : E → R≥0)i∈[α] be capacity functions. A multicommodity-
flow in G w.r.t. µ is a tuple ϑ = (ϑ1, ..., ϑα), where ϑi is an s-T -flow in G with respect
to capacities µi. The minimum-excess of the sink vertex t ∈ T in ϑ is

minexϑ(t) := min
i∈[α]

exϑi
(t).

For convenience, we let µ(u, v) := µ((u, v)), ϑ(u, v) := ϑ((u, v)), and we let
exϑ(V

′) :=
∑

v∈V ′ exϑ(v) for V ′ ⊆ V , and minexϑ(T
′) :=

∑
t∈T ′ minexϑ(t) for T ′ ⊆ T

in the following.
An instance of the problem Multi-Sink α-Commodity Flow, for α ∈ N, is

given by a tuple (G, s, T,µ), where G = (V,E) is a directed graph, s ∈ V is a source
vertex, T ⊆ V contains sink vertices, and µ = (µi : E → R≥0)i∈[α] are capacity func-
tions. The problem is to find a subset of sinks X ⊆ T with |X| = k that maximizes
the objective function

f(X) = max
ϑ∈MG,µ

minexϑ(X),

where MG,µ denotes the set of all multicommodity-flows in G w.r.t. capacities µ.

Example 2.3. For a prototypical application of Multi-Sink α-Commodity
Flow, consider a factory where k ∈ N machines are to be built in a set T of po-
tential locations. Each machine produces the same item and needs a number α ∈ N of
different resources. The output of a machine is limited by the resource it has available
the least. All resources are delivered to the machines along different routes within the
factory, e.g., some liquids might be transported via pipes, other resources might be
transported on a conveyor belt or on pallets. The objective is to determine in which k
locations the machines should be constructed in order to maximize overall production.

Theorem 2.4. For every α ∈ N, the objective of Multi-Sink α-Commodity
Flow is monotone and α-augmentable.

Proof. Let X ⊆ T and t ∈ T \X. To prove monotonicity, fix some flow ϑ with
minexϑ(X) = f(X). By definition, minexϑ(X) ≤ minexϑ(X ∪ {t}) ≤ f(X ∪ {t})
holds and thus f is monotone.
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To show α-augmentability, let (G, s, T, µ) be an instance of Multi-Sink
α-Commodity Flow. Let X,Y ⊆ T such that Y ′ := Y \X ̸= ∅. We show that there
exists y ∈ Y ′ with

f(X ∪ {y})− f(X) ≥ f(X ∪ Y ′)− αf(X)

|Y ′|
.

This suffices because, with

f(X ∪ Y ′)− αf(X)

|Y ′|
=

f(X ∪ Y )− αf(X)

|Y ′|
≥ f(X ∪ Y )− αf(X)

|Y |
,

α-augmentability of the problem follows.
Let ϑX∪Y ′

= (ϑX∪Y ′

1 , ..., ϑX∪Y ′

α ) be a multicommodity-flow in G that maximises
the minimum-exess minexϑX∪Y ′ (X ∪ Y ′), i.e., minexϑX∪Y ′ (X ∪ Y ′) = f(X ∪ Y ′),
such that ϑX∪Y ′

i is a maximum s-(X ∪ Y ′)-flow w.r.t. capacity µi for all i ∈ [α].
Such a multicommodity-flow can be obtained by augmenting a flow that maximises
minexϑX∪Y ′ (X ∪Y ′), e.g., with the Edmonds-Karp algorithm (cf. [17]). Furthermore,
we let ϑX = (ϑX

1 , ..., ϑX
α ) be a multicommodity-flow in G with minexϑX (X) = f(X),

as well as exϑX
i
(X) = f(X) and exϑX

i
(T \ X) = 0 for all i ∈ [α], i.e., ϑX max-

imises the minimum-excess of the set X while the values of all flows ϑX
i are as small

as possible. This multicommodity-flow can be obtained by reducing the flows of a
multicommodity-flow that maximises minexϑX (X ∪Y ′) along paths of a path decom-
position of the flow (cf. [17]). We define the function g : X → [α], such that, for
all x ∈ X, no flow ϑ̃ w.r.t. capacity µg(x) exists with exϑ̃(x

′) ≥ exϑX
g(x)

(x′) for all

x′ ∈ X \ {x} and with exϑ̃(x) > exϑX
g(x)

(x). This means that the flow ϑX
g(x) is one of

the flows limiting the value of minexϑX (x). Let g−1(i) = {x ∈ X | g(x) = i} for all
i ∈ [α] be the preimage of g. Obviously

(2.1)
α⋃

i=1

g−1(i) = X.

We add a super sink t to G and let G̃ = (Ṽ , Ẽ) with Ṽ := V ∪ {t} and
Ẽ := E ∪ {(v, t) | v ∈ (X ∪ Y ′)} denote the resulting graph. Furthermore, we define
the capacity functions µ̃i : Ẽ → R for all i ∈ [α] such that, for (u, v) ∈ Ẽ,

µ̃i(u, v) :=


µi(u, v), if (u, v) ∈ E,

max{exϑX
i
(u), exϑX∪Y ′

i
(u)}, if (u, v) ∈ X × {t},

exϑX∪Y ′
i

(u), if (u, v) ∈ Y ′ × {t}.

Now we extend the flow ϑX∪Y ′
to a flow ϑ̃

X∪Y ′

in G̃, such that, for all i ∈ [α] and
(u, v) ∈ Ẽ,

ϑ̃X∪Y ′

i (u, v) :=

{
ϑX∪Y ′

i (u, v), if (u, v) ∈ E,

exϑX∪Y ′
i

(u), else,

holds, and analogously, we extend the flow ϑX to a flow ϑ̃
X

in G̃. With this def-
inition, ϑ̃X∪Y ′

i is a maximum s-t-flow w.r.t. capacity µ̃i, because ϑX∪Y ′

i is a maxi-
mum s-(X ∪ Y ′)-flow w.r.t. capacity µi.
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For i ∈ [α], let ϑ̃i be a maximum s-t-flow w.r.t. capacity µ̃i in G̃ obtained from
ϑ̃X
i by using the Edmonds-Karp algorithm. Then its value is exactly exϑX∪Y ′

i
(X∪Y ′),

as ϑX∪Y ′

i is a maximum s-(X ∪ Y ′)-flow. We project ϑ̃i onto a flow in G, i.e., we set
ϑi := ϑ̃i|E for i ∈ [α] and define ϑ := (ϑ1, ..., ϑα). For all x ∈ X, by definition of ϑ,
we have exϑi

(x) ≥ exϑX
i
(x), and thus, by definition of g,

(2.2) exϑg(x)
(x) = exϑX

g(x)
(x).

Because ϑ̃i is a maximum s-t-flow in G̃ w.r.t. capacity µ̃i, ϑi is a maximum s-(X∪Y ′)-
flow w.r.t. capacity µi in G. Since ϑX∪Y ′

i is also a maximum s-(X ∪ Y ′)-flow w.r.t.
capacity µi, we have

(2.3) exϑi
(X ∪ Y ′) = exϑX∪Y ′

i
(X ∪ Y ′).

For all x ∈ X, we know that the excess of x in ϑi is as large as the flow ϑ̃i(x, t), i.e.,
(2.4)
exϑi

(x) = ϑ̃i(x, t) ≤ µ̃i(x, t) = max{exϑX
i
(x), exϑX∪Y ′

i
(x)} ≤ exϑX

i
(x) + exϑX∪Y ′

i
(x).

By maximality of ϑX and because exϑi(x) ≥ exϑX
i
(x) for all x ∈ X, we have

(2.5) minexϑ(X) = minexϑX (X) = f(X).

