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Abstract. We discuss a notion of universe in toposes which from a
logical point of view gives rise to an extension of Higher Order Intu-
itionistic Arithmetic (HAH) that allows one to construct families of
types in such a universe by structural recursion and to quantify over
such families. Further, we show that (hierarchies of) such universes
do exist in all sheaf and realizability toposes but neither in the free
topos nor in the Vω+ω model of Zermelo set theory.

Though universes in Set are necessarily of strongly inaccessible car-
dinality it remains an open question whether toposes with a uni-
verse allow one to construct internal models of Intuitionistic Zermelo
Fraenkel set theory (IZF).

The background information about toposes and fibred categories as
needed for our discussion in this paper can be found e.g. in the fairly
accessible sources [MM, Jac, Str2].

1 Background and Motivation

It is commonly agreed on that elementary toposes with a natural numbers object
(NNO) provide a concise and flexible notion of model for constructive Higher
Order Arithmetic (HAH). Certainly, a lot of mathematics can be expressed
within HAH. So what is the need then for set theory (ZFC) which is generally
accepted as the foundation for mainstream mathematics? Well, ZFC is much
stronger than HAH in the following respects:

(1) ZFC is based on classical logic whereas HAH is based on the weaker intu-
itionistic logic.

(2) ZFC postulates the axiom of choice whereas HAH does not.

(3) ZFC postulates the axiom of replacement which cannot even be formulated
in HAH.1

1Notice, however, that the axiom of replacement obtains its full power only in presence of



The logic of toposes (with NNO) is inherently intuitionistic and in HAH the
axiom of choice implies classical logic. Therefore, we have to give up (1) and
(2) above when considering Grothendieck and realizability toposes as models of
some kind of set theory. But what about (3), the axiom of replacement?

First of all notice that there are models of set theory without replacement
but satisfying classical logic and choice, namely Vω+ω.2 On the other hand a
lot of toposes, in particular Grothendieck toposes and realizability toposes, do
model the axiom of replacement whereas in most cases they refute classical logic
and the axiom of choice. More precisely, the above mentioned toposes model
IZF, i.e. ZF with intuitionistic logic and axiom of regularity reformulated as
∈-induction.3

Though a large class of toposes validates IZF one still may complain that
the formulation of IZF suffers from “epsilonitis”, i.e. that it “implements” in-
formal mathematics via the ∈-relation rather than axiomatizing mathematical
practice in terms of its basic notions. So one may ask what is the mathematical
relevance of the set-theoretic replacement axiom? Maybe a set-theorist would
answer “for constructing ordinals greater than ω+ω” which, however, may seem
a bit disappointing because most mathematics can be formulated without ref-
erence to transfinite ordinals.4 Actually, what axiom of replacement is mainly
needed for in mathematical practice is to define families of sets indexed by some
set I carrying some inductive structure as, typically, the set N of natural num-
bers. For example, most mathematicians would not hesitate to construct the
sequence (Pn(N))n∈N by (primitive) recursion over N. Already in ZC, however,
this is impossible because {〈n,Pn(N)〉 | n∈N} 6∈ Vω+ω. Usually, in ZFC the
sequence (Pn(N))n∈N is constructed by applying the axiom of replacement to
an appropriately defined class function from the set of natural numbers to the
class of all sets. However, in a sense that does not properly reflect the mathe-
matician’s intuition who thinks of (Pn(N))n∈N as a function f from N to sets
defined recursively as f(0) = N and f(n+1) = P(f(n)). There is, however, a
“little” problem, namely that the collection of all sets does not form a set but a
proper class. Notice, however, that a posteriori the image of f does form a set

the full separation scheme. In recent, yet unpublished work by S. Awodey, C. Butz, A. Simpson
and T. Streicher [ABSS] it has been shown that set theory with bounded separation, i.e.
separation restricted to bounded formulas, but with replacement (and even strong collection)
is equiconsistent to HAH as long as the underlying logic is intuitionistic. Otherwise the
classical Principle of Excluded Middle allows one to derive full separation from replacement.

In the context of this paper when we say replacement we mean the power of replacement
together with full separation (although the latter does not make sense from a type-theoretic
point of view!).

2But notice that Vω+ω validates ZC, i.e. ZFC without replacement, which, however, is still
stronger than HAH as already Z proves the consistency of HAH.

3Axiom of regularity and ∈-induction are equivalent only classically as in IZF the principle
of excluded middle follows from the axiom of regularity just as in HAH the principle of
excluded middle follows from the least number principle.

4There are notable exceptions typically in the area of descriptive set theory as e.g. Borel
determinacy which is provable in ZF (as shown by D. A. Martin) but not in Z (as shown by
H. Friedman). Even IZF does not decide Borel determinacy as it holds in Set but not in
Hyland’s effective topos Eff .
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as ensured by the replacement axiom. Notice, moreover, that the image of f is
contained as a subset in the set Vω+ω =

⋃
n∈N Pn(Vω) whose existence can be

ensured again by the axiom of replacement in a similar way as above. Thus, if
we had Vω+ω available as a set beforehand we could define f as a function from
the set N to the set Vω+ω simply by primitive recursion. The distinguishing
feature of Vω+ω is that it is closed under subsets, cartesian products, powersets
(and, thus, also under exponentiation) and contains Vω, the set of hereditarily
finite sets, and, therefore, also N as elements. Actually, the set Vω+ω has even
stronger closure properties, namely, that

(1) every element of Vω+ω is also a subset of Vω+ω, i.e. Vω+ω is a so-called
transitive set

(2) Vω+ω with ∈ restricted to it provides a model of Zermelo set theory (with
choice), i.e. ZF(C), without the axiom of replacement.

Sets satisfying these two properties are called Zermelo universes and they are
abundant because Vλ is a Zermelo universe for all limit ordinals λ > ω. Thus,
there are as many Zermelo universes as there are ordinals.

A Zermelo universe U satisfying the additional requirement that

(3) if f is a function with dom(f) ∈ U and rng(f) ⊆ U then rng(f) ∈ U

is called a Grothendieck universe because it was A. Grothendieck who introduced
this notion for the purpose of a convenient and flexible set-theoretic foundation
of category theory. More precisely, he suggested to use ZFC together with
the requirement that every set A be contained in some Grothendieck universe
guaranteeing at least5 an infinite sequence

U0 ∈ U1 ∈ . . . Un−1 ∈ Un ∈ Un+1 ∈ . . .

of Grothendieck universes. As Grothendieck universes are transitive such a
sequence is also cumulative in the sense that

U0 ⊆ U1 ⊆ . . . Un−1 ⊆ Un ⊆ Un+1 ⊆ . . .

holds as well. One can show that Vλ is a Grothendieck universe if and only if
λ is a strongly inaccessible cardinal, i.e. λ is an infinite regular cardinal with
2κ < λ for all κ < λ.

Obviously, ZFC does not prove the existence of Grothendieck universes (or of
strongly inaccessible cardinals) as otherwise ZFC could prove its own consistency
(as a Grothendieck universe provides a small inner model of ZFC) which is
impossible by Gödel’s 2nd Incompleteness Theorem.6

5Actually, postulating choice for classes gives rise to a class function Un that assigns to
every set a a Grothendieck universe Un(a) with a ∈ Un(a). Then by transfinitely iterating
the function Un one obtains incredibly big hierarchies of Grothendieck universes.

6Notice, however, that the notion of Grothendieck universe is stronger than the notion of
small inner model which is a Zermelo universe required to satisfy condition (3) above only
for those f which are first order definable in the language of set theory!
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2 Universes in Toposes

We now define a notion of universe in an (elementary) topos that is stronger
than the set-theoretic axiom of replacement but adapted to the “spirit” of type
theory and thus freed from “epsilonitis”.

We do not claim any originality for the subsequent notion as it is inspired by
the categorical semantics (see e.g. [Str1]) for an impredicative version of Martin-
Löf’s universes as can be found in the Extended Calculus of Constructions (see
[Luo]). Categorical semantics of universes was anticipated by Jean Bénabou’s in-
fluential paper [Bén] (from 1971 !) introducing (among other important things)
a notion of topos internal to a topos.7

Definition 2.1 A universe in a topos E is given by a class S of morphisms in
E satisfying the following conditions

(1) S is stable under pullbacks along morphisms in E, i.e. for every pullback

B - A

J

b
?

f
- I

a
?

in E it holds that b ∈ S whenever a ∈ S.

(2) S contains all monos of E.

(3) S is closed under composition, i.e. if f : A → I and g : B → A are in S
then Σfg = f◦g ∈ S.

(4) S is closed under dependent products, i.e. if f : A→ I and g : B → A are
in S then Πfg ∈ S (where Πf is right adjoint to f∗ : E/I → E/A).

(5) In S there is a generic8 morphism, i.e. a morphism El : E → U in S such
that for every a : A→ I in S we have

A - E

I

a
?

f
- U

El
?

for some morphism f : I → U in E, i.e. a ∼= f∗El.

A universe S is called impredicative iff Ω → 1 is in S. If E has a natural
numbers object N then we say that S contains N iff N → 1 is in S. ♦

7Alas, later work on categorical semantics of type theories usually does not refer to [Bén]
but rather implicitly to some “folklore” dating back to the early 70ies when [Bén] was written.

8Notice that we do not require uniqueness of f , i.e. El is not a “classifying” but only
a “generic” family for S. Some authors use also the word “weakly classifying” instead of
“generic”.
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As already mentioned this notion of universe is inspired by a similar notion
introduced by J. Bénabou in [Bén]. His main motivation was to provide a
notion of internal topos capturing finite cardinals, i.e. Kuratowski finite sets
with decidable equality, inside a topos E with narural numbers object N for
which a generic morphism is provided by

k = π2 : K = {(i, n) ∈ N2 | i < n} - N

The class F of all morphisms which can be obtained as pullback of the generic
family k coincides with the class of families of finite cardinals. It satisfies con-
ditions (1) and (3)–(5) of Definition 2.1. The monos in F are classified by
inl : 1→ 1+1 and, accordingly, F contains all monos if and only if E is boolean.
Thus, the logic of the internal topos of finite cardinals as given by F coincides
with the logic of the ambient topos E if and only if E is boolean. On the other
hand the morphism k is not only generic but also classifying9 for F because in
the internal logic of E from K(n) ∼= K(m) it follows that n = m.

Obviously, there is a lot of possibilities for varying the notion of universe
according to one’s needs. The minimal notion is given by a class S of mor-
phism satisfying condition (1) (which already entails that S is closed under
isomorphism). Such classes S satisfying (1) coincide with full (and replete) sub-
fibrations of the fundamental fibration PE = ∂1 : E2 → E of E and, therefore, are
abundant in category theory and categorical logic, in particular, as they provide
the correct fibrational generalisation of the notion of full (and replete) subcate-
gory. In semantics of dependent type theories such pullback stable classes S are
called “classes of display maps” for some internal collection of types (see e.g.
[Str1, Jac] for a more detailed treatment). In the Algebraic Set Theory of Joyal
and Moerdijk [JM] they are called classes of “small” maps and are thought of as
“families of sets indexed by a class”. In a sense the word “small” is somewhat
misleading here because for a : A→ I in F and m : A′ � A the composite a◦m
need not be in F even for I = 1 because, constructively, finite cardinals are not
closed under subsets. Already subterminals need not be finite cardinals and,
accordingly, in general F will not satisfy condition (2) claiming that families of
subterminals are “small” families. But this phenomenon has nothing to do with
finiteness per se as in some (nonstandard) set theories subclasses of sets need
not be sets themselves.10

9In [Bén] the more general notion of generic family was not considered. Probably because
unique existence is “more categorical” than mere existence and certainly because of the above
example of finite cardinals. One might wonder whether one always can construct a classifying
family from a generic one. However, this seems to be unlikely because it amounts to choosing
representatives from isomorphism classes which is not only unnatural but also impossible
constructively.

10In Gödel-Bernays-vonNeumann class theory GBN every subclass of a set is guaranteed
to be a set. But GBN guarantees only the existence of classes which are first order definable
in the language of set theory. However, there is no reason why the intersection of a set with
an arbitrary nonstandard class should be a set in general. Consider e.g. the class of standard
elements of the set N of all natural numbers. Such phenomena lie at the heart of nonstandard
set/class theories like E. Nelson’s Inner Set Theory, P. Vopenka’s Alternative Set Theory or
E. Gordon’s Nonstandard Class Theory. Nonstandard Class Theory was investigated and
developed by J. Bénabou in the early 1970ies to quite some detail but, alas, never published.
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Condition (3) says that (in each fibre) for a family of “small” sets indexed
over a “small” set its sum (disjoint union) is small, too. From (1) and (3) it
follows that for a : A→ I and b : B → I the fibrewise product a×Ib : A×IB → I
is in S, too. If, moreover, condition (2) is assumed then for a : A → I in S
and arbitrary subobjects m : A′ � A the composite a ◦m is in S, too. Thus,
under assumption of (1), (2) and (3) for every object I in E the full subcategory
S/I of E/I (on maps of S with codomain I) is finitely complete and inherits its
finite limits from E/I.11

Condition (4) says that the full subcategory as given by S is closed under
dependent products and, therefore, under exponentiation. Under assumption of
(1), (2) and (3) condition (4) is equivalent to the requirement that every S/I is
closed under exponentiation in E/I, i.e. that S/I is a full sub-cartesian-closed-
category of E/I.

Under assumption of conditions (1)–(4) condition (5) is equivalent to the
requirement that the subfibration of PE as given by S ↪→ E2 is equivalent12 to a
small fibration. This still holds even if condition (2) is weakened to the require-
ment that for all I ∈ E the subcategory S/I of E/I is closed under equalisers.
In general, a generic family need not be classifying as it can well happen that
for distinct f1, f2 : I → U the families f∗1 El and f∗2 El are isomorphic as families
over I. The family El is classifying iff in the internal logic of E it holds that
∀a, b ∈ U

(
El(a) ∼= El(b) ⇒ a =U b

)
. Notice that this requirement fails already

when E is Set and S is the family (a)a∈U for some Grothendieck universe U in
Set because U will contain an awful lot of distinct but equipollent sets. This, of
course, can be overcome by restricting U to the cardinal numbers in U which,
however, is only possible in presence of the axiom of choice and in any case does
not seem very natural.

One of the useful consequences of condition (5) is that the maps of S are
closed under + which can be seen as follows. Suppose a : A→ I and b : B → J
are maps in S. By condition (5) there exist maps f : I → U and g : J → U
with a ∼= f∗El and b ∼= g∗El . Due to the extensivity properties of toposes we
then have a+ b ∼= f∗El + g∗El ∼= [f, g]∗El ∈ S as desired.

Notice that S = Mono(E) is a class of maps satisfying conditions (1)–(5).
Thus, a universe need not contain the terminal projection ΩE → 1E . However,
if it does, i.e. if S is “impredicative”, then every S/I contains the object π :
I ×Ω→ I and thus S/I is a subtopos of E/I in the sense that S/I ↪→ E/I is a
logical functor. Moreover, for E = Set the class F of families of finite cardinals
gives rise to an impredicative universe which, however, does not contain N .

One of the useful consequences of impredicativity is that S is closed under

11Actually, a weaker condition than (2) suffices for this purpose, namely that every regular
monomorphism is in S. Under assumption of (1) and (3) this weakening of (2) is equivalent
to the requirement that S contains all isos and fg ∈ S implies g ∈ S. Thus, it follows in
particular that morphisms between small maps are small themselves.

12This fibration need not itself be small as there need not be a classifying family, only a
generic one. But it is equivalent to the small fibration arising from the internal category in E
whose set of objects is given by U and whose family of morphisms is given by the exponential

ElEl in E/U .
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quotients in the sense that if a ◦ e ∈ S and e is epic then a ∈ S. This follows
immediately from the facts that for all objects I in E the inclusion S/I ↪→ E/I
is logical and that in a topos for every epimorphism e : A � B the object B
appears as subobject of P(A) via e−1 : B � P(A).

Finally, we explain how condition (5) allows one (in presence of the other
conditions of Def. 2.1) to define families of sets in U via recursion over some
index set (as e.g. the natural numbers object N) and to quantify over families
of small sets (over a fixed index set).

Let π1, π2 : U × U → U be first and second projection, respectively. Then
by condition (1) the maps π∗1El and π∗2El are in S. From conditions (3) and

(4) it follows that then the exponential π∗2Elπ
∗
1El is also in S. By condition (5)

there exists a map fun : U × U → U such that π∗2Elπ
∗
1El ∼= fun∗El . Obviously,

the map fun : U × U → U internalizes the exponentiation of sets in U . We
often write ba as an abbreviation for fun(a, b). If S is impredicative then there
exists an ω : 1 → U such that ω∗El is isomorphic to the terminal projection
!Ω : Ω → 1. Then the map pow = fun ◦ 〈ω◦!U , idU 〉 : U → U internalizes the
powerset operation on U since pow(a) = ωa. If S contains N then there exists
an n : 1→ U such that n∗El is isomorphic to !N : N → 1. Due to the universal
property of the n.n.o. N there exists a unique map p : N → U with p(0) = n
and p(k+1) = pow(p(k)) for all k ∈ N . Obviously, the family p∗El provides the
desired generalisation of (Pk(N))k∈N to toposes with a universe.

For every object A of E the exponential UA exists. Thus, we can quantify

over UA, i.e. A-indexed families of smalls sets. As the family
(
UEl(a))

a∈U is

given by the exponential (!∗UU)El in E/U and every topos is in particular locally
cartesian closed we have available in toposes with a universe also quantifications

such as
(
∀a : U

)(
∀b : UEl(a))(∀f : (Πx:El(a))El(b(x))

)
. . ., i.e. quantification

over all sections of families of small sets indexed by small sets.
In particular, a topos with a universe S provides internal quantification over

all sorts of small structures (where the notion of smallness is given by S).

Hierarchies of Universes

If one accepts one universe then there is no good reason why one shouldn’t
accept a further universe containing the previous one. The next definition makes
precise what “containing” actually means. For a similar definition in the context
of (semantics of) dependent type theory see the Appendix of [Str1].

Definition 2.2 Let E be a topos and S1 and S2 universes in E. We say that
S1 is included in S2 iff there is a generic family El1 : E1 → U1 for S1 such that
both El1 and !U1 : U1 → 1 are maps in S2. ♦

Obviously El1 ∈ S2 is equivalent to S1 ⊆ S2. But we also want that U1

appears as element of U2, i.e. !U1
∼= u∗1El2 for some global element u1 : 1→ U2,

which, obviously, is equivalent to the requirement that !U1
: U1 → 1 is in S2.
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We suggest that a reasonable notion of model for impredicative constructive
mathematics is provided by a topos E with a natural numbers object N together
with a sequence (Sn)n∈N of impredicative universes containing N such that
every Sn is contained in Sn+1 (in the sense of Def. 2.2 above). An appropriate
internal language for such a structure is given by Z. Luo’s Extended Calculus
of Constructions (ECC), see [Luo], together with the Axiom of Unique Choice
(AUC), extensionality for functions, the propositional extensionality principle
∀p, q∈Prop

(
(p⇔q) ⇒ p=q

)
and the principle of proof-irrelevance stating that

propositional types, i.e. types in Prop, contain at most one element. We call
this formal system ECCT as an acronym for Extended Calculus of Constructions
within a Topos.

Determining the proof-theoretic strength of ECCT is an open problem which,
however, seems to be fairly difficult for the following reasons. On the one hand
in Set an impredicative universe containing N has at least strongly inaccessible
cardinality (because it is infinite, regular and closed under P(−), i.e. 2(−)).
Thus, in Set an infinite cumulative sequence of such universes requires the
existence of infinitely many strongly inaccessible cardinals. For this reason one
might expect that ECCT is as strong as IZF with an external13 cumulative
sequence of Grothendieck universes. Postulating the Axiom of Choice (AC)
this has been achieved by B. Werner in [Wer]. However, in toposes AC does
not hold unless their logic is boolean. But in [JM] A. Joyal and I. Moerdijk
have constructed so-called initial ZF-algebras, i.e. internal models of IZF, from
universes S which on the one hand are a little weaker than our notion (see
discussion in section 4) but on the other hand are stronger in the sense that
they validate the so-called type-theoretic Collection Axiom

(CA) (∀X)(∀A:U)(∀e:X→A) Epic(e)⇒ (∃C:U)(∃f :C→X) Epic(e◦f)

which is needed for verifying that the initial ZF-algebra validates the set-theoretic
replacement axiom and they have verified the existence of such universes for all
Grothendieck and realizability toposes. Thus, alas, these comparatively well-
known models cannot serve the purpose of disproving the claim that ECCT
proves consistency of IZF. On the other hand one has got the impression that
something like (CA) is needed for verifying that the initial ZF-algebra does
actually validate the replacement axiom.

3 Existence of Universes in Toposes

After having introduced the notion of universe in a topos we now discuss the
question of their existence. We are primarily interested in the existence of
impredicative universes containing N and from now on refer to them simply as
universes. Accordingly, we assume all toposes to have a n.n.o. denoted as N .

13Apparently ECCT does not prove the consistency of IZF together with the axiom that
every set is an element of a Grothendieck universe. For this purpose one would have to extend
ECCT with a further universe Uω containing all Un for n < ω.
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First of all notice that generally in toposes universes need not exist. Con-
sider for example the free topos T with a n.n.o N . If in T there existed a(n
impredicative) universe (containing N) then HAH could prove its own consis-
tency as the universe would allow one to construct a model for HAH inside T
which is impossible by Gödel’s 2nd Incompleteness Theorem.

Quite expectedly, the situation is different for toposes whose construction
depends on Set like realizability and Grothendieck toposes.

Let us first consider the somewhat simpler case of realizability toposes. Let
A be a partial combinatory algebra (pca). Then the P(A)-valued cumulative
hierarchy V (A) is defined as

V (A) =
⋃

α∈Ord

V (A)
α

where
V (A)
α =

⋃
β<α

P(A×V (A)
β )

is defined by transfinite recursion over α. Again by transfinite recursion one
may define ∈ and = as P(A)-valued binary predicates on V (A) as follows14

e  x ⊆ y iff ∀〈a, z〉 ∈ x. e·a  z ∈ y

e  x = y iff pr1(e)  x ⊆ y and pr2(e)  y ⊆ x

e  x ∈ y iff ∃z ∈ V (A). pr1(e)  x = z ∧ 〈pr2(e), z〉 ∈ y

where e  x ∈ y and e  x = y stand for e ∈ [[x ∈ y]] and e ∈ [[x = y]],
respectively. One may show that this gives rise to a model for IZF as was done
for the first Kleene algebra (of Gödel numbers for partial recursive functions) in
McCarty’s Thesis [McC] but his proof extends to arbitrary pca’s without any
further effort. It has recently been shown by A. Simpson and the author (see
[ABSS]) that the topos derived from this model of IZF is actually equivalent to
RT(A), the realizability topos over A. Now for strongly inaccessible cardinals

κ one may easily show that V
(A)
κ is a Grothendieck universe within V (A) and

thus gives rise to a universe inside V (A).
For Grothendieck toposes the situation is somewhat more delicate. Suppose

U is a Grothendieck universe in Set. Now if C is a category in U then this
gives rise to a universe U inside the presheaf topos Ĉ = SetC

op

which is defined
as follows (see [HS]). First recall that for every A ∈ Ĉ the slice category Ĉ/A is

equivalent to Êlts(A) (where Elts(A) is the category of elements of A obtained
via the Grothendieck construction). We define a morphism b : B → A to be

contained in U iff the corresponding presheaf (via Ĉ/A ' Êlts(A)) is isomorphic
to one factoring through U, i.e., more explicitly, iff b−1

I (x) is isomorphic to a
set in U for all I ∈ C and x ∈ A(I). It is more or less straightforward to verify
that U satisfies the conditions required for a universe. The only slightly delicate

14We write a·b for “a applied to b” and pr1 and pr2 for first and second projection w.r.t.
the coding of pairs available in any pca.
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point is the existence of a morphism El : E → U generic for U . We define U
as the presheaf over C with U(I) = U(C/I)op and for α : J → I in C we put
U(f) = f∗ = U(C/f)op . We define the generic family El : E → U as the object

of Ĉ/U corresponding (via Ĉ/U ' Êlts(U)) to the presheaf E : Elts(U)op → U
which is defined as follows: with every object (I, A) in Elts(U) we associate the
set E(I, A) = A(idI) in U and with every morphism f : (J, f∗A) → (I, A) in
Elts(U) we associate the map E(f) = A(f) : E(I, A)→ E(J, f∗A).

This construction for Ĉ extends to sheaf toposes E = Sh(C,J ) for Grothen-

dieck topologies J on C in the following way. Let U be the universe in Ĉ as
constructed above. We define a universe UE in E as the intersection of U and
E ⊆ Ĉ. The class UE consists of all maps of E that are isomorphic to some arrow
a(f) where f ∈ U and a : Ĉ→ Sh(C,J ) is the sheafification functor left adjoint

to the inclusion E = Sh(C,J ) ↪→ Ĉ. (One readily checks that the image of U
under a is contained in U (using the assumption that C is internal to U) and
therefore UE coincides with the image of U under a.) From this observation it
follows that UE is closed under composition and as the sheafification functor a
preserves finite limits it is immediate that UE is stable under pullbacks along
arbitrary arrows in E . Moreover, the map a(El) is generic for UE because El is

generic for U . As a preserves monos and U contains all monos of Ĉ it follows that
UE contains all monos of E . That UE satisfies condition (4) of Definition 2.1 can
be seen as follows. Under the conditions (1), (2) and (3) (already established
for UE) condition (4) is equivalent to the requirement that for all A ∈ E the
slice UE/A has exponentials inherited from E/A. Suppose b1 : B1 → A and

b2 : B2 → A are objects in UE/A. Then their exponential bb12 taken in Ĉ/A
stays within U as U is a universe in Ĉ and it stays within E/A as E/A is a

subtopos15 of Ĉ/A and subtoposes are closed under exponentiation. Thus bb12

is in UE/A concluding the argument that UE/A is closed under exponentiation
taken in E/A.

Next we show that the universe UE is impredicative. First notice that a(>Ĉ)
is a generic mono for E .16 Thus, there exists a map s : ΩE → a(ΩĈ) with
>E ∼= s∗a(>Ĉ). As there is also a map p : a(ΩĈ) → ΩE with a(>Ĉ) ∼= p∗>E
it follows that (p ◦ s)∗>E ∼= >E . Thus, we have p ◦ s = idΩE and, therefore,
the map s : ΩE → a(ΩĈ) is a split mono. As U is impredicative it contains the
terminal projection of ΩĈ and, accordingly, UE contains the terminal projection
of a(ΩĈ). Thus, as UE is closed under subobjects in E it follows that UE contains
also the terminal projection of ΩE , i.e. that UE is impredicative.

As UE contains the terminal projection of NE = a(N), the n.n.o. of E , the
universe UE contains NE .

15in the geometric sense because a/A : Ĉ/A → E/A is a finite limit preserving left adjoint

to the inclusion E/A ↪→ Ĉ/A
16In general, sheafification does not preserve subobject classifiers. Actually, it does if and

only if the corresponding Lawvere-Tierney topology j preserves implication in the sense that
j ◦→ =→◦ (j×j).
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4 Further Properties and Generalisations

It is a desirable property of a universe in a topos that for arbitrary families
of types a : A → I the collection of those i ∈ I with Ai small constitutes a
subobject of I. The following mathematical precision of this informal idea is
due to J. Bénabou17 (see e.g. [Str2]).

Definition 4.1 A pullback stable class S of morphisms in a topos E is called
definable if for every morphism a : A→ I in E there is a subobject m : I0 � I
such that m∗a ∈ S and every f : J → I with f∗a ∈ S factors through m. ♦

At first sight in presence of a generic family El : E → U for S definability
of S seems to be evident by considering the subobject

I0 = {i ∈ I | ∃u ∈ U. Ai ∼= El(u)}

of I expressible in the internal language of E . However, when unfolding the
definition of I0 following precisely the rules of Kripke-Joyal semantics (see [MM])
one observes that I0 is the greatest subobject m of I with e∗m∗a ∈ S for some epi
e, i.e. m∗a ∈ S` where S`, the so-called stack completion of S, is the collection
of all b : B → J with e∗b ∈ S for some epi e : K � J . Again using Kripke-Joyal
semantics one sees that b : B → J is in S` iff ∀j ∈ J.∃u ∈ U.Bj ∼= El(u) holds in
E . Notice that b : B → J might well be in S` even if there is no g : J → U with
b ∼= g∗El because every Bj may be isomorphic to some El(u) though one might
not be able to choose such a u ∈ U uniformly in j ∈ J . This discussion shows
that S is definable in the sense of Bénabou already if S satisfies the following
descent property : a ∈ S whenever e∗A ∈ S for some epi e. One easily shows
that definability of S implies18 the descent property for S. Thus, we have

Theorem 4.1 A universe S in a topos E is definable in the sense of Bénabou
if and only if S satifies the descent property.

A further characterisation of definability of S can be found in [Sim1]. By
definability for every object A of E there exists a subobject m : PS(A) � P(A)
with m∗(∈A;π′) ∈ S, i.e.

∈SA- - ∈A

A×PS(A)
?

?

-A×m- A×P(A)
?

?

PS(A)

π′
?

-
m

- P(A)

π′
?

17He introduced the notion of definability for (full) subfibrations of arbitrary fibrations and
not just for the particular case of (full) subfibrations of the fundamental fibration ∂1 : E2 → E
of a topos E.

18If e∗a ∈ S for some epi e : J � I then e factors through some m : I0 � I with m∗a ∈ S.
But then m is an iso and, therefore, already a ∈ S.

11



with ∈SA;π′ ∈ S, such that for every r : R � A× B with r;π′ ∈ S there exists
a unique ρ : B → PS(A) with

R - ∈SA

A×B

r
?

?

A×ρ
- A×PS(A)

?

?

Obviously, the subobject PS(A) consists of those subsets of A which are small
in the sense of S. In [Sim1] it has been shown that existence of such small power
objects entails the descent property for S.19

Currently it is not (yet) clear (to us) whether the universes introduced
in section 3 are definable. Though this seems to be very likely the case for
Grothendieck toposes the question for realizability toposes seems to be much
harder20.

However, instead of a universe S one might instead consider its stack com-
pletion S` still satisfying conditions (1)–(4) of Definition 2.1 but instead of
condition (5) only

(5.1) (descent)
for every a : A→ I if e∗a ∈ S` for some epi e : J � I then already a ∈ S`

(5.2) (weakly generic family)
there exists a map El : E → U in S` such that for every a : A → I in S`
there is an epi e : J � I and f : J → U with e∗a ∼= f∗El .

We leave it for future investigations to find out whether the stack completions
S` of the universes S constructed in section 3 do validate the type-theoretic
Comprehension Axiom (CA) discussed at end of section 2.

19If b ∈ S and

B
e′-- A

J

b

?

e
-- I

a

?

then a ∼= φ∗(∈SA;π′) where the classifying map φ : I → PS(A) is given by

x = φ(i) ⇐⇒ ∃j ∈ J. i = e(j) ∧ x = e′!(b
−1[j])

where e′! is the direct image map for e′ and b−1 is the inverse image map for b, i.e.

φ(i) = {x ∈ A | ∃y ∈ B. e(b(y)) = i ∧ e′(y) = x} .

20One would have to show for example that for the class S of small maps in the realizability
topos Eff as considered in [JM] there exists a generic family and not only a weakly generic
one. But this is difficult as one doesn’t even know the size of Γ−1(1), i.e. how many (up to
isomorphism) objects X ∈ Eff exist such that X has precisely one global element.
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5 Conclusions and Open Questions

We have introduced a (not too surprising) notion of (hierarchy of) universe(s)
in toposes which we consider as an alternative to IZF. We think that the corre-
sponding language ECCT being based on type theory is closer to mathematical
practice than the first order language of IZF where everything is coded up in
terms of ∈. Nevertheless ECCT provides the possibility of defining families of
types (in a universe) by recursion over the index set which is usually achieved
by appeal to the set-theoretic replacement axiom in a much less direct way.

It is not clear, though very likely, that ECCT does not allow one to con-
struct models for IZF without postulating further axioms like the type-theoretic
Collection Axiom of [JM]. Moreover, as far as we know one has not yet found
“mathematical”, i.e. not meta-mathematical, statements expressible in the lan-
guage of HAH which are not provable in HAH but are derivable in ECCT or
IZF.21 However, in [Sim2] it has been shown that HAH does not allow one to
prove the existence of solutions of domain equations (for quite general functors
on domains) although IZF does and similarly so does ECCT. The reason is that
solutions of domain equations arise as inverse limits of recursively defined fami-
lies of domains, i.e. particular sets in the setting of [Sim2]. It would be a pity if
this quite convincing example from applied mathematics would remain the only
one demonstrating the need for universes!
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