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Summary. We review our investigations on Gibbs measures relative to Brown-
ian motion, in particular the existence of such measures and their path properties,
uniqueness, resp. non-uniqueness. For the case when the energy only depends on in-
crements, we present a functional central limit theorem. We also explain connections
with other work and state open problems of interest.

1 Introduction

The probability measures studied in Statistical Mechanics have the generic
structure

1
Z

exp[−E ] × a priori measure (1)

The a priori measure is explicit and simple. The energy function E is defined
on the same space as the a priori measure and the partition function Z makes
(1) a probability measure. Of course, it is understood that E has a natural
structure, as dictated by concrete applications.

One much studied class of examples is that of lattice spin systems with
finite state space S. Then the a priori measure is the product over the lattice
points of the counting measure on S. The energy function typically has the
form

EΛ = (kBT )−1
∑

x,y∈Λ

U(σx, σy, |x− y|) (2)

where U : S2 × R+ → R is a pair potential, and σx ∈ S is the value of the
spin at site x of the finite subset Λ of the lattice. The inverse temperature
(kBT )−1 appears as a strength factor multiplying the energy.

The specific expression of the measures as formally given by (1) is actu-
ally firmly grounded in the experience of rigorous statistical mechanics. At
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least in the context of lattice spin systems with compact state space the so
emerging Gibbs measures prove to provide a proper mathematical description
of thermodynamic equilibrium states and thus they play a fundamental role
in the theory of phase transitions. In more specific cases, such as the Potts
model, these measures make a strong link between locality properties and
memory effects (Markov random fields), variational principles involving the
minimization of free energy so that states appear as tangent functionals (large
deviation theory), and the understanding in terms of percolation properties of
how macroscopic long range order builds up from small scale events governed
by chance (stochastic geometry). Although as soon as we leave the class of
discrete models these relationships are not as clear any longer, these signposts
pinpoint a programme of a general theory of Gibbs measures from which one
can take an inspiration. In this paper we present the first steps in developing
a theory of Gibbs measures on path space.

We will study the case where the a priori measure is Brownian motion in
Rd. Let us denote by t → Xt ∈ Rd a Brownian path and by W the Wiener
measure. Since t ∈ R, in the parlance of Statistical Mechanics our model
is one-dimensional with d components. The finite box Λ corresponds to the
time interval [−T, T ]. W has then to be supplied with appropriate boundary
conditions. For example one could pin the path at both endpoints, X−T = 0,
XT = 0, in which case W would turn into a Brownian bridge. The simplest
energy function is given through an “on site” potential V : Rd → R and takes
the form

E1,T =
∫ T

−T

V (Xt)dt. (3)

The analogue of the pair interaction energy (2) transcribes as

E2,T =
∫ T

−T

∫ T

−T

W (Xt, Xs, t− s)dtds (4)

with W : R2d×R → R, W (x, x′, t) = W (x′, x, t), and
∫
|W (x, x′, t)|dt <∞. In

Statistical Mechanics energies are proportional to the volume, i.e. proportional
to T in our case. Clearly, in spirit this is satisfied by both energies (3) and
(4). With these preparations a Gibbs measure on path space reads as

1
Z(T )

exp
[
− E1,T (X)− E2,T (X)

]
δ(X−T )δ(XT )dW(X) . (5)

Of course, there is considerable freedom in how to pick the energy function.
(3) and (4) come up naturally from applications. A further set of examples is
obtained by replacing in (3), (4) the Riemann integrals by stochastic integrals
as

Ẽ1,T (X) =
∫ T

−T

a(Xt) · dXt , Ẽ2,T (X) =
∫ T

−T

∫ T

−T

dXs ·W (Xt, Xs, t− s)dXt ,

(6)
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with a(x) a vector field and W (x, x′, t) a d× d matrix. Since our own work is
centered more around (5), we will concentrate exclusively on this case.

Our plan is first to explore the probabilistic structure. In the final chapter
we list various applications for which measures of the form (5) with specific
choices of E1 and E2 appear. From there it will also be apparent that each
application poses specific questions not covered by general theory.

Broadly speaking, given the measure in (5) there are two limiting proce-
dures of interest.

i) Short distance (ultraviolet) limit. The box [−T, T ] is fixed and the interac-
tion is singular on the diagonal. The prototype are polymer measures, where
self-crossings are penalized by the energy

ET,poly(X) =
∫ T

−T

∫ T

−T

δn(Xt −Xs)dtds . (7)

Here δn ≥ 0 with support in a ball of radius 1/n centered at the origin. One
goal is then to prove that the Gibbs measure in (5) with the energy (7) has
a limit as n→∞. Problems of these type also come up in proving renormal-
izability of quantum field theories. They have been studied in considerable
detail. We refer to [20, 35, 36, 40, 6] and references therein. A more detailed
discussion is outside the scope of the present review and we will always assume
that W is locally bounded.

ii) Large distance (infinite volume) limit. The goal is to show that the mea-
sure in (5) has a limit as T → ∞. The limit measure has then conditional
expectations à la Dobrushin, Lanford, and Ruelle. As standard in the theory
of Gibbs measures, the issue divides into the existence of a limit measure and
the dependence of the limit measure on the choice of boundary conditions.

The infinite volume limit will be discussed in Section 2. A prerequisite is
the case W ≡ 0, which leads to the theory of P (φ)1-processes, i.e. reversible
diffusion processes with constant diffusion, which will be taken up in Section
2.1. If the interaction W is weak, one expects that the qualitive properties of
the stationary P (φ)1-process remain intact. Technically, a cluster expansion
will be used to establish such a result. The basic set-up will be explained in
Section 2.2. It differs from the more convential cluster expansions because
the a priori measure is not a product measure and the configurations are
segments of Brownian paths rather than the better understood R- or Z-valued
spins. To prove existence of the limit measure with no restriction on the
interaction strength requires other methods. One possibility is domination
and monotonicity [32]. In Section 2.3 we explain a more general scheme, which
relies on having an essentially bounded interaction energy between the path
{Xt, t ≤ 0} and the path {Xt, t ≥ 0}. Under such a condition we prove that the
Gibbs measure is unique, i.e. independent of the choice of boundary conditions
within a reasonable class. To have non-uniqueness, the interaction energy must
increase at least as log T , or equivalently W (x, x′, t) has to decay at least as
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slow as |t|−2 for large |t|. In Section 2.4 we discuss a specific example, for
which it can be shown that the limit measure depends on the choice of the
boundary conditions.

Another case of interest is the energy

E(X) =
∫ T

−T

∫ T

−T

W (Xt −Xs, t− s)dtds (8)

with
∫
|t|W (x, t)dt < ∞, hence zero external potential V . As the expression

shows, the energy depends only on path increments. Thus one expects that,
under the Gibbs measure (5) for E1,T + E2,T replaced by E , Xt behaves like
Brownian motion with some effective diffusion coefficient. For example, if X
is pinned as X−T = 0 = XT , then ET (X2

0 ) ' T , at large T . The T →∞ limit
of the measure (5) will not exist and the more sensible project is to prove an
invariance principle under suitable rescaling. This will be explained in Section
3. Finally, in Section 4 we discuss some specific applications.

At this point we would like to take the opportunity to thank the organizers
of the SPP 1033 “Interacting Stochastic Systems of High Complexity” for their
initiative. The Schwerpunkt turned out to be a successful enterprise for joint
research in the applied areas of probability theory.

