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Abstract

We establish a general lower bound for the small deviations of α-
stable processes in terms of the metric entropy behaviour w.r.t. the
Dudley metric. This generalises work by Talagrand (1993) for Gaus-
sian processes and yields new bounds for stable self-similar processes.
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1 Introduction

While large deviation problems are well-studied for many classes of processes,
the investigation of small deviation problems still lacks general tools to tackle
whole classes of processes. Only for Gaussian processes several general tools
are known. In this note, we generalise one of those tools to the symmetric
α-stable case.

In the investigation of Gaussian and stable processes, the metric entropy
approach has turned out far-reaching, cf. Samorodnitsky and Taqqu (1994).
We generalise a result of Talagrand (1993) for Gaussian processes in this
direction. The result and its proof can be found in a convenient formulation
in Ledoux (1996), p. 256–258.

Note that there are some results concerning the relation between the en-
tropy of the operator related to a Gaussian or stable process and the process’
small deviation probabilities, cf. Kuelbs and Li (1993), Li and Linde (1999)
for the Gaussian, and Li and Linde (2004), Aurzada (2006) for the stable
case. However, here we relate the entropy of the parameter set w.r.t. the
Dudley metric to the small deviation probabilities.

Lifshits and Simon (2005) undertook a detailed investigation of the small
deviation problem for a very important example of stable processes under
various kinds of norms. However, results that apply to a whole class of
processes almost do not exist except for those of Samorodnitsky (1998), where
self-similar processes are treated. We extend the results for these examples.

In Section 2, we give the main result and its proof. Some applications are
listed in Section 3. In particular, we apply the results to the class of stable
self-similar processes with stationary increments, we investigate the question
for stable processes with integral representation, and we treat the case of
weighted sums of independent stable random variables.

2 Result

Let X = (Xt)t∈T be a real-valued symmetric α-stable process with parameter
set T 6= ∅; i.e. assume that (Xt1, . . . , Xtn) is a symmetric α-stable vector,
for all choices t1, . . . , tn ∈ T , cf. Samorodnitsky and Taqqu (1994). Since
we investigate the supremum of the process, we have to assume that it is
measurable; i.e. we assume that there exists a separable version.

Let us define the Dudley metric related to X by letting dX(t, s) de-

2



note the scale parameter of the random variable Xt − Xs. We recall from
Property 1.2.17 in Samorodnitsky and Taqqu (1994) that dX(t, s) equals

(E|Xt −Xs|
r)1/r up to a constant depending on r < α and α.

We assume that (T, dX) is a precompact quasi-metric space. Then the
covering numbers are defined in the usual way:

N(T, dX , ε) := min{n ∈ N | ∃t1, . . . , tn ∈ T ∀t ∈ T ∃i : dX(t, ti) ≤ ε}.

Furthermore, we use f(ε) � g(ε) if lim supε→0 f(ε)/g(ε) < ∞; and f(ε) ≈
g(ε) if f(ε) � g(ε) and g(ε) � f(ε) hold.

With the above notation, we can now state our main theorem.

Theorem 1. Let

N(T, dX , ε) ≤ ψ(ε), for all 0 < ε < ε0, (1)

where ψ : R>0 → R≥0 and there are constants c1, c2 with 1 < c1 ≤ c2 < 2α

(for α = 2, only 1 < c1 ≤ c2 <∞ is required) such that

c1ψ(ε) ≤ ψ (ε/2) ≤ c2ψ(ε), for all 0 < ε < ε1.

Then

− log P

(

sup
t,s∈T

|Xt −Xs| ≤ ε

)

� ψ(ε).

Remark: For 1 ≤ α < 2, a particular consequence of the assumptions is
that the process is almost surely bounded, by a version of Dudley’s Theorem
for stable processes (cf. Samorodnitsky and Taqqu (1994), Theorem 12.2.1).
For 0 < α < 1, our Theorem 1 provides a new Dudley-type theorem, since it
implies boundedness, by the Zero-one law in Corollary 9.5.5 in Samorodnitsky
and Taqqu (1994).

Proof of Theorem 1: The case α = 2 was treated by Ledoux (1996); we
thus concentrate on the proof for α < 2.

