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Abstract

For a finite von Neumann-algebra factor M, the projections form a modular ortholattice
L(M) . We show that the equational theory of L(M) coincides with that of some resp. all
L(Cn×n) and is decidable. In contrast, the uniform word problem for the variety geneated
by all L(Cn×n) is shown to be undecidable.
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1 Introduction

Projection lattices L(M) of finite von Neumann algebra factors M are continuous orthocom-
plemented modular lattices and have been considered as logics resp. geometries of quantum
meachnics cf. [28]. In the finite dimensional case, the correspondence between irreducible lat-
tices and algebras, to wit the matrix rings Cn×n, has been completely clarified by Birkhoff and
von Neumann [5]. Combining this with Tarski’s decidability result for real closed fields and ele-
mentary geometry, decidability of the first order theory of L(M) for a finite dimensional factor
M has been observed by Dunn, Hagge, Moss, and Wang [8].
For modern quantum logicians the next natural step would be the characterization of infinite
dimensional Hilbert spaces by means of their ortholattices of closed subspaces. This line of
research was the subject of the last of H. Gross’s papers [39], and finally resulted in Soler’s
beutiful characterization of (real, complex or quaternionic) Hilbert spaces as orthomodular inner
product spaces with a infinite orthonormal sequence of vectors [49]. There is a general agreement
about the relevance of this result for quantum logics (see [42, 37, 45, 47, 48, 31, 50] and their
references). The only different opinion seems to be the one in chapter 2 of [9] (with important
corrections in [10]), which gives a comparation of the above line of research with von Neumann’s
point of view [26]. A point of view which stressed modularity (“finiteness”) and so was quite
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different, despite the fact that the decisive homogeneity axiom has already a important role
in von Neumann and the fact that a (physically meaninigful) Hilbert space embedding can be
easily obtained for AC orthoalgebras whose finite dimensional intervals satisfy von Neumann’s
axioms except completeness. Von Neumann himself used metric completeness only after having
reached a completable structure by means of the other axioms. No physical motivation of lattice
completeness together with orthomodularity is known (i.e. no sufficiently general completion
process for orthomodular structures is known to preserve orthomodularity), except the one that
can be obtained by von Neumann’s methods.
Von Neumann continued with the study of the infinite dimensional case, in the landmark series of
papers on ‘Rings of Operators’ (jointly with Murray) [23], his lectures on ‘Continuous Geometry’
[25], and in the treatment of traces resp. transition probabilities in a ring resp. lattice-theoretic
framework [27, 26].
The key to an algebraic treatment is the coordinatization of L(M) by a ∗-regular ring U(M)
derived from M and having the same projections: L(M) is isomorphic to the lattice of principal
right ideals of U(M) (cf. [9] for a thorough discussion of coordinatization theory). For finite
factors this has been achieved in [23], more generally for finite AW∗-algebras and certain Baer-
∗-rings by Berberian in [2, 3]. Further extensions by Pyle, Hafner, Handelman (see references in
[35, 51]) also identified U(M) with the maximal ring of quotients of M. Handelman, Ara and
Menal, and coauthors (see [32, 33, 34, 38] and their references) studied finite Rickart C∗-algebras
M: again, U(M) can be defined, coordinatizes the ℵ0-continuous modular ortholattice L(M)
and is the classical ring of quotients of M.
In the present note we show that the equational theory of L(M) coincides with that of L(Cn×n)
if L(M) is n + 1- but not n-distributive for some n; and with that of all L(Cn×n), n < ∞,
otherwise - which applies to the type II1 factors. In the latter case, the equational theory is
decidable, but the theory of quasi-identities is not.
The author is deeply obliged to Luca Giudici for manifold contributions, discusssions, and en-
couragement.

