
Online Optimization
lecture notes, summer term 2023
Prof. Dr. Yann Disser





Contents

1 Introduction 3
1.1 Offline optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Online optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The ski rental problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Paging Problem 9
2.1 Optimal offline paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Lower bound for online paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Online paging algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Phase partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Randomized Algorithms 15
3.1 Randomized paging algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Yao’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Lower bound for randomized paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The List Update Problem 21
4.1 Potential function method (amortized analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Upper bound for move-to-front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Lower bound via averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Upper bounds via phase partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Randomized list update algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Lower bound for randomized list update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Metrical Task Systems* 37
5.1 Lower bound for metrical task systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Work function algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 The k-Server Problem 43
6.1 Lower bound for the k-server problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 The k-server problem on the line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Balancing algorithm* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 General metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Primal-Dual Algorithms 53
7.1 The primal-dual method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Randomized rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Online bipartite matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Online Load Balancing 65
8.1 Identical machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Related machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3 Restricted assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4 Unrelated machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1



Bibliography i

2



1 Introduction
In classical (offline) optimization problems we are given some input data and need to make optimization
decisions (i.e., set variables) such that a certain objective is optimized. This framework is too restrictive
for problems where parts of the input become available over time (i.e., online) and only after some
optimization decisions already had to be fixed. For example, consider the problem of controlling a
personal elevator: People arrive over time on different floors and request the elevator, but the elevator
cannot wait for all requests to arrive before starting to move, at least if we want to achieve a good
completion time until all requests have been served.

Online optimization addresses problems with a temporal component as in the elevator problem above.
Conceptually, an online algorithm gets its input item by item, one input event at a time (e.g., elevator
button press). Upon each event, the algorithm immediately needs to respond by making an optimization
decision (e.g., move the elevator up/down or wait). Importantly, the algorithm needs to act on the
same timeline (“online”) on which events occur, i.e., each decision must only be based on past events
and must be independent of the future. The challenge for the online algorithm lies in finding a good
balance between efficiently handling events while protecting itself against possible futures. For example,
assume the elevator is at the ground floor and receives a request in the fifth floor. Should it start moving
immediately, or should it wait a bit to see whether there are passengers that want to go upwards from the
ground floor?

In this lecture, we devise “good” online algorithms for various problems. Of course, no online algorithm
can always be good, because no matter how it decides to react to a request, its response can always
turn out to be a mistake in retrospect. A possible quality measure for an online algorithm would be
to consider its expected objective function value with respect to a fixed distribution over inputs. The
main issue with this approach lies in how to choose a suitable distribution, and that the fact whether an
algorithm is good heavily depends on this choice. Instead, we will use competitive analysis, an absolute
quality measure for online algorithms based on their worst-case behavior, much like classical running
time analysis concentrates on worst-case running times.

Competitive analysis challenges an online algorithm to compete against an adversary that counters every
action of the algorithm with a worst-possible sequence of future events. For example, if the elevator
decides to move away from the ground floor immediately, the adversary may decide to send a request at
the ground floor in the next time step, and if the elevator waits, the adversary may not send additional
requests. As mentioned above, the adversary can often easily ruin the objective function value of the
online algorithm. To make the interaction fairer for the online algorithm, we demand that the adversary
present its own offline solution once all requests have been revealed, and we compare the performance of
the online algorithm with the quality of the offline solution by computing the competitive ratio between the
two. Of course, this measure is still quite harsh for the online algorithm, since the offline solution of the
adversary may use full knowledge of the entire event sequence. However, in many cases, we will be able
to give online algorithms with bounded competitive ratios. Lower bounds on the best-possible competitive
ratio of an online problem express the loss in solution quality that is due to imperfect information in
the online setting, and we will consider an online algorithm to be “good”, if its competitive ratio is
best-possible.

In the following, we formally define the notions introduced above and apply competitive analysis to
various typical online problems. These online problems naturally arise in many settings:

Server Problems: Requests arrive over time and we control server movements (e.g., elevators).

3



Data Reorganization: Data is accessed over time and we have to reorganize a data structure to speed up
future accesses.

Machine Scheduling: Tasks arrive over time and we have to assign them to machines (workers).

Bin Packing: Items arrive over time and we have to pack them into bins of limited size.

Bipartite Matching: Candidates arrive over time and we have to assign each to a partner.

Trading: Stock prices arrive over time and we have to decide whether to buy or sell stocks.

1.1 Offline optimization

We start by revisiting offline optimization and formally establish the notation we will use in this lecture.

Definition 1.1. An (offline) optimization problem P is a 4-tuple (I, Sol, c, type), where:

• I is a set of input instances

• Sol is a function mapping each instance I ∈ I to a set of feasible solutions with S :=
⋃

I∈I Sol(I).

• c : I ×S → R≥0 is the objective function (cost or utility)

• type ∈ {min, max} expresses whether we want to minimize the cost c or maximize the utility c

Most optimization problems we consider are minimization problems, and, for clarity, the following
definitions are with respect to a fixed optimization problem P = (I, Sol, c,min), where c is a cost function.
We introduce basic notation to distinguish between the solutions computed by an algorithm ALG and its
cost.

Definition 1.2. An (offline) algorithm ALG computes a feasible solution ALG[I] ∈ Sol(I) of cost ALG(I) :=
c(I , ALG[I]) for all I ∈ I.

Definition 1.3. By OPT we denote an (arbitrary but fixed) optimum algorithm with OPT(I) =
minS∈Sol(I) c(I , S) for all I ∈ I.

The definition of a competitive ratio will be similar to the approximation ratio of approximation algorithms,
which we recall below.

Definition 1.4. A polynomial-time algorithm ALG is an (asymptotic) ρ-approximation algorithm (with
constant α≥ 0) if, for all I ∈ I,

ALG(I)≤ ρ ·OPT(I) (+α).

Definition 1.5. The approximation ratio of a polynomial-time algorithm ALG is the infimum over all ρ,
such that ALG is a ρ-approximation algorithm.

1.2 Online optimization

We now make the notion of online algorithms formal. Intuitively, instead of being provided with the entire
input at once, online algorithms get a sequence of inputs (requests) and need to react to (i.e., to answer)
each request immediately. Formally, we express this interaction as a game in the following sense.

4



Definition 1.6. An online problem is expressed as a request-answer game (R,Σ, A,C), where:

• R is the set of possible requests

• Σ ⊆
⋃

i∈N Ri is the set of all possible instances

• A is the set of possible answers

• C = (ci)i∈N is a sequence of cost (utility) functions ci : Ri × Ai → R≥0 ∪ {∞} that capture the cost
(utility) of the answers up to time step i and c0 := 0

For an instance σ = (r1, . . . , rn) ∈ Σ of length n ∈ N we write σ≤i := (r1, . . . , ri) for i ≤ n and let σ≤0 := ;.
We call an online problem finite if R, A,Σ are all finite.

Our definition of an online algorithm needs to allow for sequential input, but at the same time ensures
that requests are answered immediately, i.e., without using knowledge of future requests. The following
definitions are with respect to a fixed request-answer game (R,Σ, A,C), and we again assume that c1, c2, . . .
are cost functions that need to be minimized, the definitions for utility maximization instead of cost
minimization are analogous.

Definition 1.7. A deterministic online algorithm ALG computes a sequence of functions ( fi : Ri → A)i∈N.
The solution of ALG for the sequence σ = (r1, . . . , rn) ∈ (Σ ∩ Rn) is ALG[σ] := (a1, . . . , an) ∈ An, where
ai := fi(σ≤i), its total cost is ALG(σ) := cn(σ, ALG[σ]), and its cost in step i ∈ {1, . . . , n} is ALGi(σ) :=
ALG(σ≤i)−ALG(σ≤i−1).

As a benchmark, we will compare the performance of an online algorithm on an instance to the best
possible offline solution we could have gotten if we had known the entire request sequence ahead of time.

Definition 1.8. The (offline) optimum solution OPT[σ] for sequence σ = (r1, . . . , rn) ∈ (Σ∩ Rn) is fixed
such that OPT[σ] ∈ argmina∈An cn(σ,a). Its total cost is OPT(σ) = cn(σ, OPT[σ]). The optimum cost in
step i ∈ {1, . . . , n} is defined via OPTi(σ) := OPT(σ≤i)−OPT(σ≤i−1).

Notice that, in contrast to the definition of online algorithms, OPT need not be consistent between time
steps. In particular, the offline optimum can be completely different for instances σ≤n−1 and σn.
We are now ready to introduce the notion of the competitive ratio that we will use throughout this lecture
to assess the quality of online algorithms. Observe that the definition is unfair in the sense that we
do not compare to the best possible online algorithm, but to the best offline solution for each instance
independently, even without requiring the solutions to these instances to be consistent with one another.

Definition 1.9. A deterministic online algorithm ALG is ρ-competitive, ρ ≥ 1 if there is a constant α≥ 0,
such that for all instances σ ∈ Σ

ALG(σ)≤ ρ ·OPT(σ) +α.

ALG is strictly ρ-competitive if the above holds for α= 0.

Note that, in general, we allow ρ to be any function of σ (in particular of the length n of the input) and
of any other problem parameters (e.g., number of floors of the building for the elevator).

Definition 1.10. If there is a constant ρ ∈ R for which the online algorithm ALG is (strictly) ρ-competitive,
we say that ALG is (strictly) competitive. The (strict) competitive ratio of ALG then is the infimum over all
ρ ∈ R, such that ALG is (strictly) ρ-competitive.

Definition 1.11. The (strict) competitive ratio of an online problem is the infimum over all ρ for which a
(strictly) ρ-competitive algorithm exists.

5



Note similarities and differences to the notion of approximation ratios for the offline setting. In both
notions, we ask how close we can get to optimal solutions in the worst-case if we have limited resources.
For approximation algorithms, the allowed processing time is limited, while online algorithms have limited
access to information. While we do not require online algorithms to be efficient, most algorithms we will
see will have polynomial running times.

Also note that, while the strict competitive ratio is a guarantee for every possible request sequence, the
(non-strict) competitive ratio provides an asymptotic guarantee. In order to show lower bounds on the
competitive ratio of an algorithm, we will often use the following characterization.

Proposition 1.12. An online algorithm ALG has competitive ratio at least ρ > 1 if and only if there exists
an infinite sequence (σ(i) ∈ Σ)i∈N with limi→∞ALG(σ(i)) =∞ and

lim sup
i→∞

ALG(σ(i))
OPT(σ(i))

≥ ρ.

1.3 The ski rental problem

As an example to see the above definitions in action, we consider a typical everyday problem: If we do
not know how often (or long) we will use some item, how long should we rent it before deciding to buy?
This problem is typically phrased in terms of renting skis, but can trivially be adapted to many similar
situations. While, formally, we would have to specify the individual components (request set, answer
set, cost functions) of the underlying request answer game, we will usually resort to a more intuitive
description of online problems in the following standard form:

SKI RENTAL PROBLEM

given: cost 1 to rent skis for one day, cost B ∈ N to buy skis
online: days σ = (d1, . . . , dn) ∈ {1}n that skis are needed (only n is unknown)
actions (step i): rent skis (cost 1) or buy skis (cost B) or use skis bought earlier (cost 0)
objective: minimize the total cost

∑n
i=1 ALGi(σ)

For the sake of the example, we will, for once, also give the formal definition of the problem. Since
only the rental duration is unknown, we have a trivial set of requests R = {need skis} that only allows
the request “need skis” for every day that skis are needed. Then Σ =

⋃

i∈N Ri. The possible answers on
each day are A= {rent, buy,use}. At this point it may be worrying that we allow “use” without ensuring
that we previously chose “buy”. Constraints that are based on the previous answers generally need to be
modeled via the cost functions. We let c0 := 0 and define

ci(a1, . . . , ai) = ci−1(a1, . . . , ai−1) +



















1, if x = rent,

B, if x = buy,

0, if x = use∧ buy ∈
⋃i−1

j=1{a j},
∞, otherwise.

Note that the only information that an online algorithm learns in step i is that n ≥ i. Therefore, every
(sensible) deterministic online algorithm can be expressed as an algorithm ALGi that always buys in the
i-th step or the algorithm ALG∞ that never buys. We show that the unique best strategy (in the worst-case)
for renting skis is to buy in step B.

Theorem 1.13. ALGB is strictly (2− 1/B)-competitive.

6



Proof. First observe that the optimum cost is given by

OPT(σ) =min{n, B}.

The cost of ALGB is

ALGB(σ) =

¨

n if n< B,

2B − 1 else.

Now, if n< B, then

ALGB(σ) = n= OPT(σ),

and if n≥ B, then

ALGB(σ) = 2B − 1= (2− 1/B) ·OPT(σ).

Overall, we get ALGB(σ)≤ (2− 1/B) ·OPT(σ) as claimed.

Theorem 1.14. For every i 6= B, ALGi is not strictly (2− 1/B)-competitive.

Proof. We want to prove a lower bound on the competitive ratio of ALGi for i 6= B, so we take the
perspective of the adversary that reacts with the worst-possible request sequence to the answers of the
algorithm. The only freedom the adversary has in the ski rental problem lies in the choice of n. Since
ALG∞(σ)→n→∞∞ while OPT(σ)≤min{n, B}, trivially, ALG∞ is not competitive (cf. Proposition 1.12).

For finite i, we consider the most natural strategy (for the adversary) that stops the request sequence just
after ALGi buys, i.e., just after step i.

If i ≤ B − 1, we have

ALGi(σ) = i − 1+ B ≥ 2i = 2 ·OPT(σ).

If i ≥ B + 1, we have

ALGi(σ) = i − 1+ B ≥ 2B = 2 ·OPT(σ).

In both cases ALGi(σ)≥ 2 ·OPT(σ)> (2− 1/B) ·OPT(σ), as claimed.

Corollary 1.15. The ski rental problem has a strict competitive ratio of (2− 1/B).

Proof. By Theorems 1.13 and 1.14 it suffices to show that ALGB has competitive ratio at least (2− 1/B).
To see this, we consider the adversarial request sequence σ of length B. For this sequence, OPT(σ) = B
and

ALGB(σ) = 2B − 1= (2− 1/B) ·OPT(σ).

7





2 The Paging Problem
A typical source of online problems is the dynamic re-organization of data structures in order to improve
access times for elements that are accessed often. The paging problem is a basic online problem of this
type that models data access in memory hierarchies, where memory layers close to the CPU are very
fast but small, while memory layers further away are much slower but also much larger. In the paging
problem we consider a simple hierarchy consisting of a slow main memory that contains m memory pages
and a fast cache that can only hold k < m pages at the same time (see Figure 2.1). The problem now is to
decide online which pages to keep in the cache over time in order to minimize the number of accesses to
main memory.

PAGING PROBLEM

given: memory pages P = {p1, . . . , pm}, cache size k ∈ N,
cache C with initial contents C0 ⊂ P, |C0|= k

online: sequence σ = (r1, . . . , rn) ∈ Pn of pages that are accessed in this order
actions (step i): evict (remove) pages from C (free)

load any number mi ≤ k− |C | of pages from P \ C into C (paid)
at the end of step i, we must have ri ∈ C

objective: minimize the total cost
∑n

i=1 ALGi(σ) =
∑n

i=1 mi

k < m pages

m pages
memory P

cache C

load evict

Figure 2.1: Illustration of the paging memory model with a fast/small cache C and a slow/large memory P.

Remark 2.1. We can restrict ourselves to demand paging algorithms that may only load page ri in step i,
and only evict a page if needed to make room for ri. We can easily bring any algorithm into this form by
delaying all unnecessary evicts and loads for as long as possible. Dealing with demand paging algorithms
simplifies the analysis, because we only need to count the number of page faults, i.e., the number of times
a page in P \ C is requested.

2.1 Optimal offline paging

If we know the sequence of pages that will be requested ahead of time, it is natural to use the longest-
forward-distance (LFD) heuristic for the paging problem: On every page fault evict any page that will not be
requested again, and, if no such page exists, evict the page whose next access is furthest in the future. As
an example, consider the request sequence σ = (a, a, b, e, f , b, b, c, d, a, b) for the cache C0 = {a, b, c, d}
of capacity k = 4. The first cache fault is caused by r4 = e, and LFD evicts a (forward distance 6) and
replaces it by e.

9



6= p, p?

ri r j?r jCase 1

LFD  p

OPT  p?  p

OPT′  p  p?
same
cache

6= p, p?

ri r j?+1r j?
Case 3
(p′ 6= p)

LFD  p
�� pOPT  p? p? p′

OPT′  p p p′
same
cache

Figure 2.2: Illustration of cases 1 and 3 in the proof of Theorem 2.2. We use ’x   y ’ to denote that page x is loaded
and page y is evicted.

Theorem 2.2 (Belady [1966]). LFD is an optimal (offline) paging algorithm.

Proof. For the sake of contradiction, assume that LFD is not optimal and let σ = (r1, . . . , rn) be an instance
where it is not optimal. Let OPT be an optimal (demand paging) algorithm that maximizes the number of
steps i until LFD and OPT make a different decision, i.e., OPT and LFD make the same decisions on σ≤i−1
but evict a different page for request ri. We construct an optimum solution OPT′[σ] that behaves like
LFD on σ≤i, which then contradicts our choice of OPT and therefore completes the proof. Note that the
solution OPT′[σ] that we construct is only demand paging up to step i, but can easily be modified as
described in Remark 2.1 to be demand paging for all steps, without changing its behavior in the first i
steps.

Let p be the page evicted by LFD in step i and p? 6= p be the page evicted by OPT in the same step. We
define j? =max{ j ∈ {i, . . . , n}: p? /∈ {ri, ri+1, . . . , r j}} to be the last consecutive step after step i, where p?

is not requested. By definition of LFD, we know that p is not requested in steps {i, . . . , j?}. We distinguish
three cases (see Figure 2.2):

Case 1: p is evicted by OPT in some step j ∈ {i + 1, . . . , j?}.
Since OPT is demand paging and since p, p? are not accessed in steps {i + 1, . . . , j}, OPT has neither p
nor p? in its cache at the end of step j. Hence we get a feasible solution OPT′[σ] from OPT[σ] by evicting p
instead of p? in step i, evicting p? instead of p in step j and otherwise copying OPT’s decisions. Since we
did not cause additional page faults, we have OPT′(σ)≤ OPT(σ), hence OPT′[σ] is still optimal.

Case 2: p is not evicted by OPT in steps i, . . . , j? and j? = n.
Since p, p? are not accessed anymore after step i, it makes no difference whether we evict p or p? in step i,
and we can simply obtain OPT′[σ] from OPT[σ] by evicting p instead of p? in step i.

Case 3: p is not evicted by OPT in steps i, . . . , j? and j? < n.
Then, in step j? + 1, page p? is requested and, because OPT is demand paging, page p is in OPT’s cache
but p? is not. Let p′ be the page evicted by OPT in step j? + 1 to make room for p?. If p′ = p, then, after
step j? + 1, OPT has p? in its cache, but not p. If we evict page p instead of p? in step i and otherwise
copy OPT’s behavior, we have the same cache contents after step j? + 1 and one less page fault, which
contradicts optimality of OPT. If p′ 6= p, then, after step j? + 1, OPT has both p? and p in its cache. We
construct the solution OPT′[σ] by evicting p instead of p? in step i and loading p instead of p? in step
j? + 1. This solution is feasible (since it has the same cache contents after step j? + 1) and does not
cause additional page faults, i.e., OPT′(σ) = OPT(σ). Note that OPT′[σ] is not demand paging, but can
be modified to a demand paging solution without affecting its behavior in the first i steps, and without
affecting its cost (as described in Remark 2.1).

2.2 Lower bound for online paging

To derive a lower bound on the competitive ratio of every algorithm, we need to construct an adversarial
request sequence σ ∈ Pn for any given online algorithm ALG. A natural candidate is the request sequence

10



that, in every step, requests an item that is not in ALG’s cache. For such a sequence, we trivially have
ALG(σ) = n. To get a lower bound on the competitive ratio of ALG, we need a sufficiently strong upper
bound on the cost of the optimum solution. By Theorem 2.2, we can get such a bound by analyzing the
performance of LFD. Observe that our adversarial request sequence works even if |P|= k+ 1.

Lemma 2.3. The cost of LFD for instances σ ∈ Pn with |P|= k+ 1 is bounded by

LFD(σ)≤ dn/ke .

Proof. Assume that LFD has a page fault upon request ri ∈ σ and evicts page p ∈ P. Since |P| = k + 1
and the cache starts with k elements, the next page fault occurs when p is requested the next time. By
definition of LFD, all other k− 1 pages except ri in the cache are requested before this happens. Hence,
LFD has a page fault only at most once in every k steps.

If we choose the length n of our adversarial sequence σ to be a multiple of k, we immediately get
ALG(σ) = n≥ k · LFD(σ) = k ·OPT(σ). Since our construction works for any online algorithm, this bound
holds in general. For n→∞, we can use Proposition 1.12 to obtain the following bound.

Theorem 2.4 (Sleator and Tarjan [1985]). The competitive ratio of any deterministic paging algorithm is
at least k, even when |P|= k+ 1.

Proof. Consider any online (demand) paging algorithm ALG for instances with |P|= k+ 1. Let σ(i) ∈ Pn

be the request sequence of length ni = ik that always requests the unique page not in ALG’s cache. Then,
limi→∞ALG(σ(i)) =∞. By Lemma 2.3 and Theorem 2.2, we have ALG(σ(i)) = ni ≥ k · LFD(σ(i)) =

k · OPT(σ(i)). It follows that lim supi→∞
ALG(σ(i))
OPT(σ(i))

≥ k. By Proposition 1.12, it follows that ALG has
competitive ratio at least k.

2.3 Online paging algorithms

Now that we have established an understanding of the offline optimal algorithm LFD and have a bound
on the best possible competitive ratio, we shift our attention to finding good online algorithms. Since
we may restrict ourselves to demand paging algorithms, possible candidates only need to differ in the
decision which page to evict upon a page fault. We list a few canonical heuristics that respond differently
to page faults:

Least-Recently-Used (LRU): evict the page that was least recently accessed

First-In-First-Out (FIFO): evict the page that has been in the cache the longest since it was loaded (or any
page in the cache initially)

Last-In-First-Out (LIFO): evict the page that was most recently loaded into the cache (or any page if none
was loaded yet)

Least-Frequently-Used (LFU): evict any page that has been least used overall

Flush-When-Full (FWF): at the start and upon a page fault with a full cache, evict all pages (this is not
demand paging)

We start by analyzing FIFO.

Theorem 2.5 (Sleator and Tarjan [1985]). FIFO is strictly k-competitive for the paging problem.

11



Proof. Fix a request sequence σ = (r1, . . . , rn) ∈ Pn for which FIFO has a page fault for some request
ri = p. By definition, before FIFO can have another page fault caused by another access r j = p with j > i,
all k pages that were in the cache at the start of step i must have been evicted as well as p. This means
that there must be k+ 2 total page faults in steps i through j, i.e., j ≥ i + k+ 1. Overall, we get that any
set of k+ 1 consecutive page faults must be caused by distinct elements.
We partition the request sequence σ into phases π1, . . . ,πN , such that σ = π1 ⊕ · · · ⊕πN , FIFO incurs at
most k page faults in each phase, and (|πN | , . . . , |π2| , |π1|) is lexicographically maximized, where |π j|
denotes the length of phase π j (see Figure 2.3). Note that, by definition, FIFO incurs exactly k page faults
in all phases except π1, and at most k page faults in phase π1. We get FIFO(σ)≤ Nk.

k faultsk faults≤k faults
π1 π j πN

z0z1z2 zk

Figure 2.3: Illustration of the partitioning of the request sequence σ in the proof of Theorem 2.5.

Consider any phase π j 6= π1, let z1, . . . , zk be the pages that caused faults during the phase, and let z0
be the last page that was requested before phase π j (i.e., the last page requested in phase π j−1). Recall
that σ was chosen such that FIFO has at least one page fault. Thus, by definition, phase π1 contains
at least one page fault, since otherwise (π1 ⊕π2),π3, . . . ,πN would be a lexicographically larger phase
partitioning (with respect to (|πN | , . . . , |π3| , |π1 ⊕π2|)). Similarly, the access to z0 just before phase π j
must have caused a page fault, otherwise z0 could be included in phase π j instead. Since page faults can
only repeat after k + 1 distinct requests, we know that z0, . . . , zk must all be distinct. Since z0 must be
in OPT’s cache after it was accessed, z0 is in OPT’s cache at the end of phase π j−1. Since k pages other
than z0 are accessed during phase π j, OPT has at least one page fault during π j. Since phase π1 causes at
least one page fault for FIFO, there must be at least one page in π1 that was not in the initial cache C0.
But this means that OPT also has at least one page fault in phase π1. We get OPT(σ)≥ N , and thus

FIFO(σ)≤ k ·OPT(σ).

Corollary 2.6. The paging problem with cache size k has (strict) competitive ratio k.