Since X ∩ Y ′ = ∅, we obtain

exϑX∪Y ′
i

(Y ′)− exϑi
(Y ′)

= exϑX∪Y ′
i

(X ∪ Y ′)− exϑi
(X ∪ Y ′)− exϑX∪Y ′

i
(X) + exϑi

(X)

(2.3)
= exϑi

(X)− exϑX∪Y ′
i

(X)

=
∑

x∈X\g−1(i)

(exϑi
(x)− exϑX∪Y ′

i
(x)) +

∑
x∈g−1(i)

(exϑi
(x)− exϑX∪Y ′

i
(x))

(2.4),(2.2)
≤

∑
x∈X\g−1(i)

exϑX
i
(x) +

∑
x∈g−1(i)

(exϑX
i
(x)− exϑX∪Y ′

i
(x))

= f(X)−
∑

x∈g−1(i)

exϑX∪Y ′
i

(x),(2.6)
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where we used minimality of ϑX . Using this we can compute

minex
ϑ

X∪Y ′ (Y ′) =
∑
y∈Y ′

min
i∈[α]

{exϑX∪Y ′
i

(y)}

=
∑
y∈Y ′

min
i∈[α]

{exϑi
(y) + (exϑX∪Y ′

i
(y)− exϑi

(y))}

≤
∑
y∈Y ′

(
min
i∈[α]

{exϑi
(y)}+

α∑
i=1

(exϑX∪Y ′
i

(y)− exϑi
(y))

)
= minexϑ(Y

′) +

α∑
i=1

(exϑX∪Y ′
i

(Y ′)− exϑi
(Y ′))

(2.6)
≤ minexϑ(Y

′) +

α∑
i=1

(
f(X)−

∑
x∈g−1(i)

exϑX∪Y ′
i

(x)
)

(2.1)
= minexϑ(Y

′) + αf(X)−
∑
x∈X

exϑX∪Y ′
g(x)

(x).(2.7)

Finally, because of X ∩ Y ′ = ∅, we get

f(X ∪ Y ′) = minex
ϑ

X∪Y ′ (X) + minex
ϑ

X∪Y ′ (Y ′)

=
∑
x∈X

(
min
i∈[α]

exϑX∪Y ′
i

(x)
)
+minexϑX∪Y ′ (Y ′)

(2.7)
≤

∑
x∈X

exϑX∪Y ′
g(x)

(x) + minexϑ(Y
′) + αf(X)−

∑
x∈X

exϑX∪Y ′
g(x)

(x)

=
∑
y∈Y ′

minexϑ(y) + αf(X),

which is equivalent to

(2.8)
∑
y∈Y ′

minexϑ(y) ≥ f(X ∪ Y ′)− αf(X).

Now, we show that f(X∪{y})−f(X) ≥ minexϑ(y) for all y ∈ Y ′, which completes
the proof,

|Y ′|
(
max
y∈Y ′

f(X ∪ {y})− f(X)
)
≥

∑
y∈Y ′

(
f(X ∪ {y})− f(X)

)
≥

∑
y∈Y ′

minexϑ(y)
(2.8)
≥ f(X ∪ Y ′)− αf(X).

In order to show that f(X ∪{y})−f(X) ≥ minexϑ(y) holds for all y ∈ Y ′, let y ∈ Y ′.
Since X ∩ Y ′ = ∅, we have

minexϑ(X ∪ {y}) = minexϑ(X) + minexϑ(y)
(2.5)
= f(X) + minexϑ(y).

Furthermore, we have f(X∪{y}) ≥ minexϑ(X∪{y}) because ϑ is a multicommodity-
flow in G. Combining these two insights yields f(X ∪ {y})− f(X) ≥ minexϑ(y).
Thus, we can conclude that f is α-augmentable.
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s

v1

v2

t1

t2

t3

(1+ϵ, 0)

(0, 1+ϵ)

(0, 1)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

Fig. 2. An instance of Multi-Sink α-Commodity Flow for α = 2 where the objective has
(weak) submodularity ratio 0 and cannot be modelled as weighted rank function of some independence
system.

Proposition 2.5. For every γ, q ∈ (0, 1), and α ∈ N with α ≥ 2, there exists an
instance of Multi-Sink α-Commodity Flow where the objective is not in F̃γ ∪ Fq.

Proof. We will define such an instance of Multi-Sink α-Commodity Flow.
Let

T := {t1, t2, t3},
V := {s, v1, v2} ∪ T,

E := {(s, v1), (s, v2), (s, t1), (s, t3), (v1, t1), (v1, t2), (v2, t2), (v2, t3)},
G := (V,E),

and, with 0 < ϵ < γ
2 , let

µ : E → Rα
≥0, µ(e) =


(1 + ϵ, 0, 0, ..., 0), if e = (s, v1),

(0, 1 + ϵ, 1 + ϵ, ..., 1 + ϵ), if e = (s, v2),

(1, 0, 0, ..., 0), if e ∈ {(s, t3), (v1, t1), (v1, t2)},
(0, 1, 1, ..., 1), else.

A diagram of the graph can be seen in Figure 2. With proper tie breaking (or by adding
small extra capacities), the greedy algorithm picks the sink t2 in the first iteration.
Adding any other sink to this increases the objective value by ϵ, i.e., for all t ∈ T , we
have

∑
t∈T (f(S

G
1 ∪ {t})− f(SG

1 )) = 2ϵ. But since f(SG
1 ∪ {t1, t3})− f(SG

1 ) = 1, the
weak submodularity ratio of this problem is 2ϵ

1 < γ.
If f could be modelled as the weighted rank function of some independence system,

the corresponding weight function would have to satisfy w(t1) = w(t2) = w(t3) = 1
because each sink alone has a minimum-excess of 1. Yet, we have f({t1, t2}) = 1 + ϵ.
This cannot be possible if f is the weighted rank function of some independence
system, as, in this case, we would have f({t1, t2}) ∈ {0, 1, 2}, depending on which sets
are independent.

We will now construct a family of instances the Multi-Sink α-Commodity
Flow problem to show a tight lower bound on the approximation ratio of the greedy
algorithm for the class of α-augmentable objectives for α ∈ N.
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For α = 2, Multi-Sink α-Commodity Flow problem is equivalent to the
BridgeFlow problem considered in [2]. We generalize the tight lower bound con-
struction for BridgeFlow to arbitrary α ∈ N.

For k ∈ N, k ≥ 2 we let x := k
k−1 . Now, we define the graphs Gk = (Vk, Ek)

(cf. Figure 3) via

Vk := {s, v1, ..., vαk, t1, ..., t2αk},

Ek :=

α⋃
i=1

Ek,i,

Ek,i := E1
k,i ∪ E∞

k,i ∪
αk⋃
j=1

Ek,i,j ∪
αk⋃
j=1

E′
k,i,j ,

E1
k,i := {(s, t(α+i−1)k+1), ..., (s, t(α+i)k)},

E∞
k,i := {(s, tαk+1), ..., (s, t2αk)} \ E1

k,i,

Ek,i,j := {(s, vj), (vj , tj)}∀j ∈ [αk],

E′
k,i,j := {(vj , t(α+i−1)k+1), ..., (vj , t(α+i)k)}∀j ∈ [αk],

capacity functions µk = (µk
1 , ..., µ

k
α) with µk

i : E
k → R for i ∈ [α] and

µk
i (e) =



1, if e ∈ E1
k,i,

∞, if e ∈ E∞
k,i,

xαk−j+1, if e ∈ Ek,i,j for some j ∈ [αk],
1
kx

αk−j+1, if e ∈ E′
k,i,j for some j ∈ [αk],

0, else.

Note that only the arcs in Ek,i allow a flow of commodity i. We define s to be the
source vertex and T := {t1, ..., t2αk} to be the set of sink vertices.

In the following proof we will need the following observation: Using x = k
k−1 and

with n ∈ N the equation

1 +
1

k

n∑
j=1

xj = 1 +
1

k

(xn+1 − 1

x− 1
− 1

)
= 1 +

1

k

(( k
k−1

)n+1 − 1(
k

k−1

)
− 1

− 1
)

= 1 +
1

k

(
(k − 1)

(( k

k − 1

)n+1

− 1
)
− 1

)
= 1 +

( k

k − 1

)n

− 1

k
((k − 1) + 1) =

( k

k − 1

)n

= xn(2.9)

holds.
We will now show in which order the greedy algorithm picks the vertices from the

set T . We assume that the tie-breaking works out in our favor. This can be achieved
by introducing small offsets to the capacities. For better readability we omit this here.

Lemma 2.6. Let α, k ∈ N. In iteration ℓ ∈ [αk], the greedy algorithm picks
sink vertex tℓ. Furthermore, a multicommodity-flow ϑ = (ϑ1, ..., ϑα) with maximum
minimum-excess of the vertices {t1, ..., tℓ} for ℓ ∈ [αk] always satisfies ϑi(e) = xαk−j+1

for all e ∈ Ek,i,j with i ∈ [α] and j ∈ [ℓ], i.e., all arcs in Ek,i,j are fully saturated for
all i ∈ [α] and j ∈ [ℓ].



UNIFIED GREEDY APPROXIMABILITY BEYOND SUBMODULAR MAXIMIZATION 13

s

v1

vj

vαk

t1

tj

tαk

tαk+1

t(α+i−1)k

t(α+i−1)k+1

t(α+i)k

t(α+i)k+1

t2αk

.........

.........

...

...

...

...

...

xαk

xαk−j+1

x

xαk

xαk

k

xαk

k

xαk−j+1

xαk−j+1

k

xαk−j+1

k

x

x
k

x
k

1

∞

∞

1

∞

∞

Fig. 3. The graph Gk only with edges from Ek,i and capacities µk
i .