2 Modular Ortholattices: Equations and representations

An algebraic structure (L, ·,+,′ , 0, 1) is an ortholattice if there is a partial order ≤ on L such
that, for all a, b ∈ L, 0 ≤ a ≤ 1, a · b = ab = inf{a, b}, a + b = sup{a, b}, a′′ = a, and a ≤ b iff
b′ ≤ a′. It is a modular ortholattice (shortly: MOL) if, in addition, a ≥ b implies a(b+c) = b+ac.
One can define this class by a finite set of equations, easily ([4, 5]).
If V is a unitary space then the subspaces of finite dimensions together with their orthogonal
complements form an MOL Lf (V ) - a sublattice of the lattice L(V ) of all subspaces. For V of
finite dimension n, we have L(V ) = Lf (V ) ∼= L(Cn).
A lattice is n-distributive if and only if it satsifies

x

n∑

i=0

yi =

n∑

i=0

x
∑

j 6=i

yj.

Lemma 1 L(Ck) n-distributive if and only if k ≤ n.
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Proof. Huhn [20, p. 304] cf. [14]. �

For a class C of algebraic structures, e.g. ortholattices, let VC denote the smallest equationally
definable class (variety) containing C cf. [6]. By Tarski’s version of Birkhoff’s Theorem, VC =
HSPC where HC, SC, and PC denote the classes of all homomomorphic images, subalgebras, and
direct products, resp., of members of C. Define

N = V{L(Ck) | k <∞}.

Clearly, L(Ck) ∈ SHL(Cn) for k ≤ n. Within the variety of MOLs, each ortholattice identity is
equivalent to an identity t = 0 (namely, a = b if and only if a(ab)′ + b(ab)′ = 0). If L is an MOL
and u ∈ L then the section [0, u] is naturally an MOL with orthocomplement x 7→ xu = x′u.

Lemma 2 An ortholattice identity t = 0 with m occurences of variables holds in a given atomic
MOL L if any only if it holds in all sections [0, u] of L with dimu ≤ m.

Proof. We show by induction on complexity: if g(z1, . . . , zk) is a lattice term with each variable
occuring exactly once and if p is an atom of L and bi in L with

p ≤ g(b1, . . . , bk) in L

then there are p1, . . . , pk in L which are atoms or 0 such that

(∗) p ≤ g(p1, . . . , pk) and pi ≤ bi for i = 1, . . . , k.

Indeed, if g = z1 let p1 = p. If

g(z1, . . . , zk) = g1(z1, . . . , zl) · g(zl+1, . . . , zk)

then
p ≤ g1(b1, . . . bl), p ≤ g2(bl+1, . . . , bk)

and we may choose the pi for g1 and g2 by inductive hypothesis. Now, let

g(z1, . . . , zk) = g1(z1, . . . , zl) + g(zl+1, . . . , zk)

If g2(bl+1, . . . , bk) = 0 then p ≤ g1(b1, . . . bl) and we may choose the pi ≤ bi, i ≤ l by induction
and the pi = 0 for i > l. Similarly, if g1(b1, . . . , bl) = 0. Otherwise, there are atoms q1, q2 such
that (cf. [1])

q1 ≤ g1(b1, . . . bl), q2 ≤ g2(bl+1, . . . , bk), p ≤ q1 + q2

and, applying the inductive hypothesis, we may choose pi ≤ bi, atoms or 0, such that

q1 ≤ g1(p1, . . . pl), q2 ≤ g2(pl+1, . . . , pk)

whence
p ≤ g(p1, . . . , pk).
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Now, consider an identity t(x1, . . . , xn) = 0. By de Morgan’s laws, we may assume that t is in
so called negation normal form, i.e. a lattice term

f(x1, . . . , xn, x
′
1, . . . , x

′
n)

Let g(z1, . . . , zm) the lattice term obtained from f by replacing each positive (i.e. xi) and each
negative (i.e. x′i) occurence of a variable by a new variable. Now, assume t(a1, . . . , an) > 0 in
L. Since L is atomic, there is an atom p with

p ≤ f(a1, . . . , an, a
′
1, . . . , a

′
n).