2.4 Phase partitioning

Motivated by the proof of Theorem 2.5, we want to establish a proof scheme that can be applied more
generally. The main idea behind the proof of Theorem 2.5 was to partition the request sequence σ into
phases, with the property that each phase causes at least one page fault for OPT. The partitioning of
Theorem 2.5 depended on FIFO’s behavior, but we can define an even simpler partitioning with the same
property and independent of a specific algorithm. As before, |π j| denotes the length of phase π j.

Definition 2.7. The k-phase partitioning of a request sequence σ is the partition σ = π1 ⊕π2 ⊕ · · · ⊕πN
for which each phase π j contains at most k distinct requests and (|π1| , |π2| , . . . , |πN |) is maximized
lexicographically.

For example, consider σ = (1, 2,4, 2,1, 3,5,2, 5,5, 3,3, 3,1, 2,3, 4). Then the 3-phase partitioning is
π1 = (1,2, 4,2, 1), π2 = (3, 5,2, 5,5,3, 3,3), π3 = (1,2, 3), π4 = (4). Note that the partitioning is indeed
independent of any algorithm.
In order to prove that a given algorithm ALG is k-competitive as in Theorem 2.5, we need that ALG does
not have more than k page faults per phase. This is obviously the case if for every phase π j it is true that
no pages p ∈ π j are evicted during phase π j. The following definition gives a slightly weaker sufficient
condition in terms of a marking scheme.

12



Definition 2.8. A marking algorithm is an algorithm that never evicts a marked page, where a page is
considered marked if it has previously been requested during the current phase of the k-phase partitioning.

Note that FIFO itself no longer falls under the simplified definition of marking algorithms. To see this,
consider the partitioned request sequence σ = π1 ⊕π2 = (1,2, 3)⊕ (4, 2,1) for k = 3 and C0 = {4, 5,6}.
Upon the last access to 1, the marked page 2 will be evicted by FIFO. On the other hand, FWF obviously is
a marking algorithm, since it only evicts pages once a new phase starts.

Proposition 2.9. FIFO is not a marking algorithm.

We can now carry over the idea from the proof of Theorem 2.5 to marking algorithms.

Theorem 2.10 (Torng [1998]). Every marking algorithm is k-competitive for the paging problem with
(constant) cache size k.

Proof. Let ALG be any marking algorithm and consider any input σ ∈ Pn with k-phase partitioning
π1⊕· · ·⊕πN . Since ALG is a marking algorithm, it has at most one page fault per distinct element requested
in every phase. By definition, every phase contains at most k distinct requests, hence ALG(σ)≤ Nk.

k pages ≤k pages

π1 π j πN

π′j

z j z j+1

Figure 2.4: Illustration of the partitioning of the request sequence σ in the proof of Theorem 2.10.

On the other hand, consider any phase π j 6= πN and let z j, z j+1 be the first requests of phases π j and π j+1,
respectively (see Figure 2.4). Since π is lexicographically maximal, π j contains exactly k distinct requests
and z j+1 /∈ π j. Let π′j be the shifted phase starting with the second request of π j and ending with the
first request of π j+1, i.e., (z j)⊕π′j := π j ⊕ (z j+1). Then π′j contains exactly k requests different from z j.
Since OPT must have z j in its cache at the start of π′j, it has at least one cache fault during π′j. Since the
positions of the shifted phases for all phases π j 6= πN are mutually disjoint, we have OPT(σ)≥ N −1, and,
hence, ALG(σ)≤ Nk ≤ k ·OPT(σ) + k.

We immediately obtain an upper bound on the competitive ratio of FWF.

Corollary 2.11 (Karlin et al. [1988]). FWF is k-competitive for the paging problem with cache size k.

Note that FWF is not strictly k-competitive, since it has positive cost even if all requested pages are already
in the initial cache C0. In particular, Theorem 2.10 does not hold for strict competitiveness.

13





3 Randomized Algorithms
In Chapter 2 we saw that no deterministic online algorithm can have a better competitive ratio for the
paging problem than the cache size k. This lower bound is easy for the adversary to achieve simply by
always requesting the exact page the algorithm just evicted. Of course this adversarial strategy relies on
perfect knowledge of the behavior of the algorithm in every step. Consequently, there is hope that we can
better defend against the adversary if we are less predictable, i.e., if we include random choices into the
behavior of our algorithm. Formally, we can express this by defining randomized online algorithms that,
for every request sequence, randomly choose an algorithm from the set of all deterministic algorithms Adet
according to some distribution, and then deterministically execute the chosen algorithm. Note that, on
any finite set of instances, every online algorithm that involves random choices can be expressed in this
way (see Isbell [1957]).

Definition 3.1. A (distributional) randomized online algorithm ALGp is identified with a probability distri-
bution p : Adet→ [0,1] with

∑

ALG∈Adet
p(ALG) = 1.

In order to define the competitive ratio of a randomized online algorithm ALGp, we need to specify
whether or not the adversary may use any knowledge about the outcome of the random choice that ALGp
makes at the start of each run to come up with an adversarial input sequence. Of course, if we allow
the adversary to be adaptive to the random choice of ALGp, then the same lower bound construction for
paging still works. In this lecture, we will restrict ourselves to an oblivious adversary that must specify a
worst-case instance without any knowledge regarding ALGp ’s random choice.

Definition 3.2. A (distributional) randomized online algorithm ALGp is ρ-competitive if there is a constant
α≥ 0, such that, for all σ ∈ Σ,

E[ALGp(σ)] := EALG∼p[ALG(σ)]≤ ρ ·OPT(σ) +α.

ALGp is strictly ρ-competitive, if the above holds for α= 0.

Definition 3.3. The (strict) randomized competitive ratios of an algorithm and a problem are defined
analogously to the deterministic case (Definitions 1.10 and 1.11).

3.1 Randomized paging algorithms

We can easily define a “randomized algorithm” RAND that prevents the adversarial strategy of requesting
the previously evicted page by evicting a page uniformly at random upon each page fault.1 However, this
algorithm does not beat the deterministic bound on the competitive ratio.

Proposition 3.4. The competitive ratio of RAND is at least k, even when |P|= k+ 1.

1 Note that RAND is not formally a distributional randomized algorithm, and we take the expectation over the outcome of its
random choices in Definition 3.2.

15



Proof. We use P = {p0, p1, . . . , pk}, C0 = {p1, . . . , pk}, and we define the infinite sequence σ =
(p0, p1, . . . , pk−1, p0, . . . ). We consider the request sequence σ≤n for n ∈ N. For any such sequence,
OPT evicts pk in the first step and OPT(σ≤n) = 1. On the other hand, RAND continues to have page faults
until it evicts pk, assuming n is large enough. Since RAND evicts pages uniformly at random, its probability
to evict pk upon a page fault is 1/k. Hence, the expected number of page faults until pk is evicted
approaches k as n goes to infinity. We have limn→∞E[RAND(σ≤n)] = k ·OPT(σ≤n).
Since E[RAND(σ≤n)] is bounded independently of n, the above only proves that RAND does not have a
strict competitive ratio smaller than k (as in Proposition 1.12). Let σ( j) := (p j, p j+1 . . . , p j−2, p j, . . . ) with
j ∈ {0, . . . , k} and all indices modulo k+1 from now on. Then σ(0) is the sequence we defined above (since
(−2 mod (k+1))≡ k−1) and in σ( j) the role of pk in σ(0) is played by p j−1. We can make the cost of RAND

(and OPT) grow unboundedly, by defining the request sequence σ(n,m) := σ(0)≤n ⊕σ
(k)
≤n ⊕σ

(k−1)
≤n ⊕ · · · ∈ Pmn

consisting of m ∈ N phases of the form σ
( j)
≤n for j ∈ {0, . . . , k}. As above, OPT has at most one page fault

per phase, and hence OPT(σ(n,m))≤ m. If we let n go to infinity for a fixed value of m, then the probability
that RAND does not have page p j−1 in its cache after a phase of the form σ( j)≤n approaches one. Hence, the
number of page faults of RAND approaches k per phase, as above.

Now if RAND is ρ-competitive, then there is a constant α ≥ 0 such that, for all n, m ∈ N, we have
E[RAND(σ(n,m))]≤ ρ ·OPT(σ(n,m)) +α. It follows that (we let n grow much faster than m)

ρ ≥ lim
m→∞

lim
n→∞

E[RAND(σ(n,m))]−α
OPT(σ(n,m))

≥ lim
m→∞

km−α
m

= k.

We can summarize the approach used in the proof of Proposition 3.4 to obtain a lower bound on the
randomized competitive ratio analogously to Proposition 1.12. Note that it would be suffcient to require
limi→∞E[ALGp(σ(i))] =∞ below.

Proposition 3.5. Let (σ(i) ∈ Σ)i∈N be a sequence of request sequences with

lim
i→∞

OPT(σ(i)) =∞.

Then, every randomized online algorithm ALGp has a competitive ratio of at least

limsup
i→∞

E[ALGp(σ(i))]

OPT(σ(i))
.

Observe that the k-phase partitioning of the request sequence σ defined in the beginning of the proof of
Proposition 3.4 consists of a single phase. The problem with RAND on this instance is that it evicts pages
that were previously requested during the phase, i.e., its problem is that it is not a marking algorithm.
We turn RAND into a randomized marking algorithm RMARK, by evicting an unmarked page uniformly at
random upon each page fault. It turns out that this modification suffices to perform much better than the
best deterministic online algorithm.2

Theorem 3.6 (Fiat et al. [1991]). RMARK is strictly 2Hk-competitive, where Hk :=
∑k

i=1
1
i ≈ ln k is the

k-th harmonic number.

Proof. Fix a request sequence σ ∈ Pn and let its k-phase partitioning be π1⊕π2⊕ · · · ⊕πN = σ. Consider
any phase π j, call the pages in the cache at the start of the phase old and all other pages new. Let m j

2 Note that RMARK is not formally a distributional randomized algorithm, and we take the expectation over the outcome of
its random choices in Definition 3.2.

16



denote the number of (distinct) new pages requested in phase π j. Obviously, each new page causes a page
fault for RMARK. We compute the expected number of page faults in phase π j caused by old pages. Let
r ∈ π j be the `-th (distinct) old page that is requested during phase π j. At the point where r is requested
for the first time during π j, there are at least k−m j old pages in the cache, and exactly `− 1 of them are
marked, hence there are at least k−m j − (`−1) unmarked old pages in the cache. Also, the total number
of unmarked old pages, both in and not in the cache, is exactly k − (`− 1). Overall, by symmetry, the
probability that page r causes a page fault is at most

1−
k−m j − (`− 1)

k− (`− 1)
=

m j

k− `+ 1
.

Since at most k−m j old pages are accessed in phase π j (fewer than k−m j only in the last phase), the
expected number of page faults of RMARK in phase π j is at most

m j +
k−m j
∑

`=1

m j

k− `+ 1
= m j ·

�

1+
1
k
+

1
k− 1

+ · · ·+
1

m j + 1

�

= m j · (1+Hk −Hm j
)

≤ m jHk.

By linearity of expectation, the total expected cost of RMARK becomes

E[RMARK(σ)]≤
N
∑

j=1

m jHk.

m2 faults m4 faults

m1 faults m3 faults m5 faults

π1 π2 π3 π4 π5 · · ·

Figure 3.1: Illustration of the complementary accountings of page faults of OPT over consecutive phases in the proof
of Theorem 3.6. The final bound is obtained by averaging over both accountings.

It remains to show a lower bound on OPT(σ). By definition, RMARK has all pages requested in a phase in
the cache at the end of the phase. Since exactly k distinct pages are requested in every phase except the
last, we have that the number of distinct pages accessed in the two consecutive phases π j−1,π j, j > 1, is
exactly k+m j. It follows that OPT has at least m j page faults in phases π j−1 and π j combined. Also OPT

has at least m1 page faults in the first phase. We get a bound for OPT by separately considering even and
odd values of j (see Figure 3.1):

OPT(σ)≥max

¨bN/2c
∑

`=1

m2`,
b(N−1)/2c
∑

`=0

m2`+1

«

≥
1
2

bN/2c
∑

`=1

m2` +
1
2

b(N−1)/2c
∑

`=0

m2`+1 =
1
2

N
∑

j=1

m j.

Finally, we conclude that

E[RMARK(σ)]≤Hk

N
∑

j=1

m j ≤ 2Hk ·OPT(σ).

17



3.2 Yao’s principle

So far, we derived lower bounds for the competitive ratios of online algorithms by taking the perspective
of an adversary and constructing a request sequence tailored to a given algorithm, in such a way that
we respond to every possible action of the algorithm in the worst possible manner. This is no longer
possible for randomized algorithms, since we do not know the outcomes of the algorithm’s random
choices beforehand. We now have to construct a request sequence for which the algorithm performs
badly in expectation over all possible combinations of random choices the algorithm makes, as stated by
Proposition 3.5. In general, this is a daunting task.

Yao’s principle provides a crucial tool to prove lower bounds by allowing us to restrict ourselves to
deterministic algorithms. In a way, Yao’s principle allows to trade the randomness in the algorithm for
randomness in the input sequence. Instead of designing a single sequence of request sequences with
high expected cost for any fixed randomized algorithm, we can design a sequence of distributions of input
sequences with high expected cost for every deterministic algorithm. This turns out to be much more
manageable in many cases.

Theorem 3.7 (Yao [1977]). Let (qi : Σ→ [0,1])i∈N be a sequence of probability distributions with

lim
i→∞
Eσ∼qi

[OPT(σ)] =∞.

Then, every randomized online algorithm has a competitive ratio of at least

lim sup
i→∞

infALG∈Adet
Eσ∼qi

[ALG(σ)]

Eσ∼qi
[OPT(σ)]

.

Proof. Let ALGp be the randomized algorithm associated with the probability distribution p : Adet→ [0,1].
Assume that ALGp has competitive ratio ρ, i.e., there is a constant α≥ 0 such that, for all σ ∈ Σ,

EALG∼p[ALG(σ)]≤ ρ ·OPT(σ) +α.

In particular, for every distribution qi, i ∈ N, of the given sequence, we obtain

Eσ∼qi
[EALG∼p[ALG(σ)]] =

∑

σ∈Σ
qi(σ) ·EALG∼p[ALG(σ)]

≤ ρ ·
∑

σ∈Σ
qi(σ) ·OPT(σ) +α ·

∑

σ∈Σ
qi(σ)

= ρ ·Eσ∼qi
[OPT(σ)] +α.

Since σ and ALG are drawn independently and since ALG(σ)≥ 0, the corresponding expectations commute
by Tonelli’s theorem. We get

ρ ·Eσ∼qi
[OPT(σ)] +α≥ Eσ∼qi

[EALG∼p[ALG(σ)]]

= EALG∼p[Eσ∼qi
[ALG(σ)]]

≥ inf
ALG∈Adet

Eσ∼qi
[ALG(σ)],

18



for every i ∈ N. Solving for ρ and taking limsup gives

ρ ≥ limsup
i→∞

�

infALG∈Adet
Eσ∼qi

[ALG(σ)]

Eσ∼qi
[OPT(σ)]

−
α

Eσ∼qi
[OPT(σ)]

�

≥ limsup
i→∞

infALG∈Adet
Eσ∼qi

[ALG(σ)]

Eσ∼qi
[OPT(σ)]

− limsup
i→∞

α

Eσ∼qi
[OPT(σ)]

= limsup
i→∞

infALG∈Adet
Eσ∼qi

[ALG(σ)]

Eσ∼qi
[OPT(σ)]

,

where we used limi→∞Eσ∼qi
[OPT(σ)] =∞.

If we only need a bound for the strict competitive ratio, we can use a simplified version of Yao’s principle
(proof: exercise).

Corollary 3.8. Let q : Σ→ [0, 1] be any probability distribution. Then, every randomized online algorithm
has a strict competitive ratio of at least

infALG∈Adet
Eσ∼q[ALG(σ)]

Eσ∼q[OPT(σ)]
.

Remark 3.9. Note that Yao’s principle is tight in the sense that we can always find a distribution to prove
any valid lower bound on the competitive ratio.

3.3 Lower bound for randomized paging

Equipped with Yao’s principle we are now able to derive an (almost) tight lower bound on the randomized
competitive ratio of the paging problem.

Theorem 3.10 (Fiat et al. [1991]). The competitive ratio of any randomized paging algorithm is at
least Hk, even when |P|= k+ 1.

Proof. We fix P = {p0, . . . , pk} and the initial cache C0 = {p1, . . . , pk}. We want to apply Yao’s principle
(Theorem 3.7), i.e., we need to provide a sequence (qn)n∈N of probability distributions over input instances.
We describe qn by a randomized strategy to construct a request sequence σ = (r1, . . . , rn′) of length n′ ≥ n:
We set r1 = p0 and iteratively choose ri, i = 2,3, . . . uniformly at random from P \ {ri−1}, until i > n and
the last phase of the k-phase partitioning of (r1, . . . , ri) consists of exactly one request. At this point, we
terminate with σ = (r1, . . . , ri−1). We let qn(σ) be the probability that sequence σ is produced by this
procedure.

π1

z1

π2

z2

π′1 π′2
πN−1 πN

zN

π′N

Figure 3.2: Illustration for the proof of Theorem 3.10. OPT incurs a page fault during each shifted phase π′j .

Consider the k-phase partitioning σ = π1 ⊕π2 ⊕ · · · ⊕πN of any sequence σ = (r1, . . . , rn′) ∈ Pn′ with
qn(σ)> 0. Let z j denote the first request during phase π j, let π′1 = (z1) and let (π′j) j∈{2,...,N} be defined
via (z j−1)⊕π′j = π j−1 ⊕ (z j) (see Figure 3.2). Since r1 /∈ C0 and since, for j ≥ 2, phase π′j contains all

19



k pages other than z j−1, which must be in the cache at the start of the phase π′j, every offline algorithm
must have a page fault during π′j for every j ∈ {1, . . . , N}. On the other hand, there is exactly one page
that is not requested in each phase, therefore the offline algorithm that evicts this page upon the first page
fault in a phase never has more than one page fault per phase π j. Hence, OPT has exactly N page faults.

Let X be the random variable that measures the length of a phase π j. Note that, by construction, Eσ∼qn
[X ]

is independent of j. We claim that Eσ∼qn[X] = kHk . With this, and since OPT has one fault per phase,
we immediately get

lim
n→∞
Eσ∼qn

[OPT(σ)] = lim
n→∞
Eσ∼qn

[N] =∞,

as required by Theorem 3.7.

Now, consider the behavior of any deterministic online (demand paging) algorithm ALG for request
sequence σ. At the beginning of step i ≥ 2, the cache of ALG contains all but one page r ∈ P \ C and
the probability that r is the next request is exactly 1/k by construction of qn, because ri ∈ P\{ri−1} and
ri−1 ∈ C . The first request r1 always causes a page fault. Hence, the expected number of page faults of
ALG per phase is at least

1
k

∞
∑

l=1

Pr[X≥ l] = Eσ∼qn
[X ]/k.

Since this holds for every choice of ALG, and since OPT never has more than one fault per phase, we get

limsup
n→∞

infALG∈Adet
Eσ∼qn

[ALG(σ)]

Eσ∼qn
[OPT(σ)]

≥
E[X ]

k
=Hk,

and we can apply Theorem 3.7 to complete the proof.

It remains to prove our claim that Eσ∼qn
[X ] = kHk. Note that for every request after the first, we draw

uniformly at random from k possibilities, and the next phase starts once we have drawn all pages. To
compute the expected length of a phase, we need to solve the coupon collector problem: “If we draw
coupons from an urn with replacement, how many do we have to draw to get each at least once?” Let X`
be the random variable that counts the number of requests during a phase until a new page is requested,
once `− 1 different pages have already been requested. Then X =

∑k+1
`=1 X j − 1. By definition, X1 = 1.

Consider X` with j ≥ 2. If `− 1 pages have been requested before some request ri, the probability that ri
is again one of these pages is (`− 2)/k, since ri is chosen uniformly at random from P \ {ri−1}. Therefore,
X` is a geometric random variable with success probability s` = 1− `−2

k , and

Eσ∼qn
[X`≥2] =

1
s`
=

k
k− `+ 2

.

By linearity of expectation, we get

Eσ∼qn
[X ] =

k+1
∑

`=1

Eσ∼qn
[X`]− 1

=
k+1
∑

`=2

k
k− `+ 2

= k
k
∑

`=1

1
`
= kHk,

which completes the proof.

Remark 3.11. An Hk-competitive randomized algorithm was given by McGeoch and Sleator [1991].

20



4 The List Update Problem
In the previous chapter, we considered the abstract problem of dynamically reorganizing a basic random
access data structure that allows fast access to an arbitrary subset of its data. We now introduce a similar
problem with an unsorted linked list as our underlying data structure. Essentially, a linked list is managed
by keeping a reference to the first element of the list and equipping each element with a reference to its
successor in the list. To access an element at position i of a linked list, we need to traverse the first i − 1
elements, i.e., accessing items further down the list is more expensive than accessing elements near the
front. After extracting an element it may therefore make sense to return it in a position closer to the front
in order to speed up further accesses to the same element. To simplify our analysis we also allow to invest
extra time to switch the order of any consecutive items. In the standard form, the list update problem is
given as follows.1

LIST UPDATE PROBLEM

given: set of (different) items X , l := |X |, stored in a list L0
online: sequence σ = (r1, . . . , rn) ∈ X n of items accessed in this order
actions (step i): transpose any number of consecutive items (paid)

move ri closer to the front of the list (free)
objective: minimize the total cost

∑n
i=1 ALGi(σ) =

∑n
i=1(si + pi)

si: number of items in front of ri at the beginning of step i
pi: number of paid actions in step i

On first glance, it seems hopeless to design a good online algorithm for this problem: How can we know
whether an element will be accessed often in the future and should be moved closer to the front? This is
where the distinction between measuring expected or measuring worst-case performance makes all the
difference. Of course, if we try to optimize expected cost with respect to a uniform distribution of accesses
to elements, there is nothing to be done, since every strategy (that does not needlessly transpose items)
has the same quality in expectation. However, in competitive analysis we have to defend against the
worst case! For example, if we choose not to move elements at all, the adversary has the obvious strategy
of repeatedly accessing the last element of the list. The offline optimum for this instance is very cheap,
because it immediately moves the last element to the front, while our algorithm needs to repeatedly
traverse the entire list and therefore incurs high cost. An obvious way to prevent this worst-case is to use
the move-to-front heuristic MTF: In every step, move the accessed element to the first position of the list.
To analyze this simple algorithm, we first need to introduce a very important technique of competitive
analysis: the potential function method (or amortized analysis).

4.1 Potential function method (amortized analysis)

The competitive analysis of an online algorithm ALG is easiest if we can bound the cost ALGi(σ) in each
step individually by the corresponding cost OPTi(σ) of the offline optimum. Often however, it is impossible
to guarantee that in every step ALG incurs a relatively small cost. In Section 2.4, we introduced the phase
partitioning technique in order to bound the costs for different phases separately. But even if we are
unable to bound ALG’s cost per step/phase, the algorithm may still be competitive if expensive steps only

1 We use a cost model where accessing the element at position i incurs cost i − 1; this is often referred to as the reduced cost
model in the literature.

21



MTF OPTMTFi Φi ∆Φi ai OPTi

L0 : : L?0
4

0
+4 8 4

x5 x4 x3 x2 x1 x5 x4 x3 x2 x1

L1 : : L?1
4

4
+2 6 3

x1 x5 x4 x3 x2 x5 x4 x3 x2 x1

L2 : : L?2
4

6
0 4 2

x2 x1 x5 x4 x3 x5 x4 x3 x2 x1

L3 : : L?3
4

6
-2 2 1

x3 x2 x1 x5 x4 x5 x4 x3 x2 x1

L4 : : L?4
4

4
-4 0 0

x4 x3 x2 x1 x5 x5 x4 x3 x2 x1

L5 : : L?50x5 x4 x3 x2 x1 x5 x4 x3 x2 x1

Figure 4.1: A bad example for MTF for σ = (x1, x2, x3, x4, x5). While it is possible to force MTFi(σ) = n−1= 4 and
OPTi(σ) = 0, this only happens after n− 1= 4 cheaper steps. Note that after the expensive step both
lists become more similar.

occur rarely and only if there are sufficiently many cheap steps to compensate. For example, MTF may
have expensive steps in which elements are accessed that OPT has near the front of the list while they are
near the back in ALG’s list. However, for any element near the front to again reach the back of the list,
many other elements need to be accessed by MTF, i.e., there must have been many cheaper steps (see
Figure 4.1). We can try to account for this effect by comparing the total cost of ALG with the total cost of
OPT, but this is often difficult, because we need to consider any possible sequence of requests.
The principal idea of amortized analysis is to charge cheap steps a little extra cost in order to pay for
eventual expensive steps. To understand this, we first consider an intuitive example: Take a student
Charlie that still has her parents paying for her meals at the university. Because Charlie does not want to
waste her parents’ money, she tries to spend as little as possible in the cafeteria. Say she spends only 2€
for lunch each day, but after every ten consecutive days of cafeteria she needs a break and goes to a nice
restaurant that costs 13€. Sometime in the middle of the semester, Charlie’s parents confront her about
seeing her at the restaurant, which gives them the impression that Charlie is abusing their support. Now
Charlie needs an easy argument to convince her parents that she is effectively only spending a reasonable
amount of at most 3€ a day. Strictly speaking, of course, this is not the case. However, it is the case in
an amortized sense: At every moment of the semester it is correct that her average spending is at most
3€ per lunch. To explain this easily, Charlie uses a potential function argument: She has a piggy bank
at home (her potential function Φ), and every day she takes 3€ from her parents’ money, puts 1€ into
the bank, and uses the remaining 2€ to pay for lunch at the cafeteria. Every eleventh day, she takes the
10€ that are in the bank plus 3€ from her parents to pay for the restaurant. With this potential function
argument, her parents are quickly convinced that Charlie effectively only spends 3€ per day (i.e., her
amortized cost ai is 3€), because she only takes 3€ from her parents money every day. We now generalize
this argument formally.