Proof. We will prove the statement by induction. In iteration ℓ = 1, the gain
of picking vertex tj with j ∈ [αk] is xαk−j+1, because for all i ∈ [α] we can have
a flow of value xαk−j+1 of commodity i from s via vj and the edges in Ek,i,j to tj
and no more flows to tj are possible, since the only incoming arc to tj , which allows
a flow of commodity i, is the arc (vj , tj) ∈ Ek,i,j . The gain of picking vertex tj
with j ∈ {αk + 1, ..., 2αk} is the minimum of all commodities flowing to tj and there
is only one commodity which does not allow an unbounded flow to tj , because for
i ∈ [α] \ {

⌈
j−α
k

⌉
} there is an arc from si to tj in E′

k,i,j with infinite capacity for
commodity i. The maximum flow of the commodity with a finite flow to tj is

1 +
1

k

αk∑
j=1

xj (2.9)
= xαk,

and, thus, with proper tie-breaking, the greedy algorithm chooses vertex t1. For
i ∈ [α], the only incoming path that allows a flow of commodity i from s to t1 is along
the edges in Ek,i,1, so they have to be fully saturated by a multicommodity-flow with
maximum minimum-excess.

Now suppose the statement is true for some ℓ ∈ [αk−1], i.e., the greedy algorithm
has picked edges t1, ..., tℓ and a multicommodity-flow with maximum minimum-excess
of the vertices {t1, ..., tℓ} fully saturates all arcs in Ek,i,j for all i ∈ [α] and j ∈ [ℓ].
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Then the gain of picking vertex tj for j ∈ {ℓ+ 1, ..., αk} is still xαk−j+1, because all
s-tj-paths for i ∈ [α] do not carry flow that contributes to the maximum minimum-
excess. The gain of picking vertex tj for j ∈ {αk + 1, ..., 2αk} is still the minimum
of all commodities flowing to tj , and again there is only one commodity which does
not allow an unbounded flow to tj . Because all incoming flow at vertices v1, ..., vℓ
already saturates all incoming arcs, there is no flow of this commodity via a vertex
in {v1, ..., vℓ} to tj possible without reducing the minimum-excess of another sink
vertex by the same amount. Thus, the maximal flow of this commodity to tj is

1 +
1

k

αk−ℓ∑
j=1

xj (2.9)
= xαk−ℓ,

so, with proper tie-breaking, the greedy algorithm picks vertex tℓ+1 next. For i ∈ [α],
the only incoming path that allows a flow of commodity i from s to tj for j ∈ [ℓ] is
along the edges in Ek,i,j , so they have to be fully saturated by a multicommodity-flow
with maximum minimum-excess.

With this, we obtain a lower bound for the approximation ratio of the greedy
algorithm on Fα for α ∈ N that tightly matches the upper bound of [2], i.e., we obtain
Corollary 1.7 for α ∈ N. In particular, it follows that the objective of Multi-Sink
α-Commodity Flow is not β-augmentable for any β < α. We will generalize the
lower bound to all α ≥ 1 in Section 4.1.

Theorem 2.7. For α ∈ N, the greedy algorithm has an approximation ratio of at
least α eα

eα−1 for Multi-Sink α-Commodity Flow.

Proof. By Lemma 2.6, the greedy algorithm picks the sinks t1, ..., tαk in the
first αk iterations and the objective increases by xαk−j+1 when sink vertex tj is
picked and thus the minimum-excess of the greedy solution is

f(SG
k ) =

αk∑
j=1

xj (2.9)
= k(xαk − 1).

We compare this to the solution that picks the vertices tαk+1, ..., t2αk (which is, in fact,
an optimal solution for cardinality αk). Increasing the flow to one of these vertices
does not reduce the flow to the others, so the minimum-excess of any of these vertices
is

1 +
1

k

αk∑
j=1

xj (2.9)
= xαk,

and their total minimum-excess thus is αkxαk. Using this and x = k
k−1 , we calculate

the ratio between this solution and the greedy solution and get

αkxαk

k(xαk − 1)
=

αxαk

xαk − 1
=

α
(

k
k−1

)αk(
k

k−1

)αk − 1
=

α
((

k
k−1

)k)α((
k

k−1

)k)α − 1
.

Using the identity limk→∞(k/(k − 1))k = e, we obtain the limit

lim
k→∞

α
((

k
k−1

)k)α((
k

k−1

)k)α − 1
= α

eα

eα − 1
.
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3. Separating Function Classes. In this section we will prove the second and
third part of Proposition 1.3 for all α ≥ 1, as well as the first part of Proposition 1.3
for α ∈ N \ {1}. The case α ≥ 1 will be addressed in Section 4.1.

We start with the first part, i.e., we separate Fα for α ∈ N \ {1}. This follows
immediately from Theorem 2.4 and Proposition 2.5.

Proposition 3.1. For every γ, q ∈ (0, 1), and α ∈ N with α ≥ 2, it holds that
Fα ⊈ (F̃γ ∪ Fq).

Proof. Let γ, q ∈ (0, 1), and α ∈ N with α ≥ 2. By Theorem 2.4, every objective
of an instance of Multi-Sink α-Commodity Flow is α-augmentable. By Propo-
sition 2.5, there exists an instance of Multi-Sink α-Commodity Flow, where the
objective is not in F̃γ ∪ Fq. Combining this yields the desired result.

We proceed to show the second and third part of Proposition 1.3 (for all α ≥ 1).

Proposition 3.2. For every γ, q ∈ (0, 1), α ≥ 1, it holds that F̃γ ⊈ (Fα ∪ Fq).

Proof. Consider the set U = {a, b} and the objective function

fγ : 2U → R≥0, f
γ(X) =

{
|X|, if |X| ≤ 1,
2
γ , else.

If fγ could be modelled as the weighted rank function of an independence system
(U, I), then we would have U ∈ I because f(U) > f(X) for all X ⊊ U . Then I = 2U

and fγ would be linear which is not true. Thus fγ cannot be modelled as the weighted
rank function of an independence system, and fγ /∈ Fq.

Furthermore, fγ /∈ Fα. To see this, consider X = ∅ and Y = {a, b}. Then we
have fγ(X ∪{y})−fγ(X) = 1 for all y ∈ Y , and we have fγ(X∪Y )−αfγ(X)

|Y | = 1
γ . Since

γ < 1, the problem is not α-augmentable.
Now, let X,Y ⊆ U with X ∩ Y = ∅. For Y = ∅ the ratio in the definition of the

weak submodularity ratio is 0
0 = 1. Thus, assume |Y | ≥ 1. If X = ∅, we have∑

y∈Y fγ(X ∪ {y})− fγ(X)

fγ(X ∪ Y )− fγ(X)
=

|Y |
fγ(Y )

∈ {1, γ}.

Otherwise, if |X| = 1, then |Y | = 1 and the ratio in the definition of the (weak)
submodularity ratio is 1. In both cases, the ratio is at least γ, thus the (weak)
submodularity ratio of this problem is γ, and fγ ∈ F̃γ .

Proposition 3.3. For every γ, q ∈ (0, 1), α ≥ 1, it holds that Fq ⊈ (F̃γ ∪ Fα).

Proof. We fix m,n ∈ N with q ≤ m
n < 1 and α ≥ 1. Let

A := {a1, ..., a⌈α⌉n},
B := {b1, ..., b⌈α⌉n},
C := {c}
U := A ∪B ∪ C,

I := 2A ∪ 2B ∪ {X ⊂ U | |X| ≤ ⌈α⌉m}.

We consider the independence system (U, I) and the weight function w : U → R≥0

defined by

w(e) =

{
1, e ∈ A,

⌈α⌉(n−m) + 1, else.
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The weighted rank function f is given by

fq : U → R≥0, f
q(X) = max{w(Y ) | Y ∈ 2X ∩ I}.

Obviously we have q(U, I) = m
n , i.e., fq ∈ Fq.

For X = A, Y = B and y ∈ Y , we calculate

fq(X) = ⌈α⌉n,
fq(X ∪ {y}) = max{⌈α⌉n, ⌈α⌉(n−m) + 1 + (⌈α⌉m− 1)} = ⌈α⌉n,
fq(X ∪ Y ) = ⌈α⌉n(⌈α⌉(n−m) + 1).

Suppose, fq was α-augmentable. Then

fq(X ∪ {y})− fq(X) ≥ fq(X ∪ Y )− αfq(X)

|Y |
,

i.e.,

⌈α⌉n− ⌈α⌉n ≥ ⌈α⌉n(⌈α⌉(n−m) + 1)− α⌈α⌉n
⌈α⌉n

,

which is equivalent to
α ≥ ⌈α⌉(n−m) + 1.