2 Gibbs measures

2.1 The case of external potential

First we outline a method on how to represent P (φ)1-processes (i.e., Brownian
motion in the presence of an external potential) in terms of Gibbs measures.
Since Bt, the outcomes of Brownian motion, are correlated for different values
of t, Wiener measure carries some dependence and is not as simple as a prod-
uct measure. However, by its Markovianness and since this property survives
under the potentials we consider, P (φ)1-processes are tractable to a fair ex-
tent, which is a first step toward understanding more complicated cases, such
as (4) when also a pair interaction in present. For early results we refer to
[37, 38], for details of Gibbsian description as well as proofs and a discussion
of the related literature see [3]; the arguments used here are largely based on
a spectral theoretic analysis.

Denote V + = sup{0, V } and V − = inf{−V, 0}. Two classes of external
potential V : Rd → R will be considered:

(V1) Kato-class. Here V − ∈ Kd and V + ∈ K loc
d , with

K1 = {V : sup
x∈R

∫
|x−y|≤1

|V (y)| dy <∞},

Kd = {V : lim
r→0

sup
x∈Rd

∫
|x−y|≤r

|V (y)| q(|x− y|) dy = 0} if d ≥ 3,
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with q(x) = − log |x| for d = 2, and q(x) = 1/|x|d−2 for d ≥ 3, and the local
Kato-class

K loc
d =

{
f : f1A ∈ Kd for each compact A ⊂ Rd

}
. (1)

(V2) Confining potentials. V is bounded from below and continuous,
moreover V (x) = a|x|2s + o(|x|2s), with some s > 1 and a > 0.

Examples of Kato-class potentials include smooth functions bounded from
below, but also some local (e.g. Coulomb) singularities are allowed. In partic-
ular, (V2) is a specific case of (V1). The sets Kd can also be characterized in
terms of Wiener integrals.

For V having either of the regularity properties above define the Schrödinger
operator H = −1/2∆ + V (x) on L2(Rd, dx) as a sum of quadratic forms (V
is regarded as a multiplication operator). Then C∞0 (Rd) is a form core on
which H is essentially self-adjoint and bounded from below. If the bottom of
the spectrum E0 of H is a simple eigenvalue, then the corresponding eigen-
function ψ0 (ground state) is strictly positive. The semigroup e−tH , t ≥ 0,
exists on L2(Rd, dx), and it is an integral operator with positive, continuous,
uniformly bounded kernel Gt(x, y). For (V2)-type potentials the semigroup is
moreover intrinsically ultracontractive. That is, with the probability measure
dν = ψ2

0dx on Rd, and isometry j : L2(Rd, dν) → L2(Rd, dx), f 7→ ψ0f , the
operator

Hνf = (j−1(H − E0)j)f =
1
ψ0

(H − E0)(ψ0f)

= −1
2
∆f − (∇ lnψ0,∇f)Rd , (2)

with DomHν = j−1(DomH), defines a semigroup e−tHν for all f ∈ L2(Rd, dν)
and t ≥ 0. Intrinsic ultracontractivity of e−tH means that e−tHν is ultracon-
tractive, i.e. it maps L2(Rd, dν) into L∞(Rd, dν) continuously, or equivalently,
||e−tHν ||2,∞ <∞, ∀t ≥ 0.

Choose now H to be a Schrödinger operator such that its ground state ψ0

exists. For convenience and without loss we shift the potential by E0 so that
the bottom of the spectrum of H is 0. For t1 < . . . < tn ∈ R, f1, . . . , fn ∈
L2(Rd, dx) ∩ L∞(Rd, dx), the P (φ)1-process associated with H is the unique
probability measure P on path space C(R,Rd) defined by∫

f1(Xt1) . . . fn(Xtn)dP (X)

= (ψ0f1, e
−(t2−t1)Hf2 . . . e

−(tn−tn−1)Hfnψ0)L2(Rd,dx). (3)

P is indeed a probability measure as e−tHψ0 = ψ0 and ‖ψ0‖2 = 1. A P (φ)1-
process is a reversible stationary Markov process with stationary measure dν
and generator Hν , and it has almost surely continuous paths. It is moreover
the stationary solution of the stochastic differential equation (Itô-diffusion)
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dXt = (∇ lnψ0)(Xt) dt+ dBt,

where Bt denotes Brownian motion on Rd.

Processes of this type can be given a Gibbsian description. We emphasize
that since in the present stage there are no useful relationships available with
variational principles etc as discussed in the Introduction, here the basic fact is
that there is at all a probability measure associated with the scalar product in
(3), a consequence of the Riesz-representation theorem, while its Gibbsianness
comes second to it. That we are able to identify this measure as a Gibbs
measure leads however to further insight.

Denote X = C(R,Rd), the space of continuous functions from R to Rd, and
its σ-field A = σ(πt : t ∈ R) generated by the point evaluations πt : X → Rd,
X 7→ πt(X) = Xt. These will be the configuration space and σ-field for the
Gibbs measure, respectively. For [−T, T ] ⊂ R we denote by AT the σ-field
σ(πt : t ∈ [−T, T ]) ⊂ A; also, we put [−T, T ]c = R r [−T, T ].

Write as before W for Wiener measure, and Wξ,η
[−T,T ] for the Wiener mea-

sure conditional on starting in ξ at time −T and ending in η at time T . This
Brownian bridge can be extended to a measure on X by picking an Y ∈ X and
putting WY

T = WY−T ,YT

[−T,T ] ⊗ δY
[−T,T ]c , with Dirac measure on C([−T, T ]c,Rd)

concentrated on Y |[−T,T ]c . WY
T is thus a finite measure on (X ,A); it will serve

as reference measure for the Gibbs measure to be constructed.
Take any A ∈ A and consider

dPT (A|Y ) =
1

ZT (Y )
1A(X)e−

R T
−T

V (Xs)ds dWY
T (X), (4)

where
ZT (Y ) =

∫
e−

R T
−T

V (Xs)ds dWY
T (X) (5)

is the partition function turning PT into a probability measure.

Definition 2.1. Let X ∗ ⊂ X . A probability measure P on (X ,A) is called
a Gibbs measure for potential V and reference measure WY , if for every
bounded interval [−T, T ] ⊂ R

1. P|AT
� W |AT

,
2. for every A ∈ A the function Y 7→ PT (A|Y ) given by the right hand side

of (4) is a regular version of the conditional probability P(A| A[−T,T ]c).

A probability measure PT on ([−T, T ],AT ) is called a finite time interval
Gibbs measure for V and reference measure WY

T if for every bounded interval
[−S, S] ⊂ [−T, T ] the function Y 7→ PS(A|Y ) as above is a regular version of
the conditional probability PS(A| A[−S,S]c). Furthermore, a Gibbs measure P
is said to be supported by X ∗ whenever P(X ∗) = 1.

This definition rests on the DLR conception of Gibbs measure. In this sense
we then have
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Theorem 2.2. A P (φ)1-measure P corresponding to potential V is a Gibbs
measure with respect to V and Wiener measure.

On the other hand, that PT (·|Y ) are a family of finite time interval Gibbs
measures indexed by bounded intervals can be seen in a straightforward way.
It can be proven by a monotone class argument that (infinite time interval)
Gibbs measures on path space can be obtained by limits of finite interval
Gibbs measures, similarly to the case known from lattice spin models. In this
limiting procedure thus one must have a control of boundary conditions.

A Gibbs measure associated with a P (φ)1-process need not be unique.
This non-uniqueness appears as a dependence of the Gibbs measure on the
boundary conditions. An example showing this is the Ornstein-Uhlenbeck pro-
cess, in which case uncountably many Gibbs measures can occur for the same
potential. This is related with the rate how the boundary paths increase, or
in other words, how fast for each T the boundary path on [−T, T ]c has to
“forget” that it was free Brownian motion before stepping in [−T, T ] where
it must “steady down” to conform with the correct distribution prescribed
by (4). A condition for uniqueness of the Gibbs measure is provided by the
following theorem.

