Spatial random permutations with cycle weights VOLKER BETZ (joint work with Daniel Ueltschi)

We investigate a model of spatial permutations which is motivated by its connection to the theory of Bose-Einstein condensation [5, 7, 6, 1]. We consider pairs (\boldsymbol{x}, π) with $\boldsymbol{x} \in \Lambda^N$ (Λ is a cubic box in \mathbb{R}^d) and $\pi \in \mathcal{S}_N$ (the group of permutations of N elements). N is the number of "particles" of the system. The weight of (\boldsymbol{x}, π) is given by the "Gibbs factor" $e^{-H(\boldsymbol{x},\pi)}$ with Hamiltonian of the form

(1)
$$H(\boldsymbol{x},\pi) = \sum_{i=1}^{N} \xi(x_i - x_{\pi(i)}) + \sum_{\ell \ge 1} \alpha_{\ell} r_{\ell}(\pi).$$

We always assume that ξ is a function $\mathbb{R}^d \to [0, \infty]$, with $\int e^{-\xi} = 1$. The cycle parameters $\alpha_1, \alpha_2, \ldots$ are some fixed numbers, and $r_{\ell}(\pi)$ is the number of cycles of length ℓ in the permutation π . The most relevant choice for the function ξ is $\xi(x) = \gamma |x|^2$, $\gamma > 0$, which is related to the quantum Bose gas. We mainly consider the case where the weights α_{ℓ} decay at infinity faster than $1/\log \ell$, and where $e^{-\xi}$ has positive Fourier transform. Intuitively, the Gibbs factor restricts the permutations so each jump is local, i.e. the distances $|x_i - x_{\pi(i)}|$ remain finite even for large systems.

Our main result on this model states that macroscopic cycles occur in the thermodynamic limit $N, |\Lambda| \to \infty$ when the density $\rho = N/|\Lambda|$ is larger than the *critical density* $\rho_c \leq \infty$. We also give an explicit formula for ρ_c , cf. (4). When $\alpha_{\ell} = 0$ for all ℓ , we obtain the model of spatial random permutations that corresponds to the ideal Bose gas; in this case ρ_c is the well-known critical density for Bose-Einstein condensation for non-interacting particles.

Setting and main result. The state space is $\Omega_{\Lambda,N} = \Lambda^N \times S_N$, with the Borel σ -algebra on Λ^N , and the discrete σ -algebra on S_N . Write $\boldsymbol{x} = (x_1, \ldots, x_N)$. Our Hamiltonian is given by a slight modification of (1): define ξ_{Λ} through $e^{-\xi_{\Lambda}(\boldsymbol{x})} = \sum_{\boldsymbol{y} \in \mathbb{Z}^d} e^{-\xi(\boldsymbol{x}-L\boldsymbol{y})}$, and put

(2)
$$H_{\Lambda}(\boldsymbol{x},\pi) = \sum_{i=1}^{N} \xi_{\Lambda}(x_i - x_{\pi(i)}) + \sum_{\ell \ge 1} \alpha_{\ell} r_{\ell}(\pi).$$

The important point is that $e^{-\xi_{\Lambda}}$ has a Λ -independent Fourier transform $e^{-\varepsilon(k)}$ in finite volume. With the additional assumption that $e^{-\varepsilon(k)}$ is positive, this enables us to relate our model with a probability model on Fourier modes. Note that $\int_{\Lambda} e^{-\xi_{\Lambda}} = 1$, and that $H_{\Lambda}(\boldsymbol{x}, \pi) = H(\boldsymbol{x}, \pi)$ for large enough Λ if $e^{-\xi}$ has compact support.

We introduce a probability measure on $\Omega_{\Lambda,N}$ such that a random variable θ : $\Omega_{\Lambda,N} \to \mathbb{R}$ has expectation

(3)
$$E_{\Lambda,N}(\theta) = \frac{1}{Y(\Lambda,N)N!} \int_{\Lambda^N} \mathrm{d}\boldsymbol{x} \sum_{\pi \in \mathcal{S}_N} \theta(\boldsymbol{x},\pi) \,\mathrm{e}^{-H_{\Lambda}(\boldsymbol{x},\pi)} \,.$$

 $Y(\Lambda, N) = \frac{1}{N!} \int_{\Lambda^N} \mathrm{d}\boldsymbol{x} \sum_{\pi \in \mathcal{S}_N} \mathrm{e}^{-H_\Lambda(\boldsymbol{x}, \pi)}$ is the partition function. Put

