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1. PDE occurring in Finance

The aim of this section is to show how partial differential equations (PDE) occur
naturally when considering problems in finance.

1.1. Starting point. Let yt be the state (e.g. the price) of a system (e.g. a stock)
at time t. We assume that yt is modelled by the stochastic differential equation
(SDE)

(1.1) dyt = F (yt, t) dt+G(yt, t) dWt.

Here Wt is one-dimensional standard Brownian motion. An example is geometric
Brownian motion, where F (x, t) = µx and G(x, t) = σx, with σ, µ > 0. We obtain

dyt = µyt dt+ σyt dWt.

This is the simplest model for the time evolution of a stock price.
Now let Φ : R→ Rn be a payoff function, which at the moment can be any function.
For stock prices, which are positive, we want Φ : R+ → R, but we can think of
other assets that can take negative values. For example, with Φ(x) = x the payoff
would be just the price of the stock, while for Φ(x) = (x− C)+ ≡ max{0, x− C}
the payoff would be that of a European option with strike price C. Let us assume
that at some time t > 0, the state of the asset is x, so this means yt = x.
Question: What is the expected payout

(1.2) u(x, t) = Eyt=x(Φ(yT ))

at a final time T?
Answer: u(x, t) is the solution to the PDE

(1.3) ∂tu(x, t) + F (x, t)∂xu(x, t) +
1

2
G(x, t)2∂2xu(x, t) = 0,

with final value condition u(x, T ) = Φ(x).
(1.3) already shows the basic features of a PDE: It poses the problem to find a
function where the partial derivatives balance in a certain way, at each point (x, t),
and which fulfils some condition on the boundary (here: final time) of the domain.
Usually, provided sufficiently many boundary conditions are given, there is at most
one function that satisfies a PDE. This property of uniqueness needs to be proved
in many cases, however.
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Let us derive (1.3). For this, we rewrite (1.2) as

0 = u(x, t)− Eyt=x(Φ(yT )).

We want to plug the path yt of the asset price into u. Notice that u(x, t) =
Eyt=x(u(yt, t)), and Eyt=x(Φ(yT )) = Eyt=x(u(yT , t)). The last equality follows
from u(x, T ) = EyT=x(Φ(yT )) = Φ(x). We obtain

(1.4) 0 = Eyt=x(u(yT , T )− u(yt, t)) = Eyt=x
(∫ T

t

du(ys, s)
)
.

If the function s 7→ u(ys, s) would be differentiable, this would follow just from
the fundamental theorem of calculus, and the meaning of du(ys, s) would be
d
dsu(ys, s) ds. Since the non-smooth path ys is plugged into u, we however need
Itô calculus. We find

du(ys, s) =
(
F (ys, s)∂yu(ys, s) +

1

2
G(ys, s)

2∂2yu(ys, s) + ∂tu(ys, s)
)

ds

+G(ys, s)∂yu(ys, s) dWs.

Since E
( ∫ T

t
G(ys, s) dWs

)
= 0 for every adapted process ys (in particular our

process is adapted!), it follows that in order to fulfil (1.4), it is enough that the
first line of the equation above vanishes after taking the integral over time and the
expectation. But the first line is just the PDE (1.3), so if u fulfils that, then also
(1.4) holds. It is not difficult to see that on the other hand, if we want (1.4) hold
for all t, then u needs to fulfil the PDE.

1.2. Vector valued diffusions. We now study several assets ys = (y
(1)
s , . . . , y

(n)
s ),

that solve the system of SDE

dy(i)s = Fi(ys, s) +

n∑
j=1

Gij(y, s) dW(j)
s ,

where the W(j)
s are independent Brownian motions. Let Φ(Rn → R) be again a

payoff function. Then

u(x, t) = Eyt=x(Φ(yT ))

is the solution of the PDE

∂su(x, s) + L u(x, s) = 0 for t < s < T,

with final condition u(x, T ) = Φ(x), and where

(1.5) L =

n∑
i=1

Fi∂xi +
1

2

n∑
i,j,k=1

GikGkj∂xi∂xj

is called the generator of the diffusion yt. The derivation is entirely parallel to the
one above and uses the multi-dimensional Itô formula.
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1.3. Discounting and the Black-Scholes PDE. We now allow for some dis-
counting. We study

(1.6) u(x, t) = Eyt=x
(

e−
∫ T
t
b(ys,s) ds Φ(yT )

)
,

where b : R2 → R is a discounting function, and Φ : R → R is again a payoff
function.
We claim that if yt solves the SDE (1.1), then u as given above in (1.6) is the
solution of the PDE

(1.7) ∂tu+ F∂xu+
1

2
G2∂2xu− bu = 0,

with final condition u(x, T ) = Φ(x). Note that although we have not written the
arguments of the functions u, F,G and b above, they are still functions and not
numbers. We will use this shorter notation often.
To justify our claim, let us again first note that (1.6) is equivalent to u(y, T ) = Φ(y)
and

0 = Eyt=x
(
u(yT , T ) e−

∫ T
t
b(ys,s) ds − u(yt, t)

)
,

with the same justification as above. Writing v((yr)r 6 s) = e−
∫ r
t
b(yr,r) dr , (which

depends now on more than one point in time, but is still adapted), we can transform
this into

0 = Eyt=x
(
u(yT , T )v((yr)r 6 T )− u(yt, t)v((yr)r 6 T )

)
= Eyt=x

(∫ T

t

d (u(ys, s)v((yr)r 6 s))
)
.

Now we have to apply the Itô formula as above. This is left as an exercise.

1.4. The connection with the Black-Scholes PDE (BSPDE). The PDE
(1.7) is formally equal to the BSPDE. If we specialize (1.1) to geometric Brownian
motion, then

dyt = µyt dt+ σyt dWt.

We choose a constant discounting function b (interest rate), and then (1.7) becomes

(1.8) ∂tu+ µx∂xu+
1

2
σ2x2∂2xu− bu = 0.

In comparison, the classical BSPDE would read

(1.9) ∂tu+
1

2
σ2x2∂2xu+ b(x∂xu− u) = 0.

The final conditions for a European call option would be Φ(x) = (x − C)+. The
equations (1.8) and (1.9) are of the same structure, but the coefficients differ unless
b = µ. This is connected with the fact that unless we are in a risk-neutral world,
the naive option pricing formula that just tries to take the expected discounted
payout

u(x, t) = Eyt=x( e−b(T−t) Φ(yT ))

as the option price gives the wrong result.



4 VOLKER BETZ

1.5. Derivation of the Black-Scholes PDE. We work here again with constant
interest rate, which we now will call r instead of b. The no-arbitrage principle
means that the price P (t, x) of an option must be given by a self-financing trading
strategy, for if it were not, a trader using this strategy would have an arbitrage
opportunity. The strategy is determined by the amount at of stock and the amount
bt of risk-less bound that the trader holds at time t. It has to replicate the payout
Φ(yT ) at maturity, and since at maturity the payout is equal to the option price
for any pricing strategy, we have

(1.10) aT yt + bT erT = P (yT ).

Since the strategy is self-financing, the only way the portfolio can change in value
is that the stock goes either up or down, and by the growing capital in the bonds.
Thus

(1.11) d(atyt + bt ert ) = at dyt + rbt ert dt.

Our aim is to find the equation for P (t, x) so that

(1.12) P (t, yt) = atyt + bt ert ,

i.e. the option price is exactly given by the value of the trading strategy portfolio
for all times. Differentiating this both sides of the last equation, using the Itô
formula and the SDE for dyt gives for the left hand side:

dP (t, yt) = ∂tP dt+ ∂xP (F dt+GdWt) +
1

2
G2∂2xP dt,

and for the right hand side (using (1.11) instead of the Itô formula):

d(atyt + bt ert ) = at d(F dt+GdWt) + rbt ert dt.

Equating the dWt terms means that we must have

at(yt) = ∂xP (t, yt),

while equating the dt terms means that

∂tP +
1

2
G2∂2xP − rbt ert = 0

By (1.12), bt = (P (yt, t)−atyt) e−rt = (P (yt, t)−∂xP (yt, t)yt) e−rt , and plugging
this into the last equation finally means that P must satisfy

∂tP +
1

2
G2∂2xP + r(x∂xP − P ) = 0,

with final condition P (x, T ) = Φ(x). This is the BSPDE (for general F , not only for
geometric Brownian motion!). Let us compare this with the expected discounted
payoff function given by (1.7), which we write slightly differently as

∂tu+
1

2
G2∂2xP + r

(1

r
F∂xu− u

)
= 0.

We see that the naive approach will only work when F (x) = rx, and not for any
other F . However, this situation can be forced to happen by using the so-called
Girsanov transformation. This topic is beyond the scope of the current course.
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1.6. Boundary value problems. Let now D ⊂ Rn be a subset of the space of
possible asset values. We study the SDE

dy(i)s = Fi(ys, s) ds+

n∑
j=1

Gij(ys, s) dW(j)
s

whenever ys ∈ D, with starting value yt = x ∈ D. Let τ(x) be the first time
that ys exits D, or τ(x) = T if ys does not leave D before T . (note that τ(x) is
random!). Let

(1.13) u(x, t) = Eyt=x(Φ(yτ(x), τ(x))).

An example where this is useful is a knock-out option. In this case, D can be an
interval [a, b] ⊂ R, or a half-interval [a,∞). The option pays nothing (knock-out)
if the stock price leaves D before maturity T , and pays Φ(yT , T ) otherwise. This
can be brought into the form above by having Φ(y, s) = 0 whenever s < T . The
function u then solves the boundary value problem

∂tu(x, s) + L u(x, s) = 0 for x ∈ D,
u(x, t) = Φ(x, t) for x ∈ ∂D.

(1.14)

Here, L is given by (1.5).
The derivation of (1.14) is similar to what we had before. (1.13) is equivalent to

0 = Eyt=x
(
u(yτ(x), τ(x))− u(yt, t)

)
= Eyt=x

(∫ τ(x)

t

du(ys, s)
)
.

with the condition u(x, s) = Φ(x, s) whenever x ∈ ∂D. For s < τ(x), we compute
du(ys, s) as before using the Itô formula and obtain the PDE as we did several
times already. The difference is only the boundary condition, which transfers into
the PDE. There is one important caveat, which we have hidden a bit: namely, for
the stochastic integrals

E
(∫ τ(x)

t

Gij(ys, s) dW(j)
s

)
to be equal to zero, we need that Eyt=x(τ(x)) <∞. This is automatic here since
we assumed τ(x) 6 T , but if we would study an infinite time horizon, this would
cause problems, and we would have to be very careful. For more information search
the internet with the keyword ’gamblers ruin’.

2. Some linear PDE theory

Let us review what the basic problem that we are treating in PDE theory is: we
are looking for a function f , defined on an open subset U ⊂ Rn, such that at each
point x ∈ U , a certain combination of partial derivatives and values of the function
itself gives a certain value. On the boundary ∂U , we may or may not prescribe
values for the function or its derivatives. A (random) example would be

D = B1 := {(x, y) ∈ R2 : x2 + y2 6 1},
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and

x∂2xf(x, y) + y∂2yf(x, y) = f(x, y)2 on D, f(x, y) = xy on ∂D.

PDE do not always have a solution, and the solution may not always be unique.
Even among those that do have a unique solution, there are precious few where it
is possible to find the solution in the form of a closed formula. In this section, we
will study some of these few cases.

2.1. First order PDE. These PDE contain only first order derivatives. Recall
the notation

∇f(x1, . . . xn) = (∂x1f(x1, . . . , xn), . . . , ∂xnf(x1, . . . , xn))

for the gradient of a function, and the notation

b · ∇f = b1∂x1
f + . . .+ bn∂xnf

for the scalar product with a vector b = (b1, . . . , bn).