Theorem 2.3. Let H be a Schrödinger operator for a Kato-class potential V
such that the spectral gap Λ of H is strictly positive, and let ψ0 be its ground
state. Put

X ∗ = {X ∈ X : lim
|t|→∞

e−Λ|t|

ψ0(Xt)
= 0}. (6)

Then the P (φ)1-measure P corresponding to V is the unique Gibbs measure
for V supported by X ∗. If, furthermore, V is a (V 2)-type confining potential,
then P is the unique Gibbs measure supported on the entire X .

The first part of the statement results from an argument using direct esti-
mates, the second relies on ultracontractivity.

By restricting to (V2)-type potentials and making use of the fact that for
this class ψ0 is bounded both from below and above by C exp(−θ|x|s+1), with
suitable constants C, θ > 0 for the two bounds respectively, we obtain from
Theorem 2.3 that those paths are typical for the P (φ)1-measure that grow
asymptotically like t1/(s+1).

2.2 Weak pair potential: cluster expansion

Next we turn to discussing whether Gibbs measures can be defined also for
Brownian motion subjected to both an external and a pair interaction poten-
tial. Such a process is not Markovian and therefore not accessible to spectral
analysis. Instead, we will develop a cluster expansion; for details and proofs
see [26].

We use the same set-up as before. The pair interaction potential is a mea-
surable function W : Rd × Rd × R → R with the (inessential) symmetry
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properties W (·, ·, t − s) = W (·, ·, |t − s|), W (x, y, ·) = W (y, x, ·), x, y ∈ Rd,
s, t ∈ R, and satisfying either of the following regularity conditions:

(W1) There is R > 0 and α > 2 such that

|W (x, y, t− s)| ≤ R
|x|2 + |y|2

1 + |t− s|α
(7)

for every x, y ∈ Rd and t, s ∈ R.
(W2) There is R > 0 and α > 1 such that

|W (x, y, t− s)| ≤ R

1 + |t− s|α
(8)

for every s, t ∈ R and x, y ∈ Rd.

For [−T, T ] ⊂ R write

W[−T,T ](X|Y ) = W[−T,T ](X) +WY
[−T,T ](X) (9)

for the “total energy” associated with configuration X ∈ X[−T,T ] given the
boundary configuration Y = Y − ∪ Y +, with Y − ∈ X(−∞,−T ] resp. Y + ∈
X[T,∞). Term by term,

W[−T,T ](X) =
∫ T

−T

∫ T

−T

W (Xt, Xs, s− t)dsdt (10)

is the “internal energy” associated with the path inside [−T, T ], and

WY
[−T,T ](X) = 2

∫ −T

−∞
dt

∫ T

−T

ds W (Y −t , Xs, t− s) +

+2
∫ ∞

T

dt

∫ T

−T

ds W (Y +
t , Xs, t− s) (11)

is the “interaction energy” between X and the boundary path Y . We calibrate
the interaction energy such that W 0

[−T,T ](X) = 0. As before, PT ( · |Y ) =
P[−T,T ]( · |Y −−T , Y

+
T ) is the conditional distribution of the reference measure for

the given boundary condition Y (which by Markovianness obviously depends
only on the positions attained at the ends of the interval). It is readily checked
that µ[−T,T ]( · |Y ), with Y ∈ C([−T, T ]c,Rd), is a family of finite time interval
Gibbs measures. We also allow λ ∈ R, a parameter which can be interpreted
as the strength of the coupling of the pair interaction to the Brownian paths.

Consider now a P (φ)1-process with stationary measure dν = ψ2
0dx and

transition probability density

gt(x|y) =
ψ0(x)Gt(x, y)
ψ0(y)e−E0t

. (12)
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Denote again the probability distribution of this process by P , and by PT its
restriction to the field A[−T,T ]. We take this as reference measure in construct-
ing the finite time interval Gibbs measures on X[−T,T ] for the pair potentials
above:

dµT (A|Y ) =
1

ZT (Y )
1A(X)e−λW[−T,T ](X|Y )dPT (X|Y ), (13)

for any A ∈ A and boundary condition Y . Here we speak about Gibbs measure
µ in the same sense as in Definition 2.1, now for potential W and reference
measure P . The partition function is

ZT (Y ) =
∫
e−λW[−T,T ](X|Y )dPT (X|Y ). (14)

As said before, Gibbs measures can be obtained as limits over finite time
interval Gibbs measures. Thus it is of interest whether the sequence of Gibbs
measures µT has a limit as T →∞; if it does then it provides a Gibbs measure
on the full path space as soon as also condition (i) of Definition 2.1 is met.

Theorem 2.4. Suppose V and W satisfy assumptions (V2), respectively ei-
ther (W1) or (W2). Take any unbounded increasing sequence T (n) of positive
real numbers, and suppose 0 < |λ| ≤ λ∗ with λ∗ small enough. Then the lo-
cal weak limit limn→∞ µT (n) = µ exists and is a Gibbs probability measure
on (X ,A) with respect to W and reference measure P . Moreover, µ does not
depend on the choice of sequence T (n).

In order to prove this convergence we use a cluster expansion controlled
by the small parameter λ. Next we sketch the cluster representation of the
partition function (14) and outline the main steps of the proof. For simplicity
we start with free boundary conditions, i.e. Y = 0 in (13).

Take a division of [−T, T ] into disjoint intervals τk = (tk, tk+1), k =
0, ..., N − 1, with t0 = −T and tN = T , each of length b, i.e. fix b = 2T/N ; for
convenience we choose N to be an even number so that the origin is endpoint
to some intervals. We break up a path X into pieces Xτk

by restricting it to
τk. The total energy contribution of the pair interaction then becomes

WT :=
∫ T

−T

∫ T

−T

W (Xt, Xs, s− t)dsdt =
∑

0≤i<j≤N−1

Wτi,τj (15)

where with the notation Jij =
∫

τi
dt
∫

τj
W (Xs, Xt, s− t)ds we have

Wτi,τj
=



Jij +Jji if |i− j| ≥ 2
1
2 (Jii +Jjj) + Jij +Jji if |i− j| = 1, and i 6= 0, j 6= N − 1

Jij +Jji + 1
2 J00 if i = 0 and j = 1

Jij +Jji + 1
2 JN−1 N−1 if i = N − 1 and j = N − 2
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(For keeping the notation simple we do not make explicit the X dependence
of these objects.) By using (15) we obtain

e−λWT =
∏

0≤i<j≤N−1

(e−λWτi,τj +1−1) = 1+
∑
R6=∅

∏
(τi,τj)∈R

(e−λWτi,τj−1). (16)

Here the summation is performed over all nonempty sets of different pairs of
intervals, i.e. R = {(τi, τj) : (τi, τj) 6= (τi′ , τj′) whenever (i, j) 6= (i′, j′)}.

In order to keep this and the forthcoming summations in hand we need a
few more notations. Two distinct pairs of intervals (τi, τj) and (τi′ , τj′) will be
called directly connected and denoted (τi, τj) ∼ (τi′ , τj′) if one interval of the
pair (τi, τj) coincides with one interval of the pair (τi′ , τj′). A set of connected
pairs of intervals is a collection {(τi1 , τj1), ..., (τin , τjn)} in which each pair
of intervals is connected to another through a sequence of directly connected
pairs, i.e., for any (τi, τj) 6= (τi′ , τj′) there exists {(τk1 , τl1), ..., (τkm

, τlm)} such
that (τi, τj) ∼ (τk1 , τl1) ∼ ... ∼ (τkm

, τlm) ∼ (τi′ , τj′). A maximal set of
connected pairs of intervals is called a contour and denoted by γ. We denote by
γ̄ the set of all intervals that are elements of the pairs of intervals belonging to
contour γ, and by γ∗ the set of time-points of intervals appearing in γ̄. Clearly,
R can be decomposed into maximal connected components, i.e. contours:
R = {γ1, ..., γr} with γ̄i ∩ γ̄j = ∅, i 6= j; i, j = 1, ..., r.