(4)
$$\rho_{\rm c} = \sum_{n \ge 1} e^{-\alpha_n} \int_{\mathbb{R}^d} e^{-n\varepsilon(k)} \, \mathrm{d}k.$$

 $\rho_{\rm c}$ is the critical density of the system. Precisely, define the finite volume free energy for density ρ through $q_{\Lambda}(\rho) = -\frac{1}{|\Lambda|} \log Y(\Lambda, |\Lambda|\rho)$. Then [2] there exists a convex function $q(\rho)$ such whenever $\rho_n \to \rho \ge 0$, we have $\lim_{n\to\infty} q_{\Lambda_n}(\rho_n) = q(\rho)$. q is an analytic function of ρ except at the critical density $\rho_{\rm c}$. The non-analyticity of $q(\rho)$ at $\rho_{\rm c}$ is caused by the appearance of macroscopic cycles: let $\ell_i(\pi) = 1, 2, \ldots$ denote the length of the cycle of π that contains the index i. Let $V = L^d$, and $\boldsymbol{\varrho}_{m,n}(\pi) = \frac{1}{|\Lambda|} \#\{i = 1, 2, \cdots : m \le \ell_i(\pi) \le n\}.$

Theorem: Assume $\sum_{\ell \geq 1} \frac{|\alpha_{\ell}|}{\ell} < \infty$, $e^{-\xi}$ has Fourier transform $e^{-\varepsilon(k)} \geq 0$, and $\rho_{c} < \infty$. For any function η with $\eta(V) \to \infty$ and $\eta(V)/V \to 0$ as $V \to \infty$, and all $s \geq 0$, we have

$$\lim_{V \to \infty} E_{\Lambda,\rho V}(\boldsymbol{\varrho}_{1,\eta(V)}) = \begin{cases} \rho & \text{if } \rho \le \rho_{\rm c};\\ \rho_{\rm c} & \text{if } \rho \ge \rho_{\rm c}; \end{cases}$$
(microscopic cycles)

$$\lim_{V \to \infty} E_{\Lambda,\rho V}(\boldsymbol{\varrho}_{\eta(V),V/\eta(V)}) = 0; \qquad (mesoscopic \ cycles)$$

$$\lim_{V \to \infty} E_{\Lambda,\rho V}(\boldsymbol{\varrho}_{V/\eta(V),sV}) = \begin{cases} 0 & \text{if } \rho \leq \rho_{c};\\ s & \text{if } 0 \leq s \leq \rho - \rho_{c}, \\ \rho - \rho_{c} & \text{if } 0 \leq \rho - \rho_{c} \leq s. \end{cases}$$
(macroscopic cycles)

When $\alpha_{\ell} = 0$ for all ℓ , we obtain the model of spatial random permutations that corresponds to the ideal Bose gas; in this case $\rho_{\rm c}$ is the well-known critical density for Bose-Einstein condensation for non-interacting particles. There the occurrence of macroscopic cycles has been understood in [7, 8]. The present setting with general functions ξ was considered in [1].

Main ideas of the proof. We express (3) as a model of random permutations on Fourier modes. Let $\Lambda^* = \frac{1}{L}\mathbb{Z}^d$. For $\mathbf{k} \in \Lambda^*$ We define

(5)
$$p_{\Lambda,N}(\boldsymbol{k},\pi) = \frac{1}{\widehat{Y}(\Lambda,N)N!} e^{-\widehat{H}(\boldsymbol{k},\pi)} \prod_{i=1}^{N} \delta_{k_i,k_{\pi(i)}},$$

with $\widehat{H}(\mathbf{k},\pi) = \sum_{i=1}^{N} \varepsilon(k_i) + \sum_{\ell \geq 1} \alpha_{\ell} r_{\ell}(\pi)$. This model offers an alternative representation to the model of spatial permutations, as far as the permutations are concerned: for any permutation π ,

$$\int_{\Lambda^N} e^{-H_{\Lambda}(\boldsymbol{x},\pi)} d\boldsymbol{x} = \sum_{\boldsymbol{k} \in (\Lambda^*)^N} e^{-\widehat{H}(\boldsymbol{k},\pi)} \prod_{i=1}^N \delta_{k_i,k_{\pi(i)}}.$$

In particular $\widehat{Y}(\Lambda, N) = Y(\Lambda, N)$, and $E_{\Lambda,N}(\Lambda^N \times \{\pi\}) = p_{\Lambda,N}(\Omega^*_{\Lambda,N}, \pi)$ for all π . In order to separate the spatial component of the model from the permutations, we introduce a model of non-spatial permutations. For $\pi \in S_n$, we put

(6)
$$p_n(\pi) = \frac{1}{h_n n!} \exp\left\{-\sum_{\ell \ge 1} \alpha_\ell r_\ell(\pi)\right\}$$

with normalization $h_n = \frac{1}{n!} \sum_{\pi \in S_n} e^{-\sum_{\ell} \alpha_{\ell} r_{\ell}(\pi)}$. $r_{\ell}(\pi)$ denotes the number of cycles of length ℓ in the permutation π . About this model, very detailed results can be obtained [2, 3]. In particular, put $N_{a,b} = \#\{i = 1, 2, \dots : a \leq \ell_i(\pi) \leq b\}$. If $\sum_{\ell \geq 1} \frac{|\alpha_{\ell}|}{\ell} < \infty$, then

(7)
$$\lim_{n \to \infty} \frac{1}{n} E_n(N_{1,sn}) = s.$$

Next we introduce occupation numbers. Let \mathcal{N}_{Λ} be the set of sequences $\boldsymbol{n} = (n_k)$ of integers indexed by $k \in \Lambda^*$, and $\mathcal{N}_{\Lambda,N} = \{\boldsymbol{n} \in \mathcal{N}_{\Lambda} : \sum_{k \in \Lambda^*} n_k = N\}$. To each $\boldsymbol{k} \in (\Lambda^*)^N$ corresponds an element $\boldsymbol{n} \in \mathcal{N}_{\Lambda,N}$, with n_k counting the number of indices i such that $k_i = k$. Thus we can view \boldsymbol{n} as a subset of $(\Lambda^*)^N$. The probability (5) yields a probability on occupation numbers: summing over permutations and over compatible vectors \boldsymbol{k} , we have $p_{\Lambda,N}(\boldsymbol{n}) = \frac{1}{Y(\Lambda,N)} \prod_{k \in \Lambda^*} e^{-n_k \varepsilon(k)} h_{n_k}$. Separation of the spatial and non-spatial aspects of the measure 3 is achieved by the identity

(8)
$$E_{\Lambda,N}(\boldsymbol{\varrho}_{a,b}) = \frac{1}{V} \sum_{\boldsymbol{n} \in \mathcal{N}_{\Lambda,N}} p_{\Lambda,N}(\boldsymbol{n}) \sum_{k \in \Lambda^*} E_{n_k}(N_{ab}).$$

In the light of (7) and (8), we can now focus on the quantity $p_{\Lambda,N}(n)$. By (7), macroscopic cycles appear if and only if at least one mode is macroscopically occupied, i.e. iff $p_{\Lambda,N}(n_k \ge sN) > 0$ uniformly in $N \in \mathbb{N}$ and Λ such that $N = \rho\Lambda$. It turns out that macroscopic occupation can occur only for k = 0 and that it occurs if and only if $\rho \ge \rho_c$. The main step in proving this is a result that gives detailed information about the limiting distribution of the random variable n_0/V : putting $\rho_0 = \max(0, \rho - \rho_c)$, we have, for all $\lambda \ge 0$,

$$\lim_{V \to \infty} E_{\Lambda,\rho V}(e^{\lambda n_0/V}) = e^{\lambda \rho_0}.$$

The proof [2] is based on ideas of Buffet and Pulé [4] for the ideal Bose gas.

References

- V. Betz, D. Ueltschi, Spatial random permutations and infinite cycles, Commun. Math. Phys. 285, 469–501 (2009)
- [2] V. Betz, D. Ueltschi, Spatial random permutations with small cycle weights, preprint (2008).
- [3] V. Betz, D. Ueltschi, Y. Velenik, Random permutations with cycle weights, in preparation
- [4] E. Buffet, J. V. Pulé, Fluctuation properties of the imperfect Bose gas, J. Math. Phys. 24, 1608–1616 (1983)
- [5] R. P. Feynman, Atomic theory of the λ transition in Helium, Phys. Rev. 91, 1291–1301 (1953)
- [6] D. Gandolfo, J. Ruiz, D. Ueltschi, On a model of random cycles, J. Stat. Phys. 129, 663–676 (2007)
- [7] A. Sütő, Percolation transition in the Bose gas, J. Phys. A 26, 4689-4710 (1993)
- [8] A. Sütő, Percolation transition in the Bose gas II, J. Phys. A 35, 6995-7002 (2002)