Definition 4.1. A potential function is a function Φ: N×Σ→ R that specifies a potential value Φi(σ) :=
Φ(i,σ) = Φ(i,σ≤i) after every time step i ∈ {0, . . . , n} and for every instance σ ∈ Σ, |σ| ≥ i. The
amortized cost in step i ∈ {1, . . . , n} of an online algorithm ALG with respect to Φ and an instance σ ∈ I is

ai(σ) := ALGi(σ) +∆Φi(σ) := ALGi(σ) +Φi(σ)−Φi−1(σ).

In the example above, Charlie used the simple potential function Φi(σ) = i − bi/11c · 11, yielding an
amortized cost of ai(σ) = 2+ i − (i − 1) = 3 on cheap days and ai(σ) = 13+ 0− 10 = 3 on expensive
days.
With our intuition for the potential function Φ as a piggy bank and amortized cost as the money we need
to invest in each step, the following sufficient condition for competitiveness should be natural. To be

22



slightly more general, we allow bounded negative potentials (i.e., debts of at most α) and a nonzero
initial potential (i.e., a starting capital β).

Lemma 4.2 (potential function method). Let Φ be a potential function and let ρ ≥ 1. If there are α≥ 0
and β ∈ R, such that Φi(σ)≥ −α, Φ0(σ)≤ β and ai(σ)≤ ρ ·OPTi(σ) for all σ ∈ Σ and i ≤ |σ|, then ALG

is ρ-competitive. If α= β = 0, then ALG is strictly ρ-competitive.

Proof. Fix any instance σ = (r1, . . . , rn) ∈ Σ. Using OPT(σ) =
∑n

i=1 OPTi(σ) and ALG(σ) =
∑n

i=1 ALGi(σ),
we obtain

ALG(σ) =
n
∑

i=1

ALGi(σ)

=
n
∑

i=1

(ai(σ)−Φi(σ) +Φi−1(σ))

= Φ0(σ)−Φn(σ) +
n
∑

i=1

ai(σ)

≤ β +α+ρ ·
n
∑

i=1

OPTi(σ)

= ρ ·OPT(σ) +α+ β ,

i.e., ALG is ρ-competitive. If α = 0 and β = 0, we get ALG(σ) ≤ ρ ·OPT(σ), which implies that ALG is
strictly ρ-competitive.

Sometimes it is useful to separately consider the cost of OPT and of ALG. We can do this by rewriting the
condition ai(σ)≤ ρ ·OPTi(σ) of Lemma 4.2 as

∆Φi(σ) = Φi(σ)−Φi−1(σ)≤ ρ ·OPTi(σ)−ALGi(σ). (4.1)

This allows us to separate the contributions of OPT and ALG to the potential function. We can split each
step i into a substep where ALG makes its decision and one (before or after) where OPT decides. The
potential function may depend on both OPT’s and ALG’s state/behavior (as we will see), and we can
separately regard these contributions. We define Φ′i to be the intermediate potential function value, after
the first and before the second substep of step i. We can then define the contributions ∆ΦALG

i and ∆ΦOPT
i

of ALG and OPT to ∆Φ, respectively. If ALG acts before OPT, we define ∆ΦALG
i (σ) := Φ′i(σ)−Φi−1(σ) and

∆ΦOPT
i (σ) := Φi(σ) − Φ′i(σ), and otherwise we exchange these definitions. In either case, ∆Φi(σ) =

∆ΦALG
i (σ) +∆Φ

OPT
i (σ), and, using eq. (4.1), we can reformulate Lemma 4.2 as the following corollary.

We call this interpretation the alternating moves approach.

Corollary 4.3 (potential function method, alternating moves). Let Φ be a potential function and let ρ ≥ 1.
If the following conditions hold for α≥ 0 (α= 0), β ∈ R (β = 0), and for all σ ∈ Σ and i ≤ |σ|, then ALG

is (strictly) ρ-competitive:

(i) Φi(σ)≥ −α,

(ii) Φ0(σ)≤ β ,

(iii) ∆ΦOPT
i (σ)≤ ρ ·OPTi(σ),

(iv) ∆ΦALG
i (σ)≤ −ALGi(σ).

23



4.2 Upper bound for move-to-front

We are now ready to analyze MTF. As discussed above (see Figure 4.1), MTF has an expensive access
whenever an element in the back of its list is accessed that OPT has close to the front of its list, but this
situation can only occur after many cheaper accesses. This characteristic suggests that we may be able to
apply the potential function method.

Theorem 4.4 (Sleator and Tarjan [1985]). MTF is strictly 2-competitive for the list update problem.

Proof. Fix a request sequence σ ∈ Σ and let Li, L?i denote the lists of ALG and OPT, respectively, at the
end of step i. Further let si, s?i be the number of elements in front of ri in Li−1 and L?i−1, respectively,
at the start of step i. Also, let p?i be the number of paid transpositions of OPT in step i. We then have
OPTi(σ) = s?i + p?i and, since MTF does not use paid actions, we have MTFi(σ) = si. We want to define
a potential function that “keeps enough in the bank” to compensate for steps where OPT is significantly
cheaper than MTF. We do this by keeping some budget for every inconsistency between L and L?. More
precisely, we set the potential Φi(σ) after step i to be the number of inversions (flipped pairs) between Li
and L?i . Formally, we define

Φi(σ) :=
�

�

�

(x , y) ∈ X 2 : x before y in Li but y before x in L?i
	�

� .

Observe that Φi(σ)≥ Φ0(σ) = 0. It remains to show that this potential function does the trick, i.e., that
MTF is not paying too much in cheap steps and has sufficient potential to pay for expensive steps.

In order to determine the amortized cost ai(σ), we need to compute the potential difference ∆Φi(σ) :=
Φi(σ)−Φi−1(σ) in each step i. To do this, we use the alternating moves approach, where we pretend
that MTF moves first and OPT only afterwards. This results in an intermediate potential value of Φ′i(σ) :=
�

�

�

(x , y) ∈ X 2 : x before y in Li but y before x in L?i−1

	�

� after the move of MTF but before OPT’s move. We
can then separately compute ∆ΦMTF

i (σ) := Φ′i(σ)−Φi−1(σ) and ∆ΦOPT
i (σ) := Φi(σ)−Φ′i(σ) in order to

obtain ∆Φi(σ) =∆ΦMTF
i (σ) +∆ΦOPT

i (σ).
Let X i be the set of items that are in front of ri in Li−1, but behind ri in L?i−1 (indicated as “−” in Figure 4.2).
Since MTF moves ri to the front in Li, it can only introduce additional flipped pairs between ri and items
that are in front of ri in L?i−1. The number of these items is exactly si − |X i| and must, by definition, be at
most s?i , hence we get

si − |X i| ≤ s?i . (4.2)

On the other hand, all flipped pairs between ri and items in X i get repaired in Li by moving ri to the front.
Overall, the change in potential caused by MTF is ∆ΦMTF

i (σ) = si − 2 |X i|.

Li−1 :
si

ri−+−++−−+ · · · · · · L?i−1 :
s?i

ri· ++ · ++ · − · · −− · −

Figure 4.2: Schematic illustration of the potential change during MTF’s move in step i. The items are marked
according to whether they contribute positively, negatively, or not at all to ∆ΦMTF

i (σ) when ri is moved
to the front.

Now consider OPT’s action in step i, after MTF already moved ri to the front of its list. If OPT moves ri
forward, this is guaranteed to decrease the number of flipped pairs, as ri is at the very front in MTF’s
list. Every paid action, however, can increase the number of flipped pairs by at most one. The change in
potential due to OPT’s decisions is therefore bounded by ∆ΦOPT

i (σ)≤ p?i . Overall, we obtain

∆Φi(σ) =∆Φ
MTF
i (σ) +ΦOPT

i (σ)≤ si − 2 |X i|+ p?i .

24



For the amortized cost this implies

ai(σ) = MTFi(σ) +∆Φi(σ)
≤ si + si − 2 |X i|+ p?i

(4.2)
≤ 2s?i + p?i
≤ 2 ·OPTi(σ). (4.3)

We can immediately apply Lemma 4.2 with α = β = 0 to obtain that MTF is strictly 2-competitive, i.e.,
MTF does not require more than twice the number of operations as the best offline solution that knows
the order in which items will be requested ahead of time.

4.3 Lower bound via averaging

Now that we have an upper bound on the competitive ratio of MTF, it is natural to ask whether there
are better algorithms than using the simple MTF heuristic. In other words, asymptotically speaking, we
are looking for a lower bound on the competitive ratio ALG(σ)/OPT(σ) of the list update problem. This
means that, for every possible online algorithm ALG, we need an instance σ ∈ Σ together with a lower
bound on ALG(σ) and an upper bound on OPT(σ). We will first derive a general upper bound on the cost
of the offline optimum and then construct a bad instance for any given online algorithm.

In Section 2.2 we obtained an upper bound by explicitly analyzing the behavior of OPT. Without
understanding the structure of optimum offline solutions or even optimum offline algorithms, it is
generally difficult to derive good bounds on OPT(σ) that depend only on n but are otherwise independent
of the request sequence σ. We use an averaging argument – a powerful technique that is often used to
obtain upper bounds on the cost of optimum solutions. The general idea of averaging is the following:

1. Introduce a uniform class A of offline algorithms with a reasonably simple structure.

2. For any given instance σ, compute the average cost cavg over all algorithms in A. This average
should ideally be independent of σ, since we chose a uniform class of algorithms, and it should be
easy to compute, since we chose a class of simple structure.

3. Use the fact that there is at least one algorithm ALG ∈ A with ALG(σ) ≤ cavg and that OPT(σ) ≤
ALG(σ) to get the bound OPT(σ)≤ cavg.

To illustrate, we apply this technique to the list update problem to otain an upper bound on OPT(σ).

Lemma 4.5. The offline optimum for the list update problem is bounded by OPT(σ)≤ n · l−1
2 +α for all

σ ∈ Σ and fixed α := α(l) ∈ N.

Proof. We consider the simple and uniform class of all algorithms that order the list into one of the l!
possibilities using paid actions in the first step, and then never change the order again. By definition,
there are l! such algorithms. The maximum cost in step 1 over all these algorithms is l(l−1)

2 , hence the
average setup cost α(l)< l(l−1)

2 only depends on the number l of elements in the list.

As the second step of the averaging technique, we compute the average cost cavg over all l! algorithms for
any input σ = (r1, . . . , rn). In every step i, there are exactly (l − 1)! algorithms that have ri at position j,
for every j ∈ {1, . . . , l}. The average cost cavg,i of step i ≥ 2 over all algorithms in our class therefore is

cavg,i =
1
l!

l
∑

j=1

( j − 1)(l − 1)!=
(l − 1)!

l!
·

l(l − 1)
2

=
l − 1

2
.

25



Note that we chose our class of algorithms in such a way that cavg,i is independent of both i and σ and is
easy to compute. This is the secret behind the power of the averaging technique!

To bound the cost of OPT it now only remains to compute cavg, since at least one algorithm of our class
does not exceed the average cost and, hence, neither does OPT. We get

OPT(σ)≤ cavg = α(l) +
n
∑

i=2

cavg,i = (n− 1) ·
l − 1

2
+α(l) = n ·

l − 1
2
+α′(l).

Now that we have a general upper bound on OPT(σ), we can sabotage any given online algorithm ALG

and obtain the following lower bound on the competitive ratio.

Theorem 4.6 (Karp and Raghavan [1990]). Every deterministic algorithm for the list update problem has
competitive ratio at least 2.

Proof. Fix any deterministic algorithm ALG. An obvious request sequence that comes to mind is the
sequence that always requests the last element on ALG’s list, which forces a total cost of ALG(σ) ≥
n(l − 1)→n→∞∞ (more than n(l − 1) if ALG uses paid exchanges). Together with Lemma 4.5 this yields

ALG(σ)
OPT(σ)

≥
n(l − 1)

n(l − 1)/2+α(l)
=

2(l − 1)
(l − 1) + 2α(l)/n

→
n→∞

2.

By Proposition 1.12 and since ALG was chosen arbitrarily, this concludes the proof.

Together with Theorem 4.4, we have shown a tight bound on the strict and non-strict deterministic
competitive ratio of the list update problem.

Corollary 4.7. The list update problem has (strict) competitive ratio 2.

4.4 Upper bounds via phase partitioning

In Section 4.2 we employed amortized analysis in order to avoid understanding the evolution of MTF’s list
during the course of the algorithm. In this section, we use phase partitioning (cf. Section 2.4) to explicitly
analyze this evolution. Importantly, we will first break the general case down to understanding lists of
only two elements.

To this end, we let the cost ALGx y(σ) of an algorithm ALG induced by (x , y) ∈ X 2 be defined as the number
of steps in which y is accessed and x precedes y in ALG’s list, i.e., ALGx y(σ) is the part of the cost for
accessing y that is “caused by” x . Observe that, by definition,

ALG(σ) =
∑

(x ,y)∈X 2

ALGx y(σ) +
n
∑

i=1

pi. (4.4)

In the same vein, for any sequence of items, we obtain the projection onto {x , y} ⊆ X by removing all
occurrences of items in X \ {x , y}. In this way, let σx y denote the projection of σ onto {x , y} ⊆ X , let Lx y
denote the projection of L onto {x , y} ⊆ X , etc. Finally, for convenience, we abuse notation and write
ALG[σx y], ALG(σx y) to denote the solution produced by ALG and its cost, respectively, when executed on
list Lx y with input σx y . See Figure 4.3 for an example.

26



MTF[σ] MTF[σx1 x2
]MTFx1 x2

MTFx2 x1 σ σx1 x2 MTF(σx1 x2
)

0 0 x4

1 0 x2 x2 1

0 1 x1 x1 1

0 0 x5

0 0 x1 x1 0

1 0 x2 x2 1

L0 : x1 x2 x3 x4 x5 : Lx1 x2,0x1 x2

L1 : x4 x1 x2 x3 x5

L2 : x2 x4 x1 x3 x5 : Lx1 x2,1x2 x1

L3 : x1 x2 x4 x3 x5 : Lx1 x2,2x1 x2

L4 : x5 x1 x2 x4 x3

L5 : x1 x5 x2 x4 x3 : Lx1 x2,3x1 x2

L6 : x2 x1 x5 x4 x3 : Lx1 x2,4x2 x1

Figure 4.3: Illustration of the cost MTFx1 x2
(σ) induced by (x1, x2) and the behavior of MTF[σx1 x2

] on the projection
σx1 x2

= (x2, x1, x1, x2) of the request sequence σ = (x4, x2, x1, x5, x1, x2) onto {x1, x2}. Observe that
MTFx1 x2

(σ) +MTFx2 x1
(σ) =MTF(σx1 x2

).

Definition 4.8. A (deterministic or randomized) list update algorithm ALG satisfies the pairwise property
if, for all σ ∈ Σ and x , y ∈ X , ALGx y(σ) +ALG y x(σ) = ALG(σx y).

Intuitively, the pairwise property states that the costs induced by any pair of elements are fully captured
already in the projected instance. Observe that this need not be the case in general (exercise). We give an
alternative characterization of the pairwise property.

Lemma 4.9. If an online algorithm ALG does not use paid exchanges, it satisfies the pairwise property if
and only if, for every σ ∈ Σ and every x , y ∈ X the relative order of x and y at the end of ALG[σ] and
ALG[σx y] is the same.

Proof. Consider a shortest possible request sequenceσ = (r1, . . . , rn) ∈ Σ for which x and y are in different
relative orders after executing ALG[σ] and ALG[σx y]. Since ALG does not use paid exchanges, the relative
order of x and y can only change in steps where one of these two items is accessed. Since σ is shortest
possible, we have rn ∈ {x , y} and x and y are in opposite relative orders for the first time after the last step.
Then, ALGx y(σ) = ALGx y(σx y) and ALG y x(σ) = ALG y x(σx y) and thus ALGx y(σ⊕ (x)) = ALGx y(σx y ⊕ (x))
but ALG y x(σ⊕ (x)) 6= ALG y x(σx y ⊕ (x)). Since σx y ⊕ (x) = (σ⊕ (x))x y , it follows that

ALGx y(σ⊕ (x)) +ALG y x(σ⊕ (x)) 6= ALGx y((σx y ⊕ (x))) +ALG y x((σx y ⊕ (x)))
(4.4)
= ALG((σx y ⊕ (x)))
= ALG((σ⊕ (x))x y),

and the pairwise property is violated for (σ⊕ (x)).
Conversely, assume that ALG violates the pairwise property and let σ = (r1, . . . , rn) ∈ Σ be a shortest
possible request sequence for which this is the case. By definition, ALGx y(σ) +ALG y x(σ) 6= ALG(σx y) for
x = rn and some y ∈ X . By minimality of σ, and since ALG does not use paid exchanges, x and y are in
different relative orders at the beginning of the last step in ALG[σ] and ALG[σx y]. This means that the
relative order of x and y is different after executing ALG for σ≤n−1 and for its projection onto {x , y}.

Corollary 4.10. MTF satisfies the pairwise property.

27



Proof. This follows immediately by Lemma 4.9, since the relative order of two items x , y ∈ X in MTF’s list
only depends on which of the two elements was accessed most recently (and on L0).

We are now ready to formulate a condition under which it is sufficient to analyze the behavior of an
algorithm on lists of length two. Using this approach is often referred to as the list factoring technique.

Theorem 4.11 (Bentley and McGeoch [1985]). Let ALG be a (deterministic or randomized) online
algorithm that does not use paid exchanges and that satisfies the pairwise property, and let ρ ≥ 1. Then,
ALG is (strictly) ρ-competitive if and only if it is (strictly) ρ-competitive on lists of length two.

Proof. For the non-trivial part of the theorem, we assume that ALG is ρ-competitive on lists of length two
for some ρ ≥ 1, and show that this implies ρ-competitiveness in general. In particular, for a deterministic
algorithm ALG, assume there exists α≥ 0 such that we have

ALG(σx y)≤ ρ ·OPT(σx y) +α, (4.5)

for all σ ∈ Σ and x , y ∈ X .

Fix a request sequence σ ∈ Σ and two items x , y ∈ X . Consider the offline solution OFF[σx y] on the
projected instance σx y , Lx y that behaves as follows. If OPT[σ] switches the relative order of x and y
by using a free action during the k-th access to an item in {x , y}, then OFF[σx y] does the same on the
projected instance. If OPT[σ] uses a paid exchange to switch x and y between two accesses to items in
{x , y}, then OFF[σx y] does the same between the corresponding steps in σx y . By definition, OFF[σx y]
maintains the same relative order of x and y and uses the same number of paid exchanges between x
and y as OPT[σ]. Hence,

OPT(σx y)≤ OFF(σx y) = OPTx y(σ) +OPT y x(σ) + p?x y , (4.6)

where p?x y denotes the number of paid exchanges between x and y in OPT[σ].
Now, since ALG does not use paid exchanges (i.e., pi = 0) and satisfies the pairwise property, we obtain

ALG(σ)
(4.4)
=

∑

(x ,y)∈X 2

ALGx y(σ)

=
∑

{x ,y}⊆X

(ALGx y(σ) +ALG y x(σ))

Def. 4.8
=

∑

{x ,y}⊆X

ALG(σx y)

(4.5)
≤

∑

{x ,y}⊆X

(ρ ·OPT(σx y) +α)

(4.6)
≤ ρ

∑

{x ,y}⊆X

(OPTx y(σ) +OPT y x(σ) + p?x y) +
l(l − 1)

2
α

(4.4)
= ρ ·OPT(σ) +α′(l),

with α′(l)≥ 0. Hence ALG is ρ-competitive on σ, as claimed. If ALG is strictly ρ-competitive on instances
of length two, then α= 0 and α′(l) = 0, thus ALG is strictly ρ-competitive on σ.

For randomized algorithms, the proof is identical if we replace all costs by expected costs.

This provides an alternative way to upper bound the competitive ratio of MTF.

28



Corollary 4.12. MTF is strictly 2-competitive.

Proof. By Corollary 4.10 and Theorem 4.11, it suffices to show that MTF is strictly 2-competitive on
lists of length two. To see this, consider a request sequence σ = (r1, . . . , rn) for the list update problem
with |X | = 2 items. Let i1 < · · · < im with m ≤ n denote the steps in which MTF has non-zero cost, i.e.,
MTFi j

(σ) = 1 for j ∈ {1, . . . , m}, and MTF(σ) = m. For convenience, let i0 := 0. Observe that ri j
6= ri j+1

for j ∈ {1, . . . , m− 1}, and x i1 must be in second position in L0. It follows that
∑i j+1

i=i j
OPTi(σ)≥ 1 for

j ∈ {0, . . . , m} (see Figure 4.4).

0 0 1
i1

1 1 1 0
i2

0 1
i3

1 0
i4

OPT ≥ 1

OPT ≥ 1

OPT ≥ 1

OPT ≥ 1

Figure 4.4: Illustration of the accounting in the proof of Corollary 4.12 for σ = (0,0, 1,1, 1,1, 0,0, 1,1, 0) and
L0 = (0,1).

With this, we have

OPT(σ) =
n
∑

i=1

OPTi(σ)

≥
b(m−1)/2c
∑

j=0

i2 j+1
∑

i=i2 j

OPTi(σ)

≥ b(m− 1)/2c+ 1

≥ m/2

=
1
2

MTF(σ).

4.4.1 The timestamp algorithm

The list factoring technique allows to analyze algorithms that are more involved than MTF. For example,
consider the algorithm TIMESTAMP that is defined as follows. If an item x ∈ X is accessed for the first
time, TIMESTAMP does not change the order of the list. Each subsequent time x ∈ X is accessed, TIMESTAMP

moves x in front of the first item on its list that was accessed at most once since the previous access to x .
We will see that TIMESTAMP is a competitive algorithm. To this end, we employ the list factoring technique.

Lemma 4.13. TIMESTAMP satisfies the pairwise property.

Proof. We use the characterization of the pairwise property of Lemma 4.9. For the sake of contradiction,
let σ ∈ X n be the shortest request sequence for which x ∈ X is in front of y ∈ X after execution of
TIMESTAMP[σ], but not after TIMESTAMP[σx y]. By minimality of σ, TIMESTAMP[σ] moves x in front of y
in the last step, but TIMESTAMP[σx y] keeps y in front of x . Note that the converse is not possible by
definition of TIMESTAMP.

First observe that i =max{i′ < n|ri = x} must exist, otherwise TIMESTAMP[σ] would not move x forward.
Since TIMESTAMP[σx y] does not move x forward, there must be steps j and j′ with i < j < j′ < n and
r j = r j′ = y , i.e., y was accessed at least twice since step i. At the end of step j′, all items in front of y in

29



TIMESTAMP[σ] must have been accessed at least twice in steps j, . . . , j′. By induction, any additional item
moved in front of some item y in steps j′ + 1, . . . , n must have been requested at least twice since step j.
In particular, x is not moved in front of y by TIMESTAMP[σ] – a contradiction.

To analyze the behavior of an algorithm on lists of length two, the following phase partitioning will be
useful. Note that we can extend any request sequence so that it starts and ends with two consecutive
accesses to the same element, without affecting OPT(σ).

Definition 4.14. The (unique) alternating phase partitioning of a request sequence σx y ∈ {x , y}n for
L0 = (x , y) is given by σ′x y = π0 ⊕ · · · ⊕πN = (x , x)⊕σx y ⊕ (z)k, where z denotes the item in front of
the list at the end of OPT[σx y], k ∈ {1, 2} is defined such that the number of consecutive requests to z
at the end of σ′x y is even, and each phase π j = (a1, a2, . . . , am) for j ∈ {0, . . . , N} is defined such that
a1 6= a2 6= · · · 6= am−1 = am. Note that OPT(σ′x y) = OPT(σx y).