Let bj = ai if zj replaces a positive occurence of xi and bj = a′i if zj replaces a negative occurrence
of xi. Choose pj ≤ bj according to (∗). Let ci the join of all pj where zj replaces a positive
occurence of xi and di the join of all pj where zj replaces a negative occurence of xi. Then
ci ≤ ai and di ≤ a′i ≤ c′i. Let

u =
n∑

i=1

ci + di.

Then
ci ≤ u, di ≤ cui ≤ u

and for the MOL [0, u] it follows by monotonicity

0 < p ≤ f(c1, , cn, d1, . . . , dn) ≤ f(c1, , cn, c
′
1, . . . , c

′
n) ≤ t(c1, . . . , cn)

�

A unitary representation of an MOL L is a 0-lattice embedding ε : L→ L(V ) into the lattice of
all subspaces of a unitary space such that

ε(a′) = ε(a)⊥ for all a ∈ L.

This means that ε is an embedding of the ortholattice L into the orthostable lattice associated
with the unitary space V in the sense of Herbert Gross [12].

Corollary 3 L ∈ N for any MOL admitting a unitary representation.

Proof. By [16, Prop.3.12] (cf. [17]) L embeds into an atomic MOL L̂ such that the sections
[0, u], dimu <∞ are subspace ortholattices of finite dimensional unitary spaces (namely, if L is
represented in V then L̂ consists of all closed subspces X such that dim[X ∩ εa, X + εa] < ∞
for some a ∈ L). By Lemma 2, L̂ whence also L belong to the varietyN generated by these. �

Corollary 4 N = VLf (V ) for any unitary space of infinite dimension.
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3 Regular rings with positive involution

An associative ring (with or without unit) R is (von Neumann) regular if for any a ∈ R there is
a quasi-inverse x ∈ R such that axa = a cf. [25, 21, 11]. A ∗-ring, i.e. a ring with an involution
∗ as additional operation:

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, x∗∗ = x

A ∗-ring is ∗-regular if it is regular and, moreover, positive: xx∗ = 0 only for x = 0. Equivalently,
for any a ∈ R there is a (unique) projection e (i.e. e = e∗ = e2) such that aR = eR. Particular
examples are the rings Cn×n of all complex n-byn-matrices with r∗ the adjoint matrix, i.e. the
transpose of the conjugate.
The right ideals aR of a ∗-regular ring with unit form a modular ortholattice L(R), a sublattice
of the lattice of all right ideals. L(R) is isomorphic (via eR 7→ e) to the ortholattice L(R) of
projections of R where e ≤ f ⇔ e = ef and e′ = 1 − e. Observe that

L(Cn) ∼= L(Cn×n) ∼= L(Cn×n)

canonically, where a subspace X corresponds to the set of all matrices with columns in X cf.
Prop.5, below.

Proposition 5 (Giudici). Let M be a right module over a ring S and let R be a regular subring
of the endomorphism ring End(MS). Then L(R) embeds into the lattice L(MS) of submodules
via ε(φR) = Imφ.

Proof. This is (1) in the proof of [9, Thm.4.2.1] in the thesis of Luca Giudici, cf. [18, Prop.9.1].
For simplicity of notation, we consider M an R-S-bimodule. ε is well defined and order-
preserving since s ∈ rR implies sM ⊆ rM . Also, if t = rx + sy then tv ∈ rM + sM for
all v ∈M so ε is join-preserving. Now recall (cf [30, Ch.II§4 (II)]) that for idempotent e, f one
has eR∩fR = (f−fg)R where g is an idempotent such that Rg = R(f−ef). Let g = r(f−ef)
and consider v ∈ eM ∩ fM . Then v = ev = fv and v = fv − fr(v − v) = fv − fr(fv − efv) =
fv − fr(f − ef)v = (f − fg)v. Thus, ε is also meet-preserving. Clearly, rM = 0 if and only if
r = 0. Since L(R) is complemented, it follows that ε is an embedding. �

Corollary 6 If R and S are ∗-regular rings, R a ∗-subring of S then L(R) is a sub-ortholattice
of L(S).

