
SIAM J. DISCRETE MATH. c© 2019 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 1607–1636

DISTANCE-PRESERVING GRAPH CONTRACTIONS∗

AARON BERNSTEIN† , KARL DÄUBEL† , YANN DISSER‡ , MAX KLIMM§ , TORSTEN

MÜTZE† , AND FRIEDER SMOLNY†

Abstract. Compression and sparsification algorithms are frequently applied in a preprocessing
step before analyzing or optimizing large networks/graphs. In this paper we propose and study a
new framework contracting edges of a graph (merging vertices into supervertices) with the goal of
preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the
contraction should guarantee that for any two vertices at distance d, the corresponding supervertices
remain at distance at least ϕ(d) in the contracted graph, where ϕ is a tolerance function bounding
the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity
of the contraction problem for affine tolerance functions ϕ(x) = x/α − β, where α ≥ 1 and β ≥ 0
are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees
as well as hardness and inapproximability results for different graph classes, precisely separating
easy and hard cases. Further we analyze the asymptotic behavior of contractions, and find efficient
algorithms to compute (nonoptimal) contractions despite our hardness results.

Key words. spanner, contraction, distance oracle, graph compression

AMS subject classifications. 68R10, 05C85

DOI. 10.1137/18M1169382

1. Introduction. When dealing with large networks, it is often beneficial to
compress or sparsify the data to manageable size before analyzing or optimizing the
network directly. To be useful, a meaningful compression should represent salient
features of the original network with good approximation, while being much smaller
in size. In this paper, we focus on a compression of undirected edge-weighted graphs
that approximately maintains all distances between vertices in the graph.

In this context, an extensively studied concept is spanners (e.g., [1, 3, 7, 33]).
Given an undirected graph G = (V,E) and real numbers α ≥ 1 and β ≥ 0, a subgraph
H = (V,E′), E′ ⊆ E, is an (α, β)-spanner of G if distH(u, v) ≤ α·distG(u, v)+β holds
for all u, v ∈ V . While the number of edges in a spanner may be much smaller than
that of the original graph, the number of vertices is the same for both, leaving further
potential for compression untapped. For illustration, consider the road network of
Europe with about 50 million vertices [5], any spanner of which must again have
about 50 million vertices and edges. However, to approximately represent distances
in Europe’s road network one may also merge nearby vertices into supervertices, thus
achieving a much better compression of the network. This is akin to the visual process

∗Received by the editors February 6, 2018; accepted for publication (in revised form) May 30,
2019; published electronically September 5, 2019. An extended abstract of this work appeared in
the Proceedings of the 9th Innovations in Theoretical Computer Science Conference (ITCS), 2018,
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Wadern, Germany, 2018, 51, [10].

https://doi.org/10.1137/18M1169382
Funding: The second, fourth, fifth, and sixth authors were funded by the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–The Berlin
Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). The third author was
supported by the Excellence Initiative of the German Federal and State Governments and the Grad-
uate School CE at TU Darmstadt.
†Institut für Mathematik, TU Berlin, Berlin (bernstei@gmail.com, daeubel@math.tu-berlin.de,

muetze@math.tu-berlin.de, smolny@math.tu-berlin.de).
‡Department of Mathematics, Graduate School CE, TU Darmstadt, Darmstadt, Germany

(disser@mathematik.tu-darmstadt.de).
§Wirtschaftswissenschaftliche Fakultät, HU Berlin, Berlin (max.klimm@hu-berlin.de).

1607

https://doi.org/10.1137/18M1169382
mailto:bernstei@gmail.com
mailto:daeubel@math.tu-berlin.de
mailto:muetze@math.tu-berlin.de
mailto:smolny@math.tu-berlin.de
mailto:disser@mathematik.tu-darmstadt.de
mailto:max.klimm@hu-berlin.de

1608 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

of zooming out of a graphical representation of the map, where neighbored vertices
fade into each other and edges between merged vertices vanish. At a large enough
zoom level, the entire network merges into a single vertex.

In this paper we propose and study a new framework for contracting networks that
formalizes this intuitive idea and makes it applicable to general graphs. Specifically,
we study a contraction problem on graphs where a subset of edges C ⊆ E is contracted.
We denote by G/C the resulting simple graph obtained from G by contracting the
edges in C and by deleting resulting loops and multiple edges, keeping only the min-
imum length edge between any two vertices. For any two vertices in G, we compare
their distance in G with the distance of the corresponding supervertices in G/C.

It is interesting to contrast this concept with graph spanners. When constructing
a spanner, the length of the removed edges is implicitly set to ∞, resulting in an
overall increase of distances. On the other hand, a contraction implicitly sets the
length of the contracted edges to zero, leading to an overall decrease of distances. For
both problems, the ultimate goal is to reduce the complexity of the network while
maintaining an approximation guarantee on the distances.

The following example shows that contractions may be better suited than span-
ners to achieve this goal. In a subgraph with small radius, a spanner can at best
result in a spanning tree of the same order, while a contraction can reduce the whole
subgraph to a single vertex, while entailing a multiplicative distance distortion of
similar magnitude. In addition, the contraction may also merge many edges entering
the contracted subgraph. Clearly, the objective here is to maximize the total number
of contracted and deleted edges, as this minimizes the memory required to represent
the resulting network in a computer (using, e.g., adjacency lists).

Given the results presented in this paper and the known results for spanners
(discussed in detail below), we further believe that the combination of spanners and
contractions is very powerful, promising, and flexible. As the former only increases and
the latter only decreases the distances, the respective distortion guarantees provably
also hold for the overall distortion. In fact, both effects may even compensate each
other. This is true regardless of the order in which both compression operations are
applied, even when they are applied repeatedly.

In order to measure the distance distortion of the contraction, we assume a non-
decreasing tolerance function ϕ : R → R, similar to the corresponding function for
spanners; see, e.g., [7]. We are interested in computing contractions that preserve dis-
tances in the following sense: For any two vertices u and v at distance d in G, the dis-
tance of the corresponding vertices in the contracted graph G/C must be at least ϕ(d).
If this condition is satisfied, we call C a ϕ-distance preserving contraction, or ϕ-
contraction for short. Formally, the algorithmic problem Contraction considered
in this paper is to compute for a given graph G = (V,E) with edge lengths ` : E → R>0

and a given tolerance function ϕ, a ϕ-contraction C ⊆ E such that the number of
contracted and deleted edges is maximized. We are specifically interested in the case
where the tolerance function ϕ is an affine function ϕ(x) = x/α − β for real-valued
parameters α ≥ 1 and β ≥ 0. We then simply write (α, β)-contraction instead of ϕ-
contraction. See Figure 1 for some example instances of the problem Contraction.