The sum in (16) is then further expanded as

∑
R6=∅

∏
(τi,τj)∈R

(e−λWτi,τj − 1) =
∑
r≥1

∑
{γ1,...,γr}

r∏
k=1

∏
(τi,τj)∈γk

(e−λWτi,τj − 1) (17)

where now summation goes over collections {γ1, ..., γr} of contours such that
γ̄k ∩ γ̄k′ = ∅ unless k = k′.

A collection of consecutive intervals {τj , τj+1..., τj+k}, j ≥ 0, j+k ≤ N−1
is called a chain. As in the case of contours, %̄ and %∗ mean the set of intervals
belonging to the chain % and the set of time-points in %, respectively. We call
two contours γ1, γ2 disjoint if they have no intervals in common, i.e. γ̄1∩γ̄2 = ∅.
Two chains %1, %2 are called disjoint if they have no common time-points, i.e.
%∗1 ∩ %∗2 = ∅. Take now a non-ordered set of disjoint contours and disjoint
chains, Γ = {γ1, ..., γr; %1, ..., %s}, with some r ≥ 1 and s ≥ 0. Note that
such contours and chains may have common time-points. We use the notation
Γ ∗ = (∪iγ

∗
i ) ∪ (∪j%

∗
j ) for the set of all time-points appearing as beginnings

or ends of intervals belonging to some contour or chain in Γ . Also, we put
Γ̄ = (∪iγ̄i) ∪ (∪j %̄j) for the set of intervals appearing in Γ through entering
some contours or chains. Denote by ∂−% resp. ∂+% the leftmost resp. rightmost
time-points belonging to %. Γ is called a cluster if {γ∗1 , ..., γ∗r ; %∗1, ..., %

∗
s} is a

connected collection of sets and for every % ∈ Γ we have that ∂−%, ∂+% ∈
∪r

j=1γ
∗
j . This means that in a cluster chains have no loose ends.

Next we fix the positions of path X at the time-points of the division, i.e.
we put Xtk

= xk, for all k = 0, ..., N , with −T = t0 < t1 < ... < tN = T .
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The distribution of path X in interval [−T, T ] conditional on the positions
attained at the fixed times is

dPT (Xτ0 , ..., XτN−1 |Xt0 = x0, . . . , XtN
= xN ) =

N−1∏
k=0

dPτk
(Xτk

|xk, xk+1).

(18)
We use the shorthand at the right hand side for the corresponding conditional
probabilities for easing the notation. Let pt0,...,tN

(x0, ..., xN ) be the density
with respect to

∏N
k=0 dνk(xk) of the joint distribution of positions of path X

recorded at the time-points t0, ..., tN . Here dνk denotes a copy of dν for each
k = 0, ..., N . By Markovianness it then follows that

pt0,...,tN
(x0, ..., xN ) =

N−1∏
k=0

gb(xk+1|xk) =
N−1∏
k=0

(gb(xk+1|xk)− 1 + 1)

= 1 +
∑
S

∏
k:τk∈S

(gb(xk+1|xk)− 1).

The summation is extended over all nonempty sets S = {τk = (tk, tk+1)} of
different pairs of consecutive time-points. In a similar way as before the latter
formula can be recast in the form∑

S

∏
k:τk∈S

(gb(xk+1|xk)− 1) =
∑
s≥1

∑
{%1,...,%s}

s∏
j=1

∏
k:τk∈%j

(gb(xk+1|xk)− 1) .

(19)
Here {%1, ..., %s} is a collection of disjoint chains, and this formula explains
the way we defined them before.

For every cluster Γ = {γ1, ..., γr; %1, ..., %s} define the function

κΓ =
r∏

l=1

∏
(τi,τj)∈γl

(e−λWτiτj − 1)
s∏

m=1

∏
k:τk∈%m

(gb(xk+1|xk)− 1) . (20)

Also, introduce the auxiliary probability measure on XT

dPT (X) =
N−1∏
k=0

dPτk
(Xτk

|xk, xk+1)
N∏

k=0

dνk(xk) (21)

and look at
KΓ = EPT

[κΓ ]. (22)

Note that
∫

(gb(xk+1|xk)− 1)dν(xk+1) =
∫

(gb(xk+1|xk)− 1)dν(xk) = 0. This
is the reason why from a cluster we rule out chains having loose ends; for any
such chain EPT

[κΓ ] = 0.
By putting (17), (18), (19), (20) and (22) together we obtain the cluster

representation of the partition function ZT :



12 Volker Betz, József Lőrinczi and Herbert Spohn

Proposition 2.5. For every T > 0

ZT = 1 +
∑
n≥1

∑
{Γ1,...,Γn}

n∏
l=1

KΓl
. (23)

Here the summation is performed over all sets of clusters {Γ1, ..., Γn} 6= ∅ for
which Γ ∗i ∩ Γ ∗j = ∅ whenever i 6= j.

As soon as the cluster representation of ZT is established, the existence of the
weak limit measure µ = limT→∞ µT follows by the cluster estimates below
and the general arguments presented in e.g. [29], Chapter 3.

We conclude the presentation of the expansion by briefly explaining the
two crucial cluster estimates. The first one is given by

Proposition 2.6. For every cluster Γ we have the bound

|KΓ | ≤
∏
%∈Γ

(c1|λ|1/3)|%̄|
∏
γ∈Γ

∏
(τi,τj)∈γ

c2|λ|1/3

(|i− j − 1|b)δ + 1
(24)

with |%̄| denoting the number of intervals contained in %, constants c1, c2 > 0
and exponent δ > 1.

In estimate (24) the factor accounting for the contribution of chains comes
from the uniform upper bound Ce−Λb on |gb(x|x′) − 1| (see second factor in
(20)), where Λ is the spectral gap of the Schrödinger operator of the under-
lying P (φ)1-process, and C > 0. This bound, in its turn, is a consequence
of the intrinsic ultracontractivity of e−tH , compare Section 2.1. The factor
accounting for the contribution of contours comes from an estimate using
a generalized variant of the Hölder inequality applied to the products over
e−λWτiτj −1 (see first factor in (20)). b is finally chosen in such a combination
with λ and Λ that the expression (24) results.

The second fundamental estimate ensuring the convergence of the cluster
expansion is

Proposition 2.7. There is a constant c > 0, independent of λ, and a number
0 < η(λ) < 1 with η → 0 as λ→ 0, such that∑

Γ :Γ∗30
|Γ̄ |=n

|KΓ | ≤ c ηn. (25)

with |Γ̄ | denoting the number of intervals contained in Γ through some contour
or chain.

This estimate follows through a procedure of translating the summation in the
left hand side of (25) into a combinatorial problem and resumming over (and
counting of) first graphs and then trees. The contours are assigned vertices
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and they are linked into graphs according to the rules connecting them up
into clusters.

So far we assumed free boundary conditions. By an extension of the ar-
gument sketched above also other boundary conditions can be taken into
account, picked from X ∗, the subset provided by Theorem 2.3. Then an im-
portant question is how the limiting measure depends on the boundary con-
ditions. Uniqueness (in DLR-sense) means that for any increasing sequence
of real numbers {Tn} and any corresponding sequence {Yn} ⊂ X ∗

[−Tn,Tn]c ,
limn→∞ EµTn

[FB |Yn] = Eµ[FB ], for every bounded B ⊂ R, and each bounded
measurable function FB .

Theorem 2.8. Suppose V is of class (V2) and W satisfies (W2). Then we
have the following cases:

1. If α > 2, then whenever the Gibbs measure µ exists, it is unique in DLR
sense.

2. If α > 1, then for sufficiently small |λ| the limiting Gibbs measure µ is
unique in DLR sense whenever the reference measure is unique.

If α > 2, |WY
T (X)| (given by (11)) is uniformly bounded in T , and in paths X

and Y . This implies that only one Gibbs measure can exist, and the argument
requires no restriction on the values of λ. For 1 < α ≤ 2 this uniform bound-
edness does not hold any longer and we once again take recourse to cluster
expansion.

Having a Gibbs measure at hand, an important aspect in its understanding
is to see what a typical configuration looks like under it. This is answered by

Theorem 2.9. Under the same conditions as in the previous theorem, with
µ-probability 1 we have

|Xt| ≤ C (log(|t|+ 1))1/(s+1) +Q({X}) (26)

with a suitable number C > 0 and a functional Q, independent of t.

The strategy of proving Theorem 2.9 goes by boosting the typical behaviour
of the reference process explained above to the level of the Gibbs measure.
First it is shown that for any a > 0

P

(
{X ∈ X : max

0≤t≤1
|Xt| ≥ a}

)
≤ C e−θas+1

(27)

with appropriate C, θ > 0. This can be proven by using Varadhan’s Lemma
taken together with the upper bound exp(−θ|x|s+1) for ψ0 (the ground state
of the Schrödinger operator generating the reference process). Then Theorem
2.9 comes about by proving that also C ′ > 0 and θ′ > 0 can be found such
that
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µ

(
{X ∈ X : max

0≤t≤1
|Xt| ≥ a}

)
≤ C ′e−θ′as+1

. (28)

The proof requires once again the use of cluster expansion.

Finally, we list some additional properties of Gibbs measures for (W2)-
type pair potentials, useful in various contexts. This case in particular covers
Nelson’s scalar field model, see Section 4 below.

Theorem 2.10. Let µ be a Gibbs measure for W satisfying (W2). Suppose V
is of (V2)-type and |λ| is small enough. Then the following hold:

1. [Invariance properties] µ is invariant with respect to time shift and time
reflection:

µ ◦ τt = µ, ∀t ∈ R, where (τsX)t = Xs+t,

µ ◦ ϑ = µ, where (ϑX)t = X−t.

2. [Single time distributions] The distributions ϕT under µT of positions x
at time t = 0 are equivalent to ν, i.e. there exist C1, C2 ∈ R, independent
of T and x such that

C1 ≤ dϕT

dν
(x) ≤ C2 (29)

for every x ∈ Rd and T > 0. Moreover limT→∞(dϕT /dν)(x) = (dϕ /dν)(x)
exists pointwise.

3. [Single time conditional distributions] The conditional distributions µT ( · |X0 =
x) converge locally weakly to µ( · |X0 = x), for all x ∈ Rd.

4. [Mixing properties] For any bounded functions F,G on Rd we have on the
covariance the estimate

| covµ (Fs;Gt)| ≤ const
sup |Fs| sup |Gt|

1 + |t− s|β
(30)

where β > 0, Fs := F (Xs), Gt := G(Xt), and the constant prefactor is
independent of s, t and F,G.

2.3 Existence for pair potential of arbitrary strength

The main restriction in the previous section was that the pair potential W
had to carry a small prefactor λ. This restriction is inherent in the cluster
expansion. An alternative route to the existence of Gibbs measures are com-
pactness arguments; the main tool is the concept of uniform domination [21],
which in our context reads as follows:

Definition 2.11. Let P , (µT )T≥0 be probability measures on C(R,Rd). We
say that the family (µT )T≥0 is locally uniformly dominated by P if the following
holds true: For each ε > 0 and S > 0 there exists δ > 0 such that P (A) < δ
implies lim supT→∞ µT (A) < ε uniformly in sets A depending on Xs, |s| < S,
(Xs)s∈R ∈ C(R,Rd).
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The important fact is that each family (µT )T≥0 of probability measures
that is locally uniformly dominated by a probability measure P has at least
one cluster point as T →∞ in the topology of local convergence. In order to
apply this to Gibbs measures we adopt the general set-up from the previous
section. As a first assumption on the potentials we need

(A1) V is Kato-class, i.e. satisfies (V1) from Section 2.1. Moreover, the
Schrödinger operator H corresponding to V has a unique, square-integrable
ground state ψ0.

(A2) W is extensive, i.e. there exists C∞ > 0 such that∫ ∞

−∞
sup

x,y∈Rd

|W (x, y, |s|)| ds < C∞. (31)

Comparing with the previous section, we find that (W2) implies (A2).
Let P be the measure of the stationary P (φ)1-process as given in Section

2.1, and let W[−T,T ] be given by (10). We will use finite time interval Gibbs
measures with free boundary conditions as approximants for our infinite time
interval Gibbs measures, i.e. we put

dµT =
1
ZT

e−W[−T,T ](X) dP.

Using the concept of local uniform domination, it is now possible to prove

Proposition 2.12. [2] Assume (A1) and (A2). Suppose that for each ε > 0
there exists R > 0 such that

µT (|X0| > R) < ε (32)

uniformly in T > 0. Then there exists an (infinite time interval) Gibbs mea-
sure for the potentials V and W and the reference measure W (Wiener mea-
sure).

We have thus reduced the problem to proving (32). For this we need some
further assumptions.

(A1’) In addition to (A1) suppose ψ0 ∈ L1(Rd).

Condition (A1’) is not very restrictive; in many cases ψ0 decays exponentially
at infinity. The additional condition on W will be more restrictive and requires
some preparations to formulate. Let C(0)(R,Rd) denote the space of functions
which are continuous with the possible exception of the origin but have left
and right hand side limits there. For τ > 0 we define the map

θτ : C(R,Rd) → C(0)(R,Rd), (θτX)t =
{
Xt+τ if t ≥ 0,
Xt−τ if t < 0. (33)
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With E0 = inf Spec(H) as before, and H the Schrödinger operator corre-
sponding to the P (φ)1-process P , put

α = lim inf
|x|→∞

V (x)− E0 ≤ ∞. (34)

Our assumption on W now reads

(A2’) In addition to (A2), we assume that there exist D ≥ 0 and 0 ≤ C < α
such that

−W[−T,T ](X) ≤ −W[−T,T ](θτX) + Cτ +D (35)

for all T, τ > 0 and all X ∈ C(R,Rd).

In words, (A2’) means that we can control, uniformly in T , the change of en-
ergy induced by cutting out a piece of the path X around t = 0 and gluing the
remaining pieces together again. If we have finite interaction energy between
the positive and the negative half-line, i.e.

sup
X∈C(R,Rd)

∣∣∣∣∫ 0

−∞
ds

∫ ∞

0

dtW (Xt, Xs, |t− s|)
∣∣∣∣ <∞, (36)

then (A2’) holds with C = 0. In particular, (36) holds when W fulfills (W2)
with α > 2. (36) is, however, not necessary for (A2’), and part of the interest
in condition (A2’) is that it also covers cases where (36) is not met. Some
sufficient conditions for (A2’) are given in [1].

Theorem 2.13. Assume (A1’) and (A2’). Then (32) holds, and consequently
an infinite volume Gibbs measure µ for the potentials V and W , and reference
measure W exists.

