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METRIC ENTROPY AND THE SMALL DEVIATION PROBLEM FOR
STABLE PROCESSES
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Abstract. The famous connection between metric entropy and
small deviation probabilities of Gaussian processes was discovered by
Kuelbs and Li in [6] and completed by Li and Linde in [9]. The ques-
tion whether similar connections exist for other types of processes has
remained open ever since. In [10], Li and Linde propose a first ap-
proach to this problem for stable processes. The present article clari-
fies the question completely for symmetric stable processes.
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1. INTRODUCTION AND RESULTS

The Small Deviation Problem and Metric Entropy. Let us recall the small
deviation problem and the concept of metric entropy.

We start with the definition of the entropy numbers. For this purpose, let E and
F be two quasi-Banach spaces and let u : E → F be a bounded linear operator.
Then we define the n-th entropy number by

en(u) := inf







ε > 0 | ∃ yj ∈ F : u (BE) ⊆
2n−1
⋃

j=1

{yj + εBF }







, n ≥ 1,

where BE and BF denote the open unit ball in E and F , respectively.
Entropy numbers are used in many applications, in particular in functional

analysis. We refer to [4] for an introduction. Metric entropy tools also have many
applications in probability theory (cf. [8]), only one of which is the connection to
the small deviation problem for Gaussian processes.
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The small deviation problem concerns the probability that a stochastic process

X with paths almost surely in some normed space (E, ‖.‖) has norm less than a
positive number ε, i.e. if ‖X‖ is measurable, the quantity

P (‖X‖ ≤ ε) , as ε → 0+,

is investigated. However, this is a hard question that can only be solved for very
few processes. In many cases, it is only possible to estimate the rate of the loga-
rithm of the above expression, the so-called small deviation function (or small ball
function).

For technical reasons, we use the same setup as in [10], namely, we consider
only stochastic processes X with paths almost surely in the dual space E ′ of a
Banach space E endowed with the weak-∗-topology. Then the small deviation
function is defined as follows:

φ(X, ε) := − log P (‖X‖E′ ≤ ε) .

We investigate the rate of this quantity when ε → 0+. By ‘rate’ we mean the
behaviour in terms of weak asymptotics. Here, we use the symbol f(ε) � g(ε)
meaning lim supε→0+ f(ε)/g(ε) < ∞. Then f(ε) � g(ε) means g(ε) � f(ε),
whereas we write f(ε) ≈ g(ε) if f(ε) � g(ε) and f(ε) � g(ε) hold. The notation
is used analogously for sequences when n tends to infinity.

Gaussian Processes. Let us recall the notation of a Gaussian process and the
operator generating it. Let (E, ‖.‖) be a Banach space. Then X is called a centred
Gaussian process with values almost surely in the dual space E ′ if 〈x, X〉 is a
centred Gaussian random variable for all x ∈ E. We say that X is generated by
the operator u : E → H, where H is a separable Hilbert space, if

Eei〈x,X〉 = exp
(

−‖u(x)‖2
H

)

, for all x ∈ E.

The analytic operator u contains all information on the stochastic process X .
In particular, the small deviation behaviour of X is encoded by the behaviour of
the entropy numbers of u, as we can see from the following result. Observe that,
by Proposition 2.5 below, en(u) ≈ en(u′), where u′ : H → E′ is the dual operator
of u. Combining this with Theorem 1.1 in [9] we have:

Proposition 1.1. Let a Gaussian process X be generated by the operator u.
Let τ > 0 and θ ∈ R. Then the following implications hold:

(a) We have
en(u) � n−1/2−1/τ (log n)θ/τ

if and only if
φ(X, ε) � ε−τ (− log ε)θ,
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where for the ‘if’ part, the additional assumption φ(X, ε) ≈ φ(X, 2ε) is
required.

(b) We have
en(u) � n−1/2−1/τ (log n)θ/τ

if and only if
φ(X, ε) � ε−τ (− log ε)θ.

This result shows that the question of determining the small deviation rate of
a Gaussian process is, in this polynomial case, fully equivalent to the investigation
of the compactness properties of the operator generating it.

Stable Processes. It seems natural to ask whether similar relations also hold for
other classes of processes. Prime candidates for such a generalisation are symmet-
ric α-stable processes.