The transport equation. This is the simplest type of PDE there is.
Definition: Consider D ⊂ Rn × R. We say that u : D → R solves a transport
equation (with constant coefficients) if

(2.1) ∂tu+ b · ∇xu = 0.

Above, we have u = u(x, t) = u(x1, . . . , xn, t).
Can we solve this equation for u? Yes, and it is easy. The key is to see that although
we have separated ’time’ t and ’space’ x, what we really have is a gradient of a
function of n+1 variables being perpendicular to a certain vector. More explicitly,
define c = (b1, . . . , bn, 1). Then (2.1) becomes

c · ∇(x,t)u = 0.

So, u is constant in the direction (b1, . . . , bn, 1). In other words,

(2.2) u(x+ sb, t+ s) = u(x, t)

for all x ∈ Rn and all s, t ∈ R. Whenever we know u on one point of such a line,
we know it on the whole line. To know it at one point, we need the boundary
condition.
Even in this simple example, we can see clearly that both existence and uniqueness
can fail easily. We have established that the solution is constant on straight lines.
Now, if D is e.g. a ball, then each straight line will intersect its boundary twice.
So, when prescribing values for u on ∂D, we have to be very careful in this case,
otherwise we will prescribe two different values on the same straight line, and the
PDE has no solution. On the other hand, we can also lose uniqueness. Before we
see this, let us look at a case where we do have existence and uniqueness. This
is the full space initial value problem, where (2.1) is on D = Rn × (0,∞), and
u(x, 0) = h(x). This is natural, as we claim that we know u to be h at time t = 0
and want to see how it evolves in time. Now (2.2) gives us

u(x+ sb, s) = u(x, 0) = h(x),



PDE FOR FINANCE LECTURE NOTES (SPRING 2012) 7

and so by putting y = x+ sb we find

u(y, s) = h(y − sb).

Note that the values of h are indeed ’transported’ along the straight lines. Non-
uniqueness now occurs if we look at more general (maybe less natural) boundary
conditions. We could e.g. study (2.1) on the half space D = {(x, t) : t+a ·x > 0}.
This will still give a unique solution, except when (b, 1) is parallel to the boundary
of D. Then, we will have no solution unless the boundary condition h is a constant,
and infinitely many solutions if h is indeed constant, as the values along all other
straight lines will not have been prescribed.
To summarize, in the very simple case of the transport equation we have found
the solution by finding a coordinate direction (namely (b, 1)) in which the solution
is constant. Let us try this strategy for more complicated first order PDE.

Linear first order PDE. These are of the same shape as the transport equation,
but now the coefficients b may depend on x and t, and we also allow a term
proportional to u to appear.
Definition: Consider D ⊂ R × Rn. We say that u : D → R solves a linear first
order PDE if

(2.3) b(x, t) · ∇x,tu(x, t) + c(x, t)u(x, t) = 0

on D.
Like in the transport equation, we look for a coordinate direction in which the
solution is easy. Here, b(x, t) seems promising. But note that now the ’easy’ direc-
tion depends on where we are in (x, t)-space! This means that we are dealing with
an ’easy curve’ instead of an ’easy straight line’. More precisely: Let γ : R→ Rn+1

be a curve in coordinate space. We write γ(s) = (x(s), t(s)). Assume that γ is par-
allel to the vector b(x, t) at every point (x, t) through which γ passes. In symbols,
assume that

(2.4) γ̇(t) ≡ d

dt
γ(t) = b(γ(s)) ≡ b(x(x), t(s)).

The ≡ signs mean (as always) that the two terms are the same by definition, i.e.
there are just two different ways of writing them.
Let us now define v(s) = u(γ(s)) ≡ u(x(s), t(s)). So, v is just what you get when
you evaluate u along γ. The interesting point is that if u solves (1.3), then by the
chain rule,

d

ds
v(s) = b(γ(s)) · ∇x,tu(γ(s)) = −c(γ(s))u(γ(s)) = −c(γ(s))v(s).

This is now an ordinary differential equation for v, which is easily solved: you can
check that

(2.5) v(s) = v(0) e−
∫ s
0
c(γ(r)) dr .

Even though it might not seem so, we have in some sense already solved (2.1).
Namely, if we need to know the solution of (2.1) at a point (x, t) in a domain D,
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we start a curve γ at (x, t) and make sure that it fulfils (2.4). This means we have
to solve the corresponding system of ordinary differential equations, which may or
may not pose a problem in itself. Assuming that this goes well, however, we then
follow γ until it hits the boundary. We take the prescribed value at the boundary
as v(0), re-parametrize γ so that γ(0) is on the boundary, and apply (2.5) to get
the value of u along the full curve γ. In particular, since γ contains (x, t), we get
the value at that point.
Of course, this is not a closed form solution. To get the latter, we need to be able
to solve the ODE defining γ, and to invert the coordinates to get from the ’curve
coordinates’ γ(s) to the space coordinates (x, t). This is in general hard (and has
nothing whatsoever to do with PDE theory), but sometimes it can be done. Here
is an example.
Example: D = {(x, t) : x > 0, t > 0} ⊂ R2. The initial condition is u(x, 0) = g(x)
for some function g, and the PDE is

x∂xu(x, t)− t∂xu(x, t) = u(x, t).

So in the framework above, we have b(x, t) = (−t, x). We seek γ with γ̇(s) =
b(γ(s)). Writing γ(s) = (γ1(s), γ2(s)), this means we have b(γ(s)) = (−γ2(s), γ1(s)),
so we want γ to fulfil

γ̇1(s) = −γ2(s), γ̇2(s) = γ1(s).

The solution is given by

γ1(s) = c cos(s), γ2(s) = c sin(s),

where c can be arbitrary and determines the points through which γ runs: namely,
γ describes circles of radius c. Since in the context of (2.3), we have c(x, t) = −1,
equation (2.5) now becomes

v(s) = v(0) e−
∫ s
0
1 ds = v(0) e−s

Now we put it all together and invert the coordinates. If we want (x, t) to lie on
γ, it means we want (x, t) = (c cos(s), c sin(s)). Resolving this for c and s, we find

that c =
√
x2 + t2 (by squaring both components above, adding and taking the

square root after using sin2 + cos2 = 1). Also s = arctan(t/x) (by dividing the
components, and taking the arctan). We arrive at

u(x, t) = v(arctan(t/x)) = g(
√
x2 + t2) earctan(t/x) .

Characteristic curves. The method of seeking ’simple directions’ can be extended
to even more difficult first order PDE. In these cases, often the ODE for γ and
for the solution along γ become coupled, and one has to solve the whole system
at one go. While it is not conceptually much more difficult than what we had, it
is considerably more messy, and we will not pursue it further.

2.2. Laplace and Poisson equations.



PDE FOR FINANCE LECTURE NOTES (SPRING 2012) 9

Motivation: Exit times from a domain. Recall the knock-out option example from
the previous section. Here we study a similar problem, but with positive payout
at the boundary. Consider the SDE

dy(i)s = dWi(s) for ys ∈ D, y0 = x ∈ D,

with bounded D ⊂ Rn, and the utility function

u(x) = Ey0=x(Φ(yτ(x))),

where τ is the first time that yt hits ∂D. Then in the same way as may times
before, we find that u is the solution to the PDE

(2.6) ∆u ≡
n∑
i=1

∂2xu = 0 on D, u(x) = Φ(x) on ∂D.

This is the Laplace equation. If we include the running payoff f , i.e. if

u(x) = Ey0=x

(
Φ(yτ(x)) +

∫ τ(x)

0

f(ys) ds
)
,

then we obtain instead (by the familiar argument) that u solves the Poisson equa-
tion

(2.7) ∆u(x) + f(x) = 0 on D, u(x) = Φ(x) on ∂D.

Now, how can we solve equations (2.6) and (2.7)? Let us start with the seemingly
strange case D = Rn \ {0}. Then it is possible (with some experience) to guess a
solution. It is given by

(2.8) F (x) =


− 1

2π
ln |x| for n = 2,

1

n(n− 2)α(n)

1

|x|n−2
for n > 3.

Above, α(n) is the volume of the unit ball, and all the x-independent prefactors
are normalisations that will be useful later on. The function F in (2.8) may seem
very special, but it is of great importance and is called the fundamental solution.
We will verify as an exercise that indeed ∆F = 0 on D. As a quick challenge,
try to think what the situation would be in d = 1: What solutions to the Laplace
equation are there?
The key to solving (2.7) is now to observe that not only F , but also the function
x 7→ F (x− y) solves (2.6). This leads to the following

Theorem 2.1. Let F be the fundamental solution to the Laplace equation, and
assume that f in (2.7) is nice enough, e.g. twice continuously differentiable with
compact support. Put

u(x) = −
∫
F (x− y)f(y) dy

Then u solves (2.7).
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The proof goes via careful integration by parts, where it is important to pay special
attention to the region of space where F diverges. Here, it is also important to use
the precise normalisation for F , otherwise the theorem would not hold. The proof
is given e.g. in Evans.
Solving (2.6) and (2.7) on a domain D ⊂ Rn subject to boundary conditions is
more difficult, but there is a general recipe that can be followed. Here it is:
Step 1: Instead of solving (2.6) for the given boundary function Φ, solve it (in
the variable y) for the special boundary function y 7→ F (y−x) for all x. I.e., solve

(2.9) ∆φx(y) = 0 on D, φx(y) = F (y − x) on ∂D.

This seems not much easier than the original problem, but for some nice D it
actually is. However, this is in general the hard step.
Step 2: Define

G(x, y) = F (y − x)− φx(y) for x ∈ D,x 6= y.

G is called Greens function of the Laplace equation for the domain D.
Step 3: The Poisson equation is now solved by

u(x) =

∫
∂D

Φ(y)
∂G

∂ν
(x, y) dS(y)−

∫
D

f(y)G(x, y)dy,

where ν is the vector of length one that is perpendicular to ∂D at the point y
and points outward, and dS is the surface measure on ∂D. This theorem is again
proved by careful integration by parts.
Example: Greens function on the half space
Consider the half space Rn+ = {x = (x1, . . . , xn) : xn > 0}. The task of step 1
above is to find the solution to (2.9) for all x ∈ Rn+. Note that y 7→ F (y − x)
trivially fulfils the boundary condition part of (2.9), but not the PDE part since
∆yF (y − x) 6= 0 for y = x; indeed, the function is not even defined there. But F
only depends on |y−x|, and if we could somehow force its singularity to lie outside
of the half plane, we would be in business. These two things suggest that we may
try φx(y) = F (y − x̄), where x̄ = (x1, . . . , xn−1,−xn). This now solves (2.9). So,
G(x, y) = F (y − x) − F (y − x̄). The derivative ∂G

∂ν is just the derivative in the
direction of the n-th coordinate, so on ∂D,

∂G

∂ν
(x, y) = −∂ynG(x, y) = − 2xn

nα(n)|x− y|n
.

Here, we have used that on ∂D, xn = 0. Then,

u(x) =
2xn
nα(n)

∫
{y∈Rn:yn=0}

Φ(y)

|x− y|n
dy.

solves the Laplace equation (2.6). The solution to the Poisson equation (2.7) follows
from step 3 above in the same way.
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2.3. The heat equation. A function u(x, t) solves the heat equation if (with
σ > 0)

(2.10) ∂tu−
1

2
σ2∆u = 0.