Proof. R embeds into EndSS via r 7→ r̂ where r̂(x) = rx for x ∈ S. By Prop.5 qq this yields an
embedding of L(R) into L(S) with eR 7→ Imê = eS for e ∈ L(R). Since e′ = 1 − e in both OLs,
we have L(R) a sub-ortholattice of L(S). �

Corollary 7 For any ∗-regular ring S,

VL(S) = V{L(R) | R at most countable, regular ∗-subring of S}
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Proof. ‘⊇’ follows from Cor.6. Conversely, L(S) belongs to the variety generated by its finitely
generated sub-ortholattices L. Endow S with a unary operation q such that aq(a)a for all a in
S. Now, for any such L there is an at most countable ∗-subring R of S containing L and also
closed under the operation q. Observe that for e, f ∈ L(R) one has e ≤ f if and only if ef = e,
i.e. e ≤ f in L(S). Thus L is also a sublattice of L(R): assume we have join e∨ f = g in L and
h ∈ L(R) with h ≥ e, f in L(R). Then h ≥ g in L(S) whence h ≥ g which means e∨ f = g also
in L(R). Similarly for meets. Also, since L is closed under the orthocomplement e 7→ 1 − e in
L(S), the same is true in L(R). It follows, that L is a sub-ortholattice of L(R). �

Let V be a unitary space. Denote by φ∗ the adjoint of φ - if it exists. A unitary representation
of a ∗-ring R is a ring embedding ι : R→ End(V ) such that ι(r∗) = ι(r)∗ for any r ∈ R.

Corollary 8 If ι : R→ End(V ) is a unitary representation of the ∗-regular ring R, then

ε(eR) = Imι(e) e ∈ L(R)

is a unitary representation of the MOL L(R) in V .

Proof. The lattice embedding follows from Prop.5. Now, observe that

ε(eR)⊥ = Im(id − ι(e)) = ε((1 − e)R) = ε(eR)′)

since e and ι(e) are selfadjoint idempotents. �

4 Finite von Neumann-algebras

A von Neumann algebra (cf. [19]) M is an unital involutive C-subalgebra of the algebra B(H)
of all bounded operators of a separable Hilbert space H with M = M′′ where A′ = {φ ∈ B(H) |
φψ = ψφ ∀φ ∈ A} is the commutant of A. M is finite if rr∗ = 1 implies r∗r = 1. For such, the
projections of M, i.e. the e = e2 = e∗, form a (continuous) modular ortholattice L(M). Here,
the order is given by e ≤ f ⇔ e = ef and one has e′ = 1 − e. A finite von Neumann-algebra is
a factor if its center is C · 1. Particular examples of a finite factors are the algebras Cn×n of all
complex n-by-n-matrices.

Theorem 9 Any finite von Neumann-algebra factor is either isomorphic to Cn×n for some
n <∞ (type In) or contain for any n <∞ a subalgebra isomorphic to Cn×n (type II1).

Proof. [23, 14.1] and [24, Thm. XIII]. �

For any operator φ defined on some linear subspace of H, write φηM if ψφψ−1 = φ for all
unitary ψ ∈ M′ (cf [23, Def.4.2.1]). Let U(M) consist of all closed linear operators φηM having
dense linear domain with operations given as as the closures of the algebraic operations, e.g.

(φ,ψ) 7→ [φ+ ψ]

where [χ] denotes the closure of the linear operator χ.