Since n > m, this is a contradiction, i.e., fq /∈ Fα.
Now, with X = {c, b1, ..., b⌈α⌉m−1} and Y = B \X = {b⌈α⌉m, ..., b⌈α⌉n}, we have∑

y∈Y fq(X ∪ {y})− fq(X)

fq(X ∪ Y )− fq(X)
= 0.

Thus, and because the set X can be the greedy solution SG
k̄

, the weak submodularity
ratio of this problem is γ(fq) = 0, i.e., fq /∈ F̃γ .

4. γ-α-Augmentability. In this section, we argue that the class F̃γ,α of weakly
γ-α-augmentable functions unifies and generalizes the classes F̃γ , Fα, and Fq. We
start by proving the first half of Theorem 1.5. The second half will be shown in
Section 4.1, together with lower bounds for the approximation ratio of the greedy
algorithm.

We need the following simple lemma.

Lemma 4.1. Let (U, I) be an independence system with weight function
w : U → R≥0 and weighted rank function f . Furthermore, let k ∈ [k̄] and x ∈ U \ SG

k

with w(x) > 0. Then, the following are equivalent:
(i) SG

k ∪ {x} ∈ I
(ii) f(SG

k ∪ {x})− f(SG
k ) = w(x)

(iii) f(SG
k ∪ {x})− f(SG

k ) > 0

Proof. “(i) ⇒ (ii)”: By definition of f as a weighted rank function and be-
cause SG

k ∪ {x} ∈ I, we have

f(SG
k ∪ {x})− f(SG

k ) =
∑

x′∈SG
k ∪{x}

w(x′)−
∑

x′∈SG
k

w(x′) = w(x).

“(ii) ⇒ (iii)”: This follows immediately from the fact that w(x) > 0.
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“(iii) ⇒ (i)”: Let x ∈ U \SG
k with f(SG

k ∪{x})−f(SG
k ) > 0. Suppose there is some

s′ ∈ SG
k with w(x) > w(s′). This means that x was considered by the greedy algorithm

before and not added to the solution, i.e., {s ∈ SG
k | w(s) ≥ w(x)} ∪ {x} /∈ I. The fact

that f(SG
k ∪ {x})− f(SG

k ) > 0 implies that there is ∅ ≠ S ⊆ SG
k with

SG
k \ S ∪ {x} ∈ I and w(S) < w(x). The last inequality implies that

{s ∈ S | w(s) ≥ w(x)} = ∅, which means that {s ∈ SG
k | w(s) ≥ w(x)} ⊆ SG

k \ S. But
then {s ∈ SG

k | w(s) ≥ w(x)} ∪ {x} ∈ I, which is a contradiction. Therefore, we have
w(x) ≤ w(s) for all s ∈ SG

k . If we would have SG
k ∪ {x} /∈ I, then the equality

f(SG
k ∪ {x})− f(SG

k ) = 0 would hold because every element in SG
k has a greater

weight than x and because SG
k ∈ I. Thus, the statement holds.

Since (weak) γ-α-augmentability implies (weak) γ′-α′-augmentability for all
γ ≥ γ′ and α ≤ α′, the following proposition implies the first part of Theorem 1.5.

Proposition 4.2. For every γ, q ∈ (0, 1], and every α ≥ 1, it holds that

F̃1,α ⊇ Fα and F̃γ,γ ⊇ F̃γ and F̃γ,γ/q ⊇ Fq.

Proof. If f ∈ Fα, then, for all X,Y ⊆ U , and, in particular X ∈ {SG
0 , ..., SG

k̄
},

there exists y ∈ Y with

f(X ∪ {y})− f(X) ≥ 1 · f(X ∪ Y )− αf(X)

|Y |
,

which means that f ∈ F̃1,α.
For the second part of the proof, let f ∈ F̃γ , X ∈ {SG

0 , ..., SG
k̄
} and Y ⊆ U \X.

Furthermore, let y∗ ∈ argmaxy∈Y f(X ∪ {y}). Then, we have

|Y |(f(X ∪ {y∗})− f(X)) ≥
∑
y∈Y

(f(X ∪ {y})− f(X))

≥ γ(f)f(X ∪ Y )− γ(f)f(X),

where the second inequality follows from the definition of the weak submodularity
ratio. Since γ(f) ≥ γ, this means that f is weakly γ-γ-augmentable, i.e., f ∈ F̃γ,γ .

For the last part of the proof, let f ∈ Fq be the weighted rank function of an
independence system (U, I), and let w : U → R≥0 be the associated weight function.
Furthermore, let k ∈ [k̄] and Y ⊆ U . We prove that, for every γ ∈ (0, 1], there exists
y ∈ Y with

f(SG
k ∪ {y})− f(SG

k ) ≥
γf(SG

k ∪ Y )− γ
q(U,I)f(S

G
k )

|Y |
.

If f(SG
k ∪ Y ) − 1

q(U,I)f(S
G
k ) < 0, the inequality holds by monotonicity of f . Thus,

assume from now on that

(4.1) f(SG
k ∪ Y )− 1

q(U, I)
f(SG

k ) ≥ 0.

Let S′ ⊆ SG
k and Y ′ ⊆ Y with S′∪Y ′ ∈ I and f(SG

k ∪Y ) = w(S′∪Y ′). Furthermore,
let y∗ := argmaxy∈Y ′ f(SG

k ∪ {y}). We define

Ỹ :=

{
{y ∈ Y ′ | w(y) > w(y∗)}, if f(SG

k ∪ {y∗}) > f(SG
k ),

Y ′, if f(SG
k ∪ {y∗}) = f(SG

k ),
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and we define the independence system (Ũ , Ĩ) with

Ũ := SG
k ∪ Ỹ ,

Ĩ := 2S
G
k ∪ 2S

′∪Ỹ .

We have Ũ ⊆ U and Ĩ ⊆ I and thus q(Ũ , Ĩ) ≥ q(U, I). The greedy solution for the
maximization problem on the independence system (Ũ , Ĩ) is SG

k . Let S∗ ⊆ Ũ be the
optimal solution. Then, as shown in [15, 16], we have

f(SG
k ) ≥q(Ũ , Ĩ)f(S∗) ≥ q(Ũ , Ĩ)f(S′ ∪ Ỹ )

≥q(U, I)f(S′ ∪ Ỹ ) = q(U, I)w(S′ ∪ Ỹ ).(4.2)

If f(SG
k ∪ {y∗}) > f(SG

k ), Lemma 4.1 yields f(SG
k ∪ {y∗}) − f(SG

k ) = w(y∗), and if
f(SG

k ∪ {y∗}) = f(SG
k ), by definition of Ỹ , we have |Y ′ \ Ỹ | = 0. Using this and the

definition of Ỹ , we get

|Y |(f(SG
k ∪ {y∗})− f(SG

k )) ≥ |Y ′ \ Ỹ |w(y∗)
≥ w(Y ′ \ Ỹ )

(4.2)
≥ w(Y ′ \ Ỹ ) + w(S′ ∪ Ỹ )− 1

q(U, I)
f(SG

k )

= w(S′ ∪ Y ′)− 1

q(U, I)
f(SG

k )

= f(SG
k ∪ Y )− 1

q(U, I)
f(SG

k )

(4.1),1≥γ

≥ γf(SG
k ∪ Y )− γ

q(U, I)
f(SG

k ).

Since q(U, I) ≥ q, this yields weak γ-γq -augmentability, i.e., f ∈ F̃γ,γ/q.

Having shown that F̃γ,α subsumes the other three classes of functions, we now
prove the upper bound on the approximation ratio in Theorem 1.6 for this class.
Observe that the upper bound trivially carries over to the class of monotone, γ-α-
augmentable (not weakly) functions.

Theorem 4.3. The approximation ratio of the greedy algorithm on the class F̃γ,α

of monotone, weakly γ-α-augmentable functions, with γ ∈ (0, 1] and α ≥ γ, is at most

α

γ
· eα

eα − 1
.

Proof. Let f ∈ F̃γ,α. First we consider the case k > k̄, i.e., the case that the
greedy algorithm stops early because the value of the solution cannot be increased by
adding any element. Because f is weakly γ-α-augmentable and there is no element
u ∈ U with f(Sk̄ ∪ {u})− f(Sk̄) > 0, we have, for all x ∈ S∗

k ,

0 = |S∗
k |(f(SG

k̄ ∪ {x})− f(SG
k̄ )) ≥ γf(SG

k̄ ∪ S∗
k)− αf(SG

k̄ ) ≥ γf(S∗
k)− αf(SG

k ),

i.e., f(SG
k ) ≥ γ

αf(S
∗
k) >

γ
α · eα−1

eα f(S∗
k).