In the simplest case, (2.10) is supposed to hold for all x ∈ Rn, and all t > 0, and
there is an initial condition u(x, 0) = u0(x). We have seen this equation already: if
in (1.3) we put F = 0 and G = σ2, then we obtain (2.10). In other words, the heat
equation is the Kolmogorov backward equation for Brownian motion. It is one of
the most important equations in physics, as it models heat flow (hence the name),
diffusion of liquids, and many more things.
From Black-Scholes to heat: We will now show that the BSPDE can be trans-
formed into a heat equation by a change of variables. Recall the BSPDE given in
(1.9):

(2.11) ∂tP +
1

2
σ2x2∂2xP + b(x∂xP − P ) = 0,

with final condition P (x, T ) = Φ(x). To understand how anybody could guess
the variable transform that we are going to use, note that in (2.11), x need to be
positive, as it is a stock price; and, that we have a final condition at T . In contrast,
in (2.10), we have x ∈ R and an initial condition. So the least we would have to do
to connect the two is to invert time, and to map the nonnegative x into something
on all of R. The latter is just what the logarithm does, and an additional hint for
uisng it would be that geometric BM behaves like the exponential of BM itself.
After these explanations, the following transformation may seem a bit less arbi-
trary: we put

y = lnx (so x = ey ), and τ =
1

2
σ2(T − t).

Then we put

v(y, τ) = P ( ey , T − 2

σ2
τ) (= P (x, t)).

Let us try whether v solves the heat equation:

∂τv(y, τ) = − 2

σ2
∂2P ( ey , T − 2

σ2
τ) = − 2

σ2
∂tP (x, t),

∂yv(y, τ) = ey ∂1P ( ey , T − 2

σ2
τ) = x∂xP (x, t),

∂2yv(y, τ) = ( ey )2∂21P ( ey , T − 2

σ2
τ) = ey ∂1P ( ey , T − 2

σ2
τ) = x2∂2xP (x, t)− x∂xP (x, t).

Above, ∂1P means the function that one gets from P by differentiating with re-
spect to the first argument. Note that this is different from ∂yP ( ey , . . .) since this
would invoke a chain rule, and also better than ∂xP ( ey , . . .), where the reader is
asked to guess that the first argument is somehow connected to the letter x. This
example shows that the inherited notation for derivatives is not satisfactory (it
uses a dummy variable explicitly), but unfortunately it is very deeply entrenched
in mathematics and there is no hope to overcome it.
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Back to the calculation. We find

∂τv − ∂2yv = − 2

σ2
∂tP − x2∂2xP − x∂xP

= − 2

σ2

(
∂tP +

σ2

2
x2∂2xP +

σ2

2
x∂xP

)
= − 2

σ2

(
−b(x∂xP − P ) +

σ2

2
x∂xP

)
= − 2

σ2

(
(−b+ σ2/2)∂yv + bv

)
.

So v solves

(2.12) ∂τv − ∂2yv + (1− 2b

σ2
)∂yv +

2b

σ2
v = 0.

This is not quite yet the heat equation. To proceed, let us put k = 2b/σ2, and

u(y, τ) = e−αy−βτ v(y, τ),

thus v(y, τ) = eαy+βτ u(y, τ). Then (2.12) becomes

(βu+ ∂τu)− (α2u+ 2α∂yu+ ∂2yu) + (1− k)(αu+ ∂yu) + ku = 0.

Then ∂yu terms vanish if −2α + (1− k) = 0, and the u terms vanish if β − α2 +
(1− k)α+ k = 0. This gives

α =
1− k

2
, β = − (k + 1)2

4
.

With this choice of α, β, the function u indeed solves the heat equation

(2.13) ∂τu− ∂2yu = 0, u(y, 0) = e
1
2 (k−1)y Φ( ey ).

So to solve the BS-PDE, we have to solve (2.13) to get u, then get v from u, and
then undo the change of variables to find P (x, t) = v(lnx, 12σ

2(T − t)). This will
work for any payoff-function Φ, provided we can solve the heat equation with the
corresponding initial condition. This we can indeed do:
Solution for the whole-space heat equation:
The function

(2.14) f(x, t) =
1

(2πσ2t)n/2

∫
Rn

e−
|x−y|2

2σ2t f0(y) dy

solves the heat equation (2.10) with initial condition f(x, 0) = f0(x). The function

F (x, t) =
1

(2πσ2t)n/2
e−
|x|2

2σ2t

is called fundamental solution of the heat equation. It actually also solves the heat
equation for t > 0, except when x = 0.
Remarks: F is the transition density of Brownian motion, i.e. P0(Wt ∈ A) =∫
A
F (x, t) dx. This is no accident, but is related to the time reversibility of Brow-

nian motion and the Kolmogorov equations. We will not discuss this further in the
present lecture.
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Also, we need to place some restrictions on the initial condition f0 for the solution
to make sense. In fact, f0 need not be continuous, but it must not grow too fast at

infinity. If f0(x) 6M ec|x|
2

, then the solution (2.14) at least exists for finite time.

If f0(x) 6M ec|x|
2−δ

, for some small δ > 0, then the solution (2.14) exists for all
times. Translating the latter condition back to the Black-Scholes coodinates gives

u(y, 0) = e−
1
2 (k−1)y Φ( ey ) 6M ec|y|

2−δ
⇔ x−

1
2 (k−1)Φ(x) 6M ec(ln x)

2−δ
.

This works fine if Φ(x) < |x|r for any r > 0, but will fail if Φ grows exponentially
at infinity.

2.4. Solution of the heat equation on a half space. This solution will be
useful for the pricing of barrier options. We want to solve

∂tu =
1

2
∂2xu = 0 for t > 0, x > 0.

u(x, 0) = g(0), u(0, t) = φ(t).
(2.15)

It seems at first that the boundary data needs to fit together for this equation to
make sense; more precisely, when limt→0 φ(t) 6= limx→0 g(x), then it seems that we
want on the one hand a function that is twice differentiable in x and differentiable
in t (for the PDE to make sense), but on the other hand is discontinuous at the
boundary. We will however see that this is not a problem. To solve (2.15), let us
split it into two easier problems.
Proposition: Assume that v solves

(2.16) ∂tv =
1

2
∂2xv, v(x, 0) = g(x), v(0, t) = 0,

and that w solves

(2.17) ∂tw =
1

2
∂2xw, w(x, 0) = 0, w(0, t) = φ(t).

Then u = v + w solves (2.15).

Proof. It is clear that u fulfils the boundary conditions, and that it solves the PDE
follows from the fact that the derivatives can be dsitributed onto v and w, who
individually solve the heat equation. �

It will turn out to be an advantage if in (2.17), we have limt→0 φ(t) = 0; then
the formula for the solution will be easier to make sense of. This can be easily
achieved: we replace φ(t) with φ(t)− φ(0) in (2.17), and g(x) with g(x)− φ(0) in
(2.16). To the solution ũ that we obtain from this we only have to add φ(0), which
then solves the original equation.
Solution of (2.16):
We use a reflection trick: Let us put

g̃(x) =

{
g(x) if x > 0,
−g(−x) if x < 0.
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We now solve the whole space problem with initial condition g̃, using (2.14). The
result is

v(x, t) =
1√
2πt

∫ ∞
−∞

e−
|x−y|2

2t g̃(y) dy = (∗).

We now change integration variables from y to −y, with the result

(∗) =
1√
2πt

∫ −∞
∞

e−
|x+y|2

2t g̃(−y) dy ==
−1√
2πt

∫ ∞
−∞

e−
|(−x)−y|2

2t g̃(y) dy = −v(−x, t)

So, the solution has the same symmetry as the boundary condition for all times!
In particular, v(0, t) = −v(0, t), which only leaves the possibility v(0, t) = 0. Thus
v restricted to x > 0 indeed solves (2.16).
The above solution can be written in terms of the fundamental solution F (x, t) =

1√
2πt

exp(−x
2

2t ). Namely, simple manipulations show that

v(x, t) =

∫ ∞
0

G(x, y, t)g(y) dy, with G(x, y, t) = F (x− y, t)− F (x+ y, t).

Note the striking similarity to the Greens function we found in the solution to
(2.6). G is indeed the Greens function for the heat equation. This will become
clear when we consider the
Solution to (2.17):
As (2.17) is a bit like the boundary value problem (2.6), we can expect a similar
solution formula, and there is indeed one: the function

(2.18) w(x, t) =

∫ t

0

∂yG(x, y, t− s)|y=0φ(s) ds

solves (2.17). The partial derivative of G can of course be computed, leading to

w(x, t) =

∫ t

0

x

(t− s)
√

2π(t− s)
e−

x2

2(t−s) φ(s) ds.

The proof of this formula goes roughly as follows: Since F solves the heat equation,
so does (x, t) 7→ G(x, y, t) for all y, and also (x, t) 7→ ∂yG(x, y, t− s) for all s (just
exchange the order of derivatives). But when two or more functions solve the
heat equation, (or, any linear equation), then all weighted sums of these function
solve the same equation (just distribute the derivatives), and this even applies to
convergent sums of infinitely many terms, and even integrals. So w as given by
(2.18) does solve the heat equation. For the boundary conditions: naively, w(x, 0) =
0 as the range of the integration is zero. However, we have to approach this limit
coming from positive t, which makes it less trivial. Likewise, the limit of w as
x→ 0 needs to be studied carefully, and it needs to be shown that it converges to
φ(t). This is beyond the scope of the present lecture and will not be done here.
Pricing a barrier option
A barrier option changes its value suddenly when the asset process yt hits a pre-
defined barrier. For example, a down-and-out call with barrier X will be worthless
if the stock falls below X before maturity. Otherwise, it behaves like a normal call.
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Of course, such options are very little different from gambling in a casino, and
encourage massive market manipulation to temporarily suppress a stock price, and
should not be legal. But this is not out concern here, we are trying to price them,
assuming that no manipulation takes place. In that case, interestingly, the Black-
Scholes PDE gives a fair price, so they are not fundamentally different from vanilla
options. The procedure goes like this: We start with the BSPDE with boundary
condition zero at asset value X. We do the variable transform to turn this into a
heat equation with zero boundary condition at a suitably modified place. We then
solve this heat equation using the theory above. Finally we transform back to the
Black-Scholes coordinates. The result for a down-and-out call with barrier X is

V (x, t) = V0(lnx,
1

2
σ2(T − t))−

( x
X

)1−k
V0(ln

X2

x
,

1

2
σ2(T − t)),

with k = 2r/σ2, and where V0 is the value of a vanilla option with the same strike
price. The details will be worked out on an exercise sheet. Just notice that the
formula makes sense: when the stock price x is much larger than the barrier price
X, the price is almost that of a vanilla option, while it is almost zero if the stock
price x is close to X.

2.5. The heat equation on an interval. Recall that vanilla options correspond
to the heat equation on the full space, while barrier options correspond to the heat
equation on the half space. We will now study the heat equation on an interval,
which corresponds to double barrier options. Surprisingly, this will turn out to be
easier than the cases considered before. We will need the following fact:
Theorem: Let f : [0, 1] → R be a continuous function with f(0) = f(1) = 0.
Then for all x ∈ [0, 1],

(2.19) f(x) =

∞∑
k=1

ak sin(kπx) with ak = 2

∫ 1

0

f(x) sin(kπx) dx.

We will not prove this Theorem, but make some remarks:
(i): The theorem is even valid for discontinuous function, but then the sum does
not converge for all x ∈ [0, 1]. Instead, the (squared) area between the function f
and the partial sums becomes arbitrarily small (convergence in L2).
(ii): Equation (2.19) is called Fourier series (more precisely: Fourier-sine-series) of
f , and the an are the Fourier coefficients. A more common variant of (2.19) is

f(x) =

∞∑
k=0

ãk e2πikx with ãk =

∫ 1

0

f(x) e−2πikx dx.