Theorem 10 For every finite factor M, U(M) is a ∗-regular ring having M as ∗-subring and
such that φ∗ is adjoint to φ. Moreover, M and U(M) have the same projections.
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Proof. This is trivial for type In. For II1 factors this is [23, Thm. XV] together with [25, Part
II, Ch.II, App 2.(VI)] and [26, p.191] for ∗-regularity. Now, consider π : D → H in U(M) such
that π = π∗ = π2. Then U = Imπ ⊆ D so π is a projection of D, i.e. D = U ⊕⊥ V . By density
of D it follows U⊥⊥ ⊕⊥ V ⊥⊥ = H and π extends to a projection π̂ of H onto U⊥⊥. From πηM

it follows π̂ηM, whence π̂ ∈ U(M) and π = π̂ ∈ M by [23] Lemmas 16.4.2 and 4.2.1. �

An important concept in the Murray-von-Neumann construction is that of an essentially dense
linear subspace X of H (w.r.t. M). Here, we need only the following properties:

1. Essentially dense X is dense in H [23, Lemma 16.2.1].

2. The domains of members of U(M) are essentially dense [23, Lemma 16.4.3].

3. For any φ ∈ U(M) and essentially dense X, the preimage φ−1(X) is essentially dense [23,
Lemma 16.2.3].

4. Any finite or countable intersection of essentially dense Xn is essentially dense [23, Lemma
16.2.2].

Theorem 11 Any countable ∗-subring of U(M) is representable.

Proof. Consider any countable ∗-subring R of U(M). A representation of R is constructed from
the given Hilbert space H. Let H0 be the intersection of all domains of operators φ ∈ R. By (2),
H0 is essentially dense. Define, recursively, Hn+1 as the intersection of Hn and all preimages
φ−1(Hn) where φ ∈ R. By (3) and (4), Hn+1 is essentially dense. By (4), the intersection
Hω =

⋂
n<ω Hn is essentially dense and, by (1), dense in H. By construction, Hω is invariant

under R.
Now, for φ ∈ R define ε(φ) = φ|Hω. Then ε : R → EndC(Hω) is a ∗-ring homomorphism.
Indeed, e.g. [φ+ ψ]|Hω is an extension of φ|Hω + ψ|Hω and equality holds since both are maps
with the same domain. Also ε(φ∗) is the restriction of the adjoint φ∗ in H, whence the adjoint
in Hω. If ε(φ) = 0, then Hω is contained in the closed subspace ker φ and it follows φ = 0 by
density. Thus, ε is a representation. �

5 Equational theory of projection lattices

Theorem 12 For any class M of finite von Neumann algebra factors, let V = V{L(M) | M ∈
M}. V = VL(Cn) if and only if V satisfies the n+ 1-distributive law but not the n-distributive
law. V = N if and only if V satisfies no n-distributive law. In any case, the equational theory
of V is decidable.

Proof. Let M be a finite von Neumann-algebra factor. In view of Thm.10 and Cor.7, we have
to consider countable regular ∗-subrings R of U(M). By Thm.11, each such R is representable.
By Cor.8 and Cor.3 we have L(R) ∈ N and it follows L(M) ∈ N .
By Lemma 1, Cor.6, and Thm.9, M contains factors of arbitrarily large finite dimensions or a
type II1 factor if and only if V is n-distributive for no n. In this case, V = N . Otherwise, there
is a maximal n such that V is n-distributive, in particular all members of M are of the form
Ck×k with k ≤ n and k = n occurs, so V = VL(Cn×n).
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Recall that C whence Cn×n and L(Cn×n) have a decidable first order theory - this is due to
Tarski, actually, the method of quantifier elimination applies cf. [22]. This settles the case of
V = VL(Cn×n). To decide whether an identity t = 0 holds in N , by Lemma 2 it suffices to
decide validity in L(Cm×m), m the number of occurences of variables in t. �

6 Von Neumann frames

Let n ≥ 3 fixed. An n-frame, in the sense of von Neumann [25], in a lattice L is a list a :
ai, aij , 1 ≤ i, j ≤ n, i 6= j of elements of L such that for any 3 distinct j, k, l

aj

∑

i6=j

ai = 0 = ajajk,
∑

i

ai = 1

aj + ajk = aj + ak, ajl = alj = (aj + al)(ajk + akl).