Now consider the case that k ≤ k̄. For ease of notation, we define the gain of the
greedy algorithm in iteration j to be δj := f(SG

j )− f(SG
j−1) for all j ∈ [k]. Let i ∈ [k]

and
x∗ := argmaxx∈S∗

k
f(SG

i−1 ∪ {x})− f(SG
i−1).
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We have

δi ≥ f(SG
i−1 ∪ {x∗})− f(SG

i−1) ≥
γf(SG

i−1 ∪ S∗
k)− αf(SG

i−1)

|S∗
k |

≥ γ

k
f(S∗

k)−
α

k
f(SG

i−1) =
γ

k
f(S∗

k)−
α

k

i−1∑
j=1

δj −
α

k
f(∅).(4.3)

We prove by induction that, for all ℓ ∈ {0, ..., k}, we have

(4.4) f(S∗
k)−

α

γ

ℓ∑
j=1

δj −
α

γ
f(∅) ≤ f(S∗

k)(1−
α

k
)ℓ.

For ℓ = 0 the equation obviously holds. Now suppose that (4.4) holds for some
ℓ ∈ {0, ..., k − 1}. Then, for ℓ+ 1, we have

f(S∗
k)−

α

γ

ℓ+1∑
j=1

δj −
α

γ
f(∅)

= f(S∗
k)−

α

γ

ℓ∑
j=1

δj −
α

γ
δℓ+1 −

α

γ
f(∅)

(4.3)
≤ f(S∗

k)−
α

γ

ℓ∑
j=1

δj −
α

γ

(γ
k
f(S∗

k)−
α

k

ℓ∑
j=1

δj −
α

k
f(∅)

)
− α

γ
f(∅)

=
(
f(S∗

k)−
α

γ

ℓ∑
j=1

δj −
α

γ
f(∅)

)
(1− α

k
)

(4.4)
≤ f(S∗

k)(1−
α

k
)ℓ+1,

and (4.4) continues to hold. Because of 1 + x ≤ ex for x ∈ R, we have

f(S∗
k)−

α

γ

ℓ∑
j=1

δj −
α

γ
f(∅)

(4.4)
≤ f(S∗

k)(1−
α

k
)ℓ ≤ e−

α
k ℓf(S∗

k).

Rearranging this for ℓ = k and using the fact that f(SG
k ) =

∑k
j=1 δj + f(∅), yields

f(SG
k ) ≥ γ

α
· e

α − 1

eα
f(S∗

k).

4.1. A Critical Function. To obtain the tight lower bound of Theorem 1.6 for
weakly γ-α-augmentable problems and to separate this class from F̃γ ∪ Fα ∪ Fq, we
introduce a function that is inspired by a construction in [3] for the submodularity
ratio.

We fix γ ∈ (0, 1] and α ≥ γ. Let k ∈ N with k > α, and let A = {a1, ..., ak}
and B = {b1, ..., bk} be disjoint sets. We set U = A ∪ B, define ξi := 1

k (
k−α
k )i−1

and let h(x) := γ−1−1
k−1 x2 + k−γ−1

k−1 x. For our purpose, the important facts about h

are h(0) = 0, h(1) = 1, h(k) = k
γ and that h is convex and non-decreasing on [0, k]).

With this in mind, we define the function Fγ,α,k : 2
U → R≥0 by

Fγ,α,k(X) = max
X′⊆X

{h(|{b1} ∩X ′| · |B ∩X ′|)
k

(
1− α

∑
i∈[k]:

ai∈A∩X′

ξi

)
+

∑
i∈[k]:

ai∈A∩X′

ξi

}
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If h(|{b1} ∩X| · |B ∩X|) > k
α , we have

Fγ,α,k(X) =
h(|{b1} ∩X| · |B ∩X|)

k
,

and otherwise, if h(|{b1} ∩X| · |B ∩X|) ≤ k
α , we have

Fγ,α,k(X) =
h(|{b1} ∩X| · |B ∩X|)

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)
+

∑
i∈[k]:

ai∈A∩X

ξi.

We observe that, for X ⊆ B, convexity of h, h(0) = 0, h(k) = k/γ and |X| ≤
|B| = k imply that

(4.5) h(|{b1} ∩X| · |X|) ≤ |{b1} ∩X| · |X|
γ

,

and, for ℓ ∈ {0, ..., k}, we have

(4.6)
ℓ∑

i=1

ξi =

ℓ∑
i=1

1

k

(k − α

k

)i−1

=
1

k
·
1−

(
k−α
k

)ℓ
1− k−α

k

=
1−

(
k−α
k

)ℓ
α

.

We show that our modification of the function introduced in [3] retains the same
structure in regard to greedy solutions.

Proposition 4.4. For i ∈ [k], the greedy algorithm picks the element ai in itera-
tion i, and, for i ∈ [2k] \ [k], the greedy algorithm picks the element bi−k in iteration
i.

Proof. First, we consider the case i ∈ [k]. Suppose that in iteration i, the initial
solution is {a1, ..., ai−1}, where {a1, ..., a0} = ∅, with objective value

∑i−1
ℓ=1 ξℓ. Adding

an element from {b2, ..., bk} does not increase the objective value because {b1}∩{b} = ∅
for all b ∈ {b2, ..., bk}. For j ∈ {i, ..., k}, adding aj increases the objective value by
ξj = 1

k (
k−α
k )j−1. Since k > α, we have ξi ≥ ξj for j ≥ i. Adding the element b1 to

the solution {a1, ..., ai−1} increases the objective value by

1

k

(
1− α

i−1∑
ℓ=1

ξℓ

)
(4.6)
=

1

k

(
1− α

1−
(
k−α
k

)i−1

α

)
=

1

k

(k − α

k

)i−1

.

Thus, with proper tie breaking, the greedy algorithm picks the element ai in iteration
i for i ∈ [k].

Now, we consider the case that i ∈ {k + 1, ..., 2k}. For i = k + 1, adding an ele-
ment from {b2, ..., bk} does not increase the objective value, while adding b1 increases
it by 1

k (
k−α
k )k. Thus, in iteration k + 1, the element b1 is added to the solution.

For i ≥ k + 2, adding any element from B \SG
i−1 to the greedy solution SG

i−1 increases
the function value by the same amount. Therefore, with proper tie breaking, the
greedy algorithm picks the element bi−k in iteration i for i ∈ {k + 1, ..., 2k}.

With this, we can show that Fγ,α,k is weakly γ-α-augmentable.

Lemma 4.5. For every γ ∈ (0, 1], every α ≥ γ, and every k ∈ N with k > α, it
holds that Fγ,α,k ∈ F̃γ,α.
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Proof. The monotonicity of Fγ,α,k immediately follows from the maximum in the
definition. To prove weak γ-α-augmentability, let X ∈ {SG

0 , ..., SG
2k} and Y ⊆ U . We

define Y ′ := Y \X. For better readability, we will write F := Fγ,α,k.
First, consider the case that X ⊆ A. Then F (X) =

∑
i∈[k]:ai∈X ξi because

h(0) = 0. Thus and because h(1) = 1, for all y ∈ Y ′, we have

F (X ∪ {y})− F (X) =


ξi, if y = ai ∈ (A ∩ Y ′),
1
k (1− α

∑
i∈[k]:ai∈X ξi), if y = b1,

0, else,

i.e.,

|Y ′|
(
max
y∈Y ′

F (X ∪ {y})− F (X)
)

≥
( ∑
y∈A∩Y ′

(
F (X ∪ {y})− F (X)

))
+

|B ∩ Y ′|
(

max
y∈B∩Y ′

F (X ∪ {y})− F (X)
)

=
( ∑

i∈[k]:
ai∈A∩Y ′

ξi

)
+ |{b1} ∩ Y ′| · |B ∩ Y ′|1

k

(
1− α

∑
i∈[k]:
ai∈X

ξi

)
.(4.7)

If h(|{b1}∩Y ′| · |B∩Y ′|) ≤ k
α , we use the fact that F (X) =

∑
i∈[k]:ai∈X ξi to calculate

γF (X ∪ Y )− αF (X)

B∩X=∅
= γ

(h(|{b1} ∩ Y ′| · |B ∩ Y ′|)
k

(
1− α

∑
i∈[k]:

ai∈X∪(A∩Y ′)

ξi

)

+
∑
i∈[k]:

ai∈X∪(A∩Y ′)

ξi

)
− α

∑
i∈[k]:
ai∈X

ξi

=
[γ
k
h(|{b1} ∩ Y ′| · |B ∩ Y ′|)