This does not need the condition that f(0) = f(1) = 0; however, if we do have
that condition, (2.19) is simpler and we will stick with that.
(iii): The proof uses orthogonality of the set {sin(kπx) : k > 1} in the space of
square integrable functions. More concretely, you can check that

2

∫ 1

0

sin(kπx)2 dx = 1, and

∫ 1

0

sin(kπx) sin(mπx) dx = 0,



16 VOLKER BETZ

for 0 < k < m. This already shows that (2.19) works for the sine functions them-
selves and eventually leads to the proof.
Let us now use the theorem to solve

∂tu =
1

2
∂2xu for t > 0, 0 < x < 1,

u(x, 0) = g(x), u(0, t) = φ0(t), u(1, t) = φ1(t).
(2.20)

Let us start with the easiest case φ0 = φ1 = 0. Then for each t > 0, we can express
the solution u(x, t) of (2.20) using (2.19). Thus,

(2.21) u(x, t) =

∞∑
k=1

ak(t) sin(kπx)

for some coefficients ak(t). By the initial condition, we must have

ak(0) = 2

∫
g(x) sin(kπx) dx,

for all k. By the differential equation, we must have

∞∑
k=1

∂tak(t) sin(kπx) =

∞∑
k=1

(−1

2
k2π2 sin(kπx))a(t).

Now the orthogonality of the sine functions that we mentioned above really means
that we cannot build one of them out of a finite or infinite number of different
ones. So, for the equality above to hold, the individual terms for each k have to
agree, and we find ∂tak = −k2π2ak. with solution

ak(t) = ak(0) e−
1
2k

2π2t .

Wrapping up, we find

(2.22) u(x, t) =

∞∑
k=1

gk e−
1
2k

2π2t sin(kπx), with gk = 2

∫ 1

0

g(y) sin(kπy) dy.

Note that the term e−k
2π2t decays extremely quickly as t and k get large. This

means that for large t (i.e. for maturities far in the future), the first few terms of
the sum give a very good approximation of the solution.
Let us now write the solution in form of a Green’s function: we write

G(x, y, t) = 2

∞∑
k=1

e−
1
2k

2π2t sin(kπx) sin(kπy),

and then have

u(x, t) =

∫ 1

0

G(x, y, t)g(y) dy.

G is the Green’s function for the heat equation on the interval, and in the same
way as for the half space, one can see that the solution of (2.20) with nonzero
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boundary conditions φ0 and φ1 and initial condition g(x) = 0 is given by

u(x, t) =

∫ t

0

∂yG(x, y, t)|y=0φ0(s) ds−
∫ t

0

∂yG(x, y, t)|y=1φ1(s) ds.

The general solution for nonzero initial and boundary conditions can then be
found, as in the half-space case, by adding the two types of solutions that we have
found above.
Remark: The backwards heat equation
Let us close with a remark about the backwards heat equation, given by ∂tu =
−∂2xu. Why do we never investigate it? The reason can be seen from equation
(2.22): This would change to

u(x, t) =

∞∑
k=1

gk e+
1
2k

2π2t sin(kπx).

But the exponential term now grows when k grows, which means that unless gk
decays very quickly as k → ∞, the ’solution’ will be infinite for every positive
time. This is related to the fact that the heat equation has such good smoothing
properties: it converts e.g. any bounded function at time t = 0 into an infinitely
differentiable function at t > 0 (just check on the solution formula); conversely,
the backwards heat equation will be un-solvable for any initial condition that is
not infinitely often differentiable, and will be in fact un-solvable for most other
initial conditions. So we don’t treat it.

2.6. Uniqueness and the Maximum Principle. So far, we have focused on
finding solutions to the heat equation by giving explicit formulae. Here, we will
investigate whether these solutions are the only ones there are. This question is
of practical importance, as we can see when we recall how we approached the
problem of option pricing: we found that
1) the option price must solve a PDE;
2) we can find a solution to the PDE.
But who guarantees that the solution we found actually has any connection to
the option price? Without uniqueness, it might well be that the option price is
given by a solution to the PDE that we did not find. To be sure that by finding
a solution to the PDE we have found the correct option price, we therefore need
uniqueness. Fortunately, it holds. A first step to proving it is the following result:
Proposition: Consider the heat equation on a bounded open domain D ⊂ Rn:

(∗)
{

∂tu = ∆u for x ∈ D, t > 0;
u(x, 0) = g(x), u(y, t) = φ(y) for y ∈ ∂D.

Assume that

(A) the only solution to (∗) with g = 0 and φ = 0 is the constant solution u = 0.

Then, the solution of (∗) is unique for all g and all φ.
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Proof. Assume that u and ũ solve (∗) with the same initial and boundary condi-
tions. Then u− ũ solves (∗) with zero initial and boundary conditions, by linearity.
By assumption (A), this means that u− ũ = 0, and thus u = ũ. �

It remains to show that assumption (A) is valid. For this we use the Maximum
Principle:
Theorem: Let D ⊂ Rn be a bounded open set. Let f : D × [0, T ] → R satisfy
the inequality

∂tf 6 ∆f(x, t) for all x ∈ D, 0 < t < T.

Then the maximum of f over the set D × [0, T ] (overline means closure) is taken
either on the spacial boundary ∂D × [0, T ], or at the initial boundary D × {0}.
Remarks: a) it follows that the maximum can neither be in the interior of the
space-time domain, nor at the final time (except when it is also on the boundary
of the space domain).
b) From the maximum principle, (A) follows easily: since u solves ∂tu = ∆u 6 ∆u,
and since u = 0 on the boundary, we find that u(x, t) 6 0 = the value at the
boundary. And, since ∂t(−u) = ∆(−u) 6 ∆(−u), and −u = 0 on the boundary,
we find that −u(x, t) 6 0. So we must have u(x, t) = 0.

Proof of the Theorem. Fist let us see what happens when f fulfils the strict in-
equality ∂tf < ∆f , i.e. ∂tf − ∆f < 0. If f is maximal, inside D × [0, T ], say at
(y, t), then ∂tf(y, t) = 0, since at the maximum all partial derivatives vanish. Also,
∂2yif(y, t) 6 0, since at the maximum all second partial derivatives are negative
or zero. So, ∂tf −∆f > 0, which contradicts the strict inequality. Thus f cannot
have a maximum in the interior. Now for the final time, if we have a maximum we
must have ∂tf(y, T ) > 0, since otherwise we could follow the slope into the interior
of the domain and find points where f is even larger. Thus the same argument as
above shows that f cannot have a maximum here, either.
Having sorted the case where the strict inequality holds, let us now consider f
with only ∂tf −∆f 6 0. We define fε(x, t) = f(x, t)− εt. Then

∂tfε(x, t) = ∂tf(x, t)− ε 6 ∆f(x, t)− ε < ∆f(x, t) = ∆fε(x, t).

The last equality is because the term εt that we added does not depend on x.
We see that fε fulfils the strict inequality and therefore takes its maximum at the
boundary. On the other hand, fε(x, t) 6 f(x, t) 6 fε(x, t) + εT , and thus

max
boundary

f(x, t) > max
boundary

fε(x, t) = max
whole set

fε(x, t) > max
whole set

f(x, t)− εT.

As this is valid for any ε, we can take the limit ε→ 0 in the above inequality and
show the claim. �

The maximum principle also holds for unbounded domains, but it does need extra
assumptions. Indeed, it can be shown that there are solutions to the whole space
heat equation with initial condition u(x, 0) = 0 that are nonzero for positive times.
These are called ’Tikhonov’s great blast of heat from infinity’, after the Russian
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mathematician Andrey Nikolayevich Tikhonov who found them. However, some
mild growth conditions on the solution at spatial infinity can restore uniqueness.
Theorem: If f solves ∂tf = ∆f for t > 0, f(x, 0) = 0 for all x ∈ Rn, and if

f(x, t) 6 M ec|x|
2

for some M, c > 0 and all x ∈ Rn, t > 0, then we must have
f(x, t) = 0 for all x, t.

Proof. We first prove it for t < t0 for some t0 to be fixed shortly. By induction we
then know it to hold for t < 2t0, t < t0 et cetera, and thus eventually for all t. So
let us assume that f fulfils all the conditions of the theorem. We define

g(x, t) = f(x, t)− δ

(t− t1)n/2
e
|x|2

4(t1−t) ,

where t1 and δ are for the moment arbitrary. It can be checked directly that g solves
the heat equation. Now write DR = {x ∈ Rn : |x| < R} for the ball of radius R.
We first establish that when we take R large enough, and t1 small enough, then
on the boundary of the space-time domain DR × [0, t1] we have g 6 0. Indeed,
g(x, 0) < f(x, 0) = 0, and for x ∈ ∂D we have

g(x, t) = f(x, t)− δ

(t− t1)n/2
e

R2

4(t1−t) 6M ec|x|
2

− δ

(t− t1)n/2
e

R2

4(t1−t) 6

6M ecR
2

− δ

(t− t1)n/2
e

R2

4(t1−t) .

For t1 such that 1
4t1

> C, the second function grows faster than the first, and thus

for R large enough, indeed g(x, t) < 0 on ∂D. What’s more, this will continue

to hold for any R̃ > R. So for all R̃ > R, and all t0 < t1, we can apply the
finite domain maximum principle to find g(x, t) 6 0 on DR̃ × [0, t0]. Therefore

indeed g(x, t) < 0 on Rd × [0, t1] (each point of Rd is in a sufficiently large ball).
Translating back to f , we find

f(x, t) 6
δ

(t1 − t)n/2
e
|x|2

4(t1−t) .

We have not yet used the parameter δ. Now we see that the above inequality holds
foe any δ > 0, and so by taking the limit δ → 0, we must have f(x, t) 6 0 for all
t 6 t0. The same argument can now be applied to −f , yielding f(x, t) > 0 on the
same set. In conclusion, we find f(x, t) = 0. �

3. Optimal Control

3.1. The Problem, and Heuristics. Let y(t) be a quantity (e.g. production rate
at a factory, portfolio value, etc.), that satisfies an ordinary differential equation:

∂ty(t) = F (y(t), αq(t), α2(t), . . .).

Above, α1, α2, . . . are parameters that may depend on time and which influence
F .



20 VOLKER BETZ

Example:

(3.1) ∂ty(t) = ry(t)− α(t), y(0) = x.

