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Understanding the quantum dynamics for transitions through actual or avoided crossings
of electronic energy levels is one of the great open problems of quantum chemistry. Here

we explain the context of transitions through avoided crossings, and present a novel
method based on superadiabatic representations, leading to an explicit formula for a
large class of one-dimensional models.
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1. Radiationless transitions

Radiationless transitions are a peculiar but important reaction mechanism in nature:
a photon is absorbed by a molecule, lifting the electronic configuration to an excited
state. The nuclei of the molecule are then no longer near their minimal energy con-
figuration, and start to move according to the time-dependent Born-Oppenheimer
approximation (see below). At some point along the path of the nuclear configura-
tion, the electronic energies of the ground state and the excited state, both of which
are functions of the nuclear configuration, approach each other very closely. It is at
this point that the electronic wave function can switch back into the ground state,
without emitting a photon. The molecule then falls back into the ground state, or
a metastable state, or it dissociates, and the surplus energy is dissipated via vibra-
tions. Radiationless transitions are very fast, they happen on a femtosecond time
scale and thus well before any spontaneous decay of the excited state to the ground
state would occur. This makes them ideal candidates e.g. for the mechanism of re-
ception of light in the retina, where the re-emission of a photon would be a most
unwelcome event. And indeed, it is known that the cis-trans isomerisation of retinal
rhodopsin is facilitated by a radiationless transition [1].

While the basic mechanism of radiationless transitions is well-understood, it
is one of the great open problems of quantum chemistry to reliably predict the
wave function of the molecule after such a transition. The reason is that the Born-
Oppenheimer approximation, which is at the basis of almost all methods in quantum
molecular dynamics, breaks down at a crossing of electronic energy levels. Thus
straightforward molecular dynamics fails. It can be improved by surface hopping
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algorithms of various degrees of sophistication [2, 3], but the obtained accuracy is
still not quite satisfactory. Or one can use a priori methods that do not rely on the
Born-Oppenheimer decoupling of dynamics, like MCTDH [4]. But this is numerically
expensive, especially when the transition is much smaller than the original wave
function, as is the case for avoided crossings. Here we describe another, analytical
method that relies on superadiabatic representations [5, 6]. In the case of a diatomic
molecule we obtain an explicit formula for radiationless transitions which agrees well
with high precision a priori computations.

2. Adiabatic and superadiabatic representations

The Schrödinger equation of a diatomic molecule is given by

iε∂tψ(x, t) = Hψ(x, t), (1)

with Hamiltonian H = − ε2

2 ∂
2
x + Hel(x). x ∈ R is the effective nuclear coordinate,

and Hel is the electronic Hamiltonian, containing the kinetic energy of the electrons,
and all interaction potentials. The time scale is chosen such that in a time interval
of order one, the nuclei move by a distance of order one. Hel and thus its spectrum
depend parametrically on x, and one statement of Born-Oppenheimer theory is
that if a wave function is of the form ψ(x, y) = ψ0(x)χ(x, y), with y 7→ χ(x, y)
an eigenfunction of Hel(x) for each x with energy E(x), then under the evolution
(1) the wave function stays of the above form, to leading order in ε. Moreover,
it is given by ψ(x, t) = ψ0(x, t)χ(x, y) with ψ0(x, t) the solution of iε∂tψ0(x, t) =
(−ε2∂2

x/2+E(x))ψ0(x, t). In other words, the dynamics decouples according to the
energy bands E(x), which themselves act as effective potentials. While the theory
is true in great generality [6], here we only need a very special case. Namely, we
assume that Hel only acts on a two-dimensional Hilbert space, meaning that we
assume that all energy bands save two are unimportant for the effect we want to
study. While this assumption cannot as yet be rigorously justified, it is one that is
almost always made in the context or radiationless transitions. Hel then becomes a
2 × 2 matrix V , and we have

H = −ε
2

2
∂2

xI + V (x) with V (x) =
(
X(x) Z(x)
Z(x) −X(x)

)
+ d(x)I (2)

I is the 2×2 unit matrix, and H acts on wave functions ψ ∈ L2(dx,C2), i.e. square
integrable functions with values in C2. By the non-crossing rule [7], the energy levels
generically will not cross for one degree of freedom. Therefore ρ(x) =

√
X2 + Z2 ≥

δ > 0 for all x ∈ R, and we assume that X and Z are analytic so that ρ is analytic
in a strip containing the real axis.