The definition of the generating operator for stable processes for 0 < α < 2
is analogous. We say that X is a symmetric α-stable process with values almost
surely in E′ if 〈x, X〉 is a symmetric α-stable random variable for all x ∈ E. We
say that X is generated by the operator u : E → Lα(S, σ), where (S, σ) is some
σ-finite measure space, if

Eei〈x,X〉 = exp
(

−‖u(x)‖α
Lα(S,σ)

)

, for all x ∈ E.

Further details on the existence of a generating operator and measurability ques-
tions can be found in [10]. The following result is Theorem 4.5 in [10]. Addition-
ally, the recent work [1] shows that the assumption that the space satisfies property
D from [10] can be dropped.

Proposition 1.2. Let a symmetric α-stable process X be generated by the
operator u. Let τ > 0 and θ ∈ R be given, where additionally τ < α/(1 − α) for
0 < α < 1. If

en(u) � n1/α−1/τ−1(log n)θ/τ

then
φ(X, ε) � ε−τ (− log ε)θ.

Note that Proposition 1.2 becomes the ‘only if’ part of (a) in Proposition 1.1
for the Gaussian case (α = 2).

The restriction τ < α/(1 − α) for 0 < α < 1 is natural and corresponds to
the result in [12], where it was shown that φ(X, ε) � ε−α/(1−α), for any strictly
α-stable process X with 0 < α < 1.

In this article, we prove the following result, which becomes the ‘if’ part of
(b) in Proposition 1.1 for the Gaussian case (α = 2).
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Theorem 1.1. Let a symmetric α-stable process X be generated by the oper-

ator u. Let τ > 0 and θ ∈ R. If

φ(X, ε) � ε−τ (− log ε)θ

then
en(u) � n1/α−1/τ−1(log n)θ/τ .

For the other two implications in Proposition 1.1 we shall construct counterex-
amples, which imply the following negative results.

Theorem 1.2. There are certain values of τ > 0 and θ ∈ R and a symmetric
α-stable process X with generating operator u such that

en(u) � n1/α−1/τ−1(log n)θ/τ but lim
ε→0+

ετ (− log ε)−θφ(X, ε) = ∞.

On the other hand, there are certain values of τ > 0 and θ ∈ R and a symmetric
α-stable process X with generating operator u such that φ(X, ε) ≈ φ(X, 2ε) and

φ(X, ε) � ε−τ (− log ε)θ but lim
n→∞

n−(1/α−1/τ−1)(log n)−θ/τen(u) = 0.

This theorem shows that the respective converse in Proposition 1.2 and The-
orem 1.1 cannot hold in general. Thus, contrary to the Gaussian case, for stable
processes only two of the implications in Proposition 1.1 are valid analogously.

Nevertheless, for many examples of stable processes still all the implications
of Proposition 1.1 are satisfied. This will become clear from the examples below.
Therefore, it is possible that the implications disproved in Theorem 1.2 do hold
under additional assumptions. In particular, the examples used for Theorem 1.2
are somewhat borderline cases which are ‘almost’ unbounded. This observation
suggests the conjecture that counterexamples only exist for τ = α and that all
implications are valid as long as the processes are sufficiently ‘far away’ from the
region of unboundedness. It seems a natural and challenging problem to deter-
mine conditions under which all four implications from the Gaussian setup can be
transfered to general (symmetric) stable processes.

This paper is structured as follows. In Section 2, we recall some technical
results from [10] and mention some other elementary facts. Section 3 is dedicated
to the proof of Theorem 1.1. A discussion of examples can be found in Section 4,
where also the counterexamples mentioned in Theorem 1.2 are constructed.

2. TECHNICAL FACTS

In order to use the original formulation of the connection between metric en-
tropy and Gaussian processes, we have to consider the ‘inverse’ concept of the
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entropy numbers, namely, the covering numbers of an operator u : E → F :

H(u, ε) := log min







n ∈ N | ∃ yj ∈ F : u (BE) ⊆
n
⋃

j=1

{yj + εBF }







.

One way to express that H(u, ε) and en(u) are inverse to each other is the follow-
ing lemma, the proof of which is straightforward.

