In the following text quotations from the paper [1] are displayed in black with equation labels (nn) at the right margin.
In [1; (11b)] V.V. Dvoeglazov displays a transformation formula for the longitudinal component B(3) of Evans' hypothetical B(3)-field:
B(3)'
= B(3) + γ−1/β²
(β·B(3))β − γβB(0)
(11b)
where β = v/c, β = |β| and
γ = 1/sqr(1−β²).
For sake of simplicity we may assume c=1.
In the special case of longitudinal motion v = v k, v > 0,
using B(3) = B(0)k
Dvoeglazov's equation yields
B(3)'
= B(0) sqr(1−β/1+β) k ,
which means B(3)'
= B(3) sqr(1−β/1+β) ,
i.e. due to Dvoeglazov the longitudinal component of the B-field is decreased by the
longitudinal Lorentz transform.
Since B(3) is merely the longitudinal component of a field B that has
an additional transversal component B^ Dvoeglazov's result contradicts the well-known Lorentz transform of the
electromagnetic field where the longitudinal component remains unchanged. We quote
here the transformation rules from the "classical" book of A. Sommerfeld [2; p.245-246]
E| |' = E| | ,
B| |' = B| |
(| | = longitudinally), In Equ.(6) Dvoeglazov shows us the transversal B-field components
E^'
= 1/γ (E + v×B)^ ,
B^'
= 1/γ (B − v×E)^
(^ = transversally).
Bx = − sqr(2) B(0) sin Φ ,
By = + sqr(2) B(0) cos Φ .
(6)
which yields the transversal B-field
B^
=
Bx i +
By j
= 1/sqr(2) B(0) [(i i + j)eiΦ
+ (− i i + j)e−iΦ]
cf. (2)
where Φ = ω(t−z) for a wave propagating in z-direction with velocity c=1.
The Maxwell equation
Ñ ×B^ =
∂E^/∂t
leads to a corresponding transversal E-field
E^
= 1/sqr(2) B(0)
[(i − i j)eiΦ
+ (i + i j)e−iΦ]
=
Ex i + Ey j .
Together with the longitudinal B-component
B| | =
B(3) = B(0) k
(3)
we have all required field components to perform the above mentioned Lorentz transformation
of B to obtain (note β=v due to c=1):
B| |' = B| |
and
B^' =
1/γ (B^
− β k×E^)
=
sqr(1−β/1+β) B^
More, we obtain an important conclusion
concerning M.W. Evans O(3)-hypothesis [4; Chap.1.2]: Dvoeglazov's wave (2-3) fulfils Evans' Symmetry Relation relative to
the original coordinate frame (x,y,z,t):
This result proves that V.V. Dvoeglazov's Equ. (11b) cannot be true.
B(1) × B(2) = iB(0) B(3)* ,
(1)
which is obviously equivalent to
½ |B^|² =
½ (|Bx|² + By|²) =
Bz|² = |B| | |²
However, seen from the new coordinate frame (x',y',z',t') after the longitudinal Lorentz transform
we obtain
½ |B^'|² =
½ (|Bx'|² + By'|²) =
1−β/1+β |Bz|² =
1−β/1+β |B| ||²
=
1−β/1+β |B| |'|²
< |B| |'|² .
[1]
V.V. Dvoeglazov, Comment on the 'Comment on the Longitudinal Magnetic Field ...’
[2]
A. Sommerfeld, ELEKTRODYNAMIK,
[3]
G.W. Bruhn, On the Lorentz Behavior of M.W. Evans' O(3)-Symmetry Law
[4]
M.W. Evans, Generally Covariant Unified Field Theory,
Therefore M.W. Evans' O(3)-Symmetry hypothesis is not Lorentz invariant and
hence no Law of Physics.
References
by E. Comay ... ,
http://132.236.180.11/pdf/physics/9801024
Akademische Verlagsgesellschaft Geest & Portig, Leipzig 1949
http://www2.mathematik.tu-darmstadt.de/~bruhn/O(3)-symmetry.html
the geometrization of physics;
Web-Preprint,
http://www.atomicprecision.com/new/Evans-Book-Final.pdf
HOME