Let h := log c2/ log 2. Then, by assumption, 0 < h < α and thus

c1ψ(ε) ≤ ψ (ε/2) ≤ 2hψ(ε). (2)

Since (T, dX) is assumed to be precompact, D(T ) := supt,s dX(t, s) <∞.
Let n0 be the largest number in Z such that 2−n0 ≥ D(T ).
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We proceed as in Ledoux (1996), p. 257, where the Gaussian case is
treated, with some modifications inspired by Lifshits and Simon (2005).
Analogously to the former, we let N(n) := N(T, dX , 2

−n) and Tn ⊆ T
be a subset of cardinality N(n) with dX(T, Tn) ≤ 2−n. Furthermore, let
sn−1(t) denote a point in Tn−1 with dX(t, sn−1(t)) ≤ 2−n+1 and define Yn :=
{Xt−Xsn−1(t), t ∈ Tn}. Then the scale parameter of any of the stable random
variables Yn ∈ Yn is less than 2−n+1. Furthermore, the cardinality of Yn is at
most N(n). By separability, for every t there are appropriate Yn ∈ Yn such
that

Xt = Xt0 +
∑

n>n0

Yn. (3)

Since h < α, we can find a δ with 0 < δ < 1 − h/α. Fix q > n0 and let

bn := 2−n+1+(n−q)−δ|n−q|.

Then it is elementary to see that
∑

n>n0
bn ≤ cδ2

−1 2−q, for some constant cδ
only depending on δ. Therefore, using (3),

P

(

sup
t,s∈T

|Xt −Xs| ≤ cδ2
−q

)

≥ P (∀n > n0 ∀Yn ∈ Yn, |Yn| ≤ bn)

≥
∏

n>n0

P
(

|g| ≤ bn2n−1
)N(n)

,

where g is a standard symmetric α-stable random variable and we used
Šidák’s Inequality (cf. Lemma 2.1 in Samorodnitsky (1998)).

Taking logarithms and using (1), we obtain

log P

(

sup
t,s∈T

|Xt −Xs| ≤ cδ2
−q

)

≥

q−1
∑

n=n0+1

ψ(2−n) log P
(

|g| ≤ bn2n−1
)

+
∑

n≥q

ψ(2−n) log P
(

|g| ≤ bn2n−1
)

. (4)

Let us estimate the first sum using (2) and the behaviour of the distribu-
tion of g at the origin:

q−1
∑

n0+1

ψ(2−n) log P
(

|g| ≤ bn2n−1
)

≥

q−1
∑

n=1

cn−q
1 ψ(2−q) log P

(

|g| ≤ 2(1+δ)(n−q)
)

≥ ψ(2−q)

q−1
∑

n=1

cn−q
1 log

(

c2(1+δ)(n−q)
)

.
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Since c1 > 1, the latter term can be estimated by −C1ψ(2−q), where
C1 > 0 is some constant depending on δ, c, and c1 only. Let us come to the
second term in (4) now. Here we use (2) and the tail behaviour of g:

∑

n≥q

ψ(2−n) log P
(

|g| ≤ bn2n−1
)

=
∑

n≥q

ψ(2−n) log
(

1 − P
(

|g| > 2(1−δ)(n−q)
))

≥ −C
∑

n≥q

2h(n−q)ψ(2−q)P
(

|g| > 2(1−δ)(n−q)
)

≥ −C ′ψ(2−q)
∑

n≥q

2h(n−q)2−α(1−δ)(n−q).

Since h− α(1 − δ) < 0, the latter term can be estimated by −C2ψ(2−q),
where C2 > 0 is some constant depending on δ, α, and h only.

Thus we have seen that

log P

(

sup
t,s∈T

|Xt −Xs| ≤ cδ2
−q

)

≥ −Cψ(2−q),

for all q > n0 and some constant C = C(α, c, c1, h) > 0. Using the standard
argument from Ledoux (1996), p. 259, this implies the assertion.

The easiest case is the one where ψ behaves as a polynomial. In this case,
we immediately obtain the following corollary.

Theorem 2. Let N(T, dX , ε) ≤Mε−h, for all 0 < ε < ε0, where M > 0 and
0 < h < α. Then − log P

(

supt,s∈T |Xt −Xs| ≤ ε
)

� ε−h.

Note that the assumption on h in the above corollary cannot be re-
laxed, since there are unbounded stable processes with N(T, dX , ε) ≈ ε−α,
cf. Samorodnitsky and Taqqu (1994).

However, one can ask for a relaxation of the conditions on ψ in Theo-
rem 1: on the one hand, the case of slowly varying ψ (i.e. c1 = 1) is an
interesting open question even in the Gaussian case. On the other hand,
it is not clear what happens if the process is bounded but only c2 = 2α is
possible. These situations will be investigated in a future work by Aurzada
and Lifshits (2007).
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3 Applications

3.1 Self-similar processes

We can now easily obtain the following general result for processes with
parameter set T = [a, b].

Corollary 1. Let dX(t, s) ≤ c|t− s|H with H > 1/α and some c > 0. Then

− log P

(

sup
t,s∈T

|Xt −Xs| ≤ ε

)

� ε−1/H . (5)

Similarly, one can argue with other parameter sets that already possess
a metric d satisfying dX ≤ d.

Of great importance are symmetric stable H-self-similar processes with
stationary increments (H-sssi processes), cf. Chapter 7 in Samorodnitsky and
Taqqu (1994). Samorodnitsky (1998) carried out a study of their small devia-
tion probabilities. We improve the lower bound by removing the unnecessary
logarithmic term, as conjectured by Samorodnitsky.

Corollary 2. If X is an H-sssi process with H > 1/α then (5) holds.

Proof: By Corollary 7.3.4 in Samorodnitsky and Taqqu (1994), dX(t, s) =
c|t− s|H .

This bound cannot be improved in general, as shown by Samorodnit-
sky (1998), which means that the general bound in Theorem 1 cannot be
improved either.

One of the most important examples of stable H-sssi processes is the so-
called linear fractional α-stable motion (LFSM), which is one possible stable
generalisation of the fractional Brownian motion. By the LFSM we mean
the process Lα,H(a, b; t) from Definition 7.4.1 in Samorodnitsky and Taqqu
(1994).

A detailed study of the small deviation problem of Lα,H(1, 0; t) can be
found in Lifshits and Simon (2005). There, upper and lower bounds were
obtained under various kinds of norms; in particular, under the supremum
norm for H > 1/α. Also of particular interest is the so-called well-balanced
LFSM Lα,H (1, 1; t).

The above result on H-sssi processes yields a lower bound for the small
deviations of Lα,H(a, b; t) under the supremum norm for all a, b and H > 1/α.
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The respective upper bound can be established with help of Theorem 4.5 in
Li and Linde (2004). This clarifies the small deviation rate for all LFSMs.

3.2 Hölder continuous kernels

Let us consider the case of symmetric α-stable processes given by an integral
representation:

Xt =

∫

S

K(t, x) dM(x), t ∈ T,

where M is a symmetric α-stable random measure with finite control mea-
sure m. In this case, the distance dX can be calculated by

dX(t, s) =

(
∫

S

|K(t, x) −K(s, x)|α dm(x)

)1/α

.

Given the kernel K, it is usually easy to calculate dX using the above
formula. One example is as follows.

Corollary 3. Let the kernelK be H-Hölder with 1/α < H ≤ 1, i.e. |K(t, x)−
K(s, x)| ≤ C|t− s|H , for all t, s ∈ T , x ∈ S. Then (5) holds.

3.3 Sequences of independent random variables

Let θ1, θ2, . . . be i.i.d. standard symmetric α-stable random variables. We
consider a function S : R>0 → R>0 that is regularly varying at infinity and
strictly decreasing with S(x) → 0 for x → ∞. Then we study the small
deviation problem for the stochastic process (Xn)n∈N := (S(n)θn)n∈N.

It is easy to calculate that dX(n,m) = (S(n)α + S(m)α)1/α, for n 6= m,
and 0, for n = m. Using this, one obtains that N(N, dX , ε) ≤ S−1(ε/c), for
some constant c > 0. If S is regularly varying at infinity with exponent less
than −1/α, ψ(ε) := S−1(ε/c) satisfies the conditions of Theorem 1. We thus
obtain that

− log P

(

sup
n∈N

|S(n)θn| ≤ ε

)

� S−1(ε).

The respective upper bound was obtained in Theorem 3.1 in Aurzada (2007)
in a more general context w.r.t. the law of the θn, but under the additional
condition that S is differentiable (which is not a restriction for the problem
we are considering) and that S ′ is ultimately increasing.
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Corollary 4. Let θ1, θ2, . . . be i.i.d. standard symmetric α-stable random
variables and let S be a strictly decreasing function such that S ′ exists and
is ultimately increasing. Assume furthermore that S is regularly varying at
infinity with exponent less than −1/α. Then

− log P

(

sup
n∈N

|S(n)θn| ≤ ε

)

≈ S−1(ε).
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