This can of course be solved, and the solution

y(t) = ert
(
x−

∫ t

0

e−rs α(s) ds

)
depends on α(s). Let now h be a utility function, which can depend on y and α;
for example, the utility function could be lower when α is large (cost of controlling
something), and higher when y is high.
The problem of optimal control is this: find control parameters α1(s), α2(s), . . . such
that h is maximal when averaged over time. In other words, we have to find

(3.2) u(x, t) = max
α

∫ T

t

h(y(s), α(s)) ds,

where initially (at time t), the value of y(t) = x. Importantly, y(s) itself depends
both on x and on the control α(s) through the ODE, e.g. (3.1).
There are many variants of the optimal control problem. One can let h depend
explicitly on time. The most important instance of this is discounting, when we
have e−rs h(y(s), α(s)) under the integral. Or, we can have a final time utility
g(y(T )) added to u.
The example (3.1) corresponds to an optimal consumption problem. There y(t)
is the wealth at time t, α(t) is the rate of consumption, y0 is the initial wealth;
wealth that has not been consumed earns interest at rate r. The control problem
is to maximize

(3.3) u(x, t) =

∫ T

0

e−ρs h(α(s)) ds.

h is usually a concave function, such as h(α) = α1/2 or, more generally, h(α) = αγ

with 0 < γ < 1. The concavity has a nice interpretation: while it may make you
happier to spend more money per day, it will not make you twice as happy; or, the
less you are used to get by with, the more you will appreciate a bit more money
to spend. T is the final time by which you should have spent it all, wealth that is
left at that time will not benefit you.
It is a bit confusing that (3.3) seems not to depend on y at all. But in fact it does.
Firstly, x is the starting point of y(s), s > t, and secondly, we have the condition
that y(s) > 0 for all s, i.e. we adhere to the old-fashioned strategy that you cannot
spend more than you have. This in turn restricts the controls α, since a control
that is too large at the beginning will have to be zero after y(s) hits zero, which
happens sooner if α is large. Also, of course α > 0, i.e. the consumption should be
non-negative.
In the following we will give a general strategy to solve optimal control problems.
The problem of optimal consumption will then be done in an exercise.
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3.2. Solving the optimal control problem: dynamic programming. A gen-
eral optimal control problem consists of the following parts:
The ODE:

∂sy(s) = F (y(s),α(s)), y(t) = x,

with y : R→ Rn, α : R→ Rm and F : Rn × Rm → Rn.
The control constraint: α(s) ∈ A ⊂ Rm for all s. This constraint may not
always be present, and A may even depend on time.
The state constraint: y(t) ∈ Y ⊂ Rn for all t. This is usually a difficult con-
straint. The way we deal with it in the optimal consumption problem is to ignore
it and verify afterwards that the solution fulfils it. This is not always possible.
The control problem: Let h : Rn × Rm → R be the running utility function,
and g : Rn → R be the final utility function. The control problem is to find the
optimal value function

(3.4) u(x, t) = max
α∈A,y∈Y

(∫ T

t

h(yα,x(s),α(s)) ds+ g(yα,x(T ))

)
.

The subscript on the function y is there to remind us that it actually depends on
the starting point and the control, but it will be often omitted in the notation.
The idea when solving this is to work backwards from the final time T . We ignore
the state constraint for now.
1) For t = T , it is clear that there is nothing to control, and u(x, T ) = g(x).
2) Let δt be a very small time step. Let us consider t = T − δt. We try to optimize
(3.4) by using a control α that is constant on [T − δt, T ]. In the limit when δt→ 0
there is hope that this is good enough. We approximate the solution of the ODE
by Taylor expansion:

(3.5) y(t+ s) ≈ y(t) + ∂ty(t)s = y(t) + F (y(t),α(t))s

for s ∈ [0, δt]. We also approximate h(y(t+ s),α(t+ s)) ≈ h(y(t)α(t)) (zero order
Taylor), and

(3.6)

∫ T

t=T−δt
h(y(s),α(s)) ds ≈ (T − t)h(y(t),α(t)) = δth(y(t),α(t)).

Thus

u(x, T − δt) = max
α(s)

(∫ T

T−δt
h(y(s),α(s)) ds+ g(y(T ))

)
≈ max

α
(h(x,α)δt+ g(x+ F (x,α))δt)

= max
α

(
h(x,α)δt+ u

(
x+ F (x,α), T

)
δt
)
.

(3.7)

So, given that we know the optimal value function at time T (which we do, it is
g), we also know it at time T − δt. Indeed, we get it by maximizing the known
function on the right hand side of (3.7) over α, for all x, e.g. by differentiating and
looking for zeros. This even gives a numerical scheme for finding the optimal value
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function and the optimal control, but that scheme is very impractical in higher
dimensions. However, the above reasoning will soon lead to a PDE that one can
treat easier, at least numerically.
3) Step 2 is now repeated: we know the value function at time T − δt, so we get it
(by step 2) for time T − 2δt, and so on until we reach the initial time.
The insight that knowing the optimal utility at a time t1 helps us determine it at
an earlier time is important. Indeed, the equation

u(x, t) = max
α(s)

∫ t1

t

h(y(s),α(s)) ds+ u(y(t1), t1),

for t1 > t, can be be seen to be true in a similar way as above. This equation is
called dynamic programming principle because it is at the basis of the algorithm
given above.

3.3. Hamilton-Jacobi-Bellman (HJB) equation. Let us replace T by s + δt
in (3.7). We then have

u(x, s) = max
α

(
h(x,α) δt+ u

(
x+ F (x,α)δt, s+ δt

))
.

We now do a Taylor expansion of the function δt 7→ u(x+ F (x,α)δt, s+ δt), and
find

u(x, s) ≈ max
α

(
h(x, α)δt+ u(x, s) +∇u(x, s) · F (x,α)δt+ ∂tu(x, s) δt

)
.

We can now subtract u(x, s) from both sides. The ≈ sign really means that there
are terms of order (δt)2 that we ignored. Dividing by δt and sending δt→ 0 gives
the Hamilton-Jacobi-Bellman equation (HJB equation):

(3.8) ∂su(x, s) + max
α∈A

(∇u(x, s) · F (x,α) + h(x,α)) = 0.

There is a special notation that is often used for the HJB equation: we define the
Hamiltonian H(p,x) as

(3.9) H(p,x) = max
α∈A

(p · F (x,α) + h(x,α)),

with x,p ∈ Rn. Then (3.8) reads

(3.10) ∂su+H(∇u,x) = 0.

It is clear from (3.12) that for solving a control problem, we have to maximize over
α in (3.11) first, and then solve (3.12). In particular, to find the optimal control
at space point x and ’momentum’ p, we need not know the solution u of (3.12).
However, of course since we then replace p by ∇u, the solution will be fed back
into H.
We have now found the equation for the optimal value function: It is the solution
of (3.8) with final data u(x, T ) = g(x). To know the value function is good enough
for e.g. option pricing, when we allow the buyer to change some control parameter:
we now know how much an investor can make at most, if they play the game in
an optimal way. This should then be the fair price of the option.
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But what about actually finding the optimal strategy α(s) for t 6 s 6 T? For this,
we have to plug the solution u(x, s) back into the second term of (3.8), and find
the argmax for each time. More precisely: from (3.11) we obtain both H(p,x) for
all p and all x, and α∗(p,x) as the argmax of the right hand side. Now we solve
(3.12) with the H that we just obtained, and the correct final condition. Once this
is done, we know u(x, s) for all x and all s, and thus also ∇u(x, s). The ODE for
the optimally controlled y is then

∂sy(s) = F (α∗(∇u(y(s), s),y(s)), s),

where now the right hand side only contains known functions of s and y(s). Once
we have obtained the solution y∗(s) to this ODE (with initial condition y(t) = x),
we can finally determine the purely time dependent optimal control for the case
when y(t) = x. It is given by α∗(∇u(y∗(s), s),y∗(s)).
The thing we now have to check is that y(t) actually fulfils the state constraints.
If it does, everything is fine. But if it does not, we have to go back to the dynamic
programming approach and incorporate this at each step. There is no nice theory
for this, and we will not do it.
We have derived the HJB equation using a lot of heuristic and non-rigorous steps.
But once we have it, we can actually prove that it gives the optimal value function.
This is the content of the following
Theorem: Consider the general optimal control problem introduced at at the be-
ginning of this subsection. Assume that w(x, t) solves the HJB equation (3.8), with
final condition w(x, T ) = g(T ). Assume also that y derived from w in the way dis-
cussed above fulfils the state constraint. Then w(x, t) = u(x, t), where u is defined
is the solution of the control problem.

Proof. Assume that w is a solution of the HJB equation with final condition
w(x, T ) = g(x). Let α0(s) be an arbitrary control, and let y0(s) be the solution
of the controlled ODE with start y0(t) = x and control α0(s). Let us investigate
the function s 7→ w(y0(s), s). We find

d

ds
w(y(s), s) = ∂sw(y(s), s) +∇w(y(s), s) · ∂sy(s)

= ∂sw(y(s), s) +∇w(y(s), s) · F (y(s),α(s)) + h(y(s),α(s))︸ ︷︷ ︸
(∗)

−h(y(s),α(s)).

Now for an arbitrary control, the expression (∗) is smaller or equal to zero. This is
because, by the HJB equation that w satisfies, when we take the maximum over
all possible values of α(s) we get (∗) = 0, so any other α will give less. We can
then integrate the last equation from t to T and get

w(y(T ), T )− w(y(t), t) 6 −
∫ T

t

h(y(s),α(s)) ds,
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and using w(y, T ) = g(y) as well as y(t) = x, we find

g(y(T )) +

∫ T

t

h(y(s),α(s)) ds 6 w(x, t).

So any arbitrary control can make the value function at most as large as w(x, t),
and maximizing over the possible controls we find u(x, t) 6 w(x, t). What remains
to show is that w(x, t) is indeed a value function; so far we only know it to be
the solution of a HJB equation. To see that w is indeed a value function, notice
that when we choose the feedback control that we get from w (see the discussion
before the theorem), then (∗) above is identically zero (independent of whatever
y(s) happens to be). Thus, again by integrating, we see that w is indeed a value
function. �
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3.4. Stochastic optimal control. We will now perturb the equation for the state
yt by noise, leading to the stochastic differential equation

(3.11) dys = f(ys,αs) ds+ σ(ys,αs) dWs,

where Ws is Rn-valued Brownian motion. The control problem is to maximize the
expectation of the various utility functions, giving the optimal value function

(3.12) u(x, t) = max
α

Ey(t)=x
(∫ T

t

h(ys,αs) ds+ g(yT )
)
.

g and h are utility functions. The space of allowed controls is now such that for
some A ⊂ Rm, we need to have αs ∈ A for all s, and an additional condition
is that αs is adapted to the Brownian motion; that is, αs depends only on the
values {Wr : r 6 s}. This condition is very natural, as it means that the controller
cannot know the future of the (random) evolution modelled by the Brownian
motion. Usually (and also in this lecture) it is enough to let the control αs depend
only on s and ys, i.e. to consider a feedback control.
To find the HJB equation in this case, we proceed as in the deterministic case and
work backwards from the final time T . Clearly,

u(x, T ) = EyT=x(0 + g(yT )) = g(x).

Assume now that we have found u(x, t + δt) for some small δt. Then, by the
dynamic programming principle (which applies also to this case, as one can easily
see),

u(x, t) = max
α

Eyt=x
(∫ t+δt

t

h(ys,αs) ds+ u(yt+δt, t+ δt)
)

≈ max
α

(
h(x,α)δt+ Eyt=x

(
u(yt+δt, t+ δt)

))
.

The approximate identity in the last line is justified by the fact that s 7→ Eyt=x(h(ys,αs))
is continuous, and as δt is very small, the integral is approximately given by the
initial value of the integrand times the length of the integration interval. We re-
formulate this to read

(3.13) 0 = max
α

(
h(x,α) δt+ Eyt=x

(
u(yt+δt, t+ δt)− u(yt, t)

))
.

Using the same trick that we have applied many times in the first few weeks, we
find

Eyt=x
(
u(yt+δt, t+ δt)− u(yt, t)

)
= Eyt=x

(∫ t+δt

t

du(ys, s)
)

= Eyt=x
(∫ t+δt

t

(
∂tu(ys, s) +∇u(ys, s) · f(ys,αs) +

1

2
σ(ys,αs)

2∆u(ys, s)
)

ds
)

≈
(
∂tu(x, s) +∇u(x, t) · f(x,αt) +

1

2
σ(x,αt)

2∆u(x, t)
)
δt.

The equality between first and second line above follows from the Itô formula and
the fact that the expectation of a stochastic integral is zero (it is here that we
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need αs to be adapted!). The approximate identity between the second and third
line follows in the same way as the one we have just discussed. We now use this
in (3.13), and after letting δt→ 0 we get the following
Theorem: u(x, t) from (3.12) is the solution of the Hamilton-Jacobi-Bellman
equation

(3.14) ∂tu(x, t) + max
α∈A

(
f(x,α) · ∇u(x, t) + h(x,α) +

1

2
σ2(x,α)∇u(x, t)

)
= 0,

with final condition u(x, T ) = g(x).
Note that if σ does not depend on α, then (3.14) becomes

∂tu+H(∇u,x) +
1

2
σ2∆u = 0,

with H(p,x) = maxα(f(x,α) ·p+h(x,α)) the same as in the deterministic case!
As in the deterministic case, the derivation above was not fully rigorous, but once
we have the result, we can give a rigorous proof.