Lemma 2.1. Let D > 0 be a real number and denote by bDc the integer part
of D. If H(u, ε) ≤ D then ebD/ log 2c+2(u) ≤ ε.

Furthermore, we need one of the main results of [6], namely Lemma 1, which
was the starting point of the connection between metric entropy and small devia-
tions for Gaussian processes.

Proposition 2.1. Let v : H → E ′ be a bounded operator. Let Y be a
Gaussian process generated by v′ : E → H; and assume that Y is also a (strongly)
measurable random variable with values in E ′. Then, for all ε, µ > 0,

H

(

v,
2ε

µ

)

≤
µ2

2
+ φ(Y, ε).

The main idea of the proof of the results in [10] is to represent the symmetric
α-stable process as a ‘mixture’ of Gaussian processes. This is also the decisive idea
in the proof of our main result. For this purpose, we quote the operator theoretic
formulation of the ‘mixture’ from Proposition 2.1 in [10].

Proposition 2.2. Let u : E → Lα(S, σ) be an operator that generates the
symmetric α-stable process X with values almost surely in E ′. Then there are a
probability space (∆, Q), a separable Hilbert space H, and bounded linear oper-
ators vδ : H → E′, δ ∈ ∆, such that

(2.1) exp
(

−‖u(x)‖α
Lα(S,σ)

)

=

∫

∆
exp

(

−
1

2

∥

∥v′δ(x)
∥

∥

2

H

)

dQ(δ),

for all x ∈ E, where v′δ : E → H is the dual operator of vδ.

Note that, by Proposition 4.4 in [10], the v′δ generate Gaussian processes with
values almost surely in E ′, which we denote by Yδ. These processes are even
(strongly) measurable random variables with values in E ′, cf. [10]. Moreover, we
have:

Proposition 2.3. Let X and Yδ, δ ∈ ∆, be processes with generating opera-
tors u and v′δ, respectively, for which relation (2.1) holds. Then

(2.2) P (‖X‖E′ ≤ ε) =

∫

∆
P (‖Yδ‖E′ ≤ ε) dQ(δ), for all ε > 0.
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From the ‘mixture’ (2.1), one can derive a relation between the entropy num-

bers of the operator generating the stable process and the entropy numbers of the
operators generating the Gaussian processes. Here, from Proposition 3.1 in [10]
the following is known.

Proposition 2.4. Let u : E → Lα(S, σ) be an operator generating the sym-
metric α-stable process X and let vδ : H → E′, δ ∈ ∆, be operators such that
(2.1) holds. Then there are universal constants ρ, κ > 0 such that, for all m ≥ 1,

Q

({

δ ∈ ∆ | ∀n ≥ m : n1/α−1/2en(v′δ) ≥ ρ en(u)
})

≥ 1 − κe−m.

Note that [1] allows us to replace v′δ by vδ. We are going to use the following
version of the results in [1].

Proposition 2.5. There are integer constants f, g ≥ 1 such that, for any
operator v : H → E ′, where E is a Banach space and H a separable Hilbert
space, with dual operator v′ : E → H, we have

egn(v′) ≤ fen(v), for all n ≥ 1.

3. PROOF OF THEOREM 1.1

We are going to show the following version of Theorem 1.1, which is slightly
more precise and expresses the involved constant explicitly, as in Theorem 4.5 in
[10]. Theorem 1.1 then follows immediately from Theorem 3.1.

Theorem 3.1. Let a symmetric α-stable process X be generated by the oper-
ator u. Let τ > 0, θ ∈ R, and C > 0. Then

lim sup
ε→0

ετ (− log ε)−θφ(X, ε) ≤ C/2 < ∞

implies that

lim sup
n→∞

n−(1/α−1/τ−1)(log n)−θ/τen(u) ≤ c0C
1/τ ,

where 0 < c0 < ∞ is constant only depending on τ and θ.