When considering the case of a purely multiplicative error (β = 0), a slight
subtlety has to be taken into account. Specifically, for a graph with positive edge
lengths it is not feasible to contract a single edge. Therefore, we propose a slight
modification of our original model: We say that a set C ⊆ E of edges of G is a
weak ϕ-distance preserving contraction, or weak ϕ-contraction for short, if it does not
contract the entire graph and, for any two vertices u and v at distance d in G, the

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1609

T T ′ T ′′

G G′ G′′

Fig. 1. Top: two iterations of Contraction with ϕ(x) = 4x/5 − 3 on a tree; bottom: two
iterations of Contraction with ϕ(x) = 3x/4 − 3 on a planar graph. Distances are geometric and
some contracted sets of vertices are highlighted.

distance of the corresponding vertices in G/C is either zero or at least ϕ(d). We
will refer to the corresponding algorithmic problem as Weak Contraction. Put
differently, in a weak contraction, the distances between different supervertices satisfy
the given distortion guarantee, but for vertices belonging to the same supervertex, no
guarantee is given.

1.1. Our results. In this paper, we present a comprehensive picture of the
algorithmic complexity of the described contraction problems. Recall that we are
given an input graph with edge lengths and tolerance function ϕ, and our goal is to
compute a (weak) contraction that maximizes the total number of contracted and
deleted edges. Our main results concern affine tolerance functions ϕ(x) = x/α − β
with parameters α ≥ 1 and β ≥ 0. For the reader’s convenience, our results are
summarized in Tables 1 and 2. Within the tables and throughout this paper, n and
m denote the number of vertices and edges, respectively, of the input graph under
consideration.

Algorithmic results. We first present a linear time greedy algorithm for Con-
traction on cycles with unit lengths for general α and β (Theorem 2). The algorithm
is inspired by linear programming rounding techniques.

We also develop dynamic programming algorithms solving Contraction and
Weak Contraction on trees in time O(n3) or O(n5), respectively (Theorems 3
and 4). These dynamic programs compute optimal solutions on subtrees, in the latter
case combining several Pareto optimal solutions in a two-dimensional parameter space
(hence the larger running time).

Note that instead of maximizing the number of contracted and deleted edges, we
could optimize for α or β while fixing the other parameters. The resulting problems are
polynomially equivalent to our setting, via binary search over one of the parameters.

Hardness results. We complement these algorithms by several hardness results.
First we consider the purely additive case where α = 1. We show that here both
Contraction and Weak Contraction are NP-hard on cycles for any fixed β > 0,
by a reduction of a variant of Partition (Theorem 5). As mentioned before, both

1610 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

Table 1
Overview of algorithmic and hardness results presented in this paper.

Problem Graph classes
Tree Cycle General

Contraction

addit. (α=1), unit lg. m
1
2
−ε-inapx.a [Thm. 8]

affine (α, β), unit lg. O(n) [Thm. 2]

addit. (α=1) NP-hard [Thm. 5] n1−ε-inapx. [Thm. 7]

affine (α, β) O(n3) [Thm. 3]

Weak Contraction

additive (α=1) NP-hardb [Thm. 5]

affine (α, β) O(n5) [Thm. 4] n1−ε-inapx.c [Thm. 10]

aeven for bipartite graphs and β = 1.
balso NP-hard for planar graphs with arb. large girth, (α, β) = (2, 0), and unit lg. (` = 1)

[Thm. 9].
ceven if (α, β) = (3/2, 0).

Table 2
Overview of asympotic bounds presented in this paper.

Contraction with unit lg. (`=1) # of edges in G/C Time Reference

(α, β) = (2k − 1, 1) n1+1/k O(m) [Thm. 11]

(α, β) = (2 log2 n− 1, 1) 2n O(m) [Cor. 12]

(α, β) = (k − 1, 1) Ω(n1+1/k) — [Thm. 13]

(α, β) = (1, k) m− km/(2n) O(m) [Thm. 14(i)]

(α, β) = (1, k) O(n2/k) O(m) [Thm. 14(ii)]

(α, β) = (1,O(1)) Ω(n4/3−o(1)) — [1]

Contraction with unit lg. (`=1)

and min. degree D # of vertices in G/C Time Reference

(α, β) = (5, 1) n/D O(m) [Thm. 15]

(α, β) = (k, 1) n/((k + 1)D) — [Thm. 16]

problems can be solved efficiently on graphs without cycles, and there is a linear time
algorithm for Contraction on cycles with unit lengths. By reductions from Clique
we show that both the general as well as the unit lengths case of Contraction
with α = 1 are hard to approximate within factors of n1−ε or m1/2−ε, respectively
(Theorems 7 and 8).

Further we consider the purely multiplicative case where β = 0 (here Contrac-
tion is trivial). We show that in this case Weak Contraction is NP-hard on
planar graphs with arbitrarily large girth and unit length edges by a reduction from
a special case of Planar 3SAT (Theorem 9). Since these graphs are locally treelike,
this result constitutes another rather sharp separation from the polynomially solvable
tree case. Furthermore, we show that the problem is hard to approximate within a
factor of n1−ε by a reduction from Independent Set (Theorem 10).

Asymptotic bounds. We now discuss our asymptotic bounds for contractions.
In this setting, we are interested in (nonoptimal) contractions for graphs with unit

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1611

lengths that can be computed efficiently despite the above-mentioned hardness results.
We prove that for any k ≥ 1, any graph G has a (2k − 1, 1)-contraction C such
that G/C has at most n1+1/k edges, and such a contraction can be computed in
time O(m) (Theorem 11) by successively growing clusters around center vertices.
Assuming Erdős’ girth conjecture, we show a corresponding (not tight) lower bound
(Theorem 13).

For a purely additive error, we observe two simple (1, k)-contractions that can be
computed in O(m) time (Theorem 14). We show that for any even integer 0 ≤ k ≤ n,
the edges incident to the k/2 vertices of highest degrees form a (1, k)-contraction with
objective value at least km/(2n), which is asymptotically best possible for paths. An-
other (1, k)-contraction C is implicitly used by Bernstein and Chechik in their faster
deterministic algorithm for dynamic shortest paths in dense graphs [9]. For any num-
ber 0 < k ≤ n, it consists of the edges incident to two vertices of degree at least n/k,
and G/C has O(n2/k) edges. Both of these contractions can be computed in O(m)
time. Further we note that the main result in [1] implies that for all ε > 0, any contrac-
tion C such that G/C has O(n4/3−ε) edges does not admit a constant additive error.

One possible advantage of contraction compared to spanners is the potentially
significant reduction of vertices as well as edges, e.g., reducing the complexity of per-
forming algorithmic tasks in the smaller graph. To ground this intuition, we exhibit
a contraction that significantly reduces the number of vertices in any graph with
minimum degree D to O(n/D) (Theorem 15). We also present a lower bound (The-
orem 16) showing that we cannot guarantee o(n/D) vertices, even if we allow larger
approximation error.

1.2. Comparison with previous results. There are several models aiming to
compress graphs while preserving distances. They differ by their choice of compression
operation, such as replacing the graph by a subgraph or minor, and by whether the
aim is to preserve all or only certain distances.

As discussed before, graph spanners are a concept closely related to contractions,
where the length of removed edges is set to ∞ rather than to 0. Our results highlight
further intrinsic similarities of the two models. Like contractions, spanners are NP-
hard to compute optimally (see [31, 33]). While the spanner literature considers the
problem of minimizing the number of remaining edges, we analyze the objective of
maximizing the number of contracted edges, prohibiting a direct comparison of the
respective inapproximability results. We note however that approximation algorithms
for spanner problems have been studied extensively, even though strong lower bounds
are known. For instance, computing (2, 0)-spanners in unweighted graphs is Θ(log n)-
hard to approximate (see [27, 28]); for further references, see, e.g., [17].