Proof of the Theorem. We first show that if v solves the HJB equation (3.14), then
for any adapted (not prescient) control αs we have

v(x, t) > Eyt=x
(∫ T

t

h(ys,αs) ds+ g(yT )
)
.

The proof is similar to the deterministic case: we consider the path ys resulting
from the stochastic differential equation controlled by our chosen control αs, and
plug this into the solution v of the HJB equation. The Itô formula then gives

dv(ys, s) = ∂sv(ys, s) ds+∇yv(ys, s) · dys +
1

2
∆v(ys, s)(dys)

2 =

= ∂sv(ys, s)ds+∇yv(ys, s) ·
(
f(ys,αs) ds+ σ(ys,αs)dWs

)
+

1

2
σ(ys,αs)

2∆v(ys, s) ds.

Since Eyt=x(v(yT , T )) = Eyt=x(g(yT )) by the final condition of the HJB equation,
and since Eyt=x(v(yt, t)) = v(x, t), we have

Eyt=x(g(yT ))− v(x, t) = Eyt=x(v(yT , T ))− Eyt=x(v(yt, t)) = Eyt=x
(∫ T

t

dv(ys, s)
)

=

= Eyt=x
(∫ T

t

(
∂sv(ys, s) +∇yv(ys, s) · f(ys,αs) +

1

2
σ(ys,αs)

2∆v(ys, s) + h(ys,αs)− h(ys,αs)
)

ds
)

6 − Eyt=x
(∫ T

t

h(ys,αs) ds
)
.

The last inequality follows, as in the deterministic case, from the fact that v solves
the HJB equation, i.e. the maximum over all controls of all the terms under the
integral except the last one is zero. So we find that

v(x, t) > Eyt=x
(∫ T

t

h(ys,αs) ds+ g(yT )
)
,
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and maximizing over all controls gives that v is at least as large as the optimal
value function. Now again, we can see that (for each path of the Brownian motion),
the feedback control obtained from the HJB equation leads to the value function
v(x, t), so that v(x, t) is not only a solution to the HJB equation, but indeed also
a value function. Therefore it must be the optimal value function. �

3.5. Application: Optimal portfolio selection and consumption. This is a
problem considered by Robert Merton (J. Econ. Theory 3, (1971) 373-413). Here
is the setup:
bs is a riskless asset with dbs = rbs ds, so bs = b0 ers .
ps is a risky asset solving dps = µpsds+ σpsdWs.
x is our wealth at the starting time t.
The control parameters are α1(s), the fraction of wealth in the risky asset ps at
time s; clearly, we need 0 6 α1 6 1.
α2(s) is our rate of consumption at time s. We want α2 > 0.
The equation for the total wealth controlled by α1 and α2 is then

(3.15) dys = (1− α1(s))ysrds+ α1(s)ys(µds+ σ dWs)− α2(s) ds.

We impose the state constraint ys > 0. The most elegant way to do this is to
define τ(x) = inf{s > t : ys = 0}; we then have the optimal value function (with
discounting) given by

u(x.t) = max
α1,α2

Eyt=x
(∫ min(T,τ(x))

t

e−ρs h(α2(s)) ds
)
.

We want the utility function h to be monotone increasing and concave, as in the
deterministic case. Our eventual choice will be h(α) = αγ with 0 < γ < 1.
The derivation of the HJB equation with discounting is entirely parallel to the
general case that we just treated. The result is

(3.16) ∂tu+ max
α1,α2

(
e−ρt h(αs) + (xr+α1(µ− r)x−α2)∂xu+

1

2
x2σ2α2

1∂
2
xu
)

= 0.

We can find the optimal α1 by simple differentiation: the determining equation is

x(µ− r)∂xu+ σ2x2∂2xuα1 = 0,

giving for the optimal α1:

(3.17) α∗1 = − (µ− r)∂xu
σ2x∂x2u

.

Have we actually found a maximum? Only if ∂2xu > 0, otherwise it would be a
minimum! We need to keep the in mind and check at the end that it holds. Also,
we have so far ignored the constraint 0 6 α1 6 1. We will have to come back to
this later, too.
The optimal α2 is now determined by the equation

(3.18) e−ρt h′(α2) = ∂xu(x, t),
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where h′ is the derivative of h. It is intuitively clear that ∂xu > 0, as greater initial
wealth will give greater optimal value (try to find a mathematical argument for
this!). Also, h′ > 0 by the assumption that h is monotone increasing, h′′ < 0 by
concavity. So the optimal α∗2 > 0 is nonnegative.
We now specialize to the case h(α) = αγ to make further progress. In the same way
as on last week’s problem sheet, we see that u must be of the form u(x, t) = g(t)xγ .
Since the optimal value is certainly nonnegative, we will have g(t) > 0. Thus
∂xu = γg(t)xγ−1, and ∂2xu = γ(γ − 1)g(t)xγ−2. Note that this means ∂2xu < 0,
which was one of the conditions that we had to remember checking.
Now (3.17) becomes

α∗1 =
µ− r

σ2(1− γ)
,

and (3.18) reads

α∗2 = ( eρt g(t))1/(γ−1)x.

We can see that 0 6 α∗1 6 1 if

(3.19) 0 6 µ− r 6 σ2(1− γ).

We will assume for the moment that this extra condition holds. Putting u(x, t) =
g(t)xγ back into the equation, we find that g needs to satisfy

∂tg(t) + νγg(t) + (1− γ)g(t)
(

eρt g(t)
)1/(γ−1)

= 0,

with final condition g(T ) = 0, and ν = r + (µ−r)2
2σ2(1−γ) . This is of the same form as

the equation that we have seen in the deterministic optimal consumption problem,
and by following the steps given in Problem 1 on Sheet 5, we find that the solution
is

g(t) = e−ρt
( 1− γ
ρ− νγ

(
1− e−

(ρ−νγ)(T−t)
1−γ

))1−γ
.

So, the optimal value function is g(t)xγ with the above g(t). The optimal control
α∗1 is constant, i.e. it depends neither on time nor on the current wealth. This
means that our investment decision is not influenced by our current wealth, and
also not by the time we still have to consume. Instead, it is fully determined by
the difference µ− r of the expected return of the asset and the bond rate, divided
by a factor σ2(1−γ). This factor σ2 is easy to interpret: large uncertainty σ makes
it more unattractive to invest in the risky asset. The factor (1− γ) is less obvious.
It means that if we can consume larger amounts of wealth with relatively little
penalty (i.e. γ close to 1), then we should invest less into the risky asset. Now, all
of this is for µ > r. In the case µ < r, our extra condition (3.19) does not hold; it
is not difficult to see that in this case, α∗1 = 0 is the optimal allowed control. So, if
the expected rate of return for the risky asset is less than the bond rate, it is not
worth investing into it at all. On the other hand, if µ − r > σ2(1 − γ), then the
return of the risky asset is so much better that the bond rate, that we will put all
our wealth into it, and α∗1 = 1 in that case.
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Unlike α∗1, the optimal α∗2 in (3.18) does depend on time. Now that we know g(t),
we put it into (3.18) (this is part of the feedback!) and find

α∗2(x, t) =
1− γ
ρ− νγ

(
1− e−

(ρ−νγ)(T−t)
1−γ

)
x.

At given time s, our wealth will also be known to be ys. So at that time, we
replace x with ys in the above equation. This is the second part of the feedback.
This means that the optimally controlled asset solves the SDE

dys = (r + (µ− r)α∗1)ysrds−
1− γ
ρ− νγ

(
1− e−

(ρ−νγ)(T−s)
1−γ

)
ys + α∗1σys dWs.

The fact that α∗2(ys, s) is proportional to ys guarantees that the whole right hand
side of the SDE is proportional to ys. This means that ys > 0 (since, should it
ever hit zero (from above, obviously), its time derivative will be zero, and it will
be stuck there). Thus luckily the state constraint is automatically fulfilled, and
indeed we do not need τ(x) in the end. The optimal consumption rate is easy as a
function of wealth (proportional to it), but rather difficult as a function of time. It
seems strange that it goes to zero as t→ T . One would have thought it should go
to infinity then, as there is nothing to lose by consuming it all in the last instant. I
don’t fully understand this intuitively. One explanation is that we are optimizing
the expected utility, and so the optimal consumption is made so that in the last
instant, on average there won’t be much left to consume. But this is not fully clear
to me.
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4. Numerical solutions of PDE

There are very few PDE that can be solved analytically. Therefore, it is important
to understand the techniques for solving PDE on a computer, but also the diffi-
culties and pitfalls that can arise when we try to do so. Let us start with a simpler
setting.

4.1. Ordinary differential equations. Consider the ordinary differential equa-
tion

(4.1) ∂ty(t) = F (y(t), t), y(t0) = y0.

The simplest way to solve this equation on a computer is the forward Euler scheme:
Step 1: Discretize the t-axis with step size h, giving grid points t0, t0+h, t0+2h, . . ..
Step 2: Use Taylor-expansion to find that a solution of (4.1) fulfils

y(t+ h) = y(t) + h∂ty(t) +O(h2) = y(t) + hF (y(t), t) +O(h2),

where the notation O(h2) means the following: it is possible to find a function that,
when written in place of the symbol O(h2), ensures that the equality sign is a true
statement. This function may depend on t, y(t), h or whatever other parameters
there are, but it must vanish at least as quickly as a constant times h2 (or whatever
expression we write into brackets after the O), when h→ 0.
Step 3: Recall that the initial value of the ODE is y0. Define

y1 = y0 + hF (y0, t0), y2 = y1 + F (y1, t2), . . . , yn+1 = yn + F (yn, tn).

The values yj should approximate the values y(tj) of the true solution; after all,
they solve the difference equation from Step 2 that is an approximation to the
ODE.

The second step above was a bit arbitrary. We could as well have used

y(t− h) = y(t)− h∂ty(t) +O(h2) = y(t)− hF (y(t), t) +O(h2),

which would have led to the scheme

y0 = y1 − hF (y1, t1), y1 = y2 − hF (y2, t2), . . .

This is the backwards Euler scheme, or implicit Euler scheme. In each step we now
still have to solve a (possibly difficult) equation to obtain the value of yj+1 as a
function of the value yj and tj . It is not clear at this moment why anyone would
like to do such a thing, but we will see later when we treat PDE that there are
large benefits in doing so.
However we do it, we hope that the values y1, y2, . . . approximate y(t1), y(t2), . . .,
where y(t) is the true solution. We now want to quantify how good that approxi-
mation is. For this, consider a finite time interval [t0, T ], and put tj = t0 +hj, with
N such that tN = T . Let y solve (4.1), and let yn be the approximating solution
under some numerical scheme. We define

ej = |yj = y(tj)| = the error we make at time tj ,
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and

E = max
0 6 j 6 N

ej = the worst error we make on the interval.

Definition: A numerical scheme is called convergent if limh→0E(h) = 0. It is
called convergent of order p if E(h) 6 Chp for some C > 0 and all h small enough.

How can we check convergence? A good indicator would be how similar our nu-
merical scheme is to the true ODE, for small h. Assume our numerical scheme is
given by

(4.2) yn+1 = yn + hφ(yn, tn, h)

for some function φ that may depend on yn, tn but also on h. In the forward Euler
scheme we had φ(yn, tn, h) = F (yn, tn), so in that case φ was independent of h.
Now let again y(t) be the true solution of the ODE.