(
1− α

∑
i∈[k]:
ai∈X

ξi

)]

+
[
γ
(
1− α

k
h(|{b1} ∩ Y ′| · |B ∩ Y ′|)

)( ∑
i∈[k]:

ai∈A∩Y ′

ξi

)]
+

[
(γ − α)

∑
i∈[k]:
ai∈X

ξi

]

≤
[1
k
|{b1} ∩ Y ′| · |B ∩ Y ′|

(
1− α

∑
i∈[k]:
ai∈X

ξi

)]
+

[ ∑
i∈[k]:

ai∈A∩Y ′

ξi

]
+ [0].(4.8)

The first part of the last inequality follows from (4.5). The second part of the inequal-
ity follows from the fact that γ ∈ (0, 1] and, for x ≥ 0, we have α

k h(x) ≥ 0. The last
part follows from the fact that γ ≤ α. Combining equations (4.7) and (4.8) together
with the fact that Y ′ ⊆ Y yields weak γ-α-augmentability.
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Otherwise, if h(|{b1} ∩ Y ′| · |B ∩ Y ′|) > k
α , we have

γF (X ∪ Y )− αF (X) = γ
h(|{b1} ∩ Y ′| · |B ∩ Y ′|)

k
− α

∑
i∈[k]:
ai∈X

ξi

(4.5)
≤ 1

k
|{b1} ∩ Y ′| · |B ∩ Y ′| − α

∑
i∈[k]:
ai∈X

ξi

|B|=k

≤ 1

k
|{b1} ∩ Y ′| · |B ∩ Y ′|

(
1− α

∑
i∈[k]:
ai∈X

ξi

)
(4.7)
≤ |Y ′|

(
max
y∈Y ′

F (X ∪ {y})− F (X)
)
,

which yields γ-α-augmentability also in this case.
Now, consider the case that X ⊈ A. Then, by Proposition 4.4, we have

X = A ∪ {b1, ..., bi} for some i ∈ [k]. If i = k, i.e., X = U , we have
γF (X ∪ Y )− αF (X) = (γ − α)F (U) ≤ 0 and we are done. Thus, assume that i < k.
Because h is convex and non-decreasing on [0, k], we have

(4.9)
h(i+ |Y ′|)− h(i)

|Y ′|
|Y ′|+i≤|B|

≤ h(|B|)− h(i)

|B| − i
.

With

H(i) := (k − i)
h(i+ 1)− h(i)

h(k)− h(i)
,

we have

H ′(i) = (k − 1)
2− 3γ + γ2

(k − 1 + i− γi)2
≥ 0,

which yields

(4.10) H(i) ≥ H(0) = k
1− 0
k
γ − 0

= γ.

Combining this with (4.9), we obtain

(4.11)
|Y ′|

(
h(i+ 1)− h(i)

)
h(i+ |Y ′|)− h(i)

(4.9)
≥

(|B| − i)
(
h(i+ 1)− h(i)

)
h(|B|)− h(i)

|B|=k
= H(i)

(4.10)
≥ γ.

If h(i + |Y ′|) ≤ k
α , because h is increasing for positive values, we have
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h(i) ≤ h(i+ 1) ≤ h(i+ |Y ′|) ≤ k
α . Thus, for every y ∈ Y ′, we have

|Y |
(
F (X ∪ {y})− F (X)

)
≥ |Y ′|h(i+ 1)− h(i)

k

(
1− α

k∑
j=1

ξj

)
(4.11)
≥

γ
(
h(i+ |Y ′|)− h(i)

)
k

(
1− α

k∑
j=1

ξj

)
γ≤α

≥
(
γ
h(i+ |Y ′|)

k
− α

h(i)

k

)(
1− α

k∑
j=1

ξj

)
(4.12)

γ≤α

≥ γ
[h(i+ |Y ′|)

k

(
1− α

k∑
j=1

ξj

)
+

k∑
j=1

ξj

]

−α
[h(i)

k

(
1− α

k∑
j=1

ξj

)
+

k∑
j=1

ξj

]
= γF (X ∪ Y )− αF (X).

If h(i) ≤ h(i+ 1) ≤ k
α < h(i+ |Y ′|), then, for every y ∈ Y ′, we have

|Y |
(
F (X ∪ {y})− F (X)

)
(4.12)
≥

(
γ
h(i+ |Y ′|)

k
− α

h(i)

k

)(
1− α

k∑
j=1

ξj

)

= γ
h(i+ |Y ′|)

k
− α

h(i)

k

(
1− α

k∑
j=1

ξj

)
− γ

k
h(i+ |Y ′|)α

k∑
j=1

ξj

h(i+|Y ′|)≤h(k)= k
γ

≥ γ
h(i+ |Y ′|)

k
− α

[h(i)
k

(
1− α

k∑
j=1

ξj

)
+

k∑
j=1

ξj

]
= γF (X ∪ Y )− αF (X).(4.13)

If h(i) ≤ k
α < h(i+ 1) ≤ h(i+ |Y ′|), then

(4.14)
α

k
h(i+ 1) >

α

k
· k
α

= 1,

which implies that, for every y ∈ Y ′, we have

(4.15) F (X ∪ {y}) = h(i+ 1)

k

(4.14)
>

h(i+ 1)

k

(
1− α

k∑
j=1

ξj

)
+

k∑
j=1

ξj .
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This implies

|Y |
(
F (X ∪ {y})− F (X)

) (4.15)
≥ |Y ′|h(i+ 1)− h(i)

k

(
1− α

k∑
j=1

ξj

)
(4.11)
≥

γ
(
h(i+ |Y ′|)− h(i)

)
k

(
1− α

k∑
j=1

ξj

)

≥ γh(i+ |Y ′|)− αh(i)

k

(
1− α

k∑
j=1

ξj

)
(4.13)
≥ γF (X ∪ Y )− αF (X).

If k
α < h(i) ≤ h(i+ 1) ≤ h(i+ |Y ′|), then, for every y ∈ Y ′, we have

|Y |
(
F (X ∪ {y})− F (X)

)
= |Y ′|h(i+ 1)− h(i)

k
(4.11)
≥

γ
(
h(i+ |Y ′|)− h(i)

)
k

≥ γ
h(i+ |Y ′|)

k
− α

h(i)

k
= γF (X ∪ Y )− αF (X),

i.e., also in all of these cases, F is γ-α-augmentable.

It is straightforward to bound the approximation ratio of the greedy algorithm
for Fγ,α,k.

Proposition 4.6. The approximation ratio of the greedy algorithm for maximiz-
ing the function Fγ,α,k, with γ ∈ (0, 1], α ≥ γ and k ∈ N with k > α, is at least

α

γ

1

1− (1− α
k )

k
.

Proof. We compare the objective values of the greedy solution SG
k of size k and

the solution B, which also has size k. By Proposition 4.4, we have SG
k = A, and thus

F (SG
k ) = F (A) =

k∑
i=1

ξi
(4.6)
=

1−
(
k−α
k

)k
α

and

F (B) =
h(k)

k
=

k
γ

k
=

1

γ
.

Thus, the greedy algorithm has an approximation ratio of at least

F (S∗
k)

F (SG
k )

≥ F (B)

F (SG
k )

=
α

γ
· 1

1−
(
k−α
k

)k .
Theorem 4.7. The approximation ratio of the greedy algorithm on the class F̃γ,α

of monotone, weakly γ-α-augmentable functions, with γ ∈ (0, 1] and α ≥ γ, is at least

α

γ
· eα

eα − 1
.
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Proof. By Lemma 4.5, Fγ,α,k ∈ F̃γ,α, and, by Proposition 4.6, the greedy algo-
rithm has an approximation ratio of at least α

γ
1

1−(1−α
k )k

for maximizing Fγ,α,k. The
general lower bound follows, since

lim
k→∞

1

1−
(
k−α
k

)k =
1

1− e−α
=

eα

eα − 1
.

It even turns out that, for γ = 1, the function Fγ,α,k is α-augmentable. This
allows to carry the lower bound over to the class Fα.

Proposition 4.8. For every α ≥ 1, and every k ∈ N with k ≥ α, it holds
that F1,α,k ∈ Fα.

Proof. By Lemma 4.5, F1,α,k is monotone. Thus, it suffices to prove that the
function is α-augmentable. For better readability, we write F := F1,α,k. Observe
that, if γ = 1, we have h(x) = x for all x ∈ R. Let X,Y ⊆ U and Y ′ := Y \X.