Proof. Step 1: The assumption implies that, for all 0 < ε < ε1, φ(X, ε) ≤
Cε−τ (− log ε)θ. We use this and write (2.2) with the help of the small deviation
functions in order to obtain

(3.1) e−Cε−τ (− log ε)θ
≤ e−φ(X,ε) =

∫

∆
e−φ(Yδ ,ε) dQ(δ) = EQe−φ(Yδ ,ε),
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for all 0 < ε < ε1. Let furthermore λ > 0. Then

EQe−φ(Yδ ,ε) =

∫ e−λε

0
Q

(

e−φ(Yδ ,ε) ≥ t
)

dt +

∫ 1

e−λε

Q

(

e−φ(Yδ ,ε) ≥ t
)

dt

≤

∫ e−λε

0
1 dt +

∫ 1

e−λε

Q

(

e−φ(Yδ ,ε) ≥ e−λε
)

dt

= e−λε + (1 − e−λε)Q (φ(Yδ, ε) ≤ λε) .

Combining this estimate with (3.1), we get

e−Cε−τ (− log ε)θ
− e−λε ≤ (1 − e−λε)Q (φ(Yδ, ε) ≤ λε) .

Let λ := 2Cε−1−τ (− log ε)θ. In the last estimate, we divide by 1 − e−λε and use
the result in the last step of the following calculation. This enables us to obtain
that, for all 0 < ε < ε2 ≤ ε1,

e−2Cε−τ (− log ε)θ
≤ e−Cε−τ (− log ε)θ 1 − e−Cε−τ (− log ε)θ

1 − e−2Cε−τ (− log ε)θ

=
e−Cε−τ (− log ε)θ

− e−2Cε−τ (− log ε)θ

1 − e−2Cε−τ (− log ε)θ

≤ Q

(

φ(Yδ, ε) ≤ 2Cε−τ (− log ε)θ
)

.(3.2)

We observe that Proposition 2.1 yields that, for all ε, µ > 0,

φ(Yδ, ε) ≤ 2Cε−τ (− log ε)θ ⇒ H

(

vδ,
2ε

µ

)

≤
µ2

2
+ 2Cε−τ (− log ε)θ.

Therefore, with (3.2), we have, for all 0 < ε < ε2 and µ > 0,

e−2Cε−τ (− log ε)θ
≤ Q

(

H

(

vδ,
2ε

µ

)

≤
µ2

2
+ 2Cε−τ (− log ε)θ

)

.

We use µ := 2(Cε−τ (− log ε)θ)1/2. Then

e−2Cε−τ (− log ε)θ
≤ Q

(

H

(

vδ,
ε1+ τ

2

C
1
2 (− log ε)

θ
2

)

≤ 4Cε−τ (− log ε)θ

)

.

By Lemma 2.1, the latter implies

(3.3) e−2Cε−τ (− log ε)θ
≤ Q

(

e �
4Cε−τ (− log ε)θ

log 2 � +2
(vδ) ≤

ε1+τ/2

C1/2(− log ε)θ/2

)

,

which holds for all 0 < ε < ε2 = ε2(ε1, τ, θ, C).
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Step 2: Let m ∈ N be large enough such that m > max

(

4, log κ
1−(log 2)/2

)

, where
κ is the constant in Proposition 2.4, and such that there is an ε with 0 < ε <
min(ε2, ε3) and

(3.4) m =

⌊

4C

log 2
ε−τ (− log ε)θ

⌋

+ 2,

where ε2 = ε2(ε1, τ, θ, C) is from Step 1 and ε3 is a number only depending on
C, τ , and θ to be chosen presently. Namely, elementary estimates entail that, for
(3.4) and ε < ε3 = ε3(C, τ, θ),

(3.5)
ε1+τ/2

C1/2(− log ε)θ/2
≤ DC1/τm−1/τ−1/2(log m)θ/τ ,

for some constant D = D(θ, τ). Furthermore, (3.4) implies that

(3.6) 2Cε−τ (− log ε)θ ≤
log 2

2
m.

Using (3.6), (3.3), (3.4), and (3.5), we obtain

e−
log 2

2
m ≤ e−2Cε−τ (− log ε)θ

≤ Q

(

e �
4Cε−τ (− log ε)θ

log 2 � +2
(vδ) ≤

ε1+τ/2

C1/2(− log ε)θ/2

)

≤ Q

(

em(vδ) ≤ DC1/τm−1/τ−1/2(log m)θ/τ
)

.

By Proposition 2.4, we have (since m > log κ
1−(log 2)/2 )

Q

(

∃n ≥ m : n1/α−1/2en(v′δ) ≤ ρen(u)
)

≤ κ e−m

< e−
log 2

2
m ≤ Q

(

em(vδ) ≤ DC1/τm−1/τ−1/2(log m)θ/τ
)

.