For example, the alternating phase partitioning of σx y = (x , y, x , x , x , y, x , y, x , x , y, y, y) for L0 = (x , y)
is π0 ⊕ · · · ⊕ π4 = (x , x) ⊕σx y ⊕ (y) with phases π0 = (x , x), π1 = (x , y, x , x), π2 = (x , y, x , y, x , x),
π3 = π4 = (y, y).
We now use the alternating phase partitioning to analyze TIMESTAMP.

Theorem 4.15 (Albers [1998]). TIMESTAMP is strictly 2-competitive.

Proof. By Theorem 4.11 and Lemma 4.13, it is sufficient to show that TIMESTAMP is strictly 2-competitive
on lists of length two. To this end, let σx y ∈ Σ be a request sequence for a list with X = {x , y} and
consider the alternating phase partitioning σ′x y = π0 ⊕ · · · ⊕πN of σx y . Observe that TIMESTAMP(σx y)≤
TIMESTAMP(σ′x y), since y is first moved in the same corresponding steps. Also, OPT(σ′x y) = OPT(σx y),
which means that it suffices to show TIMESTAMP(σ′x y)≤ 2 OPT(σ′x y). We fix OPT to be the algorithm that
changes the order of the items exactly when the second item in the list is accessed and the next request is
for the same item (note that we can adapt any solution to be of this form without increasing its cost). We
abuse notation and let TIMESTAMP(π j) and OPT(π j) denote the costs of TIMESTAMP and OPT, respectively,
incurred during phase π j for j ∈ {0, . . . , N}. We claim that TIMESTAMP(π j)≤ 2 ·OPT(π j) for every phase π j.
This completes the proof, since then

TIMESTAMP(σ′x y) =
N
∑

j=0

TIMESTAMP(π j)≤ 2
N
∑

j=0

OPT(π j) = 2 OPT(σ′x y).

To prove our claim for π0, observe that OPT(π0) = TIMESTAMP(π0) = 0.

Now consider a phase π j with j ∈ {1, . . . , N} and assume, without loss of generality, that π j−1 ends with a
request to x . Note that by definition of both TIMESTAMP and OPT, the item x is the first item in both OPT’s
and TIMESTAMP’s list at the start of phase π j. There are four cases, depending on whether π j starts with x
or y and whether it ends with x or y . The following table lists the costs incurred by TIMESTAMP and OPT

in each case, where k ∈ N∪ {0}. Observe that in each case TIMESTAMP(π j)≤ 2 ·OPT(π j), as claimed.

form of phase π j TIMESTAMP(π j) (k > 0) TIMESTAMP(π j) (k = 0) OPT(π j)
x(y x)k x 2k− 1 0 k

x(y x)k y y 2k 2 k+ 1
y x(y x)k x 2k+ 1 1 k+ 1
(y x)k y y 2k 2 k+ 1

30



4.5 Randomized list update algorithms

In Theorem 4.6, we have seen that no deterministic list update algorithm can be better than 2-competitive.
The proof used a request sequence that depends on the behavior of the online algorithm by repeatedly
accessing the item currently at the end of the list. Similarly to the paging problem (cf. Section 3.1),
we may try to use randomization in order to be less predictable and improve on MTF’s performance on
instances of this kind. Recall that we assumed the adversary to be oblivious, i.e., it does not know the
outcomes of random choices of our algorithm when constructing its worst-case instance.

A natural way to randomize MTF would be to move accessed items to the front independently with
probability 1/2. It turns out that RMTF does not improve on the performance of MTF at all.2

Proposition 4.16. The competitive ratio of RMTF is at least 2.

Proof. Let L0 = (x , y) and consider the adversarial request sequence σ(y)≤n = (y, y, . . . , y) of length n ∈ N.

The offline optimum solution for this instance is MTF[σ(y)≤n ] and has cost

OPT(σ(y)≤n ) =MTF(σ(y)≤n ) = 1.

Let I be the random variable indicating the step in which RMTF moves y to the front. Then

E[RMTF(σ(y)≤n )] =
n
∑

i=1

Pr[I ≥ i] =
n
∑

i=1

1
2i−1

=
1− 1/2n

1− 1/2
= 2−

1
2n−1

→n→∞ 2 ·OPT(σ(y)≤n ).

In order to apply Proposition 3.5, we need to ensure that limn→∞OPT(σ) =∞. We can achieve that
similarly to the proof of Proposition 3.4, by using the request sequence σ(y)≤n ⊕σ

(x)
≤n ⊕σ

(y)
≤n ⊕ . . . , where

σ
(x)
≤n = (x , x , x , . . . ) ∈ X n.

Intuitively, RMTF sometimes takes too long before it moves an item forward. We introduce an algorithm
BIT that ensures that items are moved forward every second time. To this end, BIT initially sets a bit
b(x) ∈ {0,1} randomly and with equal probability for every item x ∈ X . Whenever an item x ∈ X is
accessed, BIT flips the value of b(x) and then moves x to the front of the list if b(x) = 1. We show that
BIT indeed improves on the competitive ratio of MTF.

Theorem 4.17 (Reingold et al. [1994]). BIT is strictly 1.75-competitive.

Proof. Observe that, during execution of BIT for a request sequence σ, the relative order of two elements
only depends on σx y (and the initial choice of b). In other words, BIT satisfies the pairwise property (by
Lemma 4.9). Since BIT does not use paid exchanges, we can therefore use the list factoring technique
(Theorem 4.11) to restrict our analysis to request sequences σx y for lists of length two. As in the proof
of Theorem 4.15, we fix OPT to be the algorithm that changes the order of the items exactly when the
second item is accessed and the next request is for the same item.

To this end, let σ′x y = π0 ⊕ · · · ⊕πN be the alternating phase partitioning of σx y . Note that BIT(σ′x y)≥
BIT(σx y) and OPT(σ′x y) = OPT(σx y), which means that it suffices to show BIT(σ′x y) ≤ 1.75 ·OPT(σ′x y).
As in the proof of Theorem 4.15, it suffices to show that E[BIT(π j)]≤

7
4 ·OPT(π j) for every phase π j. By

definition of the alternating phase partitioning, the only item accessed during phase π0 is already at the
front of L0, thus OPT(π0) = BIT(π0) = 0.

2 Note that RMTF is not formally a distributional randomized algorithm, and we take the expectation over the outcome of its
random choices in Definition 3.2.

31



Now, consider any phase π j with j ∈ {1, . . . , N}. Let x ∈ X be the item last requested in phase π j−1 and
y ∈ X be the other item. Observe that at the start of phase π j, the item x is in front in both OPT’s and BIT’s
list, and the values of b(x) and b(y) are both independently 0 or 1 with probability 1/2. Let E[BITx x(σ′)]
denote the expected cost of BIT for the subsequence σ′, assuming that that x was requested in the two
previous steps. Then, using the abbreviation abc . . .≡ (a, b, c, . . . ), we have

E[BITx x(x y)] = 1,

E[BITx x(y x)] = E[BITx x(y y)] = 1+
1
2
=

3
2

.

Let E[BITx y x(σ′)] denote the expected cost of BIT for the request sequenceσ′, assuming that the previously
requested items were x , y, x in this order, and let E[BIT y x y(σ′)] be defined analogously. Observe that
the probability that y is in front of BIT’s list after the subsequence (x , y, x) is 1/4, independently of the
earlier requests, and symmetrically for x and (y, x , y). Hence,

E[BITx y x(y)] = E[BIT y x y(x)] =
3
4

,

E[BITx y x(x)] = E[BIT y x y(y)] =
1
4

,

E[BITx y x(y y)] = E[BITx y x(y)] +E[BIT y x y(y)] =
3
4
+

1
4
= 1,

E[BITx y x((y x)k)] = 2k ·
3
4
=

3
2

k,

E[BITx x((y x)k)] =
3
2
+

3
2
(k− 1) =

3
2

k.

With this, we have the following costs, depending on the first and last request of π j, assuming that the
previous phase ended with two requests for x ∈ X . In particular, we have E[BIT(π j)] ≤

7
4 ·OPT(π j) in

each case.

form of phase π j E[BIT(π j)] (k > 0) E[BIT(π j)] (k = 0) OPT(π j)
x(y x)k x 0+ 3

2 k+ 1
4 =

1
4 +

3
2 k 0 k

x(y x)k y y 0+ 3
2 k+ 1= 1+ 3

2 k 1+ 1
2 =

3
2 k+ 1

y x(y x)k x 3
2 +

3
2 k+ 1

4 =
7
4 +

3
2 k 3

2 +
1
4 =

7
4 k+ 1

(y x)k y y 3
2 +

3
2(k− 1) + 1= 1+ 3

2 k 3
2 k+ 1

If we compare the performance of BIT to the performance of TIMESTAMP for each possible phase in terms
of competitive ratios, we observe that both algorithms have their worst-cases in different types of phases:

E[BIT(π j)]/OPT(π j) TIMESTAMP(π j)/OPT(π j)
form of phase π j k = 0 k = 1 k = 2 k ≥ 2 k = 0 k = 1 k = 2 k ≥ 2

x(y x)k x – 1.75 1.63 ∈ [1.5, 1.63] – 1 1.5 ∈ [1.5,2]
x(y x)k y y 1.5 1.25 1.33 ∈ [1.33, 1.5] 2 1 1.33 ∈ [1.33,2]
y x(y x)k x 1.75 1.63 1.58 ∈ [1.5, 1.58] 1 1.50 1.67 ∈ [1.67,2]
(y x)k y y 1.5 1.25 1.33 ∈ [1.33, 1.5] 2 1 1.33 ∈ [1.33,2]

Linearity of expectation allows us to interpolate linearly between the performance of BIT and TIMESTAMP.
We define the randomized algorithm COMB as a superposition of BIT and TIMESTAMP. More precisely, COMB

initially selects BIT with probability 4/5 and TIMESTAMP with probability 1/5.

32



Theorem 4.18 (Albers et al. [1995]). COMB is strictly 1.6-competitive.

Proof. By Lemma 4.13 and since BIT satisfies the pairwise property, any superposition of BIT and TIMESTAMP,
including COMB, has the pairwise property. This means that, as before, we can use list factoring (Theo-
rem 4.11) and restrict our analysis to phases π j of the alternating phase partitioning of request sequences
on lists of length two. Because of

E[COMB(π j)] = E[
4
5
E[BIT(π j)] +

1
5

TIMESTAMP(π j)] =
4
5
E[BIT(π j)] +

1
5

TIMESTAMP(π j),

we obtain the values E[COMB(π j)]/OPT(π j) as a linear combination of the corresponding values for BIT

and TIMESTAMP. For the first phase π0, we have

E[COMB(π0)] = (
4
5
·E[BIT(π0)] +

1
5
· TIMESTAMP(π0)) = 0= OPT(π0).

Regarding the other phases, the following table contains all linear combinations of the above tables for
BIT and TIMESTAMP (assuming that the previous phase ended with two requests for x ∈ X ). Observe that
the competitive ratio is indeed bounded by 1.6, and that this bound is tight in many cases.

E[COMB(π j)]/OPT(π j)
form of phase π j k = 0 k = 1 k = 2 k ≥ 2

x(y x)k x – 1.6 1.6 1.6
x(y x)k y y 1.6 1.2 1.33 ∈ [1.33,1.6]
y x(y x)k x 1.6 1.6 1.6 1.6
(y x)k y y 1.6 1.2 1.33 ∈ [1.33,1.6]

4.6 Lower bound for randomized list update

Now that we established a good upper bound for randomized list update in the previous section, we
derive a lower bound using Yao’s principle (cf. Section 3.2).

Theorem 4.19 (Teia [1993]). Every randomized list update algorithm has competitive ratio at least 1.5.

Proof. In order to apply Yao’s principle, we define a sequence (qN : Σ→ [0, 1])N∈N of probability distribu-
tions for a set of items X with l := |X |. For each N ∈ N, we describe qN by a randomized construction of a
request sequence σ = π1 ⊕ · · · ⊕πN ∈ X n consisting of N phases. The construction of the phases uses a
simple offline algorithm OFF that moves a requested item to the front of the list if and only if this item is
requested again later in the same phase. Every phase π j, j ∈ {1, . . . , N} is defined in the following way.

We let L′i denote OFF’s list at the beginning of step i. Let i j denote the first step of phase π j and set
iN+1 = n+ 1. Observe that, by definition of OFF, the order of the list L′i j

at the start of phase π j only
depends on the previous phases. This allows us to base the construction of phase π j on L′i j

in the following
way. In phase π j we simply request all items one by one in the order given by L′i j

. Each item is either
requested a single time or three times in a row, and both cases occur with probability 1/2. We use phase
partitioning to analyze the cost in each phase. By definition of OFF, its cost in phase π j is given by exactly

OFF(π j) :=
l
∑

i=1

(i − 1) = l(l − 1)/2. (4.7)

33



Now fix any deterministic online algorithm ALG ∈Adet and let Li denote ALG’s list at the beginning of step i.
We assume that ALG does not use paid exchanges for now and argue later why we may do this. We use
amortized analysis to bound the cost of the algorithm in each phase. To that end, consider the potential
function Φi(σ) :=

∑

{x ,y}⊆X Φ
x y
i at the beginning of step i (analogous to the one of Section 4.2), with

Φ
y x
i ≡ Φ

x y
i :=

¨

0 if x and y are in the same relative order in Li and L′i ,
1 else.

Let ∆Φ(π j) := Φi j+1
(σ) − Φi j

(σ) denote the change in potential during phase j, and let ∆Φ(σ) :=
∑N

j=1∆Φ(π j) = ΦN+1−Φi1 denote the total change in potential. Observe that Φ1(σ) = 0 and 0≤ Φi(σ)≤
l(l − 1)/2 throughout. Therefore,

0≤∆Φ(σ)≤ l(l − 1)/2. (4.8)

We claim that Eσ∼qN [∆Φ(π j) + ALG(π j)] ≥
3
4 l(l − 1). Application of Yao’s principle (Theorem 3.7) then

completes the proof, since

lim sup
N→∞

infALG∈Adet
Eσ∼qN

[ALG(σ)]

Eσ∼qN
[OPT(σ)]

≥ limsup
N→∞

infALG∈Adet
Eσ∼qN

[
∑N

j=1 ALG(π j)]

Eσ∼qN
[OFF(σ)]

≥ limsup
N→∞

∑N
j=1

�

3
4 l(l − 1)− infALG∈Adet

Eσ∼qN
[∆Φ(π j)]

�

∑N
j=1Eσ∼qN

[OFF(π j)]

(4.7)
= limsup

N→∞

3
4 Nl(l − 1)− supALG∈Adet

Eσ∼qN
[∆Φ(σ)]

1
2 Nl(l − 1)

(4.8)
≥

3
2
− limsup

N→∞

1
N

=
3
2

,

and, by construction, limN→∞Eσ∼qN
[OPT(σ)] =∞.

It remains to show our claim. We use list factoring. Let ALGx y(π j) denote the number of requests to y
during phase π j in which x is in front of y in ALG’s list, i.e., ALGx y(π j) is the cost for ALG of requests to y
“caused” by x during phase π j. With this, since ALG does not use paid actions, the cost of ALG in phase j
can be expressed as

ALG(π j) :=
∑

{x ,y}⊆X

(ALGx y(π j) +ALG y x(π j)). (4.9)

Fix any phase π j and any two items x , y ∈ X such that x is in front of y in the list L′i j
at the start of π j,

i.e., in particular, x is requested before y in phase π j. Let ∆Φx y(π j) = Φ
x y
i j+1
−Φx y

i j
∈ {−1,0, 1} denote the

change of Φx y during phase π j. It suffices to show E[∆Φx y(π j) +ALGx y(π j) +ALG y x(π j)]≥ 3/2, since
then, by linearity of expectation,

E[∆Φ(π j) +ALG(π j)]
(4.9)
=

∑

{x ,y}⊆X

�

E[∆Φx y(π j) +ALGx y(π j) +ALG y x(π j)]
�

≥
3
4

l(l − 1).

Let ix , iy denote the steps in which x , respectively y , are accessed for the first time during phase π j. With
this, define ∆x := Φx y

iy
−Φx y

i j
and ∆y := Φx y

i j+1
−Φx y

iy
, so that ∆Φx y(π j) =∆x +∆y (see Figure 4.5). Note

that, because ALG does not use paid exchanges, Φx y
i j
= Φx y

ix
. We distinguish two cases.

34



π j :
i j i j+1

x
ix

(x) (x) y
iy

(y) (y)

∆x ∆y

Figure 4.5: Illustration of the notation in the proof of Theorem 4.19 for phase π j. Note that only steps where x
(resp. y) are accessed can contribute to ∆x (resp. ∆y).

Case 1: x is in front of y in Liy ,i.e., Φx y
iy
= 0.

Note that the relative order of x and y in L′iy
is still the same as in L

′

i j
, in particular, x is in front of y

in L′iy
as well, hence Φx y

iy
= 0. If Φx y

i j
= 1, then y is in front of x in Lix and ALG y x(π j) ≥ 1. This means

that, for either value of Φx y
i j

, we have

∆x +ALG y x(π j)≥ 0. (4.10)

Case 1.1: ALG moves y in front of x in step iy .
If y is accessed once during phase π j, we have ∆y + ALGx y(π j) = 1 + 1 = 2, otherwise we have
∆y + ALGx y(π j) = 0 + 1 = 1. Since both cases occur with probability 1/2, using eq. (4.10) we have
E[∆Φx y(π j)+ALGx y(π j)+ALG y x(π j)]≥ E[∆y+ALGx y(π j)] = 3/2. Note that we need amortized analysis
here, since for Φi j

= 0 we have E[ALGx y(π j) +ALG y x(π j)] = 0+ 1< 3/2.

Case 1.2: ALG leaves x in front of y in step iy .
If y is accessed once during phase π j, we have ∆y + ALGx y(π j) = 0 + 1 = 1, otherwise we have
∆y + ALGx y(π j) ≥ 0 + 2 = 2. Since both cases occur with probability 1/2, using eq. (4.10) we have
E[∆Φx y(π j) +ALGx y(π j) +ALG y x(π j)]≥ E[∆y +ALGx y(π j)] = 3/2.

Case 2: x is behind y in Liy , i.e., Φx y
iy
= 1.

Note that x is in front of y in L′iy
by definition of σ, hence Φx y

iy
= 1. We have ALGx y(π j) = 0. Since ALG

does not use paid exchanges, y must already have been ahead of x in Li j
. This implies Φx y

i j
= 1 and thus

∆x = 0.
Because of ∆x = 0 and because the relative order of x and y in OFF’s list does not change until step iy ,
the same must be true for the order in ALG’s list, since moving x in front of y cannot be undone by
ALG without paid exchanges before y is accessed. If x is accessed once, we have ALG y x(π j) = 1; if x
is accessed three times, we have ALG y x(π j) = 3. Since both cases occur with probability 1/2, we have
E[ALG y x(π j)] = 2.
Now, if y is accessed once, we have ∆y = 1− 1= 0. If y is accessed three times, OFF moves y ahead of x
so that the relative order of x and y becomes the same in both lists. Note again that ALG cannot move x
ahead of y without paid exchanges. Thus ∆y = 0−1= −1 in this case. Since both cases occur with equal
probabilities, we obtain E[∆y] = −1/2.
Overall, we have E[∆Φx y(π j) +ALGx y(π j) +ALG y x(π j)] = 0− 1/2+ 0+ 2= 3/2.
Observe that the above proof estimates the expected cost of ALG by only taking into account the relative
positions of pairs of elements. In particular, we do not use in any way that the pairwise orders of the
items must be consistent, i.e., a total order. This means that the proof applies even for algorithms that
do not need to maintain an ordered list, but only an (arbitrary) relation between pairs of elements. For
this kind of algorithms, paid exchanges can be eliminated easily, by deferring each exchange that moves
item x ahead of item y to the next time x is requested, without increasing the total cost. Thus our
assumption that ALG does not use paid exchanges is without loss of generality. Note that if we require ALG

to maintain a total order, this transformation may not be possible, since the order of paid actions cannot
be changed.

Remark 4.20. Note the gap between the bounds of Theorems 4.18 and 4.19. Closing this gap is a
prominent open problem in online optimization. A lower bound of 1.6 is known for algorithms fulfilling
the pairwise property, in particular for COMB, see Ambühl et al. [2013].

35





5 Metrical Task Systems*
In the previous chapters, we have designed competitive online algorithms that were tailored for specific
online problems. Ideally, we would like to generalize these algorithms to be applicable to a wide variety
of settings, i.e., to design competitive algorithms for a large class of online problems. Of course, larger
classes generally only allow for worse competitive ratios, since we empower the adversary by allowing
additional instances. In particular, we have to limit our scope if we want online algorithms with bounded
competitive ratios.

Abstractly, all problems we have studied so far have in common that the underlying system (e.g., the
cache, the list, ...) is in some state after every step, and that the cost in each step only depends on the
newest request, the current state (e.g., the position of the requested item on the list), and the state
transition in the step (e.g., number of transpositions required to change the order of the list). In contrast,
the cost in a step of a request-answer game can depend arbitrarily of previous actions and requests. We
define the abstract framework of a metrical task system that captures the structure outlined above, with
the additional requirement that the costs of state transitions define a metric.

Definition 5.1. A metric space M is a pair (S, d), where S is a set of points and d : S×S→ R≥0 is a metric
distance function that satisfies (for pairwise distinct s, s′, s′′ ∈ S):

1. d(s, s) = 0 (reflexivity)

2. d(s, s′)> 0 (positivity)

3. d(s, s′) = d(s′, s) (symmetry)

4. d(s, s′) + d(s′, s′′)≥ d(s, s′′) (triangle inequality)

A metrical task system consists of a set of states with (metric) transition costs, as well as a cost associated
with responding to a request (or task) in a given state.

Definition 5.2. A metrical task system is a pair (M,R), where M = (S,τ) is a metric space and R is a
set of tasks r : S→ R≥0 ∪ {∞}. We say that S are states and τ are the transition costs between states, and
we set τmin :=mins 6=s′ τ(s, s

′
) and τmax :=maxs,s′∈S τ(s, s′).

A metrical task system naturally induces the online problem where tasks arrive online:

METRICAL TASK SYSTEM

given: metrical task system (M= (S,τ),R), initial state s0 ∈ S
online: sequence σ = (r1, . . . , rn) ∈Rn of tasks requested in this order
actions (step i): transition from state si−1 to state si (cost: τ(si−1, si))
objective: minimize the total cost

∑n
i=1 ALGi(σ) =

∑n
i=1[τ(si−1, si) + ri(si)]

Example 5.3. We can model the paging problem by setting S =
�P

k

�

to be every possible cache configura-
tion, letting τ(C , C ′) = |C ′ \ C | be the number of loads needed to transition from cache C ∈ S to cache
C ′ ∈ S, and modeling a request for a page pi ∈ P in step i by the task

ri(C) =

¨

0 if pi ∈ C
∞ otherwise,

which forces pi ∈ C at the end of step i.

37



5.1 Lower bound for metrical task systems

We start our analysis of the abstract class of online problems induced by metrical task systems by giving a
general lower bound for the competitive ratio of any online algorithm.

Theorem 5.4 (Borodin et al. [1992]). No deterministic online algorithm for metrical task systems with N
states has a competitive ratio smaller than (2N − 1).

Proof. In order to derive a lower bound on the best possible competitive ratio for any fixed metric space
(S,τ) of size N > 1, we need to adopt the perspective of the adversary. An obvious candidate for an
adversarial request sequence σ = (r1, . . . , rn) for a given algorithm ALG presents tasks such that ALG

happens to be in the worst possible state for each task. Introducing some parameter ε > 0, we can achieve
this by setting

ri(s) =

¨

ε, if s = si−1,

0, else,

where si−1 is the state of ALG at the start of step i.

Assume that ALG changes its state n′ ≤ n times overall, and let (s0 = si0), si1 , . . . , sin′
be the states that ALG

transitions to, in this order. Then

ALG(σ) = (n− n′)ε +
n′
∑

j=1

τ(si j−1
, si j
). (5.1)

Observe that, by positivity of τ and ε, we have limn→∞ALG(σ) =∞. If limn→∞OPT(σ) is bounded, then
ALG has an unbounded competitive ratio. In the following, we can therefore assume that limn→∞OPT(σ) =
∞.

We bound the cost of OPT using the averaging technique. We use a class of algorithms A that depends on
the behavior of ALG. Specifically, A consists of (2N − 1) algorithms, such that, after every step, exactly
two algorithms of A are in each state not occupied by ALG and exactly one algorithm is in the same state
as ALG, while at most one algorithm in A switches state in every step. Observe that we can achieve
this by switching one algorithm from state si to state si−1 whenever ALG transitions from si−1 to si. Let
B0 = B0(M)> 0 denote the total (constant) setup cost required in step 1 to distribute the algorithms in
A over starting states according to the system we just described.