Definition: The truncation error τn(h) at step n is defined by the equation

y(tt+1) = y(tn) + h
(
φ(y(tn), tn, h) + τn(h)

)
.

Interpretation: the true solution does not fulfil the recursive scheme (4.2), but
instead fulfils another recursive scheme. τn(h) measures how different the two
schemes are at time tn and for discretisation paramter h.

Definition: A numerical scheme is called consistent if

lim
h→0

(
max

0 6 n 6 N
τn(h)

)
= 0.

It is called consistent of order p if

max
0 6 n 6 N

τn(h) 6 Chp

for some C > 0 and all sufficiently small h > 0.

So, consistency means that the two equations become similar as h → 0, while
convergence means that the two solutions become similar. You should check that
explicit Euler is consistent of order 1.
What about the connections between consistency and convergence? For ODE, the
connection is rather simple.
Theorem: For a numerical scheme given by (4.2) let us assume that

(4.3)
∣∣∣φ(y, t, h)− φ(ỹ, t, h)

∣∣∣ 6 L|y − ỹ|,
for some L > 0, all t 6 T and all h < h0 with some h0 > 0. (This is called the
Lipschitz condition.) Assume that the scheme is consistent of order p. Then it is
also convergent of order p.



32 VOLKER BETZ

Proof. On the exercise sheet you are asked to prove the following fact (discrete
Gronwall Lemma): For nonnegative numbers z1, z2, . . . assume that there are C,D >
0 such that zn+1 6 Czn +D for all n. Then

(4.4) zn 6 D
Cn − 1

C − 1
+ z0C

n

for all n. We use this fact in the following argument: Since

yn+1 = yn + φ(yn, tn, h)

y(tn+1) = y(tn) + hφ(y(tn), tn, h) + hτn(h),

we find

en+1 = |yn+1 − y(tn+1)| = en + h
(
φ(yn, tn, h)− φ(y(tn), tn, h)

)
+ hτn(h)

6 en + hL
∣∣∣yn − y(tn)

∣∣∣+ hτn(h) = (∗).

The inequality above is due to our assumption (4.3). Now we have assumed consis-
tency of the scheme of order p, thus there is an M > 0 such that τn(h) 6Mhp for
all n and all small enough h. Also, |yn−y(tn)| = en. So (∗) 6 en(1+hL)+Mhp+1,
and by (4.4) with C = 1 + hL and D = Mhp+1, we get (notice that e0 = 0)

en 6Mhp+1 (1 + hL)n − 1

1 + hL− 1
= Mhp

1

L

(
(1 + hL)n − 1

)
.

Finally,

0 6 (1 + hL)n − 1 6

(
1 + hL+

(hL)2

2
+

(hL)3

3!
+ . . .

)
− 1

=
(

ehL
)n − 1 = ehLn − 1 6 e(T−t0)L − 1,

where in the last equality we used that h discretizes the interval [t0, T ], so for
n < N = N(h), hn can never be larger that [t0, T ]. �

Before leave the ODE case and look at numerics for PDE, let us give an example
that shows how implicit schemes can be useful even for ODE. Consider the simple
equation

∂ty(t) = −λy(t), λ > 0, y(0) = y0.

The solution is of course y(t) = y0 e−λt , and it decays to 0 rapidly and monotonously
as t→∞. Can we say the same for our numerical schemes? Let’s look at the Euler
forward scheme:

yn+1 = yn + hλyn = (1− λh)yn, =⇒ yn = (1− hλ)ny0.

If λ is large, we will need h to be small for this scheme to give something sensible:
indeed, yn → 0 as n→∞ only if h 6 2/λ; and, n 7→ yn is monotone decreasing only
if h 6 1/λ. So, while the true ODE becomes more and more easy to understand
when λ gets large, the numerical scheme becomes more difficult to implement in
the sense that the time step needed for a sensible solution becomes smaller. After
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all, h will always be finite in real world situations, and the smaller we have to take
it, the longer we need to run a computer in order to find y(10), say.
The situation is different for the Euler backward scheme. In that scheme, we find

yn = yn+1 + hλyn+1 =⇒ yn =
1

(1 + hλ)n
y0,

which is monotonously decreasing to zero regardless of the size of h. We say that
the forward Euler scheme is conditionally stable (i.e. for small enough h it is stable),
while the backward scheme is unconditionally stable. A proper definition of what
a stable scheme means will be given below when we treat PDE.

4.2. Forward schemes for PDE. We consider the general PDE

∂tu(x, t) = (Fu)(x, t) (a < x < b, t > 0),

u(x, t0) = u0(x) (initial condition),

u(a, t) = ga(t), u(b, t) = gb(t) (boundary conditions).

(4.5)

Above, F can be any linear or nonlinear operator, such as

Fu =
σ2

2
∂2xu (heat equation),

Fu = −1

2
σ2x2∂2xu+ b(x∂xu− u) (Black-Scholes PDE)

Fu = −max
α∈A

(
f(x, α)∂xu(x, t) + h(x, α) +

1

2
σ2(x, α)∂2xu

)
(HJB equation).

We now want to solve these numerically, so we discretize time as tn = t0 +hn and
space as xj = hxj with n ∈ N and j ∈ Z. hx can and usually will be different
from h, so we do not discretize the space-time domain into squares but rather
rectangles. For discretizing the spatial derivatives we use again Taylor expansion.
One possibility is

∂xu(xj , tn) ≈ 1

hx

(
u(xj+1, tn)− u(xj , tn)

)
.

This can be useful if there is a preferred direction of space, but for the heat equation
and related equations, there is none, and so the symmetric finite difference

∂xu(xj , tn) ≈ 1

2hx

(
u(xj+1, tn)− u(xj−1, tn)

)
is usually better. Whether we best use central of ordinary finite differences, or
yet another approximation, depends on the equation and is more an art than a
science. We will not go into this here and only use central spatial differences. The
second derivative is thus approximated by

∂2xu(xj , tn) ≈ 1

h2x

(
u(xj+1, tn) + u(xj−1, tn)− 2u(xj , tn)

)
.
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Higher derivatives can be disrcetized similarly, but we will not need them here.
Plugging the discretized derivatives into Fu gives

Fu(xj , tn) ≈ F̃
(
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

)
,

for some function F̃ , in the case where we have only second derivatives. For higher
derivatives, the function on the right hand side above will depend on more values
of u(x, tn), but we will not need this here. As an example, for the heat equation
we find

F̃
(
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

)
=

σ2

2h2x

(
u(xj+1, tn)+u(xj−1, tn)−2u(xj , tn)

)
.

The approximation to the PDE then becomes

(4.6) u(xj , tn+1) ≈ u(xj , tn) + hF̃
(
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

)
,

and the numerical scheme is

ujn+1 = unj + hF̃ (unj+1, u
n
j , u

n
j−1, tn, hx),

with u0j = u0(xj) as initial condition and unj = ga,b(tn) if xj = a, b, respectively,
as boundary conditions. unj are again what we would like to be approximations to
u(xj , tn). In our case, it is easy to compute the point u(xj , tn); it is a known func-

tion (namely, F̃ ) of the points u(xj−1, tn), u(xj+1, tn), u(xj , tn) from the previous
time discretisation point, and so we can recursively get all values.
Of course, the question is again how good this approximation actually is. As in
the ODE case, we define the truncation error that measures how different the
numerical scheme is from the actual PDE:
Definition: The truncation error at point (xj , tn) of the numerical scheme (4.6)
is defined to be

T (xj , tn) =
1

h

(
u(xj , tn+1)−u(xj , tn)

)
−F̃
(
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

)
,

i.e. the extent to which the true solution does not solve the approximate PDE
(difference equtaion).
Definition: The scheme is consistent if limT (x, t) = 0 for all x and t as hx and
h go to zero. Here, if we want to be very precise, we need to define T (x, t) as the
limit of t(xj , tn) for sequences (tj) and (xn) of grid points with xj → x and tn → t
as both h and hx go to zero.
As for ODE, consistency is the minimal requirement that we have for any numerical
scheme. Let us check consistency for the forward scheme of the heat equation: we
have seen that in this case,

un+1
j = unj +

σ2

2

h

h2x
(unj+1 + unj−1 − 2unj ),
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so the truncation error is

T (xj , tn) =
1

h

(
u(xj , tn+1)− u(xj , tn)

)
− σ2

2

1

h2x

(
u(xj−1, tn) + u(xj+1, tn)− 2u(xj , tn)

)
→ ∂tu(x, t)− σ2

2
∂2xu(x, t) = 0

as h, hx → 0, and xj → x, tn → t. So, the scheme is consistent. Is it convergent?
There seems to be little hope unless h 6 Ch2x for some C > 0 since otherwise
the prefactor h/h2x for getting from one time step to the next would diverge as
h→ 0. But as we will see in the next section, even this condition does not ensure
convergence.
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4.3. Numerics for the heat equation. We now study numerical solutions for
the heat equation in more detail. Although we can solve the heat equation analyti-
cally in many cases, it is useful to study its numerical solutions, because for such a
simple equation we have hope of understanding the numerical scheme really well.
The equation we will always consider is the heat equation on the interval [0, 1]:

∂tu(x, t) =
1

2
σ2∂2xu(x, t) (t > 0, 0 < x < 1),

u(x, 0) = u0(x), u(0, t) = u(1, t) = 0.

The forward scheme for this equation is (with tn = hn and xj = hxj):

(4.7) un+1
j = unj +

σ2

2

h

h2x
(unj+1 + unj−1 − 2unj ).

with u0j = u0(xj), u
n
0 = 0 and unJ = 0, where J is such that hxJ = 1. The ratio

1
2σ

2h/h2x will appear a lot below, and for convenience we define µ = σ2h/h2x.
The first question is whether the scheme (4.7) is consistent. This is easily seen to
be true. Recall the definition of the truncation error. First we bring everything in
(4.7) to one side, and divide by h. This gives

1

h
(un+1
j − unj )− σ2

2

1

h2x
(unj+1 + unj−1 − 2unj ) = 0

The truncation error is the results of replacing the unj above with the true solution.
Thus,

T (xj , tn) :=
1

h
(u(xj , tn+1)−u(xj , tn))−σ

2

2

1

h2x
(u(xj+1, tn)+u(xj−1, tn)−2u(xj , tn)).

We can now Taylor expand this expression around u(xj , tn) and find that

T (xj , tn) = ∂tu(xj , tn)+
h

2
∂2t u(xj , tn)+. . .−σ

2

2
∂2xu(xj , tn)−σ

2

4!
h2x∂

4
xu(xj , tn)+. . . ,

where the terms . . . come with higher powers of h and hx. ∂tu− σ2

2 ∂
2
xu = 0 since

u is a true solution of the heat equation, and we see that limh,hx→0 T (xj , tn) = 0.
So the scheme is consistent.
How about convergence? There is little hope of convergence unless µ = 1

2σ
2h/h2x

stays at least bounded as h and hx go to zero. But even this is not enough. As one
can see by experimenting with any computer implementation of the scheme, strong
oscillations will build up and the numerical solution will diverge unless µ 6 1/2.
The numerical solutions for µ > 1/2 will have nothing to do with the analytical
solutions, and making the step size smaller will not help here.
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To see why this is so, let us take another look at our scheme (4.7). Let us define
the vector un = (un1 , . . . , u

n
J−1). Then (4.7) reads

(4.8) un+1 = (1 + µA)un, with A =



−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1 0
0 · · · 0 0 1 −2 1
0 · · · 0 0 0 1 −2


A is a (J − 1)× (J − 1) matrix, and is called the discrete Laplacian. 1 denotes the
unit matrix that has 1 on the diagonal and 0 elsewhere. From iterating (4.8) we
conclude

un = (1 + µA)nu0.