Since Q(A) < Q(B) implies B ∩ Ac 6= ∅, there is a δ = δ(m) such that, for all
n ≥ m,

n1/α−1/2en(v′δ) ≥ ρen(u) and em(vδ) ≤ DC1/τm−1/τ−1/2(log m)θ/τ .

Therefore, using Proposition 2.5,

egm(u) ≤ ρ−1(gm)1/α−1/2egm(v′δ)

≤ ρ′m1/α−1/2em(vδ) ≤ ρ′m1/α−1/2DC1/τm−1/τ−1/2(log m)θ/τ .

Thus, we have shown that, for all m ≥ m0 = m0(C, τ, θ, ε1, κ),

egm(u) ≤ ρ′DC1/τm1/α−1/τ−1(log m)θ/τ ,

where g ≥ 1 is the integer constant from Proposition 2.5, D = D(τ, θ), and
ρ′ = g1/α−1/2f/ρ. This shows the assertion of Theorem 3.1. �
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4. EXAMPLES AND APPLICATIONS

4.1. Example 1: Stable processes with integral representation. Let us
consider symmetric α-stable processes given by their integral representation

(4.1) Xt =

∫

S
K(t, s) dM(s), t ∈ T,

where M is an independently scattered symmetric α-stable random measure with
control measure σ, (S, σ) is a σ-finite measure space, and (T, m) is some finite
measure space. All important stable processes can be written in this form; we refer
to [14] for details and examples. Necessary and sufficient conditions for X to be
almost surely in Lp(T, m), 1 ≤ p < ∞, in terms of the kernel K, are given in
Theorem 11.3.2 in [14]. Unfortunately, there is no universal condition ensuring
that X is in L∞(T ) or C(T ) almost surely.

Let E = Lp′(T, m). Then E ′ = Lp(T, m) for 1 < p ≤ ∞ and E ′ ⊇
L1(T, m) for p = 1. Let us assume that X is almost surely in E ′. Then it is easy
to see with the help of Theorem 11.4.1 in [14] that the operator ũ : Lp′(T, m) →
Lα(S, σ) given by

(4.2) ũ : x 7→

∫

T
K(t, .)x(t) dm(t)

generates the process X . If T = S = [0, 1] and m = σ is the Lebesgue measure,
the operator ũ has the same entropy behaviour as the operator u : Lp′ [0, 1] →
Lα[0, 1] given by

(4.3) u : x 7→

∫ 1

0
K(1 − t, 1 − .)x(t) dt,

cf. the argument at the bottom of p. 281 in [10]. The latter operator is usually easier
to identify.

We apply Theorem 1 and obtain the analog to Theorem 5.2 in [10].

Corollary 4.1. Let X be a symmetric α-stable process given by the integral
representation (4.1) with values almost surely in Lp(T, m), 1 ≤ p ≤ ∞. Let τ > 0
and θ ∈ R.

If φ(X, ε) � ε−τ (− log ε)θ then en(ũ) � n1/α−1/τ−1(log n)θ/τ , where ũ is
as in (4.2).

If additionally T = S = [0, 1] and m = σ is the Lebesgue measure then
φ(X, ε) � ε−τ (− log ε)θ also implies en(u) � n1/α−1/τ−1(log n)θ/τ , where u is
as in (4.3).

The probably most important symmetric α-stable process is the so-called sym-
metric α-stable Lévy motion (Xt)t≥0, which is a symmetric α-stable stochastic
process with X0 = 0 almost surely, having independent increments, and Xt − Xs
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being a symmetric α-stable random variable with scale parameter |t − s|1/α. It is
well-known that X has the integral representation Xt =

∫ t
0 dM(s) on T = S =

[0, 1] using the Lebesgue measure for σ and m. Thus the operator u in (4.3) is the
usual integration operator: (ux)(s) =

∫ s
0 x(t) dt. The behaviour of the entropy

numbers of this operator is well-known to be en(u) ≈ n−1. On the other hand,
the small deviation probabilities of X with respect to the Lp[0, 1] norms are well-
known to be φ(X, ε) ≈ ε−α (cf. Section 6.3 in [11] for a historical overview of
this result). This shows that Corollary 4.1 is sharp in this case.