Despite these negative results, it is still possible to obtain powerful asymptotic
guarantees in both models. In particular, our (2k − 1, 1)-contraction with O(n1+1/k)
edges for unweighted graphs has a clear analogy to the classic (2k − 1, 0)-spanner
with the same number of edges [3] (note that the additive error of 1 in our result is
strictly necessary, as discussed above). There is, however, a major difference between
the two results: Whereas the (2k− 1, 0)-spanner can trivially be shown to be optimal
assuming Erdős’ girth conjecture, applying this conjecture to the contraction model
only yields a lower bound of n1+1/(2k) edges for a (2k − 1, 1)-contraction. Closing
this gap thus remains as an interesting open problem in the contraction model, whose
solution would likely yield further insight into the relationship to spanners.

Halperin and Zwick showed how an optimal (2k − 1, 0)-spanner can be construc-
ted in linear time (see [8]). We achieve the same running time for our (2k − 1, 1)-

1612 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

contraction. It is interesting to note that the clustering yielding our (2k − 1, 1)-
contraction was previously used in [33] to obtain a (4k + 1, 0)-spanner of the same
asymptotic density.

There are also spanner results that significantly sparsify unweighted graphs at
the cost of a purely additive error, as a (1,2)-spanner with O(n3/2) edges [2], or
a (1,6)-spanner with O(n4/3) edges [7]. We do not know if analogous results are
possible in the contraction model. The incompressibility result in [1] mentioned above
implies the same lower bound for spanners as for contractions and every other distance
oracle with additive error: For every ε > 0 any spanner of size O(n4/3−ε) does not
admit a constant additive error. Finally, for spanners there are results that combine
multiplicative and additive error, such as the (k, k − 1)-spanner of [7].

Gupta [24] considered the problem of approximating a tree metric on a subset
of the vertices by another tree, and gave a linear time algorithm computing an 8-
approximation. As Chan et al. [15] observed later, on complete binary trees a solution
of minimum distortion is always achieved by a minor (with possibly different edge
lengths) of the input tree, so this seems to be the first investigation of contractions that
approximate graph distances. Krauthgamer, Nguyen, and Zondiner [29] considered
an extension to general graphs, studying the size of minors preserving all distances
between a given terminal set of fixed size. Cheung, Goranci, and Henzinger [16]
introduced a multiplicative distortion to this model. As here no two terminals may be
merged, these approaches cannot compress a graph at all if every vertex is a terminal.

The pairwise preservers due to Coppersmith and Elkin [19] combine spanners with
the aim of preserving only terminal distances. Given a graph G and a set of k terminal
pairs, a pairwise preserver is a spanning subgraph inducing exactly the same terminal
distances as G. Coppersmith and Elkin [19] proved that for every undirected weighted
graph there exists a pairwise preserver of size O(n+n1/2k). Furthermore, they showed
that every directed weighted graph has a pairwise preserver of size O(nk1/2). For the
special case of undirected unweighted graphs, Bodwin and Vassilevska Williams [14]
showed the existence of a pairwise preserver with O(n2/3k2/3+nk1/3) edges. Recently,
Bodwin [13] proved that any directed weighted graph has a pairwise preserver of size
O(n+ n2/3k).

1.3. Further related work. The preservation of graph properties other than
distances has been studied as well. Biedl, Brejová, and Vinař [12] considered con-
tractions in capacitated networks with the goal of maintaining the maximum flow in
the network. Here an edge e is called useless, if for every capacity function there
is a maximum flow not using e. Biedl, Brejová, and Vinař showed that finding all
useless edges is NP-complete, but solvable in O(n2) time on certain planar graphs.
For undirected networks, Misio lek and Chen [32] gave an algorithm finding all useless
edges in O(n+m) time. Zhou, Mahler, and Toivonen [35] considered a more general
model aiming to maintain the quality of paths with respect to any given function,
e.g., distance or capacity. They investigated strategies of removing edges, without
decreasing the quality of the best path between any pair of vertices.

Graph simplification problems have also been studied in several other contexts,
and we conclude this section by mentioning two such examples:

Hübler et al. [25] studied a problem related to graph mining, examining how
to choose an induced subgraph with a given number of vertices and with similar
topological properties as the input graph. Numerous papers investigate, directly or
as a tool, sparsifiers that preserve the effective resistance between certain or all pairs
of vertices; see, e.g., [18, 20, 21, 22, 30].

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1613

1.4. Outline of this paper. In section 2 we introduce important definitions
and notations that will be used throughout this paper. In section 3 we present the
greedy algorithm for solving Contraction with unit lengths on cycles. In sec-
tion 4 we discuss efficient dynamic programming algorithms for Contraction and
Weak Contraction on trees. Sections 5 and 6 are devoted to our hardness results,
focussing on the cases of purely additive and multiplicative error, respectively. In
section 7 we present our asymptotic results on contractions. For the sake of brevity,
in this paper we omit all proofs on the Weak Contraction problem. They can be
found in the preprint version available on arXiv [11].

2. Preliminaries. Throughout this paper we consider simple undirected
graphs G (without parallel edges or loops). We let V (G) and E(G) denote the vertex
and edge set of G, respectively, and we define n(G) := |V (G)| and m(G) := |E(G)|.
If the context is clear, we simply write V , E, n, and m. We also use the notation
[n] := {1, 2, . . . , n}. We assume that G is connected, otherwise the contraction prob-
lem can be solved independently for each connected component. Edge lengths are
given by a function ` : E → R>0. The distance dist`(u, v) between two vertices u
and v is the length of a shortest path between u and v in G with respect to `.

Given a subset of edges C ⊆ E, we denote the resulting simple graph obtained
from G by contracting the edges in C, deleting resulting loops and keeping only the
minimum length edge between any two vertices by G/C. We denote the number of
deleted loops and multiedges by ∆(C) (thus m(G/C) = m(G)−|C|−∆(C)). Instead
of contracting a set C ⊆ E of edges in G, setting their edge lengths to zero has
the same effect on the distances in the resulting graph. This is somewhat cleaner
conceptually, so we will often adopt this viewpoint. Specifically, we let `C be the new
length function that assigns 0 to every edge in C, and that is equal to the original
edge lengths ` on the edges E \ C.

A tolerance function is a nondecreasing function ϕ : R → R. Roughly speaking,
this function describes by how much the distance between two vertices may drop when
contracting edges (i.e., setting edge lengths to zero). Formally, given a graph G with
edge lengths ` and a tolerance function ϕ, we say that a subset of edges C ⊆ E is a
ϕ-contraction, if

(1) dist`C (u, v) ≥ ϕ(dist`(u, v))

holds for any two vertices u and v in G. Similarly, we say that C is a weak ϕ-
contraction, if any two vertices u and v satisfy relation (1) or the relation dist`C (u, v) =
0, and if the graph (V,C) is disconnected (equivalently, if G/C is not a single vertex).
The last condition prevents solutions C ⊆ E for which the graph is contracted to
a single vertex. If ϕ(x) = x/α − β, then we simply write (weak) (α, β)-contraction
instead of (weak) ϕ-contraction.

An instance of the problem Contraction or Weak Contraction is a triple
(G, `, ϕ), where G is the underlying graph, ` the length function, and ϕ the tolerance
function, and the objective is to find a (weak) ϕ-contraction C ⊆ E, such that

(2) Φ(C) := |C|+ ∆(C) = m(G)−m(G/C)

is maximized. This quantity equals the number of edges we save when going from
G to G/C. Note that on trees we have Φ(C) = |C| for any (weak) contraction C,
whereas on general graphs we have Φ(C) ≥ |C|.

1614 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

(Weak) Contraction

Input: A graph G = (V,E) with edge lengths ` : E → R>0 and a non-
decreasing function ϕ : R→ R.

Output: A) ϕ-contraction C ⊆ E maximizing Φ(C).

In this context we sometimes refer to a set of edges that forms a (weak) contraction
as a feasible solution, and to a (weak) contraction of maximum value Φ(C) as an
optimal solution.

We begin by proving that our contraction model behaves nicely when contracting
edges in phases, i.e., the total error is simply the error accumulated over the con-
traction phases (but not more). To state this result we denote the composition of
tolerance functions ϕ and ψ as (ψ ◦ ϕ)(x) := ψ(ϕ(x)).

Theorem 1. Let C be a (weak) ϕ-contraction for G, and let C ′ be a (weak) ψ-
contraction for G/C. Then C ∪ C ′ is a (weak) (ψ ◦ ϕ)-contraction for G.

Proof. We only prove the statement for contractions ϕ and ψ. The proof for weak
contractions works analogously. Let ` denote the edge lengths of G and consider a
pair of vertices u, v ∈ V (G). Then we have dist`C∪C′ (u, v) ≥ ψ(dist`C (u, v)) by the
definition of C ′ and dist`C (u, v) ≥ ϕ(dist`(u, v)) by the definition of C. Combin-
ing these inequalities and using that ψ is nondecreasing we obtain dist`C∪C′ (u, v) ≥
ψ(ϕ(dist`(u, v))), as desired.

Note that Theorem 1 only concerns the feasibility of repeated contractions, but
is not about their optimality when searching for contractions of maximum cardi-
nality. With respect to solution quality, contracting in phases may be arbitrar-
ily bad: Consider a star with k unit length edges and additive tolerance functions
ϕ(x) = ψ(x) = x− 1. An optimum (ψ ◦ ϕ)-contraction contains all k edges, whereas
finding an optimal ϕ-contraction C and then an optimal ψ-contraction of G/C allows
contracting only one edge in each phase, leading to a (ψ ◦ ϕ)-contraction of value 2.

3. A greedy algorithm for cycles with unit length edges. In this section
we consider the special case of contracting a cycle Cn with n vertices and unit length
edges ` = 1 and the tolerance function ϕ(x) = x/α − β, α ≥ 1, β ≥ 0. For this
case we present a greedy algorithm running in linear time. The main purpose of
this result is to clearly separate the polynomially solvable cases of Contraction
from the NP-hard cases, and the case of a cycle with unit length edges precisely
forms this boundary on the polynomially solvable side. Recall in this context that
we can solve Contraction in polynomial time on any tree (this will be proved in
section 4.1 below), and that Contraction is NP-hard already on a cycle for α = 1
(with arbitrary edge lengths; we will show this in section 5.1 below).

We first argue that on a cycle it is equivalent to maximizing the number of con-
tracted edges |C| or to maximizing our objective function Φ(C) defined in (2). This is
because the set of pairs (|C|,Φ(C)) for all feasible contractions C in a cycle G = Cn
is given by {(1, 1), (2, 2), . . . , (n−3, n−3), (n−2, n−1), (n−1, n), (n, n)}, so it forms
a monotone function, implying that maximizing either one of the two quantities is
equivalent. Based on this argument, for the rest of this section we consider maximiz-
ing the number |C| of contracted edges.

Observe that a solution C ⊆ E(Cn) (Cn is the cycle we want to contract and C
is the set of edges to be contracted) for the instance (Cn, `, ϕ) of the problem Con-
traction is feasible if and only if every subpath P ⊆ Cn of length d := |E(P)| ∈

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1615

{1, 2, . . . , n− 1} satisfies the condition

(3) |E(P) ∩ C| ≤ bd−min{d, n− d}/α+ βc.

Rounding down on the right-hand side of (3) is justified because |E(P)∩C| is always
an integer.

Defining

λ′ := min
d∈{1,2,...,n−1}

bd−min{d, n− d}/α+ βc
d

,(4a)

λ := min{1, λ′},(4b)

we obtain from (3) that λ ∈ [0, 1] is the maximal amount by which we can con-
tract each edge in a uniform fractional solution. Inspired by the rounding technique
from [6], we turn this fractional solution into an integer optimal solution, yielding
the following greedy algorithm Greedy(Cn, α, β): The algorithm considers the edges
e1, e2, . . . , en of Cn as they are encountered when walking around the cycle. It itera-
tively constructs a solution C by initializing C := ∅ and by adding the edge ei to C if
and only if bλic − bλ(i− 1)c = 1 for all i = 1, 2, . . . , n (since λ ∈ [0, 1], this difference
is always either 0 or 1). Note that we contract all edges of Cn if and only if λ = 1.

Theorem 2. Let Cn be a cycle with unit length edges ` = 1 and consider the
tolerance function ϕ(x) = x/α − β, α ≥ 1, β ≥ 0. The set of edges computed by the
algorithm Greedy(Cn, α, β) is an optimal solution for the instance (Cn, `, ϕ) of the
problem Contraction, and it is computed in time O(n).

The next lemma shows that the contraction computed by our algorithm has the
maximum size.

Lemma 3.1. For any feasible solution C ⊆ E(Cn) we have |C| ≤ bλnc with λ
defined in (4).

Proof. If λ = 1 this inequality is trivial. So let us assume that λ = λ′ < 1 and
that the minimum in (4a) is attained for some d ∈ {1, 2, . . . , n− 1}. Starting at some
vertex u of the cycle, we walk along the cycle and cover it with n consecutive paths
P1, P2, . . . , Pn of length d each (Pi+1 starts where Pi ends). The sum of the lengths
of the paths is nd, so this process ends at the starting vertex u, and each edge of the
cycle and each edge of C is covered exactly d times. We therefore obtain

|C| = 1

d

n∑
i=1

|E(Pi) ∩ C|
(3)

≤
n∑
i=1

bd−min{d, n− d}/α+ βc
d

(4)
=λn.

As |C| must be integral this inequality yields the desired bound |C| ≤ bλnc.
With Lemma 3.1 in hand, we are now ready to prove Theorem 2.

Proof of Theorem 2. In this proof we will use that for any two real numbers x
and y we have

bxc+ byc ≤ bx+ yc,(5a)

bxc − byc ≤ dx− ye.(5b)

Let C ⊆ E(Cn) be the set of edges computed by the algorithm Greedy(Cn, α, β).
Clearly, we have |C| =

∑n
i=1(bλic−bλ(i−1)c) = bλnc, which is optimal by Lemma 3.1.

1616 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

However, it remains to show that C is feasible. We consider a path P of length
d := |E(P)| ∈ {1, 2, . . . , n−1} on the edges ek, ek+1, . . . , ek+d−1 (indices are considered
cyclically modulo n, so en+i = ei). We distinguish two cases: If k + d − 1 ≤ n, we
have

(6) |E(P) ∩ C| =
k+d−1∑
i=k

(bλic − bλ(i− 1)c) = bλ(k + d− 1)c − bλ(k − 1)c
(5b)

≤ dλde.

If k + d− 1 > n, we obtain

|E(P) ∩ C| =
n∑
i=k

(bλic − bλ(i− 1)c) +

d−n+k−1∑
i=1

(bλic − bλ(i− 1)c)

= bλnc − bλ(k − 1)c+ bλ(d− n+ k − 1)c
(5a)

≤ bλ(d+ k − 1)c − bλ(k − 1)c
(5b)

≤ dλde.(7)

Applying (4) and using that dbxce = bxc shows that the right-hand sides of (6) and
(7) can both be bounded from above by bd −min{d, n − d}/α + βc, proving that C
is indeed feasible by (3).

4. Dynamic programs for general trees. In this section we describe dynamic
programming algorithms for the problems Contraction and Weak Contraction
on trees with general edge lengths and affine tolerance functions. Recall that on trees
our objective function satisfies Φ(C) = |C| for any contraction C.

4.1. Contraction on trees. In this section we describe a dynamic programming
algorithm for the problem of computing an optimal contraction of a tree T with
arbitrary edge lengths ` : E → R>0 and an affine tolerance function ϕ(x) = x/α− β,
α ≥ 1, β ≥ 0. The goal is to prove the following result.

Theorem 3. Let T be a tree with edge lengths ` : E → R>0 and consider the
tolerance function ϕ(x) = x/α−β, α ≥ 1, β ≥ 0. An optimal solution for the instance
(T, `, ϕ) of the problem Contraction can be computed by dynamic programming in
time O(n3).

Observe that a solution C ⊆ E is feasible if and only if for any two vertices u
and v of T we have loadC,α(u, v) ≤ β, where the load between u and v is defined as

(8a) loadC,α(u, v) := dist`(u, v)/α− dist`C (u, v)

(recall (1)). For any vertex v of T we also define the load of T at v as

(8b) loadC,α(T, v) := max{loadC,α(u, v) : u ∈ V (T)}.

Note that loadC,α(T, v) ≥ 0, as we have loadC,α(v, v) = 0. The next lemma states a
criterion when feasible solutions of subtrees can be combined into a feasible solution
of the entire tree. The definitions (8a), (8b) and the lemma are illustrated in Figure 2.

Lemma 4.1. Consider a partition of T into two subtrees T1 and T2 that only have
a vertex v ∈ V in common. Then C ⊆ E is a feasible solution for the instance
(T, `, ϕ) of the problem Contraction if and only if the following two conditions
hold: C ∩ E(T1) and C ∩ E(T2) are feasible solutions for the instances (T1, `, ϕ) and
(T2, `, ϕ), respectively; and we have loadC,α(T1, v) + loadC,α(T2, v) ≤ β.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1617

r

v

u1

u2
u3

u4

w

w′

2

3

3
2 6

5

3 2

2

1 1

1

4 3

2

5

1

4

T+
v,2

Tv,3

T+
v,3 = T+

v,2 ∪ Tv,3

Fig. 2. Illustration of the definitions of section 4.1 for (α, β) = (2, 4). For the set C of
dashed edges we obtain loadC,α(T+

v,2, v) = loadC,α(v, w) = 7/2 − 2 = 3/2 and loadC,α(Tv,3, v) =

loadC,2(v, w′) = 9/2 − 2 = 5/2. We therefore have loadC,α(T+
v,2, v) + loadC,α(Tv,3, v) = 4 ≤ β, so

by Lemma 4.1 the set C is a feasible (α, β)-contraction in T+
v,3.

Proof. Observe that the path between two vertices u ∈ T1 and w ∈ T2 contains
the vertex v, so we obtain loadC,α(u,w) = loadC,α(u, v) + loadC,α(v, w) from (8a).
Using (8b) it follows that the condition loadC,α(u,w) ≤ β holding for all such pairs
of vertices u,w is equivalent to loadC,α(T1, v) + loadC,α(T2, v) ≤ β.

We will use this lemma to formulate our dynamic programming algorithm. The
idea is to compute optimal solutions for subtrees and combining them into an optimal
solution for the entire tree.

To describe the algorithm we introduce a few definitions. An ordered rooted tree
is a rooted tree with a specified left-to-right ordering for the children of each vertex.
Given the tree T , we can pick an arbitrary vertex as the root, and for each descendant
of the root an arbitrary left-to-right ordering of its children, yielding an ordered rooted
tree (different roots and orderings yield different ordered rooted trees, but any one of
them is good for our purposes). We slightly abuse notation in the following and use T
to denote this ordered rooted tree. All trees considered in the rest of this section
are ordered and rooted. For any vertex v of T , we let Tv denote the subtree of T
rooted at v, and we use c(v) to denote the number of children of v. If u1, u2, . . . , uc(v)
are the children of v (in the specified ordering), we write Tv,i, i ∈ {1, . . . , c(v)}, for
the subtree of T that contains v, ui, and all the descendants of ui. We also define
Tv,0 := {v}. Furthermore, we define T+

v,i :=
⋃

0≤j≤i Tv,i, so we have Tv = T+
v,c(v).

These definitions are illustrated in Figure 2.
Using these definitions it follows straightforwardly from (8a) and (8b) that for

any set of edges C ⊆ E(Tui
) we have

loadC∪{{v,ui}},α(Tv,i, v) = loadC,α(Tui , ui) + `(v, ui)/α,(9a)

loadC,α(Tv,i, v) = max{loadC,α(Tui , ui)− (1− 1/α)`(v, ui), 0}.(9b)

Note that the load increases if the edge {v, ui} is added to C (see (9a)), and it decreases
otherwise (see (9b)). Moreover, for any set of edges C ⊆ T+

v,i and any i = 1, 2, . . . , c(v)

1618 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

we obtain from those definitions that

(10) loadC,α(T+
v,i, v) = max{loadC,α(T+

v,i−1, v), loadC,α(Tv,i, v)}.

These rules allow us to compute the load of all subtrees of T in a bottom-up fashion.
Our dynamic program maintains the minimum load of all subtrees of T in three-
dimensional matrices L and L+. We begin defining these matrices in an abstract way,
and then establish several recursive relations which directly translate into a dynamic
program. Specifically, for v ∈ V , i ∈ {0, 1, . . . , c(v)}, and s ∈ {0, 1, . . . ,m} (recall
that m = |E|) we define

(11) L(v, i, s) := min{loadC,α(Tv,i, v) : C feasible solution of (Tv,i, `, ϕ) of size s}.

If there is no feasible solution of the required size, we have L(v, i, s) =∞. The entries
of L+(v, i, s) are defined analogously to (11) by considering the load of T+

v,i instead

of Tv,i. In words, the entries L(v, i, s) and L+(v, i, s) describe feasible solutions C of
size s of the instances (Tv,i, `, ϕ) or (T+

v,i, `, ϕ), respectively, of the problem Contrac-
tion for which the load at the vertex v is as small as possible (the matrices contain
the minimum achievable load, not the corresponding set of edges).

Lemma 4.2. Let v be a vertex of T and let u1, u2, . . . , uc(v) be the children of v.
Then the matrices L and L+ defined in and directly after (11) satisfy the relations

L(v, i, 0) = L+(v, i, 0) = 0 for all i ∈ {0, 1, . . . , c(v)},(12a)

L(v, 0, s) = L+(v, 0, s) =∞ for all s ∈ {1, 2, . . . ,m},(12b)

L(v, i, s) =

{
µ if µ ≤ β,
∞ otherwise,

(12c)

where

µ := min
{
L+(ui, c(ui), s−1)+`(v, ui)/α, max{L+(ui, c(ui), s)−(1−1/α)`(v, ui), 0}

}
for all i ∈ {1, 2, . . . , c(v)} and s ∈ {1, 2, . . . ,m}.

Moreover, we have

L+(v, i, s) = min
{

max{L+(v, i− 1, t), L(v, i, s− t)} : t ∈ {0, 1, . . . , s} and

L+(v, i− 1, t) + L(v, i, s− t) ≤ β
}

(12d)

for all i ∈ {1, 2, . . . , c(v)} and s ∈ {1, 2, . . . ,m}.
The most interesting of these recursive relations are of course (12c) and (12d).

The relation (12c) captures the two possibilities of either adding the edge {v, ui} or
not adding it to a partial solution in the tree T+

ui,c(ui)
= Tui

to obtain a solution for

the tree Tv,i (recall (9)). The relation (12d), on the other hand, describes how to
distribute s contraction edges in T+

v,i among the two subtrees T+
v,i−1 and Tv,i (t is the

number of edges contracted in the first tree, and s − t the number of edges in the
second tree, respectively).

Proof. The relations (12a) and (12b) follow immediately from the definitions of
the trees Tv,i and T+

v,i and from (11). The relation (12c) follows from (9) and (11).
The relation (12d) follows from (10) and (11) with the help of Lemma 4.1.

We are now ready to prove Theorem 3.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1619

Proof of Theorem 3. Given the instance (T, `, ϕ), we fix an arbitrary root r of T
and an arbitrary ordering of the children of each vertex, making T an ordered rooted
tree. We then compute the entries of the matrices L and L+ using Lemma 4.2. We
first initialize various entries using (12a) and (12b), and compute the remaining entries
in a bottom-up fashion moving upwards from the leaves to the root. Specifically, at
a vertex v with children u1, u2, . . . , uc(v) for which all the entries of L and L+ have
already been computed, we first compute L(v, i, s) for all i ∈ {1, 2, . . . , c(v)} and
s ∈ {1, 2, . . . ,m} using (12c), and then L+(v, i, s) for all i ∈ {1, 2, . . . , c(v)} and
s ∈ {1, 2, . . . ,m} using (12d).

Let s∗ be the largest s such that L+(r, c(r), s) ≤ β. From (11) we obtain that s∗

is the size of an optimal solution of the instance (T, `, ϕ). The corresponding set of
edges C ⊆ E can be obtained by keeping track of the arguments for which the minima
and maxima in (12c) and (12d) are attained in each step.

Clearly, L and L+ both have O(n2) entries, and computing each entry takes time
O(n), so the running time of our dynamic program is O(n3).

4.2. Weak contraction on trees. In this section we consider the problem
of computing weak contractions for a tree T with affine tolerance function ϕ(x) =
x/α − β. Here, our main result is a dynamic programming algorithm that builds on
the algorithmic ideas presented in section 4.1.

Theorem 4. Let T be a tree with edge lengths ` : E → R>0 and consider the
tolerance function ϕ(x) = x/α − β, α ≥ 1, β ≥ 0. An optimal solution for the
instance (T, `, ϕ) of the problem Weak Contraction can be computed by dynamic
programming in time O(n5).

The proof of Theorem 4 is omitted here, and can be found in the preprint version
of [11]. In the rest of this section we only outline the main ideas for the proof.

Designing a dynamic programming algorithm for Weak Contraction on trees
is complicated by the fact that the combinability of solutions on subtrees cannot be
captured by the load alone. As we need to keep track of pairs of vertices whose
distances remain positive when contracting a set of edges C ⊆ E, we define the weak
load of a rooted tree T at one of its vertices v by

wloadC,α(T, v) := max{loadC,α(u, v) : u ∈ V (T) and dist`C (u, v) > 0},

allowing us to formulate the following combinability criterion analogous to Lemma 4.1
from before.

Lemma 4.3. Let T , T1, T2, and v be as in Lemma 4.1. Then C (E is a feasible
solution for the instance (T, `, ϕ) of the problem Weak Contraction if and only if
the following two conditions hold: For i = 1, 2, either C contains every edge of Ti or
C ∩ E(Ti) is a feasible solution for the instance (Ti, `, ϕ) of Weak Contraction;
and we have

loadC,α(T1, v) + wloadC,α(T2, v) ≤ β and wloadC,α(T1, v) + loadC,α(T2, v) ≤ β.

With this lemma in hand, we proceed similarly by computing sets of solutions on
rooted subtrees of T that are optimal with respect to the three parameters: size, load,
and weak load. In particular, for any fixed size we compute a Pareto front of solutions
of that size, minimizing both load and weak load. The key step for arriving at an
efficient algorithm is to prove that these Pareto fronts have polynomial, in fact, even
linear, size. This is not clear a priori, as the number of feasible solutions on subtrees

1620 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

can be exponential. Using that the weak load has similar monotonicity properties and
recursive formulas as stated in (8), (9), and (10) for the load, we obtain an efficient
dynamic program. As our algorithm computes O(n2) Pareto fronts of size O(n) at
every vertex, and as we can combine optimal solutions from two such fronts in time
O(n), we get an additional factor of n2 in the running time compared to our first
dynamic program.

5. Hardness for additive tolerance functions. In this section we prove that
the problems Contraction and Weak Contraction for the tolerance function
ϕ(x) = x − β (purely additive error) are hard already on cycles (section 5.1 below).
We then prove that Contraction with the same tolerance function is hard to ap-
proximate for general graphs and for bipartite graphs (section 5.2).

5.1. Hardness of contraction and weak contraction. Recall that we can
compute optimal (weak) (α, β)-contractions in polynomial time on trees (this was
shown in section 4.1), and have a linear time algorithm for Contraction on cycles
with unit length edges (this was shown in section 3). We now show that the problem
with α = 1 is NP-hard on cycles with arbitrary edge lengths.

Theorem 5. For any fixed β > 0, the problems Contraction and Weak Con-
traction with tolerance function ϕ(x) = x− β, β ≥ 0, are NP-hard on cycles.

Theorem 5 (where β is not part of the input) follows immediately from Theorem 6
below (where β is part of the input). The reason is that an instance with α = 1 does
not change when multiplying all edge lengths and β by some constant.

Theorem 6. The problems Contraction and Weak Contraction with tol-
erance function ϕ(x) = x− β, β ≥ 0, are NP-hard on cycles.

The rest of this section is devoted to proving Theorem 6.
For our proof we will use the following variant of the well-known problem Par-

tition, referred to as Close-to-1 Partition. To state the problem we say that
a set of positive rational numbers {a1, a2, . . . , an} is close to 1, if

∑n
i=1 ai = n and

ε :=
∑n
i=1 |ai − 1| < 1/5.

Close-to-1 Pattition
Input: A set of positive rational numbers {a1, a2, . . . , an} that is close to 1.

Output: “Yes” if there is a subset I ⊆ [n] such that
∑
i∈I ai =

∑
i∈[n]\I ai, “No”

otherwise.

Note that for a “Yes”-instance of this problem, the solution I ⊆ [n] must have
size n/2, so |I| = |[n] \ I| =

∑
i∈I ai =

∑
i∈[n]\I ai = n/2. In particular, this implies

that n is even.
In the classical problem Partition, the input set is not constrained to be close to

1. Partition was shown to be NP-complete already in Karp’s seminal paper [26]. The
fact that Close-to-1 Partition is also NP-complete follows from a straightforward
rescaling argument.

Lemma 5.1. Close-to-1 Partition is NP-complete.

Proof. Given an instance {a1, a2, . . . , an} of Partition, we first add n additional
zeroes an+1 = an+2 = · · · = a2n = 0 to the instance (by this we ensure that a partition
with equal sums is transformed into one where both partition classes have the same
number n of summands). We then linearly transform all the ai according to a′i :=

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1621

u0
u1 u2 u3 u4 u5

u6

v1

v2

w0

w1w2w3w4w5
w6

a3 a4 a6

β′

2− a32− a42− a6

β′ + 2ε

a1 a2 a5

ε

ε

2− a12− a22− a5

Pu

Pw

Fig. 3. Reduction from Close-to-1 Partition to Contraction for n = 6 discussed in the
proof of Theorem 6. The dashed edges in the figure represent the set C(I) for I = {1, 2, 5}.

(ai + C)/D, where C and D are sufficiently large constants so that the transformed
values a′i are close to 1. The transformed set of numbers has even cardinality 2n, is
close to 1, and it admits a partition into two sets of size n with equal sum if and only
if the original instance allows a partition into two sets with equal sum.

Proof of Theorem 6. We first focus on the problem Contraction. We reduce
Close-to-1 Partition, which is NP-complete by Lemma 5.1, to the problem Con-
traction on a cycle with tolerance function ϕ(x) = x− β, β ≥ 0.

Let I = {a1, a2, . . . , an} be an instance of Close-to-1 Partition such that
a1 ≥ a2 ≥ · · · ≥ an. This ensures that all ai that are bigger than 1 appear before
all ai that are smaller than 1, which is the only property of the ordering that we
exploit in the proof later on. The instance of Contraction we construct is on the
cycle C2n+4 with 2n+ 4 edges. We label the vertices of the cycle by walking around
the cycle as follows: The first n+ 1 vertices are labeled u0, u1, . . . , un, then there are
two special vertices v1, v2, and the remaining n+1 vertices are labeled w0, w1, . . . , wn;
see Figure 3. We denote the subpath (u0, . . . , un) as Pu, and the subpath (w0, . . . , wn)
by Pw.

We now define ε :=
∑n
i=1 |1−ai| < 1/5, β := n/2+2ε, and β′ := β+1 > β, and the

length function ` on the cycle edges by setting `(ui−1, ui) := ai and `(wi−1, wi) = 2−ai
for all i ∈ [n], and by `(un, v1) = `(v2, w1) := ε, `(v1, v2) := β′, and `(wn, u0) := β′+2ε
(see Figure 3).

Now consider the instance J := (C2n+4, `, ϕ) with ϕ(x) = x − β of the problem
Contraction. Observe that no ϕ-contraction may contain an edge {u, v} of length
greater than β (in particular, no feasible solution may contain one of the edges of
length β′ or β′+ 2ε). Furthermore any (weak) ϕ-contraction C on this graph satisfies
Φ(C) = |C|.

We will show that J has an optimal solution of cardinality (and thus of value) n+2
if and only if I is a Yes-instance. In particular, we will see that any feasible solution
of J of size n + 2 contains the two edges of length ε and exactly n/2 edges with
length ai, i ∈ I, from Pu and the corresponding edges with length 2 − ai, i ∈ I,
from Pw. Such solutions correspond to subsets of [n] in the following natural way:
For any subset I ⊆ [n] of size n/2 we let C(I) be the subset of edges of the cycle C2n+4

consisting of the two edges of length ε and of all edges {ui−1, ui} and {wi−1, wi} (of

1622 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

length ai or 2−ai, respectively) for all i ∈ I. Thus we will show that C(I) is an optimal
solution of the instance J of Contraction if and only if

∑
i∈I ai =

∑
i∈[n]\I ai =

n/2, i.e., I is a Yes-instance of Close-to-1 Partition.
Both directions of this equivalence are captured and proved as Claims 2 and 4

below. Claims 1 and 3 are auxiliary statements used in the proofs of these two main
claims.

For any path P on the cycle we let `(P) denote the sum of `(e) over all edges e of P .
For all i ∈ [n] we denote by PA

i and P@
i the path on the cycle between the vertices ui

and wi that contains and that does not contain the edge {v1, v2}, respectively (in
Figure 3, these are the right and left segment of the cycle).

Claim 1. For all i ∈ [n], the number `(PA
i) lies in the interval

[n+ β′ + ε, n+ β′ + 2ε]

and the number `(P@
i) lies in the interval [n+ β′ + 2ε, n+ β′ + 3ε]. In particular, we

have dist`(ui, wi) = min{`(PA
i), `(P@

i)} = `(PA
i) and the difference `(P@

i) − `(PA
i)

lies in the interval [0, 2ε].

Proof of Claim 1. Note that the condition
∑n
i=1 ai = n implies that

(13) ε = 2
∑

ai:ai≥1

(ai − 1) = 2
∑

ai:ai<1

(1− ai).

By our assumption a1 ≥ a2 ≥ · · · ≥ an, the numbers `(PA
i) form a unimodal sequence

for i = 0, 1, . . . , n that is maximized for i = 0 and i = n, proving that `(PA
i) ≤

n + β′ + 2ε (note that `(Pu) = `(Pw) = n). By (13) the minimum of this unimodal
sequence is at most ε smaller than the maximum. This proves the first part of the
claim. As `(PA

i) + `(P@
i) = 2(n + β′ + 2ε), we obtain the second part of the claim.

The last part of the claim is an immediate consequence of the first two.

Claim 2. If I ⊆ [n] is a solution of the instance I of Close-to-1 Partition
such that

∑
i∈I ai =

∑
i∈[n]\I ai = n/2, then C(I) is a (1, β)-contraction.

Proof of Claim 2. It suffices to prove that there is no pair of vertices whose dis-
tance decreases by more than β when contracting the edges in C(I).