To compute the average cost cavg(σ) of the algorithms in A, observe that the algorithms in state si−1 after
step i have non-zero cost ε, while all other algorithms have cost 0. If ALG changes state away from si−1 in
step i, two algorithms in A have cost ε, otherwise only one algorithm has cost ε. Also, whenever ALG

transitions between states, so does a single algorithm in A, otherwise there are no state transitions. Since
ALG transitions exactly n′ times between states, we get

cavg(σ) =
1

2N − 1

�

(n− n′)ε +
n′
∑

j=1

τ(si j
, si j−1

) + 2n′ε + B0

�

.

With eq. (5.1) this gives

OPT(σ)≤ cavg(σ) =
2n′ε +ALG(σ) + B0

2N − 1
. (5.2)

38



With ALG(σ)≥
∑n′

j=1τ(si j−1
, si j
)≥ n′τmin, this yields

(2ε/τmin + 1) ·ALG(σ)≥ 2n′ε +ALG(σ)
(5.2)
≥ (2N − 1) ·OPT(σ)− B0.

Observe that limn→∞ALG(σ) = limn→∞OPT(σ) =∞. We obtain

ALG(σ)
OPT(σ)

≥
2N − 1

1+ 2ε/τmin
−

B0

(1+ 2ε/τmin) ·OPT(σ)
→ε→0 (2N − 1)− B0/OPT(σ)→n→∞ 2N − 1.

By Proposition 1.12, this implies that ALG cannot be better than (2N − 1)-competitive for all ε > 0.

Remark 5.5. Observe that this lower bound implies that if we solve the paging problem with an algorithm
for metrical task systems applied to the metrical task system of Example 5.3, we can only provide very
weak bounds on the competitive ratio, since, generally, N =

�|P|
k

�

� k.

5.2 Work function algorithm

We now design an online algorithm WFA for metrical task systems using the paradigm of a work function
algorithm. The principal idea of this approach is to, in every step, explicitly compute the final state of an
optimum solution for the request sequence so far, and try to stay close to this state. Obviously, we need a
way to compute optimum solutions to use this scheme.

Let wi(s) be the optimum offline cost required to first process the request sequence σ≤i = (r1, . . . , ri) and
then transition to state s ∈ S, and, in particular, OPT(σ) = mins∈S wn(s). We can compute this cost via
dynamic programming:

w0(s) = τ(s0, s),
wi(s) = min

x∈S
{wi−1(x) + ri(x) +τ(x , s)}. (5.3)

Ideally, we want WFA to always be in a state s that minimizes wi(s). However, if τ(si−1, s) is large and
wi(si−1) is not much worse than wi(s), it may not be worth it to transition to s. Instead, we let WFA move
to a state

si ∈ arg min
x∈S

{wi(x) +τ(si−1, x)}. (5.4)

In fact, this choice leaves some freedom. The following lemma states that we can always select si such
that there is an offline optimum for first serving the request sequence σ≤i and then moving to si, such
that the last request is already served in state si. We define WFA such that it selects si accordingly.

Lemma 5.6. WFA can select si such that

wi(si) = wi−1(si) + ri(si).

Proof. Take any state s ∈ arg minx∈S{wi(x)+τ(si−1, x)} and let x ′ ∈ argminx∈S{wi−1(x)+ ri(x)+τ(x , s)}
be a state that minimizes eq. (5.3) for s, i.e.,

wi(s) = wi−1(x
′) + ri(x

′) +τ(x ′, s). (5.5)

We claim that we can set si = x ′. To show this, we need to show that (i) x ′ ∈ arg minx∈S{wi(x)+τ(si−1, x)}
and (ii) wi(x ′) = wi−1(x ′) + ri(x ′).

39



To see (i), we observe that, by definition of wi (eq. (5.3)), we have wi(x ′)≤ wi−1(x ′) + ri(x ′), and thus

wi(x
′) +τ(si−1, x ′)

(5.3)
≤ wi−1(x

′) + ri(x
′) +τ(si−1, x ′)

(5.5)
= wi(s)−τ(x ′, s) +τ(si−1, x ′)

4−ineq.
≤ wi(s) +τ(si−1, s). (5.6)

To see (ii), we observe that, by definition of s, we have wi(s) +τ(si−1, s)≤ wi(x ′) +τ(si−1, x ′), and hence
eq. (5.6) holds with equality. But then, all steps in the derivation of eq. (5.6) also hold with equality, and,
in particular, the first step yields

wi(x
′) = wi−1(x

′) + ri(x
′).

Recall that the proof of Theorem 5.4 relied on a class of algorithms A that depends on the online algorithm.
In particular, the proof used averaging, i.e., the fact that OPT(σ) is bounded by the average cost over the
(2N − 1) algorithms in A. To get a tight upper bound for WFA, we compare the cost incurred by WFA to
the total cost of the algorithms in A, which is obviously at most (2N − 1) times the average cost. Since,
after step i, A has exactly two algorithms in every state s 6= si and exactly one algorithm in state si, we
can compute a lower bound Bi on the total cost up to step i by pretending that every algorithm in A chose
an optimal way of reaching its final state. We get

Bi = wi(si) + 2
∑

s 6=si

wi(s). (5.7)

We can now show that the cost of WFA in step i is bounded from above by the total cost in step i of all
algorithms in A.

Lemma 5.7. For all i ∈ {1, . . . , n} we have WFAi(σ)≤ Bi − Bi−1.

Proof. The cost of WFA in step i is defined as

WFAi(σ) = τ(si−1, si) + ri(si).

We separately bound both terms. For τ(si−1, si), we use the definition of si to obtain

wi(si) +τ(si−1, si)
(5.4)
= min

x∈S
{wi(x) +τ(si−1, x)}

≤ wi(si−1) +τ(si−1, si−1)
= wi(si−1),

which implies

τ(si−1, si)≤ wi(si−1)−wi(si).

For ri(si), by Lemma 5.6,

ri(si) = wi(si)−wi−1(si).

40



Together, we get

WFAi(σ)≤ wi(si−1)−wi−1(si). (5.8)

On the other hand, using wi(s)≥ wi−1(s), we have

Bi − Bi−1 = 2
∑

s 6=si

wi(s) +wi(si)− 2
∑

s 6=si−1

wi−1(s)−wi−1(si−1)

= 2
∑

s/∈{si ,si−1}

(wi(s)−wi−1(s)) + 2wi(si−1) +wi(si)− 2wi−1(si)−wi−1(si−1)

≥ (2wi(si−1)−wi−1(si−1)) + (wi(si)− 2wi−1(si))
≥ wi(si−1)−wi−1(si)

(5.8)
≥ WFAi(σ),

as claimed.

Lemma (5.7) implies that WFA is not more expensive than the total cost of all algorithms in the class A.
This means that on the adversarial request sequence that we constructed for the lower bound, WFA is
only a factor of at most (2N − 1) away from the bound on the optimal offline cost we constructed via
averaging. We show that this holds for all request sequences and all bounds for OPT(σ).

Theorem 5.8 (Borodin et al. [1992]). WFA is (2N −1)-competitive for metrical task systems with N states.

Proof. Using Lemma 5.7, and setting α= α(M) := (2N − 1)maxx ,y∈S τ(x , y)− B0(M), we obtain

WFA(σ) =
n
∑

i=1

WFAi(σ)

Lem. 5.7
≤ Bn − B0

(5.7)
≤ (2N − 1)max

s∈S
wn(s)− B0

(5.3)
= (2N − 1)max

s∈S
min
x∈S
(wn−1(x) + rn(x) +τ(x , s))− B0

≤ (2N − 1)min
x∈S
(wn−1(x) + rn(x)) + (2N − 1)max

x ,y∈S
τ(x , y)− B0

≤ (2N − 1)min
x ,s∈S
(wn−1(x) + rn(x) +τ(x , s)) +α

(5.3)
= (2N − 1)min

s∈S
wn(s) +α

= (2N − 1) ·OPT(σ) +α

41





6 The k-Server Problem
In the last chapter, we considered metrical task systems as a broad, abstract class of online problems that
feature a system state with metric transition costs between states. Aside from this restriction, the costs
of a request in a metrical task system may vary arbitrarily between states. As a result, the competitive
ratio for metrical task systems depends on the total number of states of the system, which only allows
for very weak bounds in general. In this chapter, we consider a subclass of metrical task systems with a
more restrictive cost structure that, aside from metric transition costs, only allows to distinguish between
permitted and forbidden states (cost 0 or ∞). More specifically we assume that the system state is
comprised of the individual states of k servers, and a request is given by a state that must be occupied by
at least one of the servers. Because of the geometric interpretation, we speak of points of the metric space
instead of states.

k-SERVER PROBLEM

given: metric space (P, d), initial server locations S0 = (S0,1, . . . , S0,k) ∈ Pk

online: sequence σ = (r1, . . . , rn) ∈ Pn of points
actions: for every j ∈ {1, . . . , k}: move server j to Si, j (cost: d(Si−1, j, Si, j))
(step i) afterwards there must be a server j with Si, j = ri

objective: minimize the total cost
∑n

i=1 ALGi(σ) =
∑n

i=1

∑k
j=1 d(Si−1, j, Si, j)

We observe that k-server problems are a restriction of metrical task systems that still covers the paging
problem (for example).

Remark 6.1. The k-server problem can be formulated as a metrical task system where Si is the system
state after step i and a request for point ri is translated into a cost function that assigns Si a cost of 0
if there is a server j with Si, j = ri and∞ otherwise. With this formulation, Theorem 5.8 gives us an
exponential upper bound of (2N k − 1) on the competitive ratio for the k-server problem for metric spaces
with N points. In the following, we derive better bounds tailored to the k-server problem.

Example 6.2. The k-server problem is still abstract enough to encompass the (k-)paging problem. We can
see this by letting the set of points P be identical to the set of pages and interpreting the server locations
as the set of pages that are in the cache. To obtain cost 1 for every page load, we simply set the distance
between any pair of points/pages to 1.

Remark 6.3. Recall that for the paging problem we could restrict ourselves to demand paging algorithms
that only evict/load (at most) one page at a time, and only upon a page fault. Very similarly, for the
k-server problem, we can restrict ourselves to lazy algorithms that, in step i, only move the server that
serves request ri. We can transform any algorithm to be lazy as follows: If a server s moves without
serving a request, we instead keep the server stationary and only pretend that the server moved, and
remember that we still need to execute the move later. Once server s needs to move to serve a request,
we first execute all remembered moves, which brings the server to its supposed location, and then we
execute the move to serve the request. The cost of the modified algorithm may be smaller than that of the
original algorithm, but not larger.

A straight-forward lazy algorithm for the k-server problem is the GREEDY algorithm that always moves
the server that is closest to the requested point with respect to the distance function d. To see that this
algorithm is not competitive, consider a metric space with three points P = {a, b, c} where d(a, b) <
min{d(a, c), d(b, c)}, and two servers initially at S0 = (c, a) (see Figure 6.1). For the request sequence σ =
(b, a, b, a, b, a, . . . ) ∈ Pn, GREEDY keeps one of the servers at c forever and incurs a cost of GREEDY(σ) =
n · d(a, b), while OPT(σ) = d(c, b) is independent of n.

43



a b c

Figure 6.1: Linear embedding of the bad example for GREEDY with two servers initially at S0 = (a, c) and the request
sequence σ = (b, a, b, a, . . . ).

6.1 Lower bound for the k-server problem

The k-server problem becomes trivial for finite metric spaces with |P| = k once servers have been
distributed. As soon as P contains more than k points, the lower bound of k for paging (Thm. 2.4) carries
over, by Example 6.2. We now show that this is the case independently of the metric space, i.e., also
beyond paging.

Theorem 6.4 (Manasse et al. [1990]). No deterministic online k-server algorithm has a competitive ratio
lower than k on any metric space (P, d) with at least k+ 1 points.

Proof. For any fixed (lazy) online algorithm ALG and any metric space (P, d) with at least k+ 1 points, we
construct an adversarial request sequence σ = (r1, . . . , rn) ∈ Pn for ALG. Without loss of generality, we
may assume that P consists of exactly k+ 1 points, since we can simply ignore any additional point. A
natural idea is to choose start with servers distributed over k distinct points of P, and let σ always request
the unique point not occupied by ALG. Since ALG is lazy, in step i < n, it moves exactly one server, and,
by construction of σ, this move is from ri+1 to ri. Let rn+1 denote the position of the server that serves
request rn at the start of step n. Then,

ALG(σ) =
n
∑

i=1

d(ri+1, ri), (6.1)

and, in particular, by positivity of d, we have limn→∞ALG(σ) =∞.
We derive a bound on OPT(σ) using the averaging technique. For this, we need to define a class A of
simple algorithms, i.e., simple rules which server to select for serving request ri. If there is a server at ri,
we obviously use this server. Otherwise, ri is the only unoccupied point. The most natural candidate to
serve ri is the server at the closest point to ri, but this gives the GREEDY algorithm, which we already
showed to be bad. Another server that stands out is the server at ri−1 (for i > 1). In order to define a
class of algorithms that follow the simple rule of serving each request for an unoccupied point ri with the
server at ri−1, we define an algorithm for every possible set S1 of (distinct) positions of all servers at the
end of step 1. Of course, we must have r1 = S1, j for some j ∈ {1, . . . , k}, therefore, since |P|= k+1, there
are exactly

�|P\{r1}|
k−1

�

= k different starting configurations (we do not distinguish individual servers). Since
no two servers initially share a position, the average cost to put the algorithms in their configuration in
step 1 is a constant α= α(P, d)≤maxp,q∈P d(p, q). Note that the algorithms in A are not lazy (in step 1),
but could be transformed to be lazy.
We claim that no two algorithms can ever be in the same configuration. This is true initially for the request
sequence introduced above. If it is the case until step i − 1, then, at the start of step i ≥ 2, there is exactly
one algorithm in A that does not have a server at ri already, and all algorithms have a server at ri−1. The
only algorithm that needs to move a server in step i (from ri−1 to ri) is the only one without a server at
position ri−1 after step i. Our claim follows by induction.
Since exactly one algorithm needs to move in every step, the total cost of the algorithms in A is
kα+

∑n
i=2 d(ri−1, ri). The optimum cost is bounded by the average cost cavg = α+

1
k

∑n
i=2 d(ri−1, ri). With

eq. (6.1), and by symmetry and positivity of d, we get

ALG(σ)
OPT(σ)

≥

∑n
i=1 d(ri, ri+1)

α+ 1
k

∑n
i=2 d(ri−1, ri)

≥
k

1+ kα/
∑n

i=2 d(ri−1, ri)
→n→∞ k.

44



Using limn→∞ALG(σ) =∞, Proposition 1.12 thus excludes any competitive ratio below k.

Based on this lower bound and matching upper bounds for some special cases that we will see below,
Manasse, McGeoch and Sleator posed their famous “k-server conjecture”:

Conjecture 6.5 (Manasse et al. [1990]). There is a deterministic k-competitive k-server algorithm.

Proving or disproving this conjecture for general metric spaces is an important open problem in online
optimization. In the following sections, we prove the k-server conjecture for specific metric spaces.

6.2 The k-server problem on the line

We first consider the simple metric space (P, d) of the (Euclidean) line, i.e., with P = R and where d is the
Euclidean distance between points. Recall the bad instance for the GREEDY algorithm we discussed above
(Figure 6.1). Since this example is already embedded on the line, this means that we need to be more
careful about how to decide which server to move. If d(b, c)� d(a, b), the first requests must be served
by the server at a, otherwise we are not competitive on short sequences. But at some point we have to
involve the server at c to avoid an unbounded cost compared to the optimum as instances grow.

One (non-lazy) idea how to improve GREEDY’s behavior in the example of Figure 6.1 would be to move
both servers towards a request at b and let the server serve the request that first reaches it. The algorithm
DC (double cover) generalizes this idea to any number of servers by moving a closest server towards
request ri from both sides if such a server exists. We call the two servers closest to ri from either side
its neighbors, and if there are multiple closest servers on one side, we pick only one of them arbitrarily
as the neighbor of ri. Then, in step i, DC moves the (at most two) neighbors of ri towards ri with the
same speed until (at least) one of them reaches ri. Observe that DC behaves as intended on the example
of Figure 6.1: The first requests are served by the server starting at a, and at some point the server that
started at c reaches b and stays there. Eventually, the servers are located at a and b and do not need to
move anymore.

Theorem 6.6 (Chrobak et al. [1991]). DC is k-competitive for the k-server problem on the line if
∑

j 6= j′ d(S0, j, S0, j′) is bounded by a constant.

Proof. We analyze DC using the potential function method. Recall that the principal idea of defining a
potential function is to allow investing additional cost in cheap steps in order to pay for expensive steps.
One reason why a k-server request on the line can be costly for DC, in terms of relative cost compared to
OPT, is that the server positions of DC and OPT are very different. We can measure this by the cost Mi(σ)
of a minimum (distance) matching between the server positions of DC and OPT at the end of step i. Note
that this matching matches the j-th server from the left of DC to the j-th server from the left of OPT for
j ∈ {1, . . . , k}. A reason why a request can be costly in terms of absolute cost is that DC’s servers are far
apart. We can measure this by the sum Σi(σ) :=

∑

j 6= j′ d(Si, j, Si, j′) of pairwise distances of DC’s servers at
the end of step i. With this intuition, we define a potential function of the form

Φi(σ) = a1Mi(σ) + a2Σi(σ),

with some parameters a1, a2 ≥ 0.

We want to use the alternating moves approach (Corollary 4.3), i.e., we pretend that OPT moves before DC

in step i and let Φ′i(σ) denote the intermediate potential function value after OPT moved. By Corollary 4.3,
to show that DC is ρ-competitive, it is sufficient to show that (i) Φi(σ) ≥ 0, (ii) there is a constant
β ≥ 0 independent of σ with Φ0(σ) ≤ β , (iii) ∆ΦOPT

i := Φ′i(σ) − Φi−1(σ) ≤ ρ · OPTi(σ), and (iv)
∆ΦDC

i := Φi(σ)−Φ′i(σ)≤ −DCi(σ).

45



Figure 6.2: Illustration of the proof of Theorem 6.6, Case 2. If OPT’s server at ri (crossed out) is not matched to a
neighboring server (wlog to its right), there is a matching of at most the same cost, where it is (dashed).

Properties (i) and (ii) hold as long as S0 ∈ Pk is fixed, because Φi ≥ 0 and Φ0 ≤ β(S0) :=
∑

j 6= j′ d(S0, j, S0, j′).
For Property (iii), we may assume that OPT is lazy, i.e., that it moves at most one server in every
step i. Assume that OPT moves a server by OPTi(σ) = d ≥ 0. This move may increase Mi(σ) by at
most d, even if we maintain the same (not necessarily minimum) matching. Then Property (iii) holds if
∆ΦOPT

i ≤ a1d ≤ ρ ·OPTi(σ) = ρd, i.e., if a1 ≤ ρ. For Property (iv), we distinguish two cases in step i.
Case 1: DC moves a single server by d > 0. Then, by definition of DC, this server must lie on the
boundary of the convex hull of all server positions, and the requested point must lie outside of the
convex hull. This means that the server moves away from all other servers and Σi(σ) increases by exactly
(k − 1)d. Also, there is a minimum matching that matches the server of DC at ri after the move to the
server at ri in OPT. This must also have been a minimum matching before the move, since there are no
servers closer to ri in DC. Therefore Mi(σ) is decreased by exactly d. Property (iv) holds in this case if
∆ΦDC

i = a2(k− 1)d − a1d ≤ −DCi(σ) = −d, i.e., if a1 ≥ a2(k− 1) + 1.

Case 2: DC moves two servers by d ≥ 0 each. Then, by definition of DC, two servers j, j′ ∈ {1, . . . , k} move
towards each other with no other servers between them. This means that the contribution of the pair
( j, j′) to Σi decreases by exactly 2d, and the changes in distance from j to every other server cancels with
the change in distance from j′. During the move, there is a minimum matching that matches j or j′ to the
server of OPT at ri, since there are no servers of DC between j and j′ (see Figure 6.2). Consequently, Mi(σ)
does not increase during the move. Property (iv) holds in this case if ∆ΦDC

i ≤ −a22d ≤ −2d = −DCi(σ),
i.e., if a2 ≥ 1.

Overall, all properties hold if

ρ ≥ a1 ≥ a2(k− 1) + 1≥ (k− 1) + 1= k,

and we get equality for a1 = ρ = k and a2 = 1, i.e., for the potential Φi(σ) = kMi(σ) +Σi(σ).

6.2.1 Double Cover on trees

There is a direct generalization for DC from the real line to the metric space induced by a tree T = (V, E)
with edge lengths, where the distance between two vertices is defined by the metric closure (i.e., the
shortest path distance). Let v ∈ V be a vertex of T , consider a server j located at a vertex v j, and let P
be the unique v j-v -path in T . If there is no other server located along P \ {v j} and if there is no server
j′ ∈ {1, . . . , j − 1} located at v j, we call j a neighbor of v . We generalize DC by continuously moving all
neighbors of v towards each request for a vertex v ∈ V , until the first server reaches v (see Figure 6.3).
Note that the set of neighbors can become smaller over time. Also note that, since the vertices of T
are the points of the metric space, we cannot continuously move servers along edges. Similarly to the
transformation into a lazy algorithm, we can avoid this issue by executing all movements of a server only
virtually, until the server actually serves a request at a vertex.

46



Figure 6.3: Server movements over time (left to right) in DC for trees when the central node is requested. Rectangles
correspond to servers. Note that the set of neighbors (thick) changes over time.

Theorem 6.7 (Chrobak and Larmore [1991b]). DC is k-competitive for the k-server problem on a tree if
∑

j 6= j′ d(S0, j, S0, j′) is bounded by a constant.

Proof. We use the same potential as in the proof of Theorem 6.6, i.e.,

Φi(σ) = kMi(σ) +Σi(σ).

As before, we can still assume OPT to be lazy, i.e., to move a single server by d in step i, and therefore
∆ΦOPT

i ≤ kd = k ·OPTi(σ).
Now subdivide DC’s move in step i into time periods (t1, t2], (t2, t3], . . . , (tN−1, tN ], such that the set of
servers that move stays the same during each period. Consider a period (t j, t j+1] where m j servers move
by d j = t j+1 − t j each. Observe that, during the whole period, there is a minimum matching where
one of the moving servers is matched to OPT’s server at the requested node ri ∈ P. This means that Mi
can increase by at most (m j − 1)d j − d j = m jd j − 2d j, which causes an increase in potential by at most
km jd j − 2kd j. Each stationary server gets closer to at least m j − 1 other servers and further away from at
most one other server. The contribution to Σi of all these changes in pairwise distance between one of the
k−m j stationary servers and a moving server sum to

−(k−m j)((m j − 1)d j − d j) = −(k−m j)(m jd j − 2d j).

Finally, the pairwise distances between moving servers each decrease by exactly 2d j, which changes Σi by

−m j(m j−1)
2 · 2d j = −m j(d jm j − d j).

Overall, the change in potential during one period is at most

km jd j − 2kd j − (k−m j)(m jd j − 2d j)−m j(d jm j − d j) = −m jd j,

which corresponds exactly to the total distance traveled in the period. Summed over all periods in step i,
we get

∆ΦDC
i = −

N−1
∑

j=1

m jd j = −DCi(σ).

Together with our bound on ∆ΦOPT
i this gives an amortized cost of

ai(σ) = DCi(σ) +∆Φi(σ) = k ·OPTi(σ).

We also have Φi ≥ 0 and Φ0 ≤
k(k−1)

2 maxv ,v ′∈V d(v , v ′), which is constant if the tree is fixed (and finite).
We can therefore apply the potential function method (Corollary 4.3) to prove the theorem.

47



Remark 6.8. Note that the (k-)paging problem can be modeled as the k-server problem on a star-shaped
tree with one vertex per memory page and one server per cache slot (see Figure 6.4). The positions of
the servers correspond to the pages in the cache, evicting a page corresponds to moving the respective
server to the center node, and loading a page corresponds to moving a server to the respective node. Note
that in our model, costs are split between loading and evicting, but this makes no difference for demand
paging algorithms, provided that the cache is full initially. On the star associated with a paging instance,
DC becomes equivalent to the paging algorithm FWF. This means that k-competitiveness of DC on trees
implies k-competitiveness of FWF for paging. It is worth emphasizing that the k-server framework captures
the paging problem tightly enough to allow tight bounds to be derived via the much more general setting.

1/2

p1

1/2 p2
1/2

1/2
1/2

1/2

1/2
1/2

pm

Figure 6.4: Illustration of the (k-)paging problem expressed as a k-server problem.

6.2.2 Double Cover on finite metric spaces

We can further generalize DC to any finite metric space with N points, by interpreting such a space as a
complete graph G = (V, E) with a vertex for every point of the space and edge lengths that correspond to
the distances between every pair of points. We can apply our adaptation of DC for trees by restricting
ourselves to a minimum spanning tree T of G. This means that we forget all edges not in T and serve all
requests by only moving along T . By definition of minimum spanning trees, every edge e of G \ T closes a
cycle C in T , and e must be a longest edge of C . If e has length d, this means that C \ {e} has length at
most (N − 1)d, i.e., there is a detour in T for e that has length at most (N − 1)d. Applying this argument
multiple times yields that every shortest path of length d ′ in G has a detour of length at most (N − 1)d ′

in T .