So we need to compute high powers of the matrix (1 + µA). For this, we need the
eigenvalues and eigenvectors of A. Let us start by assuming that we have found
them, i.e. let v1, . . . ,vJ−1 be the eigenvectors and λ1, . . . , λJ−1 be the eigenvalues.
We write the initial condition using the basis of eigenvectors as

u0 =

J−1∑
k=1

αkvk.

We then find

(4.9) un =

J−1∑
k=1

αk(1 + µλk)nvk.

Now we can already see under which circumstances the numerical solution will
explode. Namely, we must assume that none of the αk is zero - otherwise we would
restrict ourselves to very special initial conditions that are orthogonal to some
eigenvector of A. Thus, the expression (4.9) will stay bounded for large n if and
only if

(4.10) |1 + µλk| < 1 for all k.

In other words, for a sensible numerical scheme we need that the matrix 1 + µA
has no eigenvalues of absolute value greater than one.
Let us now see what the eigenvalues of A actually are. While there are systematic
ways to derive them, we will here just ’guess’ them. Putting (vk)j = sin(kπj/J),
some arithmetic (in particular using sin(x± y) = sinx cos y ± cosx sin y) gives

(Avk)j = sin(kπ(j + 1)/J) + sin(kπ(j + 1)/J)− 2 sin(kπj/J) = λkvk

with λk = −2(1 − cos(kπ/J)). This works for k = 1, . . . J − 1. For k = J , the
eigenvector would be the zero vector, which is not allowed, and for larger k, we
get back the (negatives of) vectors that we already had. Anyway, we have found
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the J − 1 eigenvalues and eigenvectors of the the (J − 1)× (J − 1)-matrix A. Now
we plug this into (4.10), and get the condition

|1− 2µ(1− cos(kπ/J))| < 1.

The term in brackets is always bigger than zero, and can be up to just below
2, which happens for k = J − 1. So in order for the absolute value above to be
always smaller than one, we will need µ 6 1/2. Otherwise, the contribution of the
eigenvalue k = J − 1 will dominate all others, which leads to the zig-zag line that
we see in the numerical simulations.
The restriction µ 6 1/2 is a big deal. For σ2/2 = 1, it means that h < h2x/2.
So if we want to discretize space into an not unreasonable grid of points that are
1/100 apart, we are forced to move in tiny time steps of 1/20000. What can we
do about this? The answer is to use the implicit scheme. To derive it, we do the
Taylor expansion around tn+1 and xj , and find

∂tu(xj , tn+1) ≈ 1

h

(
u(xj , tn+1)− u(xj , tn)

)
,

and

∂2xu(xj , tn+1) ≈ 1

h2x

(
u(xj+1, tn+1) + u(xj−1, tn+1)− 2u(xj , tn+1)

)
.

This leads to the scheme

unj = un+1
j − σ2

2

h

h2x
(un+1
j+1 + un+1

j−1 − 2un+1
j ).

Why is this scheme better than the one we had before? Let us write the scheme
in vector notation:

un = un+1 − µAun+1 = (1− µA)un+1,

where µ is the same as before. Therefore,

un+1 = (1− µA)−1un.

We can easily find the eigenvalues of (1−µA)−1. Recall that the eigenvalues of A
are −2(1 − cos(kπ/J)) with 1 6 k 6 J − 1. Thus, the eigenvalues of 1 − µA are
1+2µ(1−cos(kπ/J)), with the same eigenvectors as A has. Finally, the eigenvalues
of (1 − µA)−1 are given by 1

1+2µ(1−cos(kπ/J)) , with the same eigenvectors that A

has (you should check this!). These eigenvalues are smaller than 1 for any µ. So, in
this case the scheme is sensible for all µ, and we can e.g. take µ = 1000 if we want
to do a fine space discretisation. This will then still lead to a reasonably large time
step.
Let us look at a consequence of the fact that the matrix (1 − µA)−1 has only
eigenvalues of absolute value smaller than 1. Consider two initial conditions for
the PDE that are very similar (you can think of one as the true initial condition,
and the other one as some approximation to the true initial condition). Let us thus



PDE FOR FINANCE LECTURE NOTES (SPRING 2012) 39

assume that we have u0 and w0 with ‖u0−w0‖ < ε. When we write both u0 and
w0 in terms of the eigenvectors vk, this means that

ε2 > ‖u0 −w0‖2 = ‖
J−1∑
k=1

αkvk −
J−1∑
k=1

βkvk‖2 =

J−1∑
k=1

(αk − βk)2.

The last equality follows from the fact that the vk are orthogonal and normalized.
If un and wn are the solutions obtained with the implicit numerical scheme, then
we find

‖un −wn‖2 = ‖
J−1∑
k=1

(αk − βk)λnkvk‖2 =

J−1∑
k=1

(αk − βk)2|λk|2n < ε2,

where in the last step we have used that all the λk are in norm smaller than 1.
We conclude that small errors in the initial conditions do not become larger as
we take many steps of the scheme; small difference of initial conditions leads to
small difference in the solutions at any time in the future. This property is called
stability of the scheme. We will see it again in the next subsection below.

4.4. The Lax Equivalence Theorem. We have seen for the heat equation that
although the forward difference scheme is consistent, it is not necessarily conver-
gent. This is different for the backwards scheme, which is both consistent and
convergent no matter what parameter µ we used. We now generalize this to arbi-
trary linear PDE and state and prove one of the fundamental theorems of numerics
of PDE, the Lax Equivalence Theorem. We consider a domain D ⊂ Rd, and the
linear PDE

(4.11)

 ∂tu(x, t) = Lu(x, t), (x ∈ Rd, t ∈ (0, T ]),
u(x, 0) = u0(x) (initial condition),
u(x, t) = ub(x) for x ∈ ∂D, (boundary condition).

Above L is a differential operator, such as the F that we have seen in (4.5).
However, we also demand that L is linear, i.e. that only the partial derivatives
∂nxu appear in L (possibly with prefactors that depend on x), but no squares (or
higher powers, or any nonlinear functions) of them appear, and the same u itself.
This is e.g. not the case with the HJB equation. Furthermore, we demand that L
does not explicitly depend on t.
We have little hope of finding a well-behaved numerical scheme if the equation
itself is not well-behaved. What exactly constitutes a well-behaved equation is the
content of the following definition.

Definition: The PDE (4.11) is well-posed if
(i): for all bounded initial conditions u0 a solution exists.
(ii): There exists a constant C > 0 such that for any two bounded initial conditions
u0 and ũ0, we have

|u(x, t)− ũ(x, t)| 6 C|u0(x)− ũ0(x)|,
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for all x ∈ D, and all t ∈ [0, T ]. Here ũ is the solution of the PDE with initial
condition ũ0.
The condition (ii) is called continuous dependence on the data. It is very important
for predicting solutions in situations where the initial data may be only approx-
imately known (i.e. almost all situations arising in practice). However, there are
many PDE that do not have this property, and lead to so-called chaotic behaviour.
Let us now consider a numerical scheme for (4.11). We will not treat the most
general case, see the book by Morton and Mayers, Chapter 5, for more generality.
Our procedure is:
1) Discretize the time in steps of size h. Put tn = hn.
2) Discretize the space with a grid of points that are hx apart, i.e. |xj − xl| = hx
for two neighbouring grid points. On the boundary, we may have to introduce
additional points and may then have |xj − xl| < hx if one of the two points is on
the boundary.
3) Write unj for the approximate solution, i.e. unj is supposed to approximate
u(xj , tn).

We only study schemes of the form

(4.12) un+1
j = unj +

M∑
i=1

Biju
n
i + Fj ,

where B = (Bij)1 6 i,j 6 M is a M ×M matrix that approximates L, Fj may come
from an inhomogeniety or from boundary conditions, and M is the number of all
spatial grid points. In vector notation, we have

(4.13) un+1 = un +Bun + F .

Note that both the explicit and the implicit finite difference schemes for the heat
equation are of this form. In the latter, B already involves the inverse of the
discrete Laplacian.
To be precise, we need another notion.
Definition: A refinement path is a map h 7→ hx(h) such that limh→0 hx(h) = 0.
In words, it is a way of making both time steps and spatial grid points get closer
and closer together in some sort of coupled way.
We will henceforth assume that some refinement path is given and not talk about
it much more. For example, a refinement path is implicitly present in the following
definition.
Definition: The scheme (4.13) is consistent if for all n ∈ N with hn 6 T , and all
j 6M we have

(4.14) Tnj =
1

h

(
u(xj , tn+1)− u(xj , tn)−

M∑
i=1

Biju(xi, tn) + Fj

)
→ 0

as h→ 0, uniformly in j and n such that the points xj and tn lie in the space-time
domain.
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Note that the matrix B will contain hx in some way, and h and hx are coupled
through a refinement path. The idea of the above definition is again that 1

h (un+1 =

un) ≈ ∂tu, and that 1
h (Bun − F ) ≈ Lu, and so the equations converge to each

other. T is called the truncation error.
As we have seen, consistency alone is not enough for convergence. We need stability,
which is the numerical equivalent for well-posedness.
Definition: The scheme (4.13) is stable if there exists K > 0 such that for all
h > 0, all n ∈ N with hn 6 T , and all bounded numerical initial conditions
u0,w0, we have

|unj − wnj | 6 K|u0j − w0
j |,

for all j 6 M . (Note that the number of spatial grid points M will grow when h
gets smaller - this is where the refinement path is hidden in this definition). Of
course, there un is the numerical solution with initial condition u0, and wn is the
numerical solution with initial condition w0.
Let us now define what it means for a numerical scheme to be convergent:
Definition: The scheme (4.13) is convergent if for all x, t in the space-time domain,
and all xj , tn such that xt → x and tn → t as h→ 0, we have |u(xj , tn)− unj | → 0
as h → 0. Here unj is the solution of the numerical scheme, and u(xj , tn) is the
true solution evaluated at xj and tn.
The main result now is:
Therorem (Lax Equivalence Theorem): Assume that (4.11) is linear and well-
posed. Assume that (4.13) is consistent. Then (4.13) is convergent if and only if it
is stable.

Proof. We only prove the direction that stability implies convergence. This direc-
tion is more important in practice, and the proof of the other direction requires
tools from functional analysis that we do not have. We calculate

|un+1
j − u(xj , tn+1)|

= |unj +

M∑
i=1

Biju
n
i + Fj − u(xj , tn)−

M∑
i=1

Biju(xi, tn)− Fj − hTnj |.

In matrix notation this means

‖un+1 − un+1
true‖ = ‖(1 +B)(un − untrue)− hT

n‖ = (∗).

Here, we defined untrue = (u(x1, tn), . . . u(xM , tn)). We further have

(∗) = (1 +B)2(un−1 − un−1true )− h(1 +B)T n − hT n−1 = . . . =

= (1 +B)n(u0 − u0
true) + h

n∑
k=1

(1 +B)n−kT k = (∗∗).

Now by stability, ‖(1−B)n−k‖ 6 K for all n−k (otherwise we could find a vector
such that ‖(1 − B)n−ku0‖ > K‖u0‖. But this would mean that the difference
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between the numerical solution with zero initial condition and the one with initial
condition u0 is greater than K‖u0‖, which contradicts stability.) So,

(∗∗) 6 hK
n∑
k=1

T n 6 hn sup
k
‖T k‖.

Now hn 6 T , and the supk ‖T
k‖ → 0 as h → 0 by consistency. Thus we have

shown convergence. �


