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Abstract

We consider the set of Gibbs measures relative to Brownian motion for given
potential V . V is assumed to be Kato-decomposable but general otherwise. A Gibbs
measure for such a potential is in many cases given by a reversible Itô diffusion µ.
We show that if V is growing at infinity faster than quadratically and in a sufficiently
regular way, then µ is the only Gibbs measure that exists. For general V we specify
a subset of the configuration space Ω such that µ is the only Gibbs measure for V
supported on this subset. We illustrate our results by some examples.

1 Introduction

In the classical theory of Gibbs measures [9] we are given a (countable) lattice, say Zn, a
measurable state space E, and a measure µ0 on E. A Gibbs measure µ is any measure
on the product σ-field over Ω = EZn

which is locally absolutely continuous with respect
to the reference measure µZn

0 and satisfies the DLR-equations, i.e. for which the regular
conditional expectations given the configuration in the outside of a finite subset of Zn are
of a prescribed form. This specific form is determined by the potential, which is regarded
as the central parameter of the theory.

The setup in which we study Gibbs measures is somewhat different from the usual one.
The main difference is that Zn is replaced by R, and EZn

is replaced by Ω = C(R,Rd). Ω
can not be written as a countable product of measurable spaces. As a reference measure
we take Brownian bridge, and our potential V is assumed to depend only on single points
ω(t), t ∈ R, of a configuration ω ∈ Ω. In the lattice theory, this would be a one-dimensional
system of unbounded spins with single site potential and would result in a trivial model
with no interaction between different sites, but in our case, dependence equivalent to an
interaction is present in the Brownian bridge.

As in the classical theory, a Gibbs measure will be any probability measure fulfilling
the DLR equations, cf. Definition 2.1 below. We will refer to any Gibbs measure arising
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from the above setup as a Gibbs measure relative to Brownian motion. In this work we
investigate uniqueness of such Gibbs measures. For many potentials, it is easy to see that
a Gibbs measure exists and is given by a reversible diffusion process, but it is not clear
whether this is the only one. In fact, the well studied example V (x) = |x|2 shows that
infinitely many Gibbs measures can exist for the same potential. However, in that case all
non-stationary Gibbs measures share the feature that they are supported on paths that
are growing exponentially at infinity. Thus by restricting the configuration space to a
subset Ω∗ ⊂ Ω = C(R,Rd) which is characterized by a condition on the growth of paths at
infinity, one can expect to retain uniqueness. We show this for a wide class of potentials
V . Moreover, we find that in the case where there exists b > 2 such that V (x) grows faster
than |x|b but not faster than |x|2b−2 at infinity, no restriction of Ω is necessary in order
to obtain uniqueness. In some sense, this shows that the potential V (x) = |x|2 mentioned
above is a borderline case.

Gibbs measures relative to Brownian motion have been first treated in the 1970s and
have seen a renaissance in recent years. The best understood case is the one described
above with a potential depending only on single points ω(t) of a configuration ω. It is also
the case we will study in this work. In [6] and [19], such Gibbs measures are characterized
by an invariance property, and the structure of the set of all Gibbs measures is explored
under the assumption that V is a polynomial. [18] investigates uniqueness of such Gibbs
measures under the same assumption. As we will explain in Example 4.2, we are able to
improve considerably on the cited results.

A different point of view is taken in [11], where Gibbs measures are constructed as
reversible measures for some stochastic process with infinite dimensional state space. In
yet another approach [17] consider Gibbs measures with the torus as state space. In this
case, many of the usual difficulties arising from a non-compact state space can be avoided.

The recent developments on Gibbs measures relative to Brownian motion start with
[15], where for the first time the more difficult case of an explicit interaction potential is
treated mathematically. Various results on such Gibbs measures under different conditions
have been obtained in [2, 10, 12]. [3, 13, 14] use them to investigate a model of quantum
field theory. In order to gain better control over these Gibbs measures, we have to achieve
as much understanding as possible for the ‘easy’ case involving no pair interaction. The
aim of the present paper is to add to this understanding.

2 Preliminaries and basic definitions

Let I ⊂ R be a finite union of (bounded or unbounded) intervals. We denote by C(I,Rd)
the space of all continuous functions I → Rd, and endow it with the σ-field FI generated
by the point evaluations. The same symbol FI will be used to denote the σ-field on
Ω = C(R,Rd) generated by the point evaluations at time-points inside I. For the point
evaluations C(I,Rd) → Rd we will use both of the notations t 7→ ωt and t 7→ ω(t), choosing
whichever of the two makes a nicer notation. We write F instead of FR, FT instead of
F[−T,T ], and TT instead of F[−T,T ]c for T > 0, where [−T, T ]c denotes the complement of
[−T, T ]. For s, t ∈ R with s < t and x, y ∈ Rd we denote by Wx,y

[s,t] the measure of the
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Brownian bridge starting in x at time s and ending in y at time t. Wx,y
[s,t] is a measure on

C([s, t],Rd). For T > 0, we write Wx,y
T instead of Wx,y

[−T,T ]. For ω̄ ∈ Ω, let δω̄T be the Dirac
measure on C([−T, T ]c,Rd) concentrated in ω̄. Note that δω̄T does not depend on the part
of ω̄ inside [−T, T ]. Finally, we define

W ω̄
T := W ω̄(T1),ω̄(T2)

T ⊗ δω̄T . (2.1)

We can (and will) regard W ω̄
T as a measure on C(R,Rd).

We now proceed to the definition of Gibbs measure relative to Brownian motion. Let
V : Rd → R be a measurable function such that

ZT (x, y) :=
∫

exp
(
−
∫ T

−T
V (ωs) ds

)
dWx,y

T (ω) <∞ (2.2)

for all T > 0 and all x, y ∈ Rd. For T > 0 we define a probability kernel µT from (Ω, TT )
to (Ω,F) by

µT (A, ω̄) :=
1

ZT (ω̄−T , ω̄T )

∫
1A(ω)e−

∫ T
−T V (ωs) ds dW ω̄

T (ω) (A ∈ F , ω̄ ∈ Ω). (2.3)

Note that ZT (ω̄−T , ω̄T ) is indeed the correct normalization. This follows from the Markov
property of Brownian motion.

Definition 2.1 A probability measure µ over Ω is a Gibbs measure relative to Brow-
nian motion for the potential V if for each A ∈ F and T > 0,

µT (A, ·) = µ(A|TT ) µ-almost surely, (2.4)

where µ(A|TT ) denotes conditional expectation given TT .

Equation (2.4) is the continuum analog to the DLR equations in the lattice context
[9]. While the integrability condition (2.2) is enough to define Gibbs measures, for the
remainder of this work we put some further restrictions on V .

Definition 2.2 A measurable function V : Rd → R is said to be in the Kato class [21]
K(Rd), if

sup
x∈R

∫
{|x−y|≤1}

|V (y)| dy <∞ in case d = 1,

and
lim
r→0

sup
x∈Rd

∫
{|x−y|≤r}

g(x− y)|V (y)| dy = 0 in case d ≥ 2.

Here,

g(x) =
{
− ln |x| if d = 2
|x|2−d if d ≥ 3.

V is locally in Kato class, i.e. in Kloc(Rd), if V 1K ∈ K(Rd) for each compact set K ⊂ Rd.
V is Kato decomposable [4] if

V = V + − V − with V − ∈ K(Rd), V + ∈ Kloc(Rd),

where V + is the positive part and V − is the negative part of V .
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It is possible to characterize K(Rd) in terms of Wiener integrals [21]. The main feature
of Kato-decomposable functions V is that the Schrödinger operator

H = −1
2∆ + V (2.5)

acting in L2(λd) and the corresponding Schrödinger semigroup (e−tH)t≥0 have many nice
properties. In (2.5), λd is the d-dimensional Lebesgue measure, ∆ is the Laplace operator
and V acts as multiplication operator. We give a list of those properties that we will need
in this work, see [21] for many more.

Remark 2.3 Let H be a Schrödinger operator with Kato-class potential.

1) H is essentially self-adjoint on C∞0 (Rd), and bounded from below.

2) Consider the semigroup {e−tH : t ≥ 0} of bounded operators on L2(Rd) defined
via functional calculus. The operator e−tH is bounded from Lp to Lq for every
1 ≤ p ≤ q ≤ ∞ and every t > 0. In addition, e−tHf is a continuous function for
every f ∈ Lp, p ∈ [1,∞] and every t > 0.

3) For every t > 0, e−tH is an integral operator with continuous, bounded kernel Kt.
Moreover, the map (t, x, y) 7→ Kt(x, y) is jointly continuous on (0,∞) × Rd × Rd,
and the Feynman-Kac formula

Kt−s(x, y) =
∫
e−

∫ t
s V (ωr) dr dWx,y

[s,t](ω) ∀s < t ∈ R, ∀x, y ∈ Rd (2.6)

holds.

4) If the bottom of the spectrum of H is an eigenvalue, then it necessarily has mul-
tiplicity one. In this case, the corresponding eigenfunction ψ0 can be chosen to be
continuous and strictly positive.

For the remainder of the paper, we will make the standing assumption that V is Kato-
decomposable and that H = −1

2∆ + V has an eigenvalue at the bottom of its spectrum.
By adding a constant to V if necessary, we may (and do) assume that this eigenvalue is
0, and choose the corresponding unique eigenfunction ψ0 to be strictly positive and of
L2(λd)-norm one. ψ0 will be referred to as the ground state of H.

The question whether a given Schrödinger operator has a ground state is studied in
detail in [16]. In particular, whenever V is Kato-decomposable and lim inf |x|→∞ V (x) = ∞,
the bottom of the spectrum is an eigenvalue separated from the rest of the spectrum by a
gap γ, and in particular a ground state ψ0 exists.

Given a Schrödinger operator with Kato decomposable potential V and ground state
ψ0, we define a probability measure µ on (Ω,F) (i.e., a stochastic process) by putting

µ(A) =
∫
dxψ0(x)

∫
dy ψ0(y)

∫
1A(ω)e−

∫ T
−T V (ωs) ds dWx,y

T (ω) (2.7)

for A ∈ FT and extending the above to a measure on F . This extension is possible:
e−tHψ0 = ψ0 and

∥∥ψ2
0

∥∥
2

= 1 together with the Feynman-Kac-formula and the Markov

4



property of Brownian motion imply that measures defined on FT , T > 0 in (2.7) define a
consistent family of probability measures. By the same reasons, µ also fulfills (2.4) and
thus is a Gibbs measure relative to Brownian motion for the potential V .

In fact, µ is the measure of a reversible diffusion process with invariant measure dν =
ψ2

0 dλ
d and stochastic generator Hν acting in L2(ν) as

Hνf =
1
ψ0
H(ψ0f) = −1

2
∆f −

〈
∇ψ0

ψ0
,∇f

〉
Rd

.

Such processes are called P (φ)1-processes in [21], although in probability theory they are
better known as Itô-diffusions. The transition probabilities for µ are given by

µ(f(ωt+s)|ωs = x) =
∫
Qt(x, y)f(y) dν(y), (2.8)

where
Qt(x, y) =

Kt(x, y)
ψ0(x)ψ0(y)

(2.9)

is the transition density of µ with respect to its invariant measure.

3 Uniqueness

We have seen in the last section that the existence of a Gibbs measure for the potential V
follows from the existence of a ground state for the corresponding Schrödinger operator.
The question we ask in this section is whether this Gibbs measure is unique, i.e. we want
to know if there are any other probability measures on (Ω,F) fulfilling the DLR equations
(2.4) for the same potential.

We begin by giving a motivating example which demonstrates that uniqueness need
not hold in general. This example is in fact well known and has been treated several times
in various forms in the literature [19, 7, 1].

Example 3.1 [Ornstein-Uhlenbeck process] Take V (x) = 1
2(x2 − 1),H := −1

2
d2

dx2 + V .
Then the ground state of H is ψ0(x) = π−1/4e−x

2/2, and the diffusion process µ cor-
responding to H is a one-dimensional Ornstein-Uhlenbeck process. Moreover, Mehler’s
formula gives explicitly the integral kernel Kt(x, y) of e−tH , i.e.

Kt(x, y) =
1√

π(1− e−2t)
exp

(
4xye−t − (x2 + y2)(1 + e−2t)

2(1− e−2t)

)
. (3.1)

Now fix α, β ∈ R and define for s, x ∈ R

ψls(x) := π−1/4 exp
(
−1

2
(x+ αe−s)2

)
exp

(
αe−s

2

)2

,

ψrs(x) := π−1/4 exp
(
−1

2
(x+ βe+s)2

)
exp

(
βe+s

2

)2

.
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An explicit calculation using (3.1) shows that

e−tHψls = ψls+t, e−tHψrs = ψrs−t, and
〈
ψls, ψ

r
s

〉
= eαβ/2.

Therefore we can define measures µα,β by

µα,β(A) := e−αβ/2
∫
dxψlT (x)

∫
dy ψrT (y)

∫
1A(ω)e−

∫ T
−T V (ωs) ds dWx,y

T (ω) (3.2)

for all A ∈ FT in the same way as we did in (2.7). µα,β is the measure of a Gaussian
Markov process, which is stationary if and only if α = β = 0. By checking (2.4) directly
we see that for every α, β ∈ R, µα,β is a Gibbs measure for V = 1

2(x2 − 1). For this
potential we thus have uncountably many Gibbs measures.

We now give a simple criterion allowing to check if a Gibbs measure is the only one
supported on a given set. Recall that a probability measure ν is said to be supported on
a set A if ν(A) = 1.

Lemma 3.2 Let Ω∗ ⊂ Ω be measurable and let ν be a Gibbs measure for the potential V
supported on Ω∗. For N ∈ N, ω̄ ∈ Ω, define νN (A, ω̄) as in (2.3). Suppose that for each
T > 0, each A ∈ FT and each ω̄ ∈ Ω∗, νN (A, ω̄) → ν(A) as N 3 N → ∞. Then ν is the
only Gibbs measure for V supported on Ω∗.

Proof: Let ν̃ be any Gibbs measure supported by Ω∗. For each T < N and A ∈ FT ,
ω̄ 7→ ν̃(A|TN )(ω̄) is a backward martingale in N , thus convergent almost everywhere to
ν̃(A|T )(ω̄). By the DLR equations (2.4) , ν̃(A|TN )(ω̄) = νN (A, ω̄) ν̃-almost surely, and
thus for ν̃-almost every ω̄ ∈ Ω∗, we find

ν̃(A|T )(ω̄) = lim
N→∞

ν̃(A|TN )(ω̄) = lim
N→∞

νN (A, ω̄) = ν(A).

Here we put T =
⋂
n∈N Tn. Taking ν̃-expectations on both sides of the above equality

shows ν̃(A) = ν(A). Since this is true for each A ∈ FT and each T > 0, ν̃ = ν. �
In order to apply the above lemma we need to know for which ω̄ ∈ Ω the convergence

µN (A, ω̄) → µ(A) holds. The next lemma gives a sufficient condition for this in terms of
the transition densities QT of µ, cf. (2.9).

Lemma 3.3 Let V be a potential from the Kato-class, H = −1
2∆ + V the corresponding

Schrödinger operator, and assume that H has a ground state ψ0. Let Qt(x, y) be as in
(2.9) and suppose that for some ω̄ ∈ Ω we have

sup
x,y∈Rd

(∣∣∣∣QN−T (ω̄−N , x)QN−T (y, ω̄N )
QN (ω̄−N , ω̄N )

− 1
∣∣∣∣ψ0(x)ψ0(y)

)
→ 0 as N 3 N →∞ (3.3)

for all T > 0. Then for each T > 0 and every A ∈ FT , µN (A, ω̄) → µ(A) as N →∞.
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Proof: Let A ∈ FT , and let us assume for the start that A ⊂ {ω ∈ Ω : |ω±T | < M} for
some M > 1. For N > T and ω̄ ∈ Ω, the Markov property of Brownian motion and the
Feynman-Kac formula give

µN (A, ω̄) =
1

ZN (ω̄)

∫
dx

∫
dy

(∫
e−

∫−T
−N V (ωs) ds dW ω̄(−N),x

[−N,−T ] (ω)
)
×

×
(∫

e−
∫ T
−T V (ωs) ds1A(ω) dWx,y

[−T,T ](ω)
)(∫

e−
∫ N

T V (ωs) ds dWy,ω̄(N)
[T,N ] (ω)

)
=

=
∫
dx

∫
dy

KN−T (ω̄−N , x)KN−T (y, ω̄N )
K2N (ω̄−N , ω̄N )

(∫
e−

∫ T
−T V (ωs) ds1A(ω) dWx,y

[−T,T ](ω)
)
.

By our restriction on A and the boundedness of K2T (x, y), the last factor in the above
formula is a bounded function of x and y with compact support, thus integrable over R2d.
As a consequence, the claim will be proven for A once we can show that

KN−T (ω̄−N , x)KN−T (y, ω̄N )
K2N (ω̄−N , ω̄N )

N→∞−→ ψ0(x)ψ0(y) (3.4)

uniformly in x, y ∈ Rd. By the definition of QT , (3.4) is equivalent to (3.3).
For general A ∈ FT , consider

BM = {ω ∈ Ω : max{|ωT |, |ω−T |} < M}

with M ∈ N, and AM = A ∩ BM . Since BM ↗ Ω as M → ∞, for given ε > 0 we may
pick M ∈ N with µ(Bc

M ) < ε. Moreover, since both AM and BM fulfill the assumptions
of the above paragraph, we find N0 ∈ N such that for all N > N0, both

|µN (AM )− µ(AM )| < ε and |µN (BM )− µ(BM )| < ε.

It follows that µN (Bc
M ) < 2ε for all N > N0, and thus

|µN (A)− µ(A)| = |µN (AM ) + µN (A \BM )− µ(AM )− µ(A \BM )| ≤
≤ |µN (AM )− µ(AM )|+ µN (Bc

M ) + µ(Bc
M ) ≤ 4ε.

This shows µN (A) → µ(A). �
Equipped with the two above results, we can now tackle the uniqueness question. Our

conclusions are most complete when a restricted class of potentials is used.

Theorem 3.4 Let V + denote as before the positive part of V . Suppose there exist con-
stants C1, C3 > 0, C2, C4 ∈ R and a, b with 2 < a < b < 2a− 2 such that

C1|x|a + C2 ≤ V +(x) ≤ C3|x|b + C4. (3.5)

Then µ is the unique Gibbs measure for V supported on Ω.

7



Proof: It is shown in [8] that Schrödinger operators with potentials as given in (3.5)
are intrinsically ultracontractive. In our context this means that for each N > 0, CN =
‖QN‖L∞(R2d) <∞. By the semigroup property of QN and the fact that

∫
QN (x, y)dν(y) =

1 for each x, for N > 2 we have

|QN (x, y)− 1| =
∣∣∣∣∫ dξ

∫
dη Q1(x, ξ)ψ2

0(ξ)(QN−2(ξ, η)− 1)ψ2
0(η)Q1(η, y)

∣∣∣∣
≤ C2

1

∫
dξ

∫
dη ψ0(ξ)

∣∣∣KN−2(ξ, η)− ψ0(ξ)ψ0(η)
∣∣∣ψ0(η)

≤ C2
1

(∫
dξ

∫
dη(KN−2(ξ, η)− ψ0(ξ)ψ0(η))2

)1/2

= (∗) (3.6)

From ‖QN‖L∞(R2d) < ∞ it follows that KN ∈ L2(λ2d) for each N > 0. Thus e−NH is
a Hilbert-Schmidt operator for each N > 0 and in particular H has a purely discrete
spectrum with eigenvalues 0 = E0 < E1 ≤ E2 ≤ . . . En ≤ . . .. Writing Pψ0 : L2(λd) →
L2(λd) for the projection onto the subspace of L2(λd) spanned by ψ0, the second factor
on the right hand side of (3.6) is just the Hilbert-Schmidt norm of e−(N−2)H −Pψ0 , which
implies

(∗) = C2
1e
−(N−2)E1

( ∞∑
k=1

e−2(N−2)(Ek−E1)

)1/2

. (3.7)

By dominated convergence, the sum on the right hand side of (3.7) converges to the
multiplicity of the second eigenvalue E1 of H as N →∞, and by uniqueness of ψ0 we have
E1 > 0. Thus QN (x, y) → 1 uniformly in x and y, which implies (3.3). �

As indicated by Example 3.1, a result like Theorem 3.4 can not hold for general Kato-
decomposable potentials. In the general case we obtain uniqueness only by restricting the
configuration space Ω.

Theorem 3.5 In the context of Lemma 3.3, assume that the ground state ψ0 of the
Schrödinger operator H is not only in L2(λd) but also in L1(λd). Denote again by
γ = inf(spec(H) \ 0) the spectral gap of H, and put

Ω∗ =

{
ω ∈ Ω : lim

N→±∞

e−γ|N |

ψ0(ωN )
= 0

}
. (3.8)

Then µ is the unique Gibbs measure for V supported on Ω∗.

Proof: Let Pψ0 be again the projection onto the one-dimensional subspace spanned by
ψ0, and put

Lt := e−tH − Pψ0 .

Lt is an integral operator with kernel K̃t(x, y) = Kt(x, y)−ψ0(x)ψ0(y). By the assumption
γ > 0 we have

‖Lt‖2,2 = e−γt. (3.9)
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Here and below ‖.‖p,q denotes the norm of an operator from Lp to Lq. For estimating K̃t

note that

sup
x,y∈Rd

∣∣∣K̃t(x, y)
∣∣∣ = sup

q∈L1,‖q‖1=1

∥∥∥∥∫ K̃t(x, y)q(y) dy
∥∥∥∥
∞

= ‖Lt‖1,∞ ,

and since e−tHPψ0 = Pψ0e
−tH = Pψ0 for all t > 0, we have

‖Lt‖1,∞ =
∥∥∥e−H(e−(t−2)H − Pψ0)e

−H
∥∥∥

1,∞
≤
∥∥e−H∥∥

2,∞ ‖Lt−2‖2,2

∥∥e−H∥∥
1,2
.

By Remark 2.3 (2), both
∥∥e−H∥∥

2,∞ and
∥∥e−H∥∥

1,2
are finite. It thus follows that for every

t ≤ N ,
|KN−t(x, y)− ψ0(x)ψ0(y)| ≤ Cte

−γN , (3.10)

where Ct =
∥∥e−H∥∥

2,∞
∥∥e−H∥∥

1,2
eγ(2+t) is independent of x, y and N .

In terms of QN , using (3.10) we find for all ω̄ ∈ Ω∗

|QN−T (ω̄−N , x)− 1|ψ0(x) ≤ CT e
−γN/ψ0(ω̄−N ) → 0,

|QN−T (x, ω̄N )− 1|ψ0(y) ≤ CT e
−γN/ψ0(ω̄N ) → 0, and

|Q2N (ω̄−N , ω̄N )− 1| ≤ C0e
−2γN/(ψ0(ω̄−N )ψ0(ω̄N )) → 0

as N →∞, proving (3.4).
It remains to show that µ is in fact supported on Ω∗. By time reversibility, it will be

enough to show that

µ

(
lim sup
N→∞

e−γN

ψ0(ωN )
> q

)
= 0 (3.11)

for each q > 0. To prove (3.11), note that by stationarity of µ,

µ

(
e−γN

ψ0(ωN )
> q

)
= µ

(
ψ0(ω0) <

exp(−γN)
q

)
=

=
∫

1{ψ0<exp(−γN)/q}ψ
2
0 dλ

d ≤

≤ exp(−γN)
q

‖ψ0‖L1 .

The right hand side of the last expression is summable in N for each q, and so the Borel-
Cantelli Lemma implies (3.11), finishing the proof. �

The additional assumption that ψ0 ∈ L1 is very weak. In fact, for many potentials V it
is known that ψ0 decays exponentially at infinity. A large class of examples with ψ0 ∈ L1

will be given in Proposition 4.1.

4 Examples and discussion

In Theorem 3.5, Ω∗ in (3.8) depends directly on the decay of ψ0 at infinity. Therefore
results which connect the potential V with the ground state ψ0 of the Schrödinger operator
are of interest for us. One of the strongest results in this direction has been obtained by
R. Carmona in [5]. A consequence of it is
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Proposition 4.1 Let V = V1 − V2 with V1 bounded from below and in L
d/2+ε
loc for some

ε > 0, and 0 ≤ V2 ∈ Lp with p > max{1, d/2}. Suppose that H = −1
2∆ + V has a ground

state ψ0.

a) If there exists α ≥ 0 such that V1(x) ≤ C|x|2α outside a bounded set, then there exist
D1 > 0, b1 > 0 such that

D1 exp(−b1|x|α+1) ≤ ψ0(x) (4.1)

for each x ∈ Rd.

b) If there exists α ≥ 0 such that V (x) ≥ C|x|2α outside a bounded set, then there exist
D2 > 0, b2 > 0 such that

ψ0(x) ≤ D2 exp(−b2|x|α+1) (4.2)

for each x ∈ Rd.

A direct check reveals that all potentials considered in Proposition 4.1 are Kato-
decomposable.

We start our examples with the case that has been treated most in the literature.

Example 4.2 Suppose that V is a non-constant polynomial which is bounded below.
This in particular implies that the degree of V is even. Then, according to the second
paragraph after Remark 2.3, H has a unique ground state and a spectral gap. From
Theorem 3.4 and Example 3.1 it follows that the Gibbs measure for V is unique if and
only if the degree of V is greater than 2. This improves a result of G. Royer [18] who
showed that there exists at most one euclidean Gibbs measure, i.e. one Gibbs measure
which is in addition a reversible process. Our results also shed new light on the results in
[19]: Except for the case of quadratic P , the cone C of measures investigated there is in
fact just the ray generated by the reversible process µ, i.e. C = {rµ : r > 0}.

The purpose of our next example is to study more closely the set Ω∗ introduced in
Theorem 3.5.

Example 4.3 Let V (x) = |x|2α with α > 0. Again, H has a unique ground state ψ0

and a spectral gap γ. In case α ≥ 1, Theorem 3.4 and Example 3.1 completely solve the
question of uniqueness. In case 0 < α < 1, (4.2) implies that Theorem 3.5 is applicable,
and thus we get uniqueness on a set Ω∗(α). By (4.1) and (4.2), we obtain fairly sharp
estimates on Ω∗(α): let b1 and b2 be the constants from (4.1) and (4.2), respectively, and
γ the spectral gap of H. Then{

ω ∈ Ω : lim sup
T→±∞

|ω±T |α+1

T
<

γ

b1

}
⊂ Ω∗(α) ⊂

{
ω ∈ Ω : lim sup

T→±∞

|ω±T |α+1

T
<

γ

b2

}
. (4.3)

Note that Ω∗(α) becomes smaller as α increases towards 1, in contrast with the intuition
that a fast growing potential should bring the path back to stationarity more quickly.
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This intuition is in fact confirmed eloquently in the case α > 1, and the phenomenon in
case α < 1 is certainly an artifact of our proof of Theorem 3.5. There we relied on the
(rather crude) estimate (3.10), and thus a fast decay of ψ0 had to be compensated by a
slow growth of ω̄.

The case α = 1 suggests that when it comes to determining a maximal subset of con-
figuration space on which µ is the unique Gibbs measure, a set consisting of exponentially
growing paths is much closer to truth than our Ω∗, but to obtain it is beyond the method of
our proof. K. Iwata obtains such sets of exponentially growing paths as sets of uniqueness
for the Gibbs measure in [11], but he has to assume convexity of the function V (x)−κ|x|2
for some κ > 0, so the case α < 1 is not covered by his results.

The advantage of our method is that we are not limited to polynomials and not even
to continuous or semibounded functions in terms of V . In particular, we may add local
singularities and other perturbations to V in the above examples without altering the
conclusions. This corresponds to the intuition that, since Brownian motion is so strongly
mixing, only the behavior of V at infinity should determine whether uniqueness of the
Gibbs measure holds on a given set.

As a final example, we shall treat some special potentials of interest, all of them
containing local singularities.

Example 4.4 A physically very important example is the Coulomb potential in three
dimensions, i.e. d = 3 and V (x) = 1/|x|. With this choice, H has a ground state as well
as a spectral gap [16], and using Theorem 3.5, we find that Ω∗ consists of functions ω that
are growing at most linearly at infinity. We do not know whether non-uniqueness of the
Gibbs measure for the Coulomb potential can occur.

In dimension one, results of J. T. Cox on entrance laws [7] yield some interesting
examples of non-uniqueness. When written in our notation, Example 3) of [7] says that
there exist non-stationary Gibbs measures for the potential V = δ|x|δ−1 + |x|2δ if 1/3 <
δ ≤ 1, the case δ = 1 being again the Ornstein-Uhlenbeck process. While [7] is a mere
existence result, from Example 4.3 and the remark following it we can see that none of
these non-stationary Gibbs measures can have support on the set of paths growing slower
than |t|1/(δ+1) as t→ ±∞.

The second part of the last example shows that the phenomenon of non-uniqueness of
the Gibbs measure is not restricted to the Ornstein-Uhlenbeck process. Two interesting
open questions arise: Is it possible to prove or disprove the existence of more than one
Gibbs measure in case of potentials growing slower than |x|2/3 at infinity or in more than
one dimension, e.g. for the Coulomb potential? Is it possible to obtain better bounds on
the subset Ω∗ on which the stationary diffusion is the unique Gibbs measure?

Acknowledgments: We are grateful to Herbert Spohn for illuminating discussions.
Moreover, we would like to thank the referee for providing extremely helpful comments.
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