We start by verifying this for the pairs ui, wi for i ∈ [n]. We first consider
the path PA

i between ui and wi. Observe that
∑
e∈C(I)∩PA

i
`(e) lies in the interval

[n/2 + ε, n/2 + 2ε] = [β − ε, β]. Similarly to before, this follows from the observation
that by the assumption a1 ≥ a2 ≥ · · · ≥ an those sums form a unimodal sequence for
i = 0, 1, . . . , n that is maximized for i = 0 and i = n, and by using (13) (recall also
that |I| = n/2). Consequently, we have

(14) `C(I)(P
A
i) ≥ `(PA

i)− β.

Since
∑
e∈C(I) `(e) = n + 2ε = 2β − 2ε, we obtain that

∑
e∈C(I)∩P@

i
`(e) lies in the

interval [β − 2ε, β − ε], yielding

(15) `C(I)(P
@
i) ≥ `(P@

i)− (β − ε) ≥ `(P@
i)− β.

Combining (14) and (15) proves that

(16) dist`C(I)
(ui, wi) ≥ dist`(ui, wi)− β.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1623

Now consider two vertices ui and wj , j < i (the case j > i can be treated analogously).
Let PA

i,j and P@
i,j be the path on the cycle between the vertices ui and wj that contains

and that does not contain the edge {v1, v2}, respectively. Using that PA
i,j ⊆ PA

i we
obtain

(17) `C(I)(P
A
i,j) ≥ `(PA

i,j)− β

from (14).
We know that ai ≤ 1 + 1/5 ≤ 8/5 and consequently

(18) 2− ai ≥ 2/5 ≥ 2ε

by the assumption that the input {a1, a2, . . . , an} of the instance I is close to 1 (there
is plenty of leeway in all those inequalities). Furthermore, we have
(19)

dist`(ui, wj) ≤ `(PA
i)− (2− ai)

(18)

≤ `(PA
i)− 2ε ≤ min{`(PA

i), `(P@
i)} = dist`(ui, wi),

where the second-to-last inequality follows from Claim 1.
Combining those observations yields

(20) `C(I)(P
@
i,j) ≥ dist`C(I)

(ui, wi)
(16)

≥ dist`(ui, wi)− β
(19)

≥ dist`(ui, wj)− β.

Combining (17) and (20) proves that

(21) dist`C(I)
(ui, wj) ≥ dist`(ui, wj)− β.

From (17) and (20) we can derive analogous relations for the remaining cases
where we need to consider the distance between a vertex ui, i ∈ [n], and a vertex
w ∈ {v1, v2, u0, u1, . . . , ui−1, ui+1, . . . , un}, between a vertex wi, i ∈ [n], and a vertex
u ∈ {v1, v2, w0, w1, . . . , wi−1, wi+1, . . . , wn}, and between the vertices v1 and v2. This
completes the proof of Claim 2.

Claim 3. Every (1, β)-contraction C contains at most n/2 edges in (Pu∪Pw)∩PA
i

for all i ∈ [n] and at most n/2 edges in (Pu ∪ Pw) ∩ P@
i for all i ∈ [n].

Proof of Claim 3. Note that for any I ⊆ [n] and k ∈ {0, 1, . . . , n} we have∑
i∈I:i>k ai +

∑
i∈I:i≤k(2 − ai) ≥ |I| − ε by the definition of ε. Consequently, as-

suming for the sake of contradiction that C contains strictly more than n/2 edges in
(Pu ∪ Pw) ∩ PA

i , we have `C(PA
i)− `(PA

i) ≥ n/2 + 1− ε. Similarly, assuming that C
contains strictly more than n/2 edges in (Pu ∪ Pw) ∩ P@

i yields `C(P@
i) − `(P@

i) ≥
n/2 + 1− ε. By Claim 1 the difference `(P@

i)− `(PA
i) lies in the interval [0, 2ε], so in

both cases we obtain

dist`(ui, wi)− dist`C (ui, wi) ≥
n

2
+ 1− ε− 2ε >

n

2
+ 2ε = β,

where we used that ε < 1/5 in the second-to-last step. This contradicts the fact
that C is a (1, β)-contraction, proving Claim 3.

Claim 4. Let C be a feasible solution of the instance J of Contraction. Then
we have |C| ≤ n+ 2, and if |C| = n+ 2, we have C = C(I) for some set I ⊆ [n] with∑
i∈I ai =

∑
i∈[n]\I ai = n/2.

1624 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

Proof of Claim 4. As C does not contain any of the edges of length β′ or β′+ 2ε,
we have |C| ≤ n + 2 by Claim 3 (the +2 comes from the two edges of length ε
that may be contained in C). Suppose now that |C| = n + 2. Applying Claim 3
again shows that C must contain both edges of length ε, and that it contains the
edge {ui−1, ui} if and only if it contains the edge {wi−1, wi} for all i ∈ [n]. Defining
I := {i ∈ [n] : {ui−1, ui} ∈ C} we have |I| = n/2 and C = C(I).

By Claim 1 we have dist`(u0, w0) = `(PA
0) and dist`(un, wn) = `(PA

n). As C is
a (1, β)-contraction containing the two edges of length ε we thus obtain

∑
i∈I ai =∑

e∈C∩Pu
`(e) ≤ β − 2ε = n/2. Similarly, we have

∑
i∈[n]\I ai =

∑
i∈I(2 − ai) =∑

e∈C∩Pw
`(e) ≤ β − 2ε = n/2. As

∑
i∈[n] ai = n, these two inequalities must be

tight, yielding
∑
i∈I ai =

∑
i∈[n]\I ai = n/2.

Combining Claims 2 and 4 proves the statement of the theorem for the problem
Contraction.

We now focus on the problem Weak Contraction. The hardness result follows
immediately from the following claim.

Claim 5. For n ≥ 5, any feasible weak (1, β)-contraction C on the instance J is
also a feasible (1, β)-contraction.

Proof of Claim 5. Suppose for the sake of contradiction that C is not a feasible
(1, β)-contraction. This means there are vertices a, b such that dist`C (a, b) = 0 and
dist`(a, b) > β, i.e., a and b lie on a (maximal) subpath Q formed by edges from C
on the cycle. Let u be one end vertex of Q, and let x be the neighbor of u not on Q.
Let v be the last vertex on Q when traversed starting at u, such that the length of
the x-v-path P containing u is at most β + `(x, u), and let y be the next vertex on Q
when traversed starting at u. Such a vertex y exists as `(Q) > β, and the x-y-path
P ′ containing u has length strictly greater than β + `(x, u).

We have dist`C (x, y) > 0, as C does not contract the entire cycle. By (1), we have
dist`C (x, y) ≥ dist`(x, y)−β. As dist`C (x, y) ≤ `(x, u), we get dist`(x, y) ≤ β+`(x, u).
As we saw before, the x-y-path P ′ has length strictly greater than β + `(x, u), thus
the x-y-path P ′′ not containing u must have length at most β+ `(x, u). As the entire
cycle has length 2n+ 2β′ + 4ε = 3n+ 2 + 8ε and can be partitioned into P, P ′′, and
the edge {v, y}, we get

3n+ 2 + 8ε = `(P) + `(P ′′) + `(v, y)

≤ 2(β + `(x, u)) + `