Let OPTtree be the offline optimum cost when restricted to moving along edges of T . Then, by Theorem 6.7,
there is α ∈ R with

DC(σ)≤ k ·OPTtree(σ) +α≤ k(N − 1) ·OPT(σ) +α,

and we obtain the following.

Theorem 6.9 (Chrobak and Larmore [1991b]). DC is (Nk− k)-competitive for the k-server problem on
any finite metric space with N points if

∑

j 6= j′ d(S0, j, S0, j′) is bounded by a constant.

Note that, in general, this is much better than the competitive ratio of 2N k − 1 that follows from the fact
that the k-server problem is a metrical task system.

6.3 Balancing algorithm*

For arbitrary metric spaces, one of the most natural online algorithms is the algorithm BAL that greedily
balances the distances moved by the servers. Let Di

j =
∑i

i′=1 d(Si′−1, j, Si′, j) denote the total distance

48



that server j moved until the end of step i. Then BAL serves the request ri in step i with any server
j ∈ arg min j′∈{1,...,k}{Di−1

j′ + d(Si−1, j′ , ri)} that is closest to ri among servers minizing Di−1
j′ + d(Si−1, j′ , ri).

In particular, if there is a server j at ri, this server is selected, since d(Si−1, j, ri) = 0 and Di−1
j ≤

Di−1
j′ + d(Si−1, j′ , ri) for every j′ ∈ {1, . . . , k}, because either Di−1

j = 0 or because of the fact that j was
selected earlier to move to ri. In particular, if servers start at distinct locations, they always remain at
distinct locations. In the following, we assume that this is the case.

Proposition 6.10. For every k ≥ 2, BAL is not competitive for the k-server problem on metric spaces of
size N ≥ k+ 2.

Proof. Consider the example in Figure 6.5 with k = 2 servers and N = 4 points. We define the adversarial
input sequence σ = (a, b, c, d, a, b, c, d, . . . ) ∈ Pn. For this sequence BAL(σ) = n, since one server serves
all requests at {a, d} and the other serves the requests at {b, c}. On the other hand OPT(σ) = 1+ (n− 2)ε
for n ≥ 3, since one server serves all requests at {a, b} and the other serves the requests at {c, d}. We
immediately get

BAL(σ)
OPT(σ)

=
n

1+ (n− 1)ε
→ε→0 n.

Note that the example can be extended to larger k, N simply by adding additional points and servers far
away from {a, b, c, d}.

a

b c

d

ε

1

ε

1

Figure 6.5: Adversarial instance of Proposition 6.10 with points P = {a, b, c, d} and initial server locations S0 =
(c, d). The distances obey d(a, b) = d(c, d) = ε� 1.

Remark 6.11. In the following, we want to show that BAL is k-competitive on metric spaces with N = k+1
points. Since it does not make sense for the adversary to make requests that do not incur a cost for BAL,
we may assume that in every step the unique unoccupied location of BAL is requested. Let qi be the unique
unoccupied point at the end of step i ≥ 0, i.e., qi−1 := ri for all i ≥ 1. Similarly, let q?i be an unoccupied
point after step i in OPT[σ]. For every point p ∈ P that is occupied by a server j ∈ {1, . . . , k} in BAL at
the end of step i, we define Di

p := Di
j to be the total distance travelled by the server at p. Finally, let S?i, j

denote the location of server j ∈ {1, . . . , k} in OPT[σ] at the end of step i.
We want to apply the potential function method with the alternating moves approach (Corollary 4.3),
pretending that OPT moves before BAL in every step. We introduce a rather complicated potential function,
which will turn out to work well later:

Φi(σ) :=

(

kDi
q?i
−
∑k

j=1 Di
j if q?i 6= qi = ri+1,

k(Di
ri
− d(ri, ri+1))−

∑k
j=1 Di

j if q?i = qi = ri+1.
(6.2)

This potential function distinguishes between whether OPT and BAL occupy the same points (q?i = qi) or
not (q?i 6= qi). At the beginning of step i, BAL has point qi−1 = ri unoccupied. After OPT moved, it must
have a server at qi−1 = ri, i.e., we are in the first case of the potential function. Since BAL’s servers did not
move yet, the intermediate potential value is

Φ′i(σ) := kDi−1
q?i
−

k
∑

j=1

Di−1
j .

49



In order to apply Corollary 4.3, we have to ensure that conditions (i)-(iv) are satisfied. For condition (i),
it is sufficient to show that there is a constant α(M) ≥ 0 such that for all j ∈ {1, . . . , k} we have
kDi

j −
∑k

j′=1 Di
j′ ≥ −α(M), where α(M) only depends on the metric space M = (P, d). Then Φi(σ) ≥

−kdmax(M)−α(M) where dmax(M) :=maxp,p′∈P d(p, p′) only depends on M, and condition (i) holds.

To see this, we may individually bound differences of the form
�

�

�Di
j′ − Di

j

�

�

� for j, j′ ∈ {1, . . . , k}, because we

need an upper bound for

k
∑

j′=1

Di
j′ − kDi

j =
k
∑

j′=1

(Di
j′ − Di

j)≤
k
∑

j′=1

|Di
j′ − Di

j |.

Claim 6.12. For all j, j′ ∈ {1, . . . , k} we have |Di
j′ − Di

j | ≤ d(Si, j, Si, j′).

With this claim, we can set α(M) := k · dmax(M) to fulfill condition (i), since then
∑k

j′=1 Di
j′ − kDi

j ≤
∑k

j′=1 d(Si, j, Si, j′)≤ k · dmax(M) and, thus, Φi(σ)≥ −2kdmax(M).

Proof of Claim (6.12). We prove the claim by induction on i. The induction base for i = 0 holds, since
|D0

j′ − D0
j | = 0 ≤ d(Si, j, Si, j′). For the inductive step, assume that |Di−1

j′ − Di−1
j | ≤ d(Si−1, j, Si−1, j′) holds.

The claim trivially holds if j, j′ do not move in step i. Otherwise, without loss of generality, assume that j
moves in step i, i.e., j serves the request at ri = Si, j. We need to show that

|Di−1
j′ − (D

i−1
j + d(Si−1, j, ri))| ≤ d(ri, Si, j′), (6.3)

since then

|Di
j′ − Di

j |= |D
i−1
j′ − (D

i−1
j + d(Si−1, j, ri))| ≤ d(ri, Si, j′) = d(ri, Si−1, j′).

First, by induction and triangle inequality, we have

Di−1
j′ − Di−1

j − d(Si−1, j, ri)
ind.
≤ d(Si−1, j′ , Si−1, j)− d(Si−1, j, ri)

4−ineq.
≤ d(ri, Si−1, j′). (6.4)

Now, by definition of BAL, since BAL selected server j to serve ri, we have Di−1
j + d(Si−1, j, ri) ≤ Di−1

j′ +
d(Si−1, j′ , ri), and thus

Di−1
j + d(Si−1, j, ri)− Di−1

j′
BAL

≤ Di−1
j′ + d(Si−1, j′ , ri)− Di−1

j′ = d(Si−1, j′ , ri). (6.5)

Together, eqs. (6.4) and (6.5) imply eq. (6.3).

For condition (ii) of Corollary 4.3, we simply observe that Φ0 ≤ 0.

For condition (iii), we need that ∆ΦOPT
i := Φ′i −Φi−1 ≤ k ·OPTi(σ). If OPT does not move in step i, then

q?i−1 = q?i /∈ {ri−1, ri}, and therefore ∆ΦOPT
i = 0. Otherwise, by definition, OPT moves a server from q?i 6= ri

to ri = q?i−1, and OPTi(σ) = d(q?i , ri). Because q?i−1 = ri, the potential Φi−1 is given by the second case of
eq. (6.2) and we get

∆ΦOPT
i = Φ′i −Φi−1

= (kDi−1
q?i
−

k
∑

j=1

Di−1
j )− (k(D

i−1
ri−1
− d(ri−1, ri))−

k
∑

j=1

Di−1
j )

= k(Di−1
q?i
− Di−1

ri−1
+ d(ri−1, ri)).

50



If q?i = ri−1, it immediately follows that ∆ΦOPT
i = kd(ri−1, ri) = k ·OPTi(σ). Otherwise, in step i − 1, BAL

moved a server from ri 6= q?i to ri−1 6= q?i . This means that there is a server at q?i that does not move in
step i − 1. We have

Di−1
q?i

= Di−2
q?i

Di−1
ri−1

= Di−2
ri
+ d(ri, ri−1).

By Claim 6.12, we have Di−2
q?i
− Di−2

ri
≤ d(q?i , ri), and, therefore,

∆ΦOPT
i = k(Di−1

q?i
− Di−1

ri−1
+ d(ri−1, ri))

= k(Di−2
q?i
− Di−2

ri
)

≤ kd(ri, q?i )
= kOPTi(σ),

as required by condition (iii).

Finally, condition (iv) of Corollary 4.3 demands that ∆ΦBAL
i := Φi − Φ′i ≤ −BALi(σ), where BALi(σ) =

d(ri+1, ri). If q?i 6= qi = ri+1, since also q?i 6= ri, BAL has a server at q?i that does not move during step i,
i.e., Di

q?i
= Di−1

q?i
. The potential Φi is given by the first case of eq. (6.2) and we get

∆ΦBAL
i = (kDi

q?i
−

k
∑

j=1

Di
j)− (kDi−1

q?i
−

k
∑

j=1

Di−1
j )

=
k
∑

j=1

Di−1
j −

k
∑

j=1

Di
j

= −d(ri+1, ri).

Otherwise, we have q?i = qi = ri+1, and Di
ri
− Di−1

q?i
= Di

ri
− Di−1

ri+1
= d(ri, ri+1). The potential Φi is given by

the second case of eq. (6.2) and we get

∆ΦBAL
i = (k(Di

ri
− d(ri, ri+1))−

k
∑

j=1

Di
j)− (kDi−1

q?i
−

k
∑

j=1

Di−1
j )

= k(Di
ri
− Di−1

q?i
− d(ri, ri+1))− d(ri+1, ri)

= −d(ri+1, ri).

In both case condition (iv) is fulfilled. Using conditions (i)-(iv), we can apply Corollary 4.3 and obtain the
following result.

Theorem 6.13 (Manasse et al. [1990]). BAL is k-competitive for the k-server problem on finite metric
spaces of size N = k+ 1 if the initial server locations are distinct.

Remark 6.14. Irani and Rubinfeld [1991] showed that minimizing Di−1
j + 2d(Si−1, j, ri) yields a 10-

competitive 2-server algorithm, and Chrobak and Larmore [1991a] showed that this algorithm has
competitive ratio at least 6. Kleinberg [1994] showed that minimizing Di−1

s + f (d(Si−1,s, ri)) for any
function f : R→ R does not yield a 2-server algorithm with competitive ratio smaller than 5+

p
7

2 ≈ 3.82.

51



6.4 General metric spaces

We now briefly outline additional results for general metric spaces that rely on work function approaches,
i.e., on online algorithms that take the optimum behavior into account for their decisions.

For 2 servers, Manasse et al. [1990] define the algorithm RES (residue) that, in step i, serves the request
at ri with the server that served the last request (at ri−1) if and only if it can afford to do so while staying
2-competitive, even if it later needs to undo the move from ri−1 to ri and instead move the other server
to ri via ri−1. Formally, we can express this condition via

2OPT(σ≤i)−RES(σ≤i−1)≥ 2d(ri−1, ri) + d(Si−1,1, Si−1,2),

where the left hand side is the so-called residue, i.e., the cost that RES can cause in step i while still staying
2-competitive.

Theorem 6.15 (Manasse et al. [1990]). RES is 2-competitive for the online 2-server problem.

For arbitrary k ∈ N we can define a work function algorithm much like for metrical task systems. Assuming
that servers start in distinct locations, we use the fact that there is an optimum solution where servers
always remain at distinct locations. We define the work function wi(C) that maps a configuration C ⊂ P,
|C |= k of server locations to the offline optimum cost for serving all requests in σ≤i and then positioning
the servers on the points in C . Let d(C , C ′) denote the total distance of a minimum distance matching
between the points in C and C ′, and let C0 := {S0, j : j ∈ {1, . . . , k}} denote the initial configuration of
servers. We get

w0(C) = d(C0, C)
wi(C) =min

p∈C
{wi−1((C \ {p})∪ {ri}) + d(ri, p)}.

With this, the straight-forward work function algorithm WFA serves the request ri in step i with a server

j ∈ argmin
j∈{1,...,k}

{w(Ci−1 \ {Si−1, j} ∪ {ri}) + d(Si−1, j, ri)},

where Ci denotes the server configuration after step i. We state the following theorem without proof.

Theorem 6.16 (Koutsoupias and Papadimitriou [1995]). WFA is (2k − 1)-competitive for the online
k-server problem.

52



7 Primal-Dual Algorithms
All underlying offline problems we have discussed in the previous chapters can be expressed in terms of
an integer linear program (ILP), i.e., in the form

(ILP)

min cTx

s.t. Ax ≥ b

x ∈ Nn

where A∈ Rm×n, b ∈ Rm and c ∈ Rn are input parameters, and x ∈ Nn are the solution variables.

For example, we can express the ski rental problem with n days and buying price B by introducing a
variable x that indicates whether we decide to buy skis, and variables zi that indicate whether we rent
skis on day i. We obtain the following ILP:

(SR)

min B · x +
∑n

i=1 zi

s.t. x + z j ≥ 1, ∀ j ∈ {1, . . . , n}
x , zi ∈ {0, 1}, ∀i ∈ {1, . . . , n}

We can turn the problem of finding a good solution to an ILP to an online problem by letting variables and
constraints appear over time, while requiring monotonicity in the sense that variables that have previously
been set may not be decreased.

ONLINE ILP PROBLEM

given: linear program (ILP) (A0, b0, c0), initial solution x0
online: sequence σ = ((A1, b1, c1), (A2, b2, c2), . . . , (An, bn, cn)) of ILPs,

s.t. Ai, bi, ci extend Ai−1, bi−1, ci−1 by adding rows & columns
actions: extend solution x i−1 to a new feasible solution x i for Ai, bi, ci
(step i) by setting all new variables and by increasing or keeping old variables
objective: minimize cT

n xn

This view on online problems will allow us to employ powerful linear programming methods to develop
and analyze online algorithms.

7.1 The primal-dual method

Consider the LP-relaxation (P) of an integer linear program (ILP) that we obtain by dropping the
requirement that variables need to be integral (below). Including fractional solutions allows us to tap
into fundamental results from LP duality, which can be used to bound the quality of a solution to (P) by
considering the dual (D). Intuitively, the dual LP computes the best lower bound on the objective function
value of (P) that we can obtain by a linear combination of its inequalities, where y j is the weight of the
j-th inequality in this combination. The constraints of the dual ensure that the contribution of no primal
variable to this combination of inequalities exceeds its contribution to the primal objective, i.e., the linear

53



combination lower bounds the objective function. This immediately implies weak duality: the fact that
every feasible solution to (D) gives a lower bound for the optimum value of (P).

(P)

min
∑n

i=1 ci x i

s.t.
∑n

i=1 ai j x i ≥ b j, ∀ j ∈ {1, . . . , m}
x i ≥ 0, ∀i ∈ {1, . . . , n}

(D)

max
∑m

j=1 b j y j

s.t.
∑m

j=1 ai j y j ≤ ci, ∀i ∈ {1, . . . , n}
y j ≥ 0, ∀ j ∈ {1, . . . , m}

Theorem 7.1 (weak duality). Let x , y be feasible solutions for the dual linear programs (P) and (D).
Then,

n
∑

i=1

ci x i ≥
m
∑

j=1

b j y j.

Proof. We have

n
∑

i=1

ci x i

(D)
≥

xi≥0

n
∑

i=1

m
∑

j=1

ai j y j x i =
m
∑

j=1

y j

n
∑

i=1

ai j x i

(P)
≥

y j≥0

m
∑

j=1

b j y j.

In particular, weak duality allows us to prove near-optimality of a solution by providing a feasible dual
solution with similar objective function value.

Corollary 7.2. Let x , y be feasible solutions for the dual linear programs (P) and (D) with
∑n

i=1 ci x i ≤
α
∑m

j=1 b j y j for some α≥ 1. Then x , y are α-approximations of the optimum for (P) and (D), respectively.

It is not clear that we can generally expect to get a good bound on the optimal objective function value
only by a linear combination of inequalities. Strong duality provides the fundamental guarantee that we
can always get a tight bound this way. This very powerful result is at the core of LP duality theory. For its
proof we refer to any introductory class on linear optimization.

Theorem 7.3 (strong duality). A linear program (P) is feasible and bounded if and only if its dual (D) is
feasible and bounded. In this case, the optimum values of (P) and (D) coincide.

Another fundamental result of duality theory is the principle of complementary slackness. This principle
states that a pair of feasible solutions of (P) and (D) is optimal if and only if it has the property that a
variable of (P)/(D) is non-zero if the corresponding constraint of (D)/(P) is tight and vice-versa. We
slightly extend this principle by including approximately optimal solutions with approximately tight
constraints for non-zero variables.

Theorem 7.4 (approximate complementary slackness). Let x , y be feasible solutions for the dual linear
programs (P) and (D), such that the following conditions hold for α,β ≥ 1:

(i) primal slackness: If x i > 0 for i ∈ {1, . . . , n}, then
∑m

j=1 ai j y j ≥ ci/α.

(ii) dual slackness: If y j > 0 for j ∈ {1, . . . , m}, then
∑n

i=1 ai j x i ≤ β b j.

Then,
∑n

i=1 ci x i ≤ αβ
∑m

j=1 b j y j and hence x , y are αβ-approximations for (P) and (D), respectively.

54



Proof. We have

n
∑

i=1

ci x i

(i)
≤

n
∑

i=1

αx i

m
∑

j=1

ai j y j

= α
m
∑

j=1

y j

n
∑

i=1

ai j x i

(ii)
≤ αβ

m
∑

j=1

b j y j.

The statement thus follows by Corollary 7.2.

With these structural results in mind, we are ready to state the primal-dual method. The idea of primal-dual
approximation algorithms is to compute not only a primal solution, but to simultaneously compute a
feasible dual solution. If we can ensure that the ratio between the value of both solutions is bounded,
weak duality (Corollary 7.2) implies a bounded approximation ratio for the primal solution. We use the
same method to devise primal-dual online algorithms that maintain a pair of feasible solutions, one for
the primal and one for the dual LP, while ensuring that the ratio between the value of both solutions stays
bounded.

Theorem 7.5 (primal-dual method). Let ρ ≥ 1 and ALG be an online algorithm for the online ILP problem
that, in every step i, computes feasible solutions x i, yi for the LP relaxation of (Ai, bi, ci) and its dual
(AT

i ,ci,bi), such that x i is integral and cT
i x i ≤ ρbT

i yi. Then ALG is strictly ρ-competitive.

In order to illustrate the primal-dual method on a simple example, we apply it to the ski rental problem.
To do this, we first need to formulate the LP-relaxation (SRP) of the ski rental ILP (SR) and its dual (SRD).

(SRP)

min B · x +
∑n

i=1 zi

s.t. x + z j ≥ 1, ∀ j ∈ {1, . . . , n}
x , zi ≥ 0, ∀i ∈ {1, . . . , n}

(SRD)

max
∑n

j=1 y j

s.t.
∑n

j=1 y j ≤ B

0≤ y j ≤ 1, ∀ j ∈ {1, . . . , n}

In every online step of the ILP version of the ski rental problem, we are presented with an additional
variable z j and an additional constraint x + z j ≥ 1. We need to satisfy this constraint by either setting
x = 1 (i.e., by buying skis) or by setting z j = 1 (i.e., by renting skis). At the same time, we want to set y j
in order to maintain a feasible dual solution with large objective value. The simplest approach is to set y j
as large as possible without violating dual constraints, i.e., such that

∑n
j=1 y j = B or y j = 1, whichever

happens first when increasing y j from 0. We can let the dual solution guide our primal decisions by setting
x = 1 if the corresponding dual constraint

∑n
j=1 y j ≤ B becomes tight, and setting z j = 1 otherwise (in

that case, y j = 1).

Observe that this algorithm is equivalent to the algorithm ALGB that always buys on day B. We already
saw in Section 1.3 that ALGB is strictly (2− 1/B)-competitive. We now derive a slightly weaker bound
using LP duality theory.

Theorem 7.6. ALGB is strictly 2-competitive.

Proof. We use the primal-dual method (Theorem 7.5). By definition, the LP-interpretation of ALGB

maintains integral feasible solutions of (SRP) and (SRD). It remains to show that B·x+
∑n

i=1 zi ≤ 2
∑n

j=1 y j.
We can easily see this using the approximate complementary slackness conditions (Theorem 7.4). For

55



primal slackness, observe that if x > 0, then, by integrality of x , we have x = 1 and thus
∑n

j=1 y j = B
must hold, by definition of ALGB. Also, if zi > 0, then zi = 1 and thus we have yi = 1, again by definition
of ALGB. For dual slackness, we simply observe that x + z j ≤ 2, i.e., the primal constraints are always
tight up to a factor of 2. By Theorem 7.4, we get B · x +

∑n
i=1 zi ≤ 2

∑n
j=1 y j, i.e., the primal solution is a

2-approximation.

7.2 Randomized rounding

The primal-dual method as stated in Theorem 7.5 requires that, in every step i, the computed solution x i
of the LP relaxation must be integral. This requirement is very restrictive, and it is often easier to formulate
a primal-dual algorithm that gradually increases variables, e.g., the variable x in the ski rental problem.
Of course, the fractional solution that is computed this way is not a feasible solution to the original
ILP. However, we can obtain a randomized feasible solution by interpreting fractional variable values
(smaller 1) as probabilities of setting the corresponding variable to 1. This way, we can hope to retain the
solution quality of the fractional solution by introducing randomization. This approach is the so-called
randomized rounding technique.
For example, consider again the ski rental problem, this time allowing fractional solutions. On day i,
the additional primal variable zi is presented, together with the primal constraint x + zi ≥ 1, which
corresponds to a new dual variable yi. We define a natural primal-dual algorithm PD that computes a
fractional solution in every step. First, as before, if x < 1, we set yi = 1 and otherwise we set yi = 0.
Then, in order to satisfy x + zi ≥ 1, we set zi = 1− x . Finally, PD increases x by some amount α(x +β) to
a maximum of 1, where α,β ∈ R will be determined later. Since x grows monotonically over time, this
ensures that the primal constraints always stay satisfied.

Theorem 7.7. For α= 1/B and β = 1/[(1+ 1/B)B − 1], PD computes a (1+ β)-approximate, fractional
solution for the ski rental problem.

Proof. We show that PD computes a good fractional solution using the primal-dual method (without
requiring integrality). To do this, we need to show that the primal and dual solutions computed in every
step are feasible and that the primal objective function value remains bounded by ρ ≥ 1 times the dual
objective function value (analogously to Theorem 7.5).

We already argued that the primal solution is feasible, because the constraints x + zi ≥ 1 remain satisfied
by definition of PD. To show dual feasibility, we need to ensure

∑n
j=1 y j ≤ B, i.e., x ≥ 1 after at most B

days. Let x i ≥ 0 denote the increment of x in step i, i.e., x =
∑n

i=1 x i at the end, x1 = αβ , and

x i = α(
i−1
∑

j=1

x j + β) = αx i−1 +α(
i−2
∑

j=1

x j + β) = (1+α)x i−1 = (1+α)
i−1αβ ,

for i ∈ {2, . . . , n}. After B days we have

x =
B
∑

j=1

x j =
B−1
∑

j=0

(1+α) jαβ = αβ
(1+α)B − 1
(1+α)− 1

= β · [(1+α)B − 1].

To ensure that x = 1 after B days, and have dual feasibility, we may thus set

β := 1/[(1+α)B − 1].

In order to bound the ratio between the total primal and dual objective function value in the end, we can
bound the ratio between the change in primal and dual objective function values in every step. Consider

56



step i. We may assume x =
∑i−1

j=1 x j < 1 at the start of step i, otherwise the objective function values do
not change, since zi, yi are set to 0 and x remains 1. But then yi is set to 1, which increases the dual
objective by 1. On the other hand, the primal objective changes by

Bx i + zi = Bα(
i−1
∑

j=1

x j + β) + 1−
i−1
∑

j=1

x j.

We can set α = 1/B in order to eliminate the dependence on x1, . . . , x i−1. We get a constant change in
primal objective of exactly 1+ β times the change in dual objective in every step. Consequently, the ratio
between primal and dual objective is always bounded by 1+ β . This concludes the proof by weak duality
(Theorem 7.1).

Based on the fractional solution computed by PD, we can define a randomized algorithm RPD using
randomized rounding. To do this, we interpret the fractional contribution x i to x in step i as the
probability of buying skis on day i and the final value of x as the probability of buying skis at all. We can
achieve these probabilities by initially choosing a threshold τ ∈ [0,1] uniformly at random and buying
skis as soon as x exceeds τ. The expected cost for buying skis then becomes B · x = B ·

∑n
i=1 x i. The

probability of renting skis on the i-th day is 1−
∑i−1

j=1 x j = zi, thus the total expected cost of the rounded
solution is

Eτ∼[0,1][RPD(σ)] = Bx +
n
∑

i=1

zi,

which coincides with the cost of the fractional solution produced by PD. Since PD computes a (1+ β)
approximation, even to the fractional optimum, we obtain the following.

Theorem 7.8. RPD is a strictly (1 + β)-competitive randomized online algorithm for ski rental, with
β = 1/[(1+ 1/B)B − 1].

Remark 7.9. For B→∞, we have β = 1
e−1 and the resulting randomized competitive ratio of RPD of e

e−1
is best possible for the ski rental problem (see exercises).

7.3 Online bipartite matching

An important example of a primal-dual online algorithm is the RANKING algorithm for the online bipartite
matching problem. In this problem, the set L of vertices (the “left-hand side”) of a bipartite graph
G = (L ∪ R, E) is given and the vertices of R arrive online, together with their incident edges to vertices
in L. Our goal is to match each vertex of R to at most one unmatched neighbor in L as it arrives, such as
to maximize the size of the final matching. Formally, we define matchings as follows.

Definition 7.10. A matching in a graph G = (V, E) is a set M ⊆ E of mutually disjoint edges. A maximum
matching is a matching of maximum cardinality, and a maximal matching is a matching that is no proper
subset of any other matching.

ONLINE BIPARTITE MATCHING PROBLEM

given: set of left-hand vertices L of an unknown bipartite graph G = (L ∪ R, E)
online: sequence σ = (v1, v2, . . . , vn) ∈ Rn of right-hand vertices,

each vi given by the set Li ⊆ L of neighbors of vi in G
actions (step i): match vi to an unmatched vertex in Li, or leave it unmatched
objective: maximize the size of the matching

57



L
u1 u2

. . .
u2i−1 u2i

. . .
un−1 un

R
v1 v2

. . .
v2i−1 v2i

. . .
vn−1 vn

Figure 7.1: Ilustration of the adversarial construction in the proof of Theorem 7.13. The matching ALG[σ] consists
of the thick edges, while OPT[σ] consists of the other edges.

Note that the online bipartite matching problem is a maximization problem. Accordingly, we need to adapt
the definition of competitiveness. The definition of randomized competitiveness and the (randomized)
competitive ratio are changed analogously.

Definition 7.11. A deterministic online algorithm ALG is ρ-competitive for a maximization problem if
there is a constant α≥ 0, such that for all instances σ ∈ Σ

ALG(σ)≥
1
ρ
·OPT(σ)−α.

The statement of the primal-dual method needs to be adapted as well.

Theorem 7.12 (primal-dual method (maximization)). Let ρ ≥ 1 and ALG be an online algorithm for
maximization version of the online ILP problem that, in every step i, computes feasible solutions x i, yi
for the LP relaxation of (Ai, bi, ci) and its dual (AT

i ,ci,bi), such that x i is integral and cT
i x i ≥ (1/ρ)bT

i yi.
Then ALG is strictly ρ-competitive.

7.3.1 Deterministic algorithms

We first give a simple lower bound on the best deterministically possible competitive ratio.

Theorem 7.13. Every deterministic online matching algorithm has a competitive ratio of at least 2.

Proof. Consider an adversarial request sequence σ = (v1, v2) with two requests for the online bipartite
matching problem, where v1 has an edge to two vertices u1, u2 ∈ L and v2 has a single edge to the vertex
in {u1, u2} that was matched to v1 in the first step. In this instance, we obviously have OPT(σ) = 2 and
ALG(σ) = 1 for any online algorithm ALG. We can arbitrarily extend this example to a request sequence
σ = (v1, v2, . . . , v2n) and a set L = {u1, . . . , u2n} for any n ∈ N, by, for every i ∈ {1, . . . , n} letting v2i−1 have
an edge to both u2i−1, u2i, and letting v2i have an edge to the single matched vertex from {u2i−1, u2i} (see
Figure 7.1). Then OPT(σ) = 2n, while ALG(σ) ≤ n, and thus limn→∞

OPT(σ)
ALG(σ)−α ≥ 2 for any α ∈ R. Note

that our construction works for any algorithm ALG that deterministically decides whether to match v2i−1
to u2i−1 or u2i for every i ∈ {1, . . . , n}. We thus get a lower bound of 2 on the competitive ratio of any
deterministic online algorithm, analogously to Proposition 1.12.

We can achieve this competitive ratio easily, using the straight forward GREEDY algorithm that starts by
ordering L arbitrarily and then matches every incoming right-hand vertex to the first unmatched neighbor
in this order.

Theorem 7.14. GREEDY is strictly 2-competitive for the online bipartite matching problem.

58



Proof. Observe that GREEDY always computes a maximal matching MGREEDY: We need to show that no edge
e = {u, v } ∈ E \MGREEDY can be added to MGREEDY to obtain a larger matching. Either v ∈ R is matched by
GREEDY or u ∈ L was already matched when v appeared, otherwise GREEDY would have matched u and v
when v appeared. Thus MGREEDY ∪ {e} is not a matching.

It is now sufficient to show that every maximal matching M has at least half the size of the maximum
matching OPT[σ]. To see this, we compare the number of matched vertices in M and OPT[σ]. Every
matching edge e ∈ OPT[σ] is responsible for two matched vertices in OPT[σ]. On the other hand, since M
is maximal, at least one endpoint of e is matched in M . Overall, the number of matched vertices is
2 |OPT(σ)| in OPT[σ] versus at least |OPT(σ)| in M .

7.3.2 Ranking algorithm

We can avoid the simple lower bound construction of Theorem 7.13 by making the GREEDY algorithm less
predictable. The easiest way to do this is to start with a random order of L and then to deterministically
execute GREEDY for this order. The RANKING algorithm is an alternate formulation of this exact algorithm:
For every u ∈ L pick a random number gu ∈ [0,1] uniformly at random, and then, in every step i, match vi
to the unmatched neighbor u ∈ L with the lowest value gu. We will interpret gu as the greed of u, which
means that RANKING matches vi to its least greedy (i.e., most “generous”) unmatched neighbor. 1

We analyze RANKING using the primal-dual method. To do this, we first need to formulate the primal and
dual linear programs. For convenience, we write (u, v ) ∈ E as a shorthand for {u, v } ∈ E, u ∈ L, v ∈ R.
With this, let xuv be a variable that indicates whether the edge (u, v ) ∈ E is part of the matching (xuv = 1),
or not (xuv = 0). By allowing fractional values of xuv we get the linear program relaxation (BMP) with its
dual (BMD).

(BMP)

max
∑

(u,v )∈E xuv

s.t.
∑

v :(u,v )∈E xuv ≤ 1, ∀u ∈ L
∑

u:(u,v )∈E xuv ≤ 1 ∀v ∈ R

xuv ≥ 0, ∀(u, v ) ∈ E

(BMD)

min
∑

u∈L αu +
∑

v∈R βv

s.t. αu + βv ≥ 1 ∀(u, v ) ∈ E

αu ≥ 0 ∀u ∈ L

βv ≥ 0 ∀v ∈ R

In order to turn RANKING into a primal-dual algorithm, we additionally need to maintain a dual solution
in every step. Whenever RANKING matches two vertices u ∈ L, v ∈ R, the primal objective increases by
xuv = 1. The primal-dual method for maximization problems (Theorem 7.12) requires that, at the same
time, the dual increases by at most ρ, where ρ ≥ 1 is the competitive ratio we want to prove. We can
achieve this by distributing a value of ρ between αu and βv . We do this according to the greed of u, by
setting

αu = ρ · h(gu) ·
∑

(u,v )∈E

xuv , βv = ρ ·
∑

(u,v )∈E

(1− h(gu)) · xuv ,

where h: [0,1]→ [0,1] is some monotonically increasing function with h(1) = 1 that we will determine
later. Note that as long as u ∈ L (respectively, v ∈ R) are unmatched, we have αu = 0 (respectively,
βv = 0).

We interpret the dual variables α,β as some distribution of the dual objective value over the vertices in L
and R, respectively. Each vertex u ∈ L that is being matched gets a value of ρ that it distributes between
itself and its matching partner according to its greed gu: It keeps ρ ·h(gu) to itself and gives ρ · (1−h(gu))

1 Note we may safely ignore the event that a vertex has greed 1 or that two vertices have the same greed, since the combined
probability of any such event occurring is 0.

59



to its partner. Whenever a new vertex v ∈ R appears, it chooses the most generous available neighbor
u ∈ L as its matching partner in order to get the highest possible value.

Fix any edge (u, v ) ∈ E and assume we run RANKING, ignoring the vertex u ∈ L and using the same greed
values gu′ for all u′ ∈ L \ {u}. We denote this modified algorithm by RANKINGū. We are interested in the
dual utility value β̄uv that v gets during the execution of RANKINGū. Equivalently, we can ask for the greed
value ḡuv of v ’s matching partner (if v gets matched) in the execution of RANKINGū. Formally, we define

ḡuv =

¨

gu′ if v gets matched to u′ ∈ L by RANKINGū,

1 if v remains unmatched.

and β̄uv := ρ · (1− h( ḡuv )).
The following dominance lemma establishes that vertices u ∈ L of smaller greed are always preferred.

Lemma 7.15. If gu < ḡuv for some edge (u, v ) ∈ E, then u gets matched by RANKING.

Proof. Consider the online step of the execution of RANKING where v ∈ R appears. Assume that u is not
matched yet, otherwise the lemma is trivial. Then, the execution of RANKING so far is identical to the
execution of RANKINGū. By definition, RANKINGū matches v to the neighbor in L \{u} with lowest greed ḡuv

if it exists. Since {u, v } ∈ E, gu < ḡuv and u is not matched yet, u is the unmatched neighbor of v in L
with the lowest greed. Therefore RANKING matches v and u.

We can also show a monotonicity lemma that states that the value a vertex v ∈ R receives can only increase
as we add vertices to L.

Lemma 7.16. For all (u, v ) ∈ E, we have βv ≥ β̄uv .

Proof. First observe that the set of unmatched vertices in L \ {u} after every step of RANKING forms a
superset of the set of unmatched vertices in L \ {u} after the same step of RANKINGū. We can see this
by induction over the number of online steps: Assume that when v ′ ∈ R appears, the set of unmatched
neighbors Nv ′ of v ′ in L \ {u} in RANKING is a superset of the same set N̄v ′ in RANKINGū. If RANKING

matches v ′ to a vertex u′ ∈ Nv ′ , then this vertex has the lowest greed among all vertices in Nv ′ ⊇ N̄v ′ . If
u′ ∈ N̄v ′ , then RANKINGū must therefore match the same vertex. Hence the unmatched vertices of RANKING

in L \ {u} remains a superset of those of RANKINGū.

Now when v arrives, by the observation above, we have Nv ⊇ N̄v . Now N̄v contains a vertex of greed ḡuv

if ḡuv < 1, by definition of ḡuv . Hence, if ḡuv < 1, RANKING matches v to a vertex u′′ of greed gu′′ ≤ ḡuv .
By monotonicity of h, we get βv = ρ · (1− h(gu′′))≥ ρ · (1− h( ḡuv )) = β̄uv , as claimed. If ḡuv = 1, then
h(1) = 1 implies that β̄uv = 0≤ βv .

We are now ready to prove competitiveness of RANKING.

Theorem 7.17 (Karp et al. [1990]). RANKING is strictly e
e−1 -competitive for online bipartite matching.

Proof. By definition of RANKING, we always compute a feasible and integral primal solution (a matching).
Since every increase in primal objective increases the dual objective by exactly ρ, we maintain a ratio
of ρ between primal and dual objective. The final ingredient of the primal-dual method is to use dual
feasibility and apply weak duality in order to obtain a guarantee on the approximation quality of the
computed primal solution. Unfortunately, we cannot guarantee the computed dual solution to always be
feasible!

60



Recall that for a bounded randomized competitive ratio we only need a guarantee on the expected
approximation quality of the computed solution rather than for every possible outcome. Since the ratio
between primal and dual objective is ρ in every execution of RANKING, the same is true for the ratio
between the expected primal and dual objective. By linearity of expectation, we get

ρ =
E
�∑

u∈L αu +
∑

v∈R βv

�

E
�∑

(u,v )∈E xuv

� =

∑

u∈L E[αu] +
∑

v∈RE[βv ]
∑

(u,v )∈E E[xuv ]
.

We can therefore apply the primal-dual method using the expected primal solution E[x ] and the expected
dual solution E[α],E[β]. Since the feasible region of the primal LP is a convex polytope, the expected
solution E[x ] is feasible. The expected primal solution E[x ] may be fractional, but it is only important
that every possible computed solution is integral. In order to complete the primal-dual argument we need
to apply weak duality. To do this, it remains to show that the expected dual solution is feasible, i.e., that
E[αu] +E[βv ] ≥ 1 for all (u, v ) ∈ E. It then follows, by weak duality (Theorem 7.1), that the optimal
fractional solution is bracketed between the primal and dual objective values, which are separated by a
ratio of ρ.

To bound E[αu], we fix the values gu′ for every u′ ∈ L \ {u} to any values in [0,1], and only consider the
expectation with respect to choosing gu uniformly at random from [0,1]. Recall that if u is matched by
RANKING, then αu = ρ · h(gu), otherwise αu = 0. By Lemma 7.15, we know that u is guaranteed to be
matched when gu < ḡuv . We also know that ḡuv is independent of gu. We thus have

Egu∼[0,1][αu]≥ ρ ·
∫ ḡuv

0

h(g)dg =: ρ[H( ḡuv )−H(0)],

where H is the antiderivative of h. On the other hand, since β̄uv is independent of gu, by Lemma 7.16 we
have

Egu∼[0,1][βv ]≥ β̄uv = ρ · (1− h( ḡuv )).

Together, the expected dual solution is feasible if, for every choice of gu′ for every u′ ∈ L \ {u}, we have

H( ḡuv )−H(0) + 1− h( ḡuv )≥ 1/ρ. (7.1)

In order to get rid of the dependence on ḡuv , we choose h: [0,1]→ [0,1] to be of the form h(g) = ceg .
The condition h(1) = 1 then immediately implies c = 1/e. With this, the smallest possible competitive
ratio that guarantees dual feasibility (eq. (7.1)) is ρ = e

e−1 . We can apply Theorem 7.12 to obtain the
following.

7.3.3 Randomized Lower Bound*

We now derive a tight lower bound on the randomized competitive ratio of the online bipartite matching
problem using Yao’s principle for maximization problems:

Theorem 7.18 (Yao [1977], maximization). Let (qn : Σ→ [0, 1])n∈N be a sequence of probability distribu-
tions with

lim
n→∞
Eσ∼qn

[OPT(σ)] =∞.

Then, every randomized online algorithm for a maximization problem has a competitive ratio of at least

limsup
n→∞

Eσ∼qn
[OPT(σ)]

supALG∈Adet
Eσ∼qn

[ALG(σ)]
.

61



With this, we show the following bound.

Theorem 7.19 (Karp et al. [1990]). The competitive ratio of any randomized online bipartite matching
algorithm is at least e

e−1 .

Proof. To make use of Theorem 7.18, we need to define a sequence (qn)n∈N of probability distributions
over input sequences. We define qn : Σ→ [0, 1] to be a distribution over request sequences of length n
that results from the following process. We use a set L containing n vertices, and say that all vertices of L
are active initially. In every step i, the appearing vertex vi ∈ R has an edge to every active vertex in L, and
at the end of step i a random active vertex becomes inactive. Equivalently, we set L = {u1, . . . , un} and
initially choose a random ordering u j1 , u j2 , . . . , u jn of the vertices in L. Then vi is adjacent to the set of
vertices {u ji , u ji+1

, . . . , u jn} of size n− i + 1.

By definition, it is possible to match vi to u ji in every step i, thus OPT(σ) = n for every possible
input sequence σ produced by this process. In particular, we have Eσ∼qn

[OPT(σ)] = n and thus
limn→∞Eσ∼qn

[OPT(σ)] =∞, as required by Yao’s principle.

Now consider the options for an online algorithm in step i. If vi still has unmatched active neighbors, it is
never a mistake to match vi to one of them. By symmetry of the process, all unmatched active neighbors
are completely identical and there is no reason to choose one of them over the others. Therefore, no online
algorithm has a better choice than picking a matching partner for vi uniformly at random from amongst
its unmatched active neighbors. We obtain that the corresponding algorithm RAND is a best-possible online
algorithm for the specific distribution qn of instances that we constructed.

Using Yao’s principle, we obtain that no online algorithm has competitive ratio below

limsup
n→∞

Eσ∼qn
[OPT(σ)]

supALG∈Adet
Eσ∼qn

[ALG(σ)]
≥ limsup

n→∞

n
Eσ∼qn

[RAND(σ)]
. (7.2)

It remains to bound limn→∞Eσ∼qn
[RAND(σ)]. Let ai = n− i+1 denote the number of active vertices in L

at the start of step i, and let x i ≤ ai denote the number of unmatched active vertices in L at the start of
step i. Let further ∆ai := ai − ai+1 and ∆x i := x i − x i+1 denote the change in ai and x i during step i. We
have ∆ai = 1 by definition of the random process. While x > 0, if u ji is unmatched at the start of step i
and vi does not get matched to u ji , then ∆x i = 2, and in all other cases ∆x i = 1. The probability that u ji
is still unmatched, i.e., that u ji is one of the x i unmatched active vertices, is xi

ai
, since, by symmetry, every

active vertex has the same probability of being matched. The probability that u ji is not matched to vi,
given that it is one of the x i unmatched active vertices, is xi−1

xi
. We have

Eσ∼qn
[∆x i] = 1+

x i

ai

x i − 1
x i

= 1+
x i − 1

ai
,

and, since ∆ai = 1,
Eσ∼qn

[∆x i]

Eσ∼qn
[∆ai]

= 1+
x i − 1

ai
.

For n→∞ we can approximate the solution to this difference equation, i.e., the distribution over x i ’s
and ai ’s that satisfies it, with high probability2 by the solution to the ordinary differential equation

dx
da
= 1+

x − 1
a

.

2 With x , a approximating x i , ai with “high probability”, we mean that, for every ε > 0, the probability that the function
x(a) has error at most ε goes to 1 as n goes to infinity.

62



The only solution to this differential equation is x = ca+ a ln a+ 1 for any c ∈ R. In order to determine c,
we observe that x1 = a1 = n, thus

c = 1− ln n−
1
n
=

n− 1
n
− ln n.

We get that with high probability

x = 1+ a(
n− 1

n
+ ln

a
n
).

Consider the step i where x i = 1, i.e., one vertex in L remains active and unmatched. At this point, in
the next step this vertex will still be matched, but then all unmatched vertices in L are inactive and the
matching does not grow further. For x = 1 we get

ln
a
n
= −

n− 1
n

or

a = ne−
n−1

n .

For n→∞, once x = 1, the expected number of remaining active vertices in L gets arbitrarily close to
a = n/e. Since only one of them will still be matched, the total size of the matching computed by RAND is
given by

Eσ∼qn
[RAND(σ)] = n−

n
e
+ 1=

e− 1
e

n+ 1.

With eq. (7.2) we obtain the claimed lower bound.

63





8 Online Load Balancing
Scheduling problems have an inherent time component that makes them particularly well-suited to be
studied in an online setting. In scheduling, we are given jobs that need to be processed by a set of
machines. Each machine can run some jobs better (i.e., faster) than others, which is usually expressed in
terms of machine-dependent processing times for each job. Scheduling problems have been studied in a
multitude of variants, e.g., differing in

• whether each job needs to be executed en bloc on one machine, or can be interrupted (preempted)
and resumed on the same or a different machine (migration), or even can be parallelized;

• whether jobs have a release time when they become available, and/or a deadline when they need to
be completed;

• whether jobs have precedence constraints that demand a partial order in which jobs need to be
processed;

• whether the latest completion time (makespan), the (weighted) sum of completion times, or other
measures need to be minimized.

We focus on the load balancing problem, where each job needs to be processed without interruption on a
single machine and we want to minimize the makespan, i.e., the maximum load of a machine. In the
online variant, we assume that jobs arrive one after the other at time 0 and need to immediately be
assigned to a machine. Importantly, jobs do not arrive over time, but rather before the actual processing
of the computed schedule begins.

We now formally specify the online load balancing problem. Note that it is customary to identify machines
with natural numbers {1, . . . , m} and jobs with {1, . . . , n} to allow for simpler notation, even though each
job is formally given by a vector of its processing times on every machine.

ONLINE LOAD BALANCING PROBLEM

given: machines 1, . . . , m
online: sequence σ = (1, . . . , n) of jobs, each job j comes with

processing times pi j > 0 on every machine i ∈ {1, . . . , m}
actions (for job j): assign job j to some machine i j; we set Ji(σ) :=

�

j ∈ σ : i j = i
	

objective: minimize the makespan maxi={1,...,m} Li(σ),
where Li(σ) :=

∑

j∈Ji(σ)
pi j is the load of machine i

In terms of this notation, C j(σ) := Li j
(σ≤ j) is the completion time of job j, and S j(σ) := Li j

(σ≤ j−1) is its
starting time. See Figure 8.1 for an example.

0 1 2 3 4 5 6

Figure 8.1: Example of a load balancing instance with m = 4 machines and n = 6 jobs. The unique optimum
solution with maximum load 4.5 is depicted on the right.

65



8.1 Identical machines

We first consider online load balancing with identical machines, where we demand that the processing
time of a job does not depend on the machine the job is processed on, i.e., pi j = p j. A very natural online
algorithm for this setting is Graham’s list scheduling algorithm (LIST): Schedule each job j on a machine i
that currently has minimum load Li(σ≤ j−1). This algorithm was proposed by Graham [1969] and is often
considered to be the first approximation algorithm, though it predates the theory of NP-hardness.

Theorem 8.1 (Graham [1969]). LIST has strict competitive ratio 2− 1/m for the online load balancing
problem with m identical machines.

Proof. Fix an instance given by sequence σ = (1, . . . , n) and associated processing times p j > 0 for j ∈ σ.
Since OPT needs to schedule every job, we trivially have OPT(σ) ≥ max j∈σ p j. We get another simple
lower bound by observing that the total load L =

∑m
i=1 Li(σ) =

∑m
i=1

∑

j∈Ji(σ)
p j =

∑

j∈σ p j is the same
for any schedule and, therefore,

OPT(σ)≥ L/m=
∑

j∈σ

p j/m.

Now take any job j ∈ σ that has maximum completion time C j(σ) = max j′∈σ C j′(σ). By definition of
LIST, machine i j had minimum load at the starting time S j(σ) of job j, i.e., all machines are busy until at
least S j(σ), i.e., 1

m

∑ j−1
j′=1 p j′ ≥ S j(σ). Hence,

LIST(σ) = C j(σ)
= S j(σ) + p j

≤
∑

j′∈σ\{ j}

p j′/m+ p j

=
∑

j′∈σ

p j′/m+ (1− 1/m)p j

≤
∑

j′∈σ

p j′/m+ (1− 1/m)max
j′∈σ

p j′

≤ (2− 1/m) ·OPT(σ).

OPT[σ]

m

LIST[σ]

m− 1 2m− 1

Figure 8.2: Lower bound construction for LIST with m(m− 1) jobs with unit processing times followed by one job
with processing time m.

It remains to show a tight lower bound on the strict competitive ratio of LIST. Consider a sequence
σ = (1, . . . , n) with n = m(m − 1) + 1 and p j 6=n = 1, pn = m (see Figure 8.2). Since LIST attempts to
keep the load on all machines balanced, until step n− 1 it will produce load Li(σ≤n−1) = m− 1 on all
machines i. It immediately follows that LIST(σ) = 2m− 1. On the other hand, we can achieve the same

66



load on all machines by assigning job n to its own machine and distributing all other jobs evenly. It follows
that OPT(σ) = m, and thus LIST(σ)≥ (2− 1/m)OPT(σ), which establishes a matching lower bound.

Proposition 8.2. LIST is a best-possible online algorithm for m= 2.

Proof. Consider the instance σ with processing times 1, 1,2 and let ALG be an online algorithm with
best-possible competitive ratio. Since any online algorithm that schedules the two first jobs on the same
machine only has competitive ratio 2 > 2− 1/m = 3/2 for the instance σ≤2, we can conclude that ALG

schedules the first two jobs on different machines. But then, ALG has makespan 3 for instance σ, while
OPT(σ) = 2. We get ALG(σ)≥ 3OPT(σ)/2= (2− 1/m) ·OPT(σ).

Remark 8.3. The best known algorithm for an arbitrary number of identical machines was presented by
Fleischer and Wahl [2000] and is 1.9201-competitive. The best known lower bound of 1.88 was given by
Rudin III and Chandrasekaran [2003].

8.2 Related machines

Load balancing with related machines allows different processing times on each machine by assigning
each machine i a speed si, s1 ≤ s2 ≤ · · · ≤ sm, while demanding pi j = p j/si for all jobs j, where p j > 0.
This allows machines to be different as long as this difference (in speed) remains consistent between
jobs. If we want to apply LIST to this setting, it makes a difference whether we choose a machine with
minimum load before scheduling the next job on this machine (PREGREEDY) or after scheduling the next
job on it (POSTGREEDY). If we have two machines with very different speeds, PREGREEDY is arbitrarily bad
(proportional to the ratio between the speeds) already for two identical jobs, since the first job may be put
on the slow machine. On the other hand, POSTGREEDY has a logarithmically bounded competitive ratio
(without proof).

Theorem 8.4 (upper bound: Cho and Sahni [1988], lower bound: Aspnes et al. [1997]). POSTGREEDY has
competitive ratio Θ(log n) for the online load balancing problem on related machines.

We develop a better online algorithm that uses a typical design scheme: Assume that we know an upper
bound Λ≥ OPT(σ) and are able to design a procedure that, given Λ, produces a solution of cost below
ρ ·Λ for some constant ρ. Now make a guess Λ for the value of OPT(σ) and try to use our procedure.
We either get a solution of cost below ρΛ, or we realize that our guess was incorrect. We can then begin
with Λ = Λ0 ≤ OPT(σ) and restart from the beginning with Λi = 2Λi−1 every time our procedure fails.
For every restart, we ignore all choices made so far (but not their costs), and pretend that the input
sequence arrives again online from the beginning, even though we could do better since we know part of
the sequence already.

Since Λ0 > 0, the procedure eventually succeeds for Λk, k ∈ N, at the latest when Λk ≥ OPT(σ). If k = 0,
we computed a solution of cost at most ρΛ0 ≤ ρ ·OPT(σ). Otherwise, we know that Λk−1 < OPT(σ).
Even summing up the costs for every run independently (see Figure 8.3), i.e., scheduling the same
job multiple times, we get ALG(σ)≤

∑k
i=0ρΛi = ρ

∑k
i=0 2iΛ0 = ρ

2k+1−1
2−1 Λ0 < ρ2k+1Λ0. Using 2k−1Λ0 =

Λk−1 < OPT(σ) we get ALG(σ)< 4ρ ·OPT(σ).

Lemma 8.5 (doubling strategy). If there is an online algorithm that computes a solution of cost at most
ρΛ for given Λ ≥ OPT(σ) and we can compute some bound 0 < Λ0 ≤ OPT(σ) in the first step, then we
can devise a strictly 4ρ-competitive online algorithm.

67



ρΛ0 ρΛ1 ρΛ2

Figure 8.3: Illustration of the doubling strategy for scheduling. If our subroutine is unable to fit all jobs into a time
window of width ρΛi , it restarts from the beginning with a wider window of width 2Λi+1. The shading
of jobs corresponds to the smallest time window in which they could be scheduled. Observe that jobs
are generally scheduled in multiple time windows and thus contribute multiple times to the overall cost.

We introduce the algorithm SLOWFIT that uses the doubling strategy (for ρ = 2) with the fol-
lowing subroutine for a given bound Λ ≥ OPT(σ): Put every job j on the slowest machine i
where the resulting load does not exceed 2Λ (the slowest machine where the job fits), i.e.,
i =min{i′ ∈ {1, . . . , m}: Li′(σ≤ j−1) +

p j
si′
≤ 2Λ}. The following lemma guarantees that if Λ ≥ OPT(σ),

such a machine must always exist. If this is not the case, then SLOWFIT can safely abort the subroutine
and restart it for Λ′ = 2Λ.

Lemma 8.6. Given Λ≥ OPT(σ) the subroutine of SLOWFIT computes a solution of cost at most 2Λ.

Proof. We need to show that the subroutine of SLOWFIT always finds a machine where to schedule a job j
without exceeding a load of 2Λ. For the sake of contradiction, assume this is not the case, i.e., there is
a job j for which Li(σ≤ j−1) +

p j
si
> 2Λ for all machines i ∈ {1, . . . , m}. Let L?i (σ) denote OPT’s load on

machine i after processing the entire request sequence σ. Since OPT(σ)≤ Λ and p j > 0, we know that
∑m

i=1Λsi ≥
∑m

i=1 L?i (σ) · si =
∑n

j′=1 p j′ >
∑ j−1

j′=1 p j′ . This means that there must be a machine with load
less than Λ at the start of step j, since otherwise

∑ j−1
j′=1 p j′ =

∑m
i=1 Li(σ≤ j−1) · si ≥

∑m
i=1Λsi. We may thus

define f = max{i ∈ {1, . . . , m}: Li(σ≤ j−1) ≤ Λ} to be the fastest machine that is not overloaded (see
Figure 8.4).

f

Λ 2Λ

Figure 8.4: Sketch of the proof of Lemma 8.6. The machine f is the fastest machine with load at most Λ. Since
OPT(σ)≤ Λ, SLOWFIT is processing at least one job on machines { f + 1, . . . , m} that OPT is not. But this
job would fit on machine f , which is a contradiction with the fact that SLOWFIT puts each job on the
slowest machine where it fits.

If f = m, then

Lm(σ≤ j−1) + p j/sm ≤ Λ+OPT(σ)≤ 2Λ,

which contradicts the fact that the subroutine of SLOWFIT doesn’t find a machine for job j. Hence, we can
assume f < m.

68



Since all machines i > f have load Li(σ≤ j−1)> Λ, we get

m
∑

i= f +1

Li(σ≤ j−1) · si >

m
∑

i= f +1

Λsi

≥
m
∑

i= f +1

OPT(σ) · si

≥
m
∑

i= f +1

L?i (σ) · si,

i.e., the total processing times of jobs in σ≤ j−1 processed on machines { f + 1, . . . , m} is strictly larger
for SLOWFIT than for OPT. This means that there must be a job j′ < j that SLOWFIT assigns to a machine
i j′ ∈ { f + 1, . . . , m} and that OPT assigns to a slower machine i? ∈ {1, . . . , f }. Then, p j′/si? ≤ OPT(σ)≤ Λ.
Consider the moment when SLOWFIT assigned job j′ to machine i j′ . At this point, we had

L f (σ≤ j′−1) +
p j′

s f
≤ L f (σ≤ j−1) +

p j′

si?
≤ 2Λ.

But then, SLOWFIT could have assigned job j′ to machine f , which contradicts the fact that j′ was assigned
to a machine i j′ > f .

Corollary 8.7 (Aspnes et al. [1997]). SLOWFIT is strictly 8-competitive for the online load balancing
problem with related machines.

Proof. The claim follows from Lemmas 8.5 and 8.6 if we initially set Λ0 = p1/sm ≤ OPT(σ).

Remark 8.8. Berman et al. [2000] presented the currently best known deterministic algorithm for online
load balancing on related machines which is 5.828-competitive as well as the best known lower bound
of 2.438.

8.3 Restricted assignment

So far, we assumed that the difference in processing times on different machines is consistent between
jobs, i.e., that we can order machines from slow to fast. We now want to investigate how much harder
online load balancing becomes without this property. To do this, we consider load balancing with restricted
assignment, where every job has a fixed processing time but cannot be processed on all machines, i.e.,
pi j ∈ {p j,∞} for all machines i and jobs j. This setting turns out to be substantially harder.

Theorem 8.9 (Azar et al. [1995]). Every deterministic online algorithm for load balancing with restricted
assignment has competitive ratio at least log2 m.

Proof. Let ALG be any fixed online algorithm. We take k ∈ N and construct an adversarial request
sequence σ = (1,2, . . . , m− 1) for m= 2k machines and with pi j ∈ {1,∞} for all jobs j ∈ {1, . . . , m− 1}
(see Figure 8.5). If we let M j =

�

i ∈ {1, . . . , m} : pi j = 1
	

denote the machines that can run job j, we
need to specify M j for all j ∈ {1, . . . , m − 1} to fully describe the instance. For j ∈ {1, . . . , m/2} we
set M j = { j, j + m/2}. By symmetry, we can assume that ALG schedules each job j ∈ {1, . . . , m/2}
on machine j, otherwise we rename machines to ensure this is the case. Similarly, we let M j′+m/2 =
{ j′, j′+m/4} for j′ ∈ {1, . . . , m/4} and assume that ALG schedules each job j ∈ {m/2+1, . . . , m/2+m/4}

69



0 1 2 3 4 5

OPT[σ]

0 1 2 3 4 5

ALG[σ]

Figure 8.5: Illustration of the proof of Theorem 8.9. Jobs arrive in the order green, blue, yellow, red. Every job
can be scheduled by two machines, but not two jobs of the same color can be processed by the same
machine.

on machine j −m/2, and so on. Eventually, for all x ∈ {1, . . . , k} we have M j′+X x
= { j′, j′ +m/2x} for

j′ ∈ {1, . . . , m/2x} and X x :=
∑x−1

l=1
m
2l , and job j′ + X x is scheduled on machine j′. The number of jobs

scheduled on machine 1 is k = log2 m, hence ALG(σ) = log2 m.

On the other hand, we can put a single job on every machine by assigning job j′+X x to machine j′+m/2x

for every x ∈ {1, . . . , k} and every j′ ∈ {1, . . . , m/2x}. Hence OPT(σ) = 1 and ALG(σ) ≥ log2 m ·OPT(σ),
thus the strict competitive ratio of ALG is at least log2 m.

Since OPT(σ) scales with the processing times, we can apply Proposition 1.12 to obtain the claimed
bound.

We claim that the simple greedy algorithm (GREEDY) that puts every job j on the least loaded machine i
with pi j 6=∞ is almost optimal in terms of competitive ratio.

Theorem 8.10 (Azar et al. [1995]). GREEDY is strictly (dlog2 me+1)-competitive for online load balancing
with restricted assignment.

Proof. We consider an input sequence σ and let Rλ,i := max{0, Li(σ)− λOPT(σ)} denote the load on
machine i after time λOPT(σ) for λ ∈ N, and Rλ :=

∑m
i=1 Rλ,i. Note that, by definition, R0 =

∑n
j=1 p j. We

claim: Rλ+1 ≤ Rλ/2 for all λ ∈ N. With this claim, for all λ ∈ N, we have Rλ ≤ R0/2
λ and thus

OPT(σ)≥
1
m

n
∑

j=1

p j =
1
m

R0 ≥
2λ

m
Rλ,

and, in particular,

OPT(σ)≥
2dlog2 me

m
Rdlog2 me ≥ Rdlog2 me.

But this means that even if the total load Rdlog2 me after time
�

log2 m
�

·OPT(σ) goes on a single machine,

GREEDY must finish before time (
�

log2 m
�

+ 1) ·OPT(σ), which proves the theorem.

It remains to establish our claim that Rλ+1 ≤ Rλ/2 for all λ ∈ N. Consult Figure 8.6 with the following. We
show wλ := Rλ−Rλ+1 ≥ Rλ+1, which immediately implies Rλ = wλ+Rλ+1 ≥ 2Rλ+1, as claimed. We define
layer λ to be the time period [λOPT(σ), (λ+1)OPT(σ)) and let wλ,i := Rλ,i −Rλ+1,i ≤ OPT(σ) be the load
on machine i in layer λ. Let rλ, j := max{0,min{p j, C j − λOPT(σ)}} denote the remaining processing
time of job j at the start of layer λ. We further let J?i be the set of jobs scheduled on machine i by OPT

and R?
λ,i :=

∑

j∈J?i
rλ, j ≤ OPT(σ). It is sufficient to show wλ,i ≥ R?

λ+1,i for all machines i, because then

70



1
2
3
4
5
6

Rλ

wλ,4
wλ,3 = Rλ,3

Rλ,4

λOPT (λ+1)OPTlayer λ

Figure 8.6: Illustration of the definitions in the proof of Theorem 8.10.

wλ =
∑m

i=1 wλ,i ≥
∑m

i=1 R?
λ+1,i = Rλ+1. This is obviously true if wλ,i = OPT(σ), because R?

λ+1,i ≤ OPT(σ),
or if R?

λ+1,i = 0.

Now take a machine i with wλ,i < OPT(σ) and R?
λ+1,i > 0. The latter allows us to take any job j? ∈ J?i that

is still unfinished after layer λ, i.e., with rλ+1, j? > 0. This job is not scheduled on machine i, because
wλ,i < OPT(σ) and thus wλ′,i = 0 for all λ′ > λ. By definition of GREEDY, the starting time of j? is
C j? − p j? ≤ λOPT(σ) +wλ,i, because otherwise GREEDY would have put j? on machine i. It follows that

R?λ+1,i = rλ+1, j? +
∑

j∈J?i \{ j
?}

rλ+1, j

≤ rλ+1, j? +OPT(σ)− p j?

≤ C j? − (λ+ 1)OPT(σ) +OPT(σ)− p j?

≤ wλ,i.

8.4 Unrelated machines

Finally, we turn to a setting where each job can have arbitrary processing times on the different machines.
This is often referred to as the unrelated machines setting. We present an elegant algorithm PDLB for this
setting that relies on the doubling technique (Lemma 8.5) together with a primal-dual approach for the
necessary subroutine.

Recall that Lemma 8.5 requires a subroutine that has an input parameter Λ and must always compute
a solution of bounded quality when provided with a valid bound Λ ≥ OPT(σ). The subroutine of PDLB

is based on an LP-relaxation (LBP) for the problem of distributing the maximum number of jobs on
the machines while not exceeding load Λ (see below). In the underlying integer program, the variable
x i j ∈ {0,1} indicates whether job j is scheduled on machine i. Since, for Λ ≥ OPT(σ), we know that
OPT[σ] schedules each job j on a machine i with pi j ≤ Λ, we can restrict our variables x i j accordingly. To
that end, we define S := {(i, j) ∈ {1, . . . , m} × {1, . . . , n} : pi j ≤ Λ}.

Observe that the integer program has a solution of value n (i.e., all jobs can be scheduled) if and only if
Λ ≥ OPT(σ). Consequently, if Λ ≥ OPT(σ), the optimum solution of the LP-relaxation (LBP) must have
value n (the converse may not be true). By weak duality (Theorem 7.1), the dual (LBD) can therefore not
have a solution of value below n if Λ≥ OPT(σ).

71



(LBP)

max
∑

(i, j)∈S x i j

s.t.
∑

j:(i, j)∈S pi j x i j ≤ Λ, ∀i ∈ {1, . . . , m}
∑

i:(i, j)∈S x i j = 1, ∀ j ∈ {1, . . . , n}
x i j ≥ 0 ∀(i, j) ∈ S

(LBD)

min Λ
∑m

i=1 yi +
∑n

j=1 z j

s.t. z j + pi j yi ≥ 1, ∀(i, j) ∈ S

yi ≥ 0 ∀i ∈ {1, . . . , m}
z j ∈ R ∀ j ∈ {1, . . . , n}

The idea behind the subroutine of PDLB is a bit different from the primal-dual technique in Chapter 7. We
again maintain a feasible dual solution that informs primal decisions, but we do not use it to bound the
quality of our primal solution. In fact, the subroutine always schedules all jobs and may not maintain a
feasible primal solution at all. Instead, we use the dual solution as a means to detect when to abort: If the
dual objective value ever falls below n, we may conclude that Λ< OPT(σ) and abort. The subroutine is
specified formally below.

Algorithm 1: PDLB subroutine

for i ∈ {1, . . . , m} do
yi ← 1/(2m)

foreach job j arriving online do
if mini∈{1,...,m} pi j > Λ or maxi∈{1,...,m} yi > 1 then

abort

i← argmini′:(i′, j)∈S pi′ j yi′

x i j ← 1
z j ← 1− pi j yi
yi ← yi(1+ pi j/2Λ)

We now show that the subroutine behaves as desired.

Lemma 8.11. Given Λ≥ OPT(σ), the subroutine of PDLB computes a solution of load at most Λ ·O(log m).

Proof. We first show that, if the subroutine does not abort, it computes a feasible solution where each
machine has load at most Λ ·O(log(m)). Note that we do not claim that the subroutine computes a
feasible primal solution, but allow it to violate

∑n
j=1 pi j x i j ≤ Λ.

In case the subroutine does not abort, we argue that the produced dual solution fulfills yi ≤ 3/2 for all
i ∈ {1, . . . , m}, by induction over the number of jobs assigned to machine i. This is clear if no jobs get
assigned, since the initial value yi,0 of yi is 1/(2m)< 3/2. Now assume that at least one job is assigned
to machine i and consider the step in which the last job j gets assigned. Since the algorithm does not
abort, we have yi ≤ 1 at the beginning of this step, and by choice of i with (i, j) ∈ S we have pi j ≤ Λ
(note that such an i must exists, since the algorithm did not abort). This means that yi is updated to
yi(1+ pi j/2Λ)≤ 3/2 and the claim is true.

Now, recall that Ji(σ) ⊆ {1, . . . , n} denotes the set of jobs assigned to machine i. Since yi,0 = 1/(2m) and
we update yi each time a job gets assigned to machine i, we have

yi =
1

2m

∏

j∈Ji(σ)

�

1+ pi j/2Λ
�

pi j≤Λ
≥

1
2m

∏

j∈Ji(σ)

�

3
2

�pi j/Λ

,

where we used 1+ x/2≥ (3/2)x for x ∈ [0, 1].

72



Combining this with yi ≤ 3/2 and taking logarithms, we get

log
3
2
≥ log

1
2m
+
∑

j∈Ji(σ)

pi j

Λ
log

3
2

,

and thus

Li(σ) =
∑

j∈Ji(σ)

pi j ≤ Λ
�

log(3/2) + log(2m)
log(3/2)

�

= Λ ·
log(3m)
log(3/2)

= Λ ·O(log(m)),

as claimed.

It remains to show that if the subroutine of PDLB aborts, then our guess of OPT(σ) must have been too
small, i.e., Λ< OPT(σ). First observe that if the algorithm aborts because mini∈{1,...,m} pi j > Λ, we clearly
have OPT(σ)> Λ, since scheduling job j alone already produces a load of more than Λ. Secondly, observe
that if Λ≥ OPT(σ), the primal LP has a solution of value n, since all jobs can be scheduled.

We now assume that the algorithm aborts because maxi∈{1,...,m} yi > 1 at the end of some iteration j∗. It
suffices to show that in this case the dual optimum has value less than j∗ at this point. By weak duality
(Theorem 7.1), it then follows that the primal optimum must also have value less than j∗, which implies
that not all jobs in {1, . . . , j∗} can be scheduled within load Λ, and, in particular, Λ< OPT.

To this end, observe that the algorithm maintains a dually feasible solution: Since the value of z j is set to
1− pi j yi with i being the machine that minimizes pi j yi, the constraints involving z j are satisfied in step j,
and, since yi is non-decreasing, they remain satisfied later on.

To bound the value of the dual optimum, consider a step j where the algorithm assigns job j to some
machine i. This increases the value of yi by ∆i j := yi − y ′i = pi j y

′
i/2Λ, where y ′i is the value of yi before

the update. Overall, the dual objective function increases by exactly (1− pi j y
′
i )+ pi j y

′
i/2= 1−Λ ·∆i j due

to the increase of z j and yi. This means that the dual objective function value at the end of iteration j∗

can be written as

Λ

m
∑

i=1

yi +
j∗
∑

j=1

z j = Λ
m
∑

i=1

yi,0 +
m
∑

i=1

∑

j∈Ji(σ≤ j∗ )

(1−Λ ·∆i j)

= Λ
m
∑

i=1

yi,0 + j∗ −Λ ·
m
∑

i=1

(yi − yi,0)

= 2Λ
m
∑

i=1

1
2m
+ j∗ −Λ

m
∑

i=1

yi

= Λ+ j∗ −Λ
m
∑

i=1

yi.

By assumption, the algorithm aborts because there exists a machine i with yi > 1. But, with yi ≥ 0,
this implies that the objective function value of the current, feasible dual solution y, z is less than j∗,
and therefore the same is true for the optimum primal solution. We can therefore conclude that
Λ< OPT(σ).

Using Lemma 8.11, we can now apply the doubling technique (with Λ0 = mini pi1) and obtain the
following result.

Theorem 8.12 (Buchbinder and Naor [2011]). PDLB is strictly O(log m)-competitive for load balancing.

Remark 8.13. The bound in Theorem 8.12 was first proven by Aspnes et al. [1997] using a different
approach. The algorithm PDLB is a primal-dual interpretation of one of their algorithms.

73





Bibliography
S. Albers. Improved randomized on-line algorithms for the list update problem. SIAM Journal on

Computing, 27(3):682–693, 1998.

S. Albers, B. von Stengel, and R. Werchner. A combined BIT and TIMESTAMP algorithm for the list update
problem. volume 56, pages 135–139, 1995.

C. Ambühl, B. Gärtner, and B. von Stengel. Optimal lower bounds for projective list update algorithms.
ACM Transactions on Algorithms, 9(4):31:1–31:18, 2013.

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits with applications
to load balancing and machine scheduling. Journal of the ACM, 44(3):486–504, 1997.

Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal of Algorithms, 18(2):
221–237, 1995.

L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal, 5(2):
78–101, 1966.

J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing sequential search heuristics.
Communications of the ACM, 28(4):404–411, 1985.

P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. Journal of
Algorithms, 35(1):108–121, 2000.

A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systems. Journal of the
ACM, 39:745–763, 1992.

N. Buchbinder and J. Naor. Fair online load balancing. Journal of Scheduling, 16(1):117–127, 2011.

Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9:
91–103, 1988.

M. Chrobak and L. L. Larmore. On fast algorithms for two servers. Journal of Algorithms, 12(4):607–614,
1991a.

M. Chrobak and L. L. Larmore. An optimal on-line algorithm for k servers on trees. SIAM Journal on
Computing, 20(1):144–148, 1991b.

M. Chrobak, H. Karloff, T. Payne, and S. Vishwnathan. New ressults on server problems. SIAM Journal on
Discrete Mathematics, 4(2):172–181, 1991.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive paging algorithms.
Journal of Algorithms, 12(4):685–699, 1991.

R. Fleischer and M. Wahl. Online scheduling revisited. Journal of Scheduling, 3:343–353, 2000.

R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17(2):
416–429, 1969.

S. Irani. Two results on the list update problem. Information Processing Letters, 38(6):301–306, 1991.

S. Irani and R. Rubinfeld. A competitive 2-server algorithm. Information Processing Letters, 39(2):85–91,
1991.

J. R. Isbell. Finitary games. Contributions to the Theory of Games, III:79–96, 1957.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching. Algorithmica, 3
(1-4):79–119, 1988.

R. Karp and P. Raghavan, 1990. Personal communication reported by Irani [1991].

i



R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching. In
Proceedings of the 22nd annual ACM symposium on Theory of computing (STOC), pages 352–358, 1990.

J. M. Kleinberg. A lower bound for two-server balancing algorithms. Information Processing Letters, 52(1):
39–43, 1994.

E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42(5):971–983,
1995.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for server problems. Journal of
Algorithms, 11(2):208–230, 1990.

L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging algorithm. Algorithmica, 6
(1-6):816–825, 1991.

N. Reingold, J. Westbrook, and D. D. Sleator. Randomized competitive algorithms for the list update
problem. Algorithmica, 11(1):15–32, 1994.

J. F. Rudin III and R. Chandrasekaran. Improved bounds for the online scheduling problem. SIAM Journal
on Computing, 32:717–735, 2003.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of
the ACM, 28(2):202–208, 1985.

B. Teia. A lower bound for randomized list update algorithms. Information Processing Letters, 47(1):5–9,
1993.

E. Torng. A unified analysis of paging and caching. Algorithmica, 20(2):175–200, 1998.

A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science (FOCS), pages 222–227, 1977.

ii


	Introduction
	Offline optimization
	Online optimization
	The ski rental problem

	The Paging Problem
	Optimal offline paging
	Lower bound for online paging
	Online paging algorithms
	Phase partitioning

	Randomized Algorithms
	Randomized paging algorithms
	Yao's principle
	Lower bound for randomized paging

	The List Update Problem
	Potential function method (amortized analysis)
	Upper bound for move-to-front
	Lower bound via averaging
	Upper bounds via phase partitioning
	Randomized list update algorithms
	Lower bound for randomized list update

	Metrical Task Systems*
	Lower bound for metrical task systems
	Work function algorithm

	The k-Server Problem
	Lower bound for the k-server problem
	The k-server problem on the line
	Balancing algorithm*
	General metric spaces

	Primal-Dual Algorithms
	The primal-dual method
	Randomized rounding
	Online bipartite matching

	Online Load Balancing
	Identical machines
	Related machines
	Restricted assignment
	Unrelated machines

	Bibliography