The theorem above does not make any statement about uniqueness. However,
in conjunction with (2) of Theorem 2.8 it leads to

Corollary 2.14. Provided (W2) with α > 2 holds, and V satisfies (A1’) and
(A2’), a unique Gibbs measure exists supported by X .

Hariya [22] arrives at a similar result under different hypotheses.
The proof of (32) relies on the equality

µT (|X0| > R) =
1
ZT

∫
|y|>R

ψ2
0(y)EP

[
e−W[−T,T ]

∣∣∣X0 = y
]
dy. (37)

We first prove
1
ZT

EP

[
e−W[−T,T ]

∣∣∣X0 = y
]
≤ const
ψ0(y)

(38)

and then use (A1’) in order to obtain (32). To get an idea about the proof
of the latter inequality, note that (38) involves expectation with respect to
a Markov process conditioned at its ‘midpoint’ t = 0. For making use of the
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strong Markov property of P , we flip the negative time axis to the right and
obtain a Markov process with a doubled state space R2d, now conditioned on
its starting point. Now we start the new process in y ∈ R2d and stop it when it
reaches the ball Br around zero with radius r. By the properties of the P (φ)1-
process, the stopping time τr the process needs to reach Br is exponentially
integrable. More explicitly, Ex

P [exp(βτr)] < ∞ if β < α, and the expectation
value grows with the starting point x like 1/ψ0(x) as x→∞. Condition (A2’)
is now tailor-made to ensure that the energy W̃[−T,T ] acquired by a (flipped)
path X on its way down to the Br is no larger than exp(Cτr +D). Together
with the strong Markov property and some technical estimates, this yields
(32).

2.4 Phase transition

In one-dimensional statistical mechanical sytems the entropy increases as
log T . To have a phase transition the interaction energy for the paths {Xt, −T ≤
t ≤ 0} and {Xt, 0 ≤ t ≤ T} must be at least comparable. Transcribed to the
Gibbs measures under study this means

W (x, x′, t) ∼= |t|−γ for large |t| (39)

with 1 < γ ≤ 2. The lower bound on γ is needed for having the energy
extensive. To carry out a proof more specific assumptions will be needed. We
set d = 1. For the external potential we choose a double well potential of the
form

V (x) = β(x4 − x2) , β > 0 . (40)

In fact, as long as V (x) = V (−x), a general class of double well type potentials
can be handled. The pair interaction is quadratic,

W (x, x′, t) = αρ(t)
1
2
(x− x′)2 , α > 0 , ρ(t) = (1 + |t|)−γ . (41)

Since we rely on comparison inequalities, the interaction needs to be quadratic,
at least at the present stage of understanding. Thus the only non-Gaussian
piece of the Gibbs measure is exp[−β

∫ T

−T
(Xt)4dt]. Let 〈 · 〉b,T be the expec-

tation of the Gibbs measure for the potentials V and W from (40), (41), with
the pinned boundary conditions X−T = b = XT , b ∈ R. Then, for b > 0,
〈X0〉b,T ≥ 0 and 〈X0〉b,T is decreasing in T . Hence the limit

lim
T→∞

〈X0〉b,T = 〈X0〉b,∞ (42)

exists.

Theorem 2.15. Let V,W be as in (40), (41) and fix 1 < γ ≤ 2. If b > 0,
then there exist α, β,m∗ > 0 such that

〈X0〉b,∞ ≥ m∗. (43)
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By symmetry, 〈X0〉−b,∞ = −〈X0〉b,∞. Thus there must be at least two distinct
extreme Gibbs measures for the same interaction. Most likely there are no
others, but this problem has not been approached yet.

The strategy of proof is to reduce the bound in (43) to a corresponding one
for a one-dimensional Ising spin system with long-range ferromagnetic pair
interaction, for which the famous proofs of Dyson [13] and of Fröhlich and
Spencer [19] on the existence of long range order are available. The reduction
is based on ferromagnetic type inequalities. With the block variables

φj =
1
δ

∫ (j+ 1
2 )δ

(j− 1
2 )δ

Xtdt , j ∈ Z , (44)

by Griffiths II we obtain that 〈X0〉b,∞ ≥ cG〈φ0〉cb,∞, where 〈 〉c is a Gibbs
measure over Z with long range interaction for the continuous spin variables
φj , and cG > 0. Secondly, the Wells inequality, see [38] in the case of stochastic
processes, [8] implies that 〈φ0〉cb,∞ ≥ cW〈σ0〉+,∞ with cW > 0. Here 〈 〉+,∞
is an Ising spin system, σ0 = ±, with ferromagnetic interaction which decays
as |i− j|γ for large |i− j| and + boundary conditions. The complete proof is
given in [32], where also explicit bounds for the phase diagram are discussed.

3 A central limit theorem

In this section we study the case where V = 0, i.e. we consider

µT =
1
ZT

exp

(
−
∫ T

−T

∫ T

−T

W (Xt −Xs, t− s) dt ds

)
W0

T . (1)

Here, W0
T is two-sided Brownian motion in [−T, T ] pinned at 0 at t = 0.

The interaction depends only on the increments Xt − Xs. Provided W has
a decent decay in the t-variable, one would thus expect a functional central
limit theorem to hold, i.e. after rescaling the path measure µT should look
like Brownian motion with some effective diffusion matrix D. Such a general
result is not available. In case t 7→ W (·, t) decays exponentially, one can
use Dobrushin’s theory of one-dimesional spin systems [10, 11] to establish
exponential mixing of the increment process [39]. This implies the central
limit theorem for Xt properly rescaled. Our approach is less restrictive in
terms of decay conditions, but assumes W to be of the special form

W (x, t) = −1
2

∫
|ρ̂(k)|2eik·xe−ω(k)|t| 1

2ω(k)
dk (2)

with
ω(k) ≥ 0, ω(k) = ω(−k), and ρ̂(k) = ρ̂(−k)∗. (3)

In addition, we assume
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|ρ̂(k)|2(ω−1 + ω−2 + ω−3)dk <∞. (4)

(4) is in fact a (mild) decay condition. For example, if d = 3, ω(k) = |k| and ρ̂ is
compactly supported, then the most stringent condition is

∫
|ρ̂|2ω−3d3k <∞,

which corresponds to a decay of W as

|W (x, t)| ≤ c(1 + |t|3+δ)−1,

for some δ > 0. The above choice of parameters represents a physically relevant
model, see (iv) of Section 4.

Theorem 3.1. Define µT as in (1) with W given by (2).

(i):µT converges to a measure µ as T →∞ in the topology of local convergence.
(ii):The stochastic process Xt, t ≥ 0, induced by µ satisfies a functional central

limit theorem
lim
ε→0

√
εXt/ε =

√
DBt

in distribution, where 0 ≤ D ≤ 1 as a d × d matrix, and Bt is standard
Brownian motion.

(iii):In addition to (3),(4) suppose∫
|ρ̂(k)|2|k|2

(
ω−2 + ω−4

)
dk <∞. (5)

Then D > 0.

In the remainder of this section, we will give an outline of the proof of
Theorem 3.1. A full account is [5]. We will do the proof in three steps.

(1) We use the special form (2) of W in order to linearize the interaction in (1)
by introducing an auxiliary Gaussian process. As a result, we will prove
(i) above, and the stochastic process Xt under µ is driven by a reversible
Markov process ηt.

(2) In the so obtained representation, we use the by now well-established tech-
nique of Kipnis and Varadhan [24]; we write Xt as the sum of a martingale
and an additive functional of ηt. Xt is then the sum of two martingales
and a negligible process, and the martingale central limit theorem applies,
proving (ii).

(3) In order to show that the diffusion is nondegenrate, we rely on an idea of
Brascamp, Lebowitz and Lieb [7], which in the present context has been
employed before [39].

To carry out step (1), let K0 be the real Hilbert space obtained by completing
the subspace of L2(Rd) on which the inner product given by

〈a, b〉K0
=
∫
â(k)

1
2ω(k)

b̂(k)∗ dk (6)



20 Volker Betz, József Lőrinczi and Herbert Spohn

is finite. Let G be the path measure of the infinite dimensional Ornstein-
Uhlenbeck process with mean 0 and covariance

EG [φs(a)φt(b)] =
∫
â(k)

1
2ω(k)

e−|t−s|ω(k)b̂(k)∗ dk (a, b ∈ K0).

There exists a Hilbert space K ⊃ K0 such that G is a reversible Gaussian
Markov process with values in K and continuous paths. The reversible measure
G is the Gaussian measure on K 3 φ with mean zero and covariance

EG[φ(a)φ(b)] = 〈a, b〉K0
.

For x ∈ Rd, let τx be the shift by x on K, i.e. (τxφ)(a) = φ(τxa) and τxa(y) =
a(y − x). More generally, for f ∈ L2(G), (τxf)(φ) = f(τxφ)

For T > 0 we put

PT =
1
ZT

exp

(
−
∫ T

−T

τXsφs(ρ) ds

)
W0⊗G. (7)

With PT we achieved our first goal, the linearization of the interaction: Indeed,
for functions F depending on x only,

EPT
[F ] = EµT

[F ],

as can be seen by carrying out the Gaussian integration. PT is the measure of
a Markov process, more specifically a P (φ)1-process with state space Rd×K.
The role of the Schrödinger operator is now played by

Hf(x, φ) = −1
2
∆f(x, φ) +Hff(x, φ) + Vρ(x, φ)f(x, φ), (8)

where Hf is the generator of G and Vρ(x, φ) = τxφ(ρ). The semigroup ΠT

generated by H is strongly continuous on C0(Rd, L2(G)). More importantly,
it is also strongly continuous on the Hilbert space T of functions that are
invariant under shift over the x-variable. Explicitly, T is the image of L2(G)
under the operator

U : L2(G) → C(R, L2(G)), Uf(x, φ) = τxf(φ),

equipped with the scalar product

〈f, g〉T = EG[(U−1f)(U−1g)∗] =
〈
U−1f, U−1g

〉
L2(G)

. (9)

H is self-adjoint on T , and (4) implies

‖ΠT 1‖2T ≤ C 〈1,ΠT 1〉2T .

Now from spectral theory we obtain
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Theorem 3.2. The infimum E0 of the spectrum of H acting in T is an eigen-
value of multiplicity one. The corresponding eigenfunction Ψ ∈ T can be cho-
sen strictly positive.

An alternative proof of Theorem 3.2, using a completely different method, can
be found in [18].

It is now easy to identify the infinite volume limit of the families PT and
NT . Let P be the probability measure on paths (Xt, φt)t∈R determined by

EP(f) = e2TE0EW0⊗G

[
Ψ(X−T , φ−T )e−

R T
−T

τXs φs(ρ) dsΨ(XT , φT )f
]

(10)

for functions f depending only on Xt, φt with |t| < T . Above, W0 is the
measure of two-sided Brownian motion or, equivalently, Wiener measure con-
ditioned on X0 = 0. Let µ be the measure P when applied to functions of x
only. Then P is the measure of a Markov process with generator L acting as

Lf = − 1
Ψ

(H − E0)(Ψf). (11)

PT → P in the topology of local convergence, and by integrating out the
Gaussian field, µT → µ. The K-valued process ηt = τXt

φt is reversible with
reversible measure (U−1Ψ)2G, and its generator is unitarily equivalent to L.

Let γ ∈ Rd be fixed, and hγ(x) = γ · x. Then L(hγ) = j(η) with

j = U−1(γ · ∇x lnΨ) ∈ L2(G). (12)

Since the result of the generator L of process P applied to γ · x is a function
of η, only ηt influences the behavior of γ ·Xt, i.e. Xt is driven by ηt. Step one
is completed.

Next we write

γ ·Xt = Mt +
∫ t

0

Lhγ(Xs, φs)) ds (13)

with

Mt = γ ·Xt −
∫ t

0

Lhγ(Xs, φs) ds = γ ·Xt −
∫ t

0

j(ηs) ds.

Then Mt is a martingale with stationary increments and quadratic variation
|γ|2t, and ∫ t

0

Lhγ(Xs, φs)) ds =
∫ t

0

j(ηs) ds

is an additive functional of ηt satisfying the assumptions of [24]. It is thus the
sum of a martingale Nt with stationary increments and a negligible process.
Now the martingale central limit theorem proves Theorem 3.1 (ii) and finishes
step 2.

In principle, it could happen that Mt and Nt are strongly dependent and
cancel each other. Then the diffusion matrix D would be zero and Xt would
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behave subdiffusively. We already know the central limit theorem holds with
diffusion matrix D ≥ 0. Thus it is enough to investigate

lim
t→∞

1
t
Eµ[(γ ·Xt)2] = 〈γ,Dγ〉Rd . (14)

It turns out that

〈γ,Dγ〉Rd = |γ|2 − 2
〈
γ · ∇xΨ, (H − E0)−1γ · ∇xΨ

〉
T . (15)

The standard technique is to turn (15) into a variational problem and find
a reasonably explicit lower bound to the variational functional. We did not
succeed in carrying out the second step of this procedure. Instead, we show
directly that

Eµ[(γ ·Xt)2] ≥ c|γ|2|t| (16)

for some c > 0, by using ideas from Brascamp et al [7] originally developed
to study fluctuations for anharmonic lattices. Together with (14) this imme-
diately shows D ≥ c.

4 Applications and open problems

The scheme outlined so far is a probabilistically natural way of constructing
through the limit T → ∞ stationary stochastic processes with continuous
sample paths. Moreover, specific choices of V and W correspond to particular
applications on which there is already a large body of literature using a variety
of methods. Very roughly, and as far as we are aware of, the applications
originate from three distinct corners of low energy physics.

i) Self-avoiding random walks. Polymers with interaction due to excluded
volume is an important statistical mechanics topic, in particular because of
the connections with critical phenomena [14]. It is tempting to model the free
polymer as Brownian motion and the excluded volume through an interaction
of the form (7). Note, however, that by the nature of the interaction there
is no decay in t. In particular the energy is not extensive. Thus, while the
energy depends only on the increments, for large T the statistical properties
of the self-avoiding polymer are qualitatively different from a free random
walk. One conjecture is that the self-similar scaling theory is obtained from the
ultraviolet limit. So far most of the mathematical effort went into constructing
the limit measure [41, 6]. But it is not obvious how to extract scale invariant
properties from this measure. In fact, self-similarity is now established through
lace expansion and other methods [30]. The link between the two approaches
remains unexplored.

ii) Statistical hydrodynamics. There is general agreement that fully developed
turbulence should be described by a suitable measure over divergence free
vorticity fields. One attempt to write down such a measure is to assume that
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the velocity field ω(x) = ∇∧u(x) is concentrated along Brownian curves Xt ∈
R3 [9]. Under the Eulerian incompressible flow, the kinetic energy 1

2

∫
u(x)2d3x

is conserved. Thus it seems natural to use it as energy in the Gibbs measure.
This yields the formal expression

E(X) =
∫ T

−T

∫ T

−T

1
|Xt −Xs|

dXt · dXs . (1)

In order to have exp[−E(X)] as a well-defined random variable, [17] required
the condition that the Coulomb potential in (1) is smoothened such that it
has a finite electrostatic energy.

Our own investigations mostly draw on applications in quantum mechan-
ics. Since upon Wick rotation the free Schrödinger equation turns into the
diffusion equation, Brownian motion as a priori measure is in fact forced by
the problem. Several interesting cases can be distinguished.

iii) Electron coupled to the quantized radiation field. Upon Wick rotation the
free Maxwell field is isomorphic to a stationary infinite-dimensional Ornstein-
Uhlenbeck process, see Section 3, for the transverse vector potential A(x, t).
It has the covariance

E
[
Aα(x, t)Aβ(x′, t′)

]
=
∫
d3k

1
2ω(k)

e−ω(k)|t−s|eik·(x−x′)(δαβ − |k|−2kαkβ)

= Wαβ(x− x′, t− s) (2)

α, β = 1, 2, 3. The dispersion relation of the Maxwell field is

ω(k) = |k| . (3)

Within the Euclidean framework, the electron is governed by the Hamiltonian

H =
1
2
(
− i∇x − eA(x, t)

)2
, (4)

on ignoring the electron spin. The units are such that ~ = 1, c = 1, mass
of electron m = 1; e is the charge of the electron expressing the strength of
coupling to the Maxwell field. We use the Feynman-Kac-Ito formula for the
propagator for H [38]. Then the joint Xt and A(x, t) path measure is given
by

exp

(
−ie

∫ T

−T

A(Xt, t) · dXt

)
W(X)⊗ G, (5)

where G is the Gaussian measure of the A-field with covariance (2). Note that
∇ ·A(x, t) = 0 almost surely. Since the exponent is linear in A, the averaging
over the Ornstein-Uhlenbeck process can be done explicitly. This results in a
finite volume Gibbs measure with energy
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E(X) =
1
2

∫ T

−T

∫ T

−T

dXt ·W (Xt −Xs, t− s)dXs . (6)

This is of the form (6) and should be read as a double Ito stochastic integral.
W is singular on the diagonal, roughly Wαβ(x, t) = δαβ(x2+t2)−1. Thus it

is necessary to smear out the charge distribution which leads to the regularized
version

W ρ
αβ(x, t) =

∫
d3k|ρ̂(k)|2 1

2ω(k)
e−ω(k)|t|eik·x(δαβ − |k|−2kαkβ). (7)

Here ρ̂ is rotation invariant, decays rapidly for large |k|, and ρ̂(0) = (2π)−3/2

by charge normalization. A problem which appears to be very challenging,
is to establish that, for fixed T and X−T = 0 = XT , the Gibbs measure for
the energy (6) is well defined. In other words, with a smoothening as in (7)
we would like to study the sequence of Gibbs measures as ρ̂(k) → (2π)−3/2

pointwise (ultraviolet or point charge limit). In favorable cases the existence
of the limit can be shown by suitable centering and by possibly adding other
counter terms. Such a procedure seems unlikely to work in the present context.
Thus the ultraviolet limit has to be linked with a change of the diffusion
coefficient D of the underlying Wiener process W (= mass renormalization).
We expect D →∞ in this limit.

iv) Quantum particle coupled to a scalar Bose field. This model was studied by
Nelson [31] in the context of energy renormalization. The Bose field translates
to the scalar field φ(x, t), which again is an infinite-dimensional Ornstein-
Uhlenbeck process this time with covariance

E
[
φ(x, t)φ(x′, t′)

]
=
∫
d3k|ρ̂(k)|2 1

2ω(k)
e−ω(k)|t−t′|eik·(x−x′)

= W (x− x′, t− t′). (8)

The quantum particle “sees” φ as a fluctuating electrostatic potential. Thus
the Hamiltonian becomes H = − 1

2∆+ eφ(x, t). Then through the Feynman-
Kac formula the path measure, jointly for Xt and φ(x, t), is given by

exp

(
−e
∫ T

−T

φ(Xt, t)dt

)
W0(X)⊗ G, (9)

which has the structure of a P (φ)1-process, since the a priori measure is
Markovian and the energy is local in time. The only difference to our discussion
in Section 2.1 is that Rd is replaced by the state space Rd ×K, compare with
the discussion preceding (8).

The exponent in (9) is linear in φ. Thus we can perform the integration
over φ resulting in the following path measure for X,

1
Z(T )

exp
[
−
∫ T

−T

V (Xt)dt+
e2

2

∫ T

−T

∫ T

−T

W (Xt −Xs, t− s)dtds
]
W0, (10)
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where we added an external potential V . Thus the Nelson model naturally
yields Gibbs measures of the form studied in Sections 2 and 3. In fact, the
Nelson model was our source of motivation for studying Gibbs measures over
Brownian motion. The existence of the infinite volume limit can be deduced
from (10) which requires that∫

dk|ρ̂(k)|2(ω(k)−3 + ω(k)−1) <∞. (11)

We can also use the cluster expansion which holds provided e2 is sufficiently
small and ∫

dk|ρ̂(k)|2(ω(k)−1 + ω(k)−2−δ) <∞ (12)

for some δ > 0. Since it is possible to express the ground state of the Nelson
model directly in terms of data of these Gibbs measures, given the existence of
the infinite time interval measures we have a useful tool at hand for studying
qualitative properties of the ground state. We refer to [4] for details.

The Nelson model, in the case of massless bosons ω(k) = |k|, is both ul-
traviolet and infrared divergent. The ultraviolet divergence is mild and can
be handled by energy renormalization. This is the content of the famous work
[31], which uses exclusively functional analytic methods. Somewhat surpris-
ingly, no one has succeeded in a proper transcription of Nelson’s results into
the framework of path measures. The infrared divergence translates into a
somewhat unexpected feature of the joint

(
Xt, φ(x, t)

)
process. From (12)

and suitable conditions on V , we infer that the infinite volume Gibbs measure
exists. However, the limiting procedure changes the situation seen by the a
priori measure dramatically. For instance, the t = 0 joint distribution is not
absolutely continuous with respect to the t = 0 projection of the a priori dis-
tribution. One way to cope is to introduce a suitable shifted Gaussian measure
which takes on the role of a new a priori measure making the model infrared
regular. We refer for more details to [27, 28].

v) The polaron. Physically the polaron is an electron coupled to the optical
mode of an ionic crystal. It can be viewed as a particular case of the Nelson
model with the choice ω(k) = ω0 and ρ̂(k) = |k|−1. Then

W (x, t) = − α

|x|
e−ω0|t|. (13)

Here α > 0 and subsumes all dimensional coupling coefficients. The ground
state energy of the polaron is defined through

Eg(α) = − lim
T→∞

1
T

logZ(T, α). (14)

For small α one can use perturbation theory in α. For large α Pekar [33]
developed an approximate strong coupling theory. Thus the challenge was to
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have reliable predictions at moderate values of α, which turned out to be dif-
ficult. Feynman [15, 16] had the insight from functional integration and used
a quadratic functional as upper variational bound. Optimizing the quadratic
form yields Eg(α) roughly 2% away from Pekar’s result and even better at
smaller values when compared with machine computations. The strong cou-
pling (Pekar) limit of the ground state energy has been established by Donsker
and Varadhan [12] using functional integration, and by Lieb and Thomas [25]
using functional analytic methods.

A long standing open problem is to obtain a corresponding result for the
effective mass m(α). In fact, as shown in [39], m(α) = D(α)−1 with D(α)
the diffusion coefficient in Section 3 with the specific choice (13) for W . On
heuristic grounds one can guess the behavior of D(α) for large α and relate
it to Pekar’s variational problem [39]. A proof is missing with the exception
of [34] in the simplification where Brownian motion on R3 is replaced by
Brownian motion on the circle.
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Poincaré 3 (2002), 1-28
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