If |{b1} ∩ (X ∪ Y )| · |B ∩ (X ∪ Y )| ≤ k
α , for y ∈ Y ′, we have

F (X ∪ {y})− F (X)

=


(
1− |{b1}∩X|·|B∩X|

k α
)
ξi, if y = ai ∈ A ∩ Y ′,

|{b1}∩(X∪{y})|·|B∩(X∪{y})|−|{b1}∩X|·|B∩X|
k

·
(
1− α

∑
i∈[k]:ai∈A∩X ξi

)
, if y ∈ B ∩ Y ′.

(4.16)

This yields

F (X ∪ Y )− αF (X)

=
( |{b1} ∩ (X ∪ Y ′)| · |B ∩ (X ∪ Y ′)|

k

(
1− α

∑
i∈[k]:

ai∈A∩(X∪Y ′)

ξi

)
+

∑
i∈[k]:

ai∈A∩(X∪Y ′)

ξi

)

−α
( |{b1} ∩X| · |B ∩X|

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)
+

∑
i∈[k]:

ai∈A∩X

ξi

)

=
[ |{b1} ∩ (X ∪ Y ′)| · |B ∩ (X ∪ Y ′)| − α|{b1} ∩X| · |B ∩X|

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)]

+
[(

1− |{b1} ∩ (X ∪ Y ′)| · |B ∩ (X ∪ Y ′)|
k

α
) ∑

i∈[k]:
ai∈A∩Y ′

ξi

]
+

[
(1− α)

∑
i∈[k]:

ai∈A∩X

ξi

]

≤
[
|B ∩ Y ′| max

y∈B∩Y ′

{ |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| − |{b1} ∩X| · |B ∩X|
k(

1− α
∑
i∈[k]:

ai∈A∩X

ξi
)}]

+
[(

1− |{b1} ∩X| · |B ∩X|
k

α
) ∑

i∈[k]:
ai∈A∩Y ′

ξi

]
+ [0]

(4.16)
= |B ∩ Y ′|

(
max

y∈B∩Y ′
F (X ∪ {y})− F (X)

)
+

∑
y∈A∩Y ′

(F (X ∪ {y})− F (X))

≤ |Y |
(
max
y∈Y

F (X ∪ {y})− F (X)
)
.

This establishes α-augmentability if |{b1} ∩ (X ∪ Y )| · |B ∩ (X ∪ Y )| ≤ k
α .
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Consider the case that |{b1}∩X| · |B ∩X| ≤ k
α < |{b1}∩ (X ∪Y )| · |B ∩ (X ∪Y )|.

If, for y ∈ B ∩ Y ′, we have |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| ≤ k
α , then

F (X ∪ {y})− F (X)

(4.16)
=

|{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| − |{b1} ∩X| · |B ∩X|
k

(
1− α

∑
i∈[k]:ai∈A∩X

ξi
)

and if

(4.17) |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| > k

α

for y ∈ B ∩ Y ′, we have

F (X ∪ {y})− F (X)

=
|B ∩ (X ∪ {y})|

k
− |{b1} ∩X| · |B ∩X|

k

(
1− α

∑
i∈[k]:ai∈A∩X

ξi
)
−

∑
i∈[k]:ai∈A∩X

ξi

(4.17)
≥ |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| − |{b1} ∩X| · |B ∩X|

k

(
1− α

∑
i∈[k]:ai∈A∩X

ξi
)
.

This means that, in either case, for y ∈ B ∩ Y ′, we have

F (X ∪ {y})− F (X)

≥ |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| − |{b1} ∩X| · |B ∩X|
k

(4.18)

·
(
1− α

∑
i∈[k]:

ai∈A∩X

ξi
)
.

Since we consider |{b1}∩X| · |B ∩X| ≤ k
α < |{b1}∩ (X ∪Y )| · |B ∩ (X ∪Y )|, we have

(4.19) Y ′ ∩B ̸= ∅

and

(4.20) b1 ∈ X ∪ Y = X ∪ Y ′.

This yields
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F (X ∪ Y )− αF (X)

=
|B ∩ (X ∪ Y ′)|

k
− α

( |{b1} ∩X| · |B ∩X|
k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)
+

∑
i∈[k]:

ai∈A∩X

ξi

)

=
[ |B ∩ (X ∪ Y ′)|

k
− α

∑
i∈[k]:

ai∈A∩X

ξi

]
−

[
α
|{b1} ∩X| · |B ∩X|

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)]
α≥1

≤
[ |B ∩ (X ∪ Y ′)|

k
− α

∑
i∈[k]:

ai∈A∩X

ξi

]
−

[ |{b1} ∩X| · |B ∩X|
k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)]

=
[ |B ∩ (X ∪ Y ′)|

k
− α

∑
i∈[k]:

ai∈A∩X

ξi

]

−
[
(|B ∩ Y ′| − (|B ∩ Y ′| − 1))

|{b1} ∩X| · |B ∩X|
k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)]
|B|=k,|{b1}∩X|≤1

≤
[ |B ∩ (X ∪ Y ′)|

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi
)]

−
[ |B ∩ Y ′| · |{b1} ∩X| · |B ∩X| − (|B ∩ Y ′| − 1)|B ∩X|

k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi

)]

= |B ∩ Y ′| |B ∩X|+ 1− |{b1} ∩X| · |B ∩X|
k

(
1− α

∑
i∈[k]:

ai∈A∩X

ξi
)

(4.19),(4.20)
= |B ∩ Y ′| max

y∈B∩Y ′

{ |{b1} ∩ (X ∪ {y})| · |B ∩ (X ∪ {y})| − |{b1} ∩X| · |B ∩X|
k

·
(
1− α

∑
i∈[k]:

ai∈A∩X

ξi
)}

(4.18)
≤ |B ∩ Y ′|

(
max

y∈B∩Y ′
F (X ∪ {y})− F (X)

)

Thus, if |{b1} ∩X| · |B ∩X| ≤ k
α < |{b1} ∩ (X ∪ Y )| · |B ∩ (X ∪ Y )|, the function F

is α-augmentable.
If k

α < |{b1} ∩X| · |B ∩X|, for y ∈ Y ′, we have

F (X ∪ {y})− F (X) =

{
0 if y = ai ∈ A ∩ Y ′,
|B∩(X∪{y})|−|B∩X|

k if y ∈ B ∩ Y ′,
(4.21)

which yields
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F (X ∪ Y )− αF (X) =
|B ∩ (X ∪ Y ′)|

k
− α

|B ∩X|
k

α≥1

≤ |B ∩ (X ∪ Y ′)| − |B ∩X|
k

=
|B ∩ Y ′|

k

= |B ∩ Y ′| max
y∈B∩Y ′

|B ∩ (X ∪ {y})| − |B ∩X|
k

≤ |Y | max
y∈B∩Y ′

|B ∩ (X ∪ {y})| − |B ∩X|
k

(4.21)
= |Y |

(
max
y∈Y

F (X ∪ {y})− F (X)
)
.

This establishes α-augmentability if k
α < |{b1} ∩X| · |B ∩X|.

Together with Proposition 4.6, this extends the lower bound of Theorem 2.7 to
all α ≥ 1 and thus proves Corollary 1.7.

With this, we can prove the second part of Theorem 1.5.

Proposition 4.9. For every γ′ ∈ (0, 1), α′ ≥ γ′, α ≥ 1 and k ∈ N with k > α′,
it holds that Fγ′,α′,k /∈ Fα. For every γ, γ′, q ∈ (0, 1] and α′ ≥ γ′, there exists k′ ∈ N
with k′ > α such that Fγ′,α′,k′ ⊈ F̃γ ∪ Fq.

Proof. For the first part, let γ′ ∈ (0, 1), α′ ≥ γ′ and k ∈ N with k > α′. Further-
more, let X = ∅ and Y = B. For y ∈ Y , we have

Fγ′,α′,k(X ∪ {y})− Fγ′,α′,k(X) = Fγ′,α′,k({y}) ≤ Fγ′,α′,k({b1}) =
1

k

and, for any α ≥ 1, we have

Fγ′,α′,k(X ∪ Y )− αFγ′,α′,k(X)

|Y |
=

Fγ′,α′,k(B)

k
=

1

kγ′ >
1

k

because γ′ < 1. Thus, Fγ′,α′,k is not α-augmentable for any α ≥ 1.
For the second part, let γ′ ∈ (0, 1], α′ ≥ γ′ and k ∈ N with k > α′. Furthermore,

let X = A = SG
k and Y = B. For y ∈ Y , we have

Fγ′,α′,k(X ∪ {y})− Fγ′,α′,k(X) =

{
1
k

(
1− α′ ∑k

i=1 ξi
)
= 1

k

(
k−α′

k

)k if y = b1,

0, else,

and

Fγ′,α′,k(X ∪ Y )− Fγ′,α′,k(X) = Fγ′,α′,k(B)− Fγ′,α′,k(A) =
1

γ′ −
1

α′

(
1−

(k − α′

k

)k)
.

For k → ∞, the (weak) submodularity ratio gets arbitrarily close to 0 because

lim
k→∞

∑
y∈Y

(
Fγ′,α′,k(X ∪ {y})− Fγ′,α′,k(X)

)
Fγ′,α′,k(X ∪ Y )− Fγ′,α′,k(X)

= lim
k→∞

1
k

(
k−α′

k

)k
1
γ′ − 1

α′

(
1−

(
k−α′

k

)k) = 0,
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i.e., for k = k′ large enough, Fγ′,α′,k′ /∈ F̃γ . It remains to show that Fγ′,α′,k′ ⊈ Fq. If
Fγ′,α′,k′ ∈ Fq would hold, then there would be some independence system with weight
function w such that Fγ′,α′,k′ was the associated weighted rank function. The fact
that Fγ′,α′,k′({b2}) = 0 implies that b2 must have weight 0 or {b2} is not independent,
and the fact that Fγ′,α′,k′({b1, b2}) − Fγ′,α′,k′({b1}) = h(2)−h(1)

k > 0 implies that b2
must have a weight greater 0 and that {b2} has to be independent, which contradict
each other. Thus, Fγ′,α′,k′ cannot be modelled as the weighted rank function of an
independence system, i.e., Fγ′,α′,k′ /∈ Fq.

Finally, we can extend Proposition 3.1 to all α ≥ 1 by combining the fact that,
by Proposition 4.8, for α ≥ 1, {F1,α,k | k ∈ N, k > α} ⊆ Fα and the fact that, by
Proposition 4.9, for every γ, q ∈ (0, 1], {F1,α,k | k ∈ N, k > α} ⊈ F̃γ ∪ Fq.

Proposition 4.10. For every γ, q ∈ (0, 1], α ≥ 1, it holds that Fα ⊈ (F̃γ ∪ Fq).

4.2. γ-α-Augmentability on Independence Systems. To tightly capture
the class Fq of weighted rank functions on independence systems, we show a stronger
bound for the approximation ratio of the greedy algorithm on monotone, (weakly)
γ-α-augmentable functions. In particular, it was already shown in [2] that the ob-
jective function of α-Dimensional Matching is (exactly) α-augmentable, while the
greedy algorithm yields an approximation ratio of α, which beats the upper bound
of α · eα

eα−1 for this case. We show that this can be explained by the fact that
α-Dimensional Matching can be represented via a weighted rank function over
an independence system. We first show the upper bound of Theorem 1.8.

Proposition 4.11. Let FIS :=
⋃

q∈(0,1] Fq be the set of weighted rank functions
on some independence system. The approximation ratio of the greedy algorithm on
the class F̃γ,α ∩ FIS is at most α

γ , for every γ ∈ (0, 1] and α ≥ γ.

Proof. Let f ∈ F̃γ,α ∩ FIS, and let w : U → R≥0 be the weight function that
induces f . We use induction over k. For k = 0, the statement holds obviously. Now
suppose, the statement holds for some k ∈ [|U | − 1]. If f(SG

k ) ≥ γ
αf(S

∗
k+1), then,

by monotonicity of f , we have f(SG
k+1) ≥ f(SG

k ) ≥ γ
αf(S

∗
k+1). Otherwise, the weak

γ-α-augmentability of f guarantees the existence of x ∈ S∗
k+1 with

f(SG
k ∪ {x})− f(SG

k ) ≥
γf(SG

k ∪ S∗
k+1)− αf(SG

k )

|S∗
k+1|

≥
γf(S∗

k+1)− αf(SG
k )

k + 1
> 0.

By Lemma 4.1, this is equivalent to f(SG
k ∪ {x}) = f(SG

k ) + w(x). We conclude

f(SG
k+1) ≥ f(SG

k ∪ {x})
= f(SG

k ) + w(x)
ind
≥ γ

α
f(S∗

k) + w(x)

≥ γ

α
f(S∗

k+1 \ {x}) + w(x)

α≥γ

≥ γ

α
f(S∗

k+1 \ {x}) +
γ

α
w(x)

≥ γ

α
f(S∗

k+1),

i.e., the greedy algorithm has an approximation ratio of at most α
γ .
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The lower bound of Theorem 1.8 follows directly from the well-known tight bound
of 1/q for Fq.

Proposition 4.12. Let FIS :=
⋃

q∈(0,1] Fq be the set of weighted rank functions
on some independence system. The approximation ratio of the greedy algorithm on
the class F̃γ,α ∩ FIS is at least α

γ , for every γ ∈ (0, 1] and α ≥ γ.

Proof. Let γ ∈ (0, 1], α ≥ γ and q ∈ [ γα , 1] ∩ Q. In [15] it was shown that the
approximation ratio of the greedy algorithm on the set Fq is exactly 1/q. By definition
of FIS, we have Fq ⊆ FIS, and, by Proposition 4.2, Fq ⊆ F̃γ,γ/q ⊆ F̃γ,α holds, where
we use the fact that γ

q ≤ γ
γ/α = α. Thus, we can conclude that the approximation

ratio of the greedy algorithm on the class F̃γ,α ∩ FIS is at least 1/q, and since q can
be chosen arbitrarily close to γ

α , the statement follows.

It can be shown that the lower bound of Proposition 4.12 already holds for
γ-α-augmentable functions, i.e., in the non-weak subclass of F̃γ,α. It follows that
the tight bound of Theorem 1.8 carries over to this, in some sense more natural, class
of functions. Since every α-augmentable function is 1-α-augmentable, and vice-versa,
we additionally obtain the following. Note that this tightly captures the perfomance
of the greedy algorithm for the α-Dimensional Matching problem, which can be
represented as the maximization of an α-augmentable weighted rank function over an
independence system [2].

Corollary 4.13. The approximation ratio of the greedy algorithm on the class
Fα ∩ FIS, with α ≥ 1, is exactly α.

5. Outlook. The vision guiding our work is to precisely characterize the set of
cardinality-constrained maximization problems for which the greedy algorithm yields
an approximation, and to tightly bound the corresponding approximation ratio.

In this paper, we have made progress towards this goal by unifying and gener-
alizing important classes of greedily approximable maximization problems, and by
providing tight bounds on the approximation ratio for the resulting generalized class
of problems. While this brings us closer to a full characterization, there are still
settings that are not captured by (weak) γ-α-augmentability.

Proposition 5.1. For γ ∈ (0, 1] and α ≥ γ, there exists a monotone function
fγ,α that is not weakly γ-α-augmentable, and for which the greedy algorithm computes
an optimum solution.

Proof. Let U be any ground set of size |U | > 1
γ and consider the objective function

fγ,α : 2U → R≥0 with
fγ,α(X) = |X|2.

For all X,Y ⊆ U with |Y | > 1
γ (2|X|+ 1+ α|X|2) (∗), e.g., X = ∅ and |Y | = ⌊ 1

γ ⌋+ 1,
we have

|Y |(fγ,α(X ∪ {y})− fγ,α(X)) = |Y |(2|X|+ 1)

(∗)
< γ|Y |2 − α|Y ||X|2

≤ γ|X ∪ Y |2 − α|X|2

= γfγ,α(X ∪ Y )− αfγ,α(X),

i.e., fγ,α is not weakly γ-α-augmentable. Yet, picking elements in any order is obvi-
ously optimal. Thus, there exists a problem that is not γ-α-augmentable, but where
the greedy algorithm performs optimally.
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Remark 5.2. Objective functions as in the proof of Proposition 5.1 arise for ex-
ample in the context of incremental maximum flows on a complete bipartite graph
G = (U ∪V,E) where we want to incrementally grow subsets of U and of V such that
the flow from one of the subsets to the other (i.e., the cut size) is maximized.

We leave it as an open problem to find a natural generalization of weak γ-α-
augmentability that captures a larger set of greedily approximable objectives. The
challenge is to find a meaningful generalization in terms of a natural definition that
does not directly depend on the behavior of the greedy algorithm, but rather enforces
some structural property of the objective function. In that sense, the dependency
of weak γ-α-augmentability on the greedy solutions SG

0 , . . . , SG
k̄

is a significant flaw.
Note that we needed to introduce this dependency in order to encompass settings
with bounded (weak) submodularity ratios, since the definition of the latter depends
on the greedy solutions as well. Importantly, our upper bound on the approximation
ratio of the greedy algorithm carries over to the stronger notion of γ-α-augmentability
that requires the defining property to hold for all sets X, and not just the greedy solu-
tions. Our tight lower bound does not immediately translate to this, more restrictive,
definition, and it remains an open problem to construct a tight lower bound in this
setting as well.
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