We now transform (2) to a representation where H becomes approximately
diagonal. It is implemented by the unitary transform U acting on L2(dx,C2) by
with Uf(x) = U0(x)f(x), and such that U0 diagonalizes V . Putting ψa(x, t) =
U0(x)ψ(x, t) we obtain the Schrödinger equation in the adiabatic representation,

iε∂tψa(x, t) = H0ψa(x, t), ψa(x, 0) = ψa,0(x), (3)
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where to leading order in ε,

H0 = U0HU
∗
0 = −ε

2

2
∂2

xI +
(
ρ(x) + d(x) −εκ0(x)(ε∂x)
εκ0(x)(ε∂x) −ρ(x) + d(x)

)
. (4)

Here, κ0 = (Z ′X −X ′Z)/(Z2 +X2) is the adiabatic coupling element. As a conse-
quence of the choice of time scale solutions of (3) oscillate with frequency 1/ε, and
thus the operator ε∂x is actually of order one. The dynamics in the two components
of ψa decouple to leading order in ε, and are Schrödinger evolutions with potentials
given by the energy bands ±ρ(x); this is the Born-Oppenheimer approximation we
described above.

A local minimum of ρ is called an avoided crossing. Let us assume that x =
0 is a global minimum, and that V is asymptotically constant for large |x|. A
radiationless transition can then be obtained by starting the Schrödinger evolution
with an initial wave packet ψa(x, 0) such that its second component ψ−

a (x, t) is zero,
and its first component ψ+

a (x, t) is localized at some x0 ≪ 0, and with sufficient
momentum to propagate to positive values of x. ψ−

a (x, t) is called the transmitted
wave packet. Up to errors of order ε2, it can be calculated straightforwardly by
first order perturbation theory. Let us write H± = − ε2

2 ∂
2
x ± ρ(x) + d(x) for the

Hamiltonian generating the uncoupled dynamics in the upper, resp. lower, band.
With ϕ(x) = ψ+

a (x, 0), we have

ψ−
a (t) = −iε

∫ t

−∞
e−

i
ε (t−s)H−

K0 e−
i
ε sH+

ϕ ds. (5)

Above, K0 = κ0(x)(ε∂x) is the adiabatic coupling operator. From (5), we would
expect radiationless transitions to be of order ε. But while this is true in the tran-
sition region, they are much smaller in the scattering regime. Indeed, if one were
to do compute (5) numerically, one would find that the L2 norm of ψ−

a rises to
order ε around t = 0, while decaying to an exponentially small value in ε later. This
phenomenon is the reason why it is very difficult and time-consuming to obtain
accurate quantitative predictions of the transmitted wave function through (5): one
has to compute a highly oscillatory integral up to exponential accuracy in ε.

At this point, superadiabatic representations are helpful. They have been de-
veloped in the simpler Landau-Zener-Majorana model of adiabatic quantum transi-
tions [8–10], where essentially the nuclear degree of freedom is replaced by a deter-
ministic trajectory, and only electronic transitions are studied. The idea, first found
by Berry in [5] and later proven to work rigorously in [11–13], is to find a change
of coordinates in which the off-diagonal elements of the potential energy matrix are
of order εn instead of just order ε. Such a representation is then called the n-th
superadiabatic representation; it is asymptotic in n in that the coupling elements
are really of order εnn!, and thus the limit n → ∞ cannot be taken. Instead, by
optimizing n one obtains what is called the optimal superadiabatic representation,
where transitions are uniformly exponentially small and have the universal shape
of an error function.
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To construct and asymptotically understand superadiabatic representations in
the context of (2) is a very difficult and not yet fully solved problem. However,
in the case of sufficiently high momentum of the wave function at the crossing
point, it has been done in [14] in the case of d(x) = 0, and in [15] in the general
case. Above, ’sufficiently high’ means in theory at least ∼ ε−1/3, but in practice the
results described below agree extremely well with high precision numerical solutions
for a wide range of parameters. In [14] it is shown that for every n ∈ N, there exists
a unitary Un, given by a pseudo-differential operator, acting in L2(R,C2). With
Hn = U−1