If L can be embedded into the subgroup lattice of some abelian group A or if n ≥ 4 then

R(L, a) = {r ∈ L | ra2 = 0, r + a2 = a1 + a2}

can be turned into a ring (a subring of End(a0)), the coordinate ring - see [25, 21, 9] for a
systematic study, [18] for a short exposition. In particular, for each ring term t(x) there is a
lattice polynomial t̂(a, x) such that t̂(a, r) = t(r) for all substitutions r in R(L, a). This ring
is regular if L is complemented. If Rn×n is the n × n-matrix ring of some regular ring R with
unit and L = L(Rn×n) with the canonical n-frame a then R(L, a) ∼= R - here a consists of the
EiiR

n×n and (Eii − Eij)R
n×n where the Eij form the canonical basis of the R-module Rn×n.

7 Quasivarieties and word problems

A quasi-identity is an universally quantified implication the premise of which is a conjunction
of identities and the conclusion an identity. A quasivariety is an axiomatic class closed under
substructures and direct products. A solution of the uniform word problem for a quasivariety
consists in a decision procedure for quasi-identities (i.e. a solution for all finite presentations).
For a class C of algebraic structures let ThqC denote the set of all quasi-identities valid in C.
Let S (Sfin) denote the class of all (finite) semigroups, and Sp the set of semigroups Fn×n

p

(n ≥ 1) where Fp is the prime field of characteristic p, prime or 0. Let M denote the class of all
modular lattices, Mp the set of lattices L(Fn

p ) (n ≥ 1) . For a class C of structures denote by
RSC and RLC the class of all semigroup resp. lattice reducts of structures in C.

Theorem 13 A quasivariety Q has unsolvable uniform word problem if Sp ⊆ SRSQ ⊆ S or
Mp ⊆ SRLQ ⊆ M for some p.

Proof. Given a finite semigroup S, one may consider the semigroup ring Fp[S] as a Fp-vector
space V and thus embed S into EndFp

(V ) ∼= Fn×n
p where n = |S|. It follows ThqSp ⊆ ThqSfin

for all p and equality for p > 0. Since Qn×n ∈ SPu{F
n×n
p | p prime}, one has

ThqSp = ThqSfin for all p.
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The claim in the semigroup case follows from the result of Gurevich and Lewis [13] that there
is no recursive Γ such that ThqS ⊆ Γ ⊆ ThqSfin.
One may associate with each quasi-identity φ as above in the semigroup language a quasi-identity
φ̂ in the lattice language

∀a∀x α(a) ∧
∧

i

(xiaa = 0 ∧ xi + a2 = a1 + a2)

∧
∧

j

ŝj(a, x) = t̂j(a, x) ⇒ ŝ(a, x) = t̂(a, x)

where α(a) states that a is a 4-frame. In particular, if φ ∈ ThqS then φ̂ ∈ ThqM and if φ̂ holds
in L(R4), substituting the canoncial 4-frame for a, then φ holds in R. Considering R = Fn×n

p it

follows φ ∈ ThqSp if φ̂ ∈ Mp.
Now, given ThqM ⊆ ∆ ⊆ ThqMp define Γ as the set of those quasi-identities φ in semigroup

language with φ̂ ∈ ∆. Then
ThqS ⊆ Γ ⊆ ThqSp

and if ∆ is recursive then so is Γ. �

Corollary 14 N has an undecidable uniform word problem. The quasivariety Q generated by
all ortholattices L(Cn×n) (n < ω) has an undecidable uniform word problem and is not a variety.

Proof. The undecidability claim is immediate by Thm.13. By decidability of the L(Cn×n), the
complement of ThqQ within the set of quasi-identities is recursively enumerable. If Q were a
variety, then by Thm.12 it would coincide with N and be recursively axiomatizable. Thus ThqQ
would be recursivley enumerable, too, and this would imply solvability of the uniform word
problem. �

For the class of all modular ortholattices a finite presentation with unsolvable word problem has
been given by M.S. Roddy [29]

8 Further developments

The equational theory of L(Cn×n) with a fixed frame of reference is bi-interpretable (using [5]) in
the equational theory of the *-field C which in turn, fixing the imaginary unit, is bi-interpretable
in the equational theory for R. So Ono’s axiomatization [46] can be applied, giving a easy explicit
axiomatization for the equational theory of L(Cn×n) with a fixed frame, and also its non-finite
axiomatizability (since there are fields whose failure of formally reality requires an arbitrarilly
large number of sums of squares, see [43]). But then also the equational theory of L(Cn×n)
without a fixed frame cannot be finitely axiomatixable (since the defining axioms for a frame,
and for the imaginary unit and the involution in C, are finite in number).
Further extensions are easily obtained (see [10] and references therein for what follows, and
more). For varieties generated by sets of projection ortholattices of (non factorial, non separa-
ble, real or complex) von Neumann algebras, or even JBW algebras (see [40]), one has essentially
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the same theorem.1 Note that in [26] von Neumann abandoned complex scalars (and elsewhere
he even considered Jordan structures) in order to have a equivalence between suitable orto-
lattices (the propositional logic) and suitable “rings of operators”; infact the theorem has an
equivalent in ring rather than lattice language. In the general classificaton theorem, one has
four kinds of varieties: bounded (i.e. n-distributive) versus unbounded; orthoarguesian (i.e.
all generators come from special Jordan algebras) versus exceptional. The bounded varieties
are all modular and have decidable equational theory; a set S of JBW algebras generates a
n-distributive variety iff each element of S has type In at most. The bounded varieties are no
more a chain (as it happens for complex von Neumann algebras): the new generators are the
projective orthogeometries over the real and quaterinon number systems, and the elliptic plane
over the octonions (the exceptional factor, corresponding to the Albert algebra). There are
exactly four unbounded varieties: the smallest is the modular orthoarguesian one, the largest
is the non-modular non-orthoarguesian one; in between on has a non comparable pair (modu-
lar non-othoarguesian; non-modular orthoarguesian). The unbounded modular orthoarguesian
variety is generated by any infinite set of non-isomorphic finite dimensional factors (except the
exceptional one), or more generally by any set of finite algebras provided that either there is at
least one nonzero type II component or there is no bound on the n of the nonzero In components.
Adding the exceptional factor (or any finite algebra with nonzero exceptional component) gives
the modular non-orthorguesian variety. All modular varieties have decidable equational theory.
The two nonmodular varieties are generated by sets where at least one generator has a non-zero
infinite component; one has the orthoarguesian variety iff all generators have zero exceptional
component. Concerning decidability, one surely has decidability for the lattice equations (since
the free lattice on three generators is a sublattice of the lattice of closed subspaces of any infinite
dimensional Hilbert space)2 But for ortholattice equations, their set is still quite misterious: see
[44] and references therein. However, the lattice result is sufficient for an interesting corollary:
the projection lattice L(M) of any orthoseparable (hence simple) type III factor M generates
the non-modular orthoarguesian variety (since it has the type I∞ factor as subfactor), hence it
is a fractal lattice (even fractal as ortholattice since all corners eMe are ∗-isomorphic to M by
dimension theory) which generates the variety of all lattices. This answers a question of Czédli
[36].

References

[1] M.K. Bennett, Biatomic lattices, Algebra Universalis 24 (1987), 60–73

1The theorem also extends to real or complex Rickart C
∗-algebras, but a new proof for the decisive case of

finite AW∗ factors is needed.
2G. Kalmbach (who previously proved the weaker theorem that “general” orthomodular lattices do not sat-

isfy any special lattice equation) cites this result in In Discrete Math. 53, 125-135. She wrote (p. 129):
“M. M. Denneau observed that the equational theory of the lattice C(H) of closed subspaces of an infi-
nite dimensional Hilbert space H is decidable and is precisely the set of identities valid in the class of all
lattices. Moreover the free lattice on countably many generators can be embedded in C(H).” This re-
sult is possibly unpublished, but it should be contained in M. M. Denneau’s Ph. D. thesis. Citing from
http://www.math.uiuc.edu/GraduateProgram/phd defense.html “Denneau, Monty M. (Thesis Area: Logic)
Thesis Title: On the Decidability of the Identities Valid in the Lattice of Closed Subspaces of an Infinite Di-
mensional Hilbert Space. Thesis Director: Takeuti, Gaisi. Final exam: 7/31/1978; Ph. D. 10/15/1978”.

10



[2] S. K. Berberian, The regular ring of a finite AW∗-algebra, Ann. of Math. 65 (1957), 224–240

[3] S. K. Berberian, The maximal ring of quotients of finite von Neumann algebra, Rocky Moun-
tain J. Math. 12 (1982), 149–164

[4] G. Birkhoff, Lattice Theory, 3rd ed. Providence 1967

[5] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37(1936),
823-843.

[6] St. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Berlin 1981, 2.nd ed.

[7] P. Crawley and R.P. Dilworth, Algebraic Theory of Lattices, Englewood 1973

[8] J.M. Dunn, T.J. Hagge, L.S. Moss, and Zh. Wang, Quantum logic as motivated by quantum
computing, J. Symbolic Logic 70 (2005), 353–359

[9] L. Giudici, Dintorni del Teorema di Coordinatizatione di von Neumann, Ph.D. thesis, Univ.
di Milano, 1995, cf. http://www.nohay.net/mat/tesi.1995/tesi.ps.gz

[10] L. Giudici, notes about von Neumann’s continuous geometries with transition probability
and quantum logic varieties, http://www.nohay.net/mat/still in development/

continuous geometries with a transition probability/

[11] K.R. Goodearl, Von Neumann Regular Rings, Malabar 1991

[12] H. Gross, Quadratic Forms in Infinite-dimensional Vector Spaces, Basel 1979

[13] Yu. Gurevich and H.R. Lewis, The word problem for cancellation semigroups with zero, J,
Symbolic Logic 49 (1984), 184–191

[14] T.J. Hagge, QL(Cn) determines n, J. Symbolic Logic 72 No.4 (2005), 1194–1196

[15] D. Handelman, Coordinatization applied to finite Baer *rings, Trans. Amer. Math. Soc 44

(1978), 1–34

[16] C. Herrmann and M.S. Roddy, Proatomic modular ortholattices: Representation and equa-
tional theory, Note di matematica e fisica, (10) 1999, 55–88

[17] C. Herrmann, Complemented modular lattices with involution and Orthogonal Geometry,
Algebra Universalis 61 (2009)

[18] C. Herrmann, Generators for complemented modular lattices and the von-Neumann-
Jónsson Coordinatization Theorems, to appear in Algebra Universalis,

[19] S. S. Holland, Current interest in orthomodular lattices, in Trends in Lattice Theory, J. C.
Abbott (ed.), van Nostrand Reinhold Math. Stud. 31, Cincinatti 1970

[20] A. P. Huhn, Schwach distributive Verbände I, Acta Sci. Math. 33 (1972), 297–305

[21] F. Maeda, Kontinuierliche Geometrien, Springer Grundlehren 45, Berlin 1958

11



[22] D. Marker, Model Theory: An Introduction, Springer Graduate Texts 217, Berlin 2002

[23] F.J. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936), 116–229

[24] F.J. Murray and J. von Neumann, On rings of operators IV, Ann. Math. 44 (1943), 761–808

[25] J. von Neumann, Continuous Geometry, Princeton 1960

[26] J. von Neumann, Continuous Geometries with a Transition Probability, Memoirs AMS
vol.34 no.252, Providence 1981

[27] I. Kaplansky, von Neumann’s characterization of factors of type II1 pp. 562-563 in Collected
Works of John von Neumann, Pergamon Press, 1963.
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