4.2. Example 2: Fractional Stable Processes. Let us consider the exam-
ples of the Riemann-Liouville process

RH
t :=

∫ t

0
(t − s)H−1/α dM(s), t ∈ [0, 1],

with Hurst parameter H > 0 and the linear α-stable fractional motion

XH
t :=

∫ t

−∞

[

(t − s)H−1/α − max(−s, 0)H−1/α
]

dM(s), t ∈ [0, 1],

with Hurst parameter 1/α < H < 1, where M is as in Example 1. Note that these
processes are special cases of Example 1.

The processes RH and XH have been under investigation for a long time. It
is well-known that both processes are closely related, in particular in the Gaussian
case (α = 2), where XH is a fractional Brownian motion. For the non-Gaussian
case, XH is one possible generalisation of the fractional Brownian motion.

Recently, a detailed study on the small deviation problem for RH and XH

under a wide class of norms has been carried out in [11].
However, it does not seem possible to convert all of these results into entropy

estimates via Theorem 1.1. The reason for this is that not all the spaces considered
in [11] can be represented as dual spaces of a suitable Banach space E. In partic-
ular, this seems to be the case with the p-variation norm, which was also the topic
of [15].

Because of this, let us concentrate on the case E = Lp′ [0, 1] with E′ ⊇
Lp[0, 1] already considered in Example 1. The main result of [11] states that if
H > 1/α then

(4.4) φ(RH , ε) ≈ φ(XH , ε) ≈ ε−1/H .

Note that in the case H = 1/α the process R1/α is exactly the symmetric
α-stable Lévy motion considered above.

The operator u in (4.3) having the same entropy behaviour as the operator ũ
generating RH is given by u = Γ(H − 1/α + 1)RH−1/α+1, where

(Rβx)(s) :=
1

Γ(β)

∫ s

0
(s − t)β−1x(t) dt, s ∈ [0, 1],
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is the so-called Riemann-Liouville operator.

The entropy numbers of the Riemann-Liouville operator can be calculated
with the help of the methods in [5]; also cf. Proposition 6.1 in [9]. The result is

(4.5) en(RH−1/α+1) ≈ n1/α−H−1.

Here, (4.4) and (4.5) agree in the sense of Proposition 1.2 and Theorem 1.1, i.e.
showing their respective sharpness. The situation is likewise for XH in place of
RH .

Certainly, a similar comparison can be carried out for Sobolev and Besov
spaces with the help of the small deviation results in [11] and the entropy results
in [5].

Nevertheless, we concentrate on a different aspect, namely unbounded Rie-
mann-Liouville processes. It is known that RH ∈ Lp[0, 1] almost surely if and
only if H > max(1/α − 1/p, 0) (cf. Section 6 in [11]). For H < 1/α, the above-
mentioned results from [11] do not apply in their full extent. Theorem 4 from [11]
or, alternativly, the result of Li and Linde quoted above as Proposition 1.2 yields
that

φ(RH , ε) � ε−1/H .

An upper bound for φ is not known, cf. the remark at the very end of Section 6.4 in
[11]. However, if it turns out that φ(RH , ε) � ε−τ with τ > 1/H we would have
found another counterexample as those mentioned in Theorem 1.2.

4.3. Example 3: H-sssi Processes. Now we are going to consider H-self-
similar processes with stationary increments (H-sssi processes), i.e. let (Xt)t≥0 be
a symmetric α-stable process satisfying

(Xct)t≥0
d
= (cH Xt)t≥0,

and
(Xt+c − Xc)t≥0

d
= (Xt − X0)t≥0,

for all c > 0, where d
= means that the finite-dimensional distributions coincide.

The self-similarity property makes these processes very important in applica-
tions. Further properties and examples of H-sssi processes as well as literature
links to applications are given in Chapters 7 und 8 of [14].

The small deviation problem for this class of processes in L∞[0, 1] was studied
thoroughly in [13]; where a recent improvement was obtained in [3]. It can be
shown that if X is almost surely bounded then

φ(X, ε) � ε−1/H for 1 < α < 2, 1/α < H ≤ 1.

Let us remark that [13] also proves lower bounds. The bound for 0 < α < 1 is just
the result from [12] we have already commented on above, which is not interesting
for us. However, the result just quoted for 1 < α < 2 (Theorem 3.2 in [13])
combined with Theorem 1.1 yields the following result.
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Corollary 4.2. Let 1 < α < 2 and assume that X is a symmetric α-stable,

H-sssi process that is almost surely bounded. Assume that there is an operator u :
L1[0, 1] → Lα(S, σ), where (S, σ) is some σ-finite measure space, that generates
X . Then

en(u) � n1/α−H−1.

There are several important examples of stable H-sssi processes such as the
α-stable Lévy motion (mentioned already at the end of Example 1), the linear α-
stable fractional motion (mentioned in Example 2), or the sub-fractional Brownian
motion, defined by Xt = A1/2Yt, where A is an α/2-stable, non-negative random
variable that is totally skewed to the right and Y is a fractional Brownian motion
with Hurst parameter H . The small deviation problem for the latter was solved in
[13] to the end that

φ(X, ε) ≈ ε−
2α

2−α+2αH .

By Theorem 1.1, this shows en(u) � n−(H+1/2), which is not surprising. It can
be derived by different methods that en(u) ≈ n−(H+1/2), which again shows that
in this case Proposition 1.2 and Theorem 1.1 are sharp.

4.4. Example 4: Sequences of independent random variables. Let us
consider ξ1, ξ2, . . . to be independent, identically distributed symmetric α-stable
random variables, and let σ1 ≥ σ2 ≥ . . . ≥ 0 be a sequence of real numbers that
tends to zero. Then we consider the symmetric α-stable process

X = (σ1ξ1, σ2ξ2, . . .) ∈ lp,

where 1 ≤ p ≤ ∞. The small deviation probabilities of this class of processes are
included in the results of [2].

On the other hand, it is easy to see that the diagonal operator

u : lp′ → lα with u(x1, x2, . . .) := (σ1x1, σ2x2, . . .)

generates the process X . Entropy numbers of diagonal operators have been studied
by many authors; we refer to [7] for a recent survey.

Let us compare the results on entropy numbers and small deviations in the
case that there are µ > 0 and ν ∈ R such that

σn

n−µ(log n)−ν
→ 1.

For µ > max(1/α, 1/p), Corollary 4.1 in [2] yields

(4.6) lim
ε→0+

ε
1

µ−1/p (− log ε)
ν

µ−1/p φ(X, ε) = Cp,
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where Cp is a finite, positive constant. If µ ≤ max(1/α, 1/p) then (4.6) holds with
Cp = ∞.

On the other hand, Theorem 2.2 in [7] yields that (for µ > max(1/α −
1/p′, 0))

(4.7) en(u) ≈ n1/α−1/p′−µ(log n)−ν = n1/α−(µ−1/p)−1(log n)−ν .

Note that (4.6) and (4.7) agree for µ > max(1/p, 1/α) in the sense of Propo-
sition 1.2 and Theorem 1.1, showing their respective sharpness. However, note
that they do not agree for those cases when X is in lp almost surely and µ ≤
max(1/p, 1/α), which can be used to prove Theorem 1.2.

Proof of Theorem 1.2. Let ξ1, ξ2, . . . be as above and let us consider the
example σn = n−1/α(log n)−b/α, with b > 1. Then we consider the symmetric
α-stable process

X = (σ1ξ1, σ2ξ2, . . .) ∈ l∞ = l′1.

It was shown in [2] that in the case σn = n−1/α(log n)−b/α we have

φ(X, ε) ≈ ε−α(− log ε)−b+1.

The above-mentioned estimate (4.7) for entropy numbers, however, states that
(since µ = 1/α > max(1/α − 1, 0))

en(u) ≈ n−1(log n)−b/α.

This example serves as the counterexample asserted in Theorem 1.2, since

en(u) � n−1(log n)−b/α but lim
ε→0+

εα(− log ε)bφ(X, ε) = ∞

and φ(X, ε) ≈ φ(X, 2ε),

φ(X, ε) � ε−α(− log ε)−b+1 but lim
n→∞

n(log n)−
−b+1

α en(u) = 0.

�
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