n HUn, to leading order we have

Hn = −ε
2

2
∂2

xI +
(
ρ(x) + d(x) εn+1K+

n+1

εn+1K−
n+1 −ρ(x) + d(x)

)
. (6)

Therefore, with ψn = Unψ, (5) can be replaced by

ψ−
n (t) = −iεn

∫ t

−∞
e−

i
ε (t−s)H−

K−
n+1 e−

i
ε sH+

ϕ ds. (7)

Equation (7) describes the wave function in the n-th superadiabtic representation,
which agrees with the adiabatic one in the scattering regime. The superadiabatic
coupling operator Kn can be obtained by a recursive scheme detailed in [14].

3. The transmitted wave function

It is not immediately clear that (7) is useful for calculating the transmitted wave
function: Kn is given by a complicated recursive scheme, and the propagators H±

are not explicitly known for general potentials. However, a series of ’good fortunes’
allows for significant simplifications. Firstly, by the Darboux principle of asymptotic
theory, the operator Kn is determined by the complex singularities of the adiabatic
coupling function κ0(x) that are closest to the real axis. We refer to [13] for dis-
cussion of the Darboux principle and a rigorous application of it. The transition
operator Kn then becomes extremely localized, in that its application on a func-
tion differs significantly from zero only if that function has support near x = 0. As
discussed in [15], this enables us to replace the full propagators e−

i
ε (t−s)H±

by the
linearized ones in (7). The result is a rather explicit, if somewhat lenghty, formula
for the transmitted wave function, see equation (10) of [15]. It simplifies further
when d(x) is near constant at the transition point x = 0. In that case, and for times
t≫

√
ε, the transmitted wave packet is given by

ψ̂−
ε
(k, t) = e−

i
ε tH−

1{k2>4δ}
v + k

2|v|
ei

τδ
2δε |k−v| ϕ̂ε(v), (8)

where v = v(k, δ) = sgn(k)
√
k2 − 4δ, and the constants τδ and δ can be calculated

from ρ. For a function f , f̂ε(k) = 1√
2πε

∫
e−

i
ε kq f(q) dq denotes its semiclassical

Fourier transform.
Formula (8) not only allows to compute the transmitted wave function to high

accuracy with very little numerical effort, but also provides physical intuition about
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the transition mechanism. Namely, the portion of ψ̂ε with momentum k is obtained
by choosing the portion of the upper band wave function at the crossing point
having the correct momentum v(k) according to energy conservation. This is then
multiplied with a Landau-Zener factor that in general cannot be guessed, but for
large incoming momenta converges to the one suggested by classical Landau-Zener
theory [13]. One consequence of this is that the momentum of the outgoing wave
packet is larger than could be expected from energy conservation alone: portions of
the incoming wave function that are faster behave less adiabatically, and are more
likely to make the transition.

Let us finally note a somewhat embarrassing feature of (8): it is most likely not
asymptotically correct in ε, for finite incoming momenta. The reason is that our
knowledge about the asymptotics of the operators Kn is not very good, and so we
are confined to either large incoming momenta, or relatively large ε. While from a
practitioner’s point of view, (8) does very well for all cases that can be compared
to ab initio calculations with reasonable effort, it is unsatisfactory from the point
of view of exponential asymptotics. In [16], an alternative, asymptotically correct,
formula is given for the transmitted wave function. But it is not nearly as easy to
interpret or implement as (8). One would expect that there is an asymptotically
exact formula that retains the general shape of (8), with the constants τδ replaced
by different ones or possibly non-constant expressions. However, so far no such
formula has been found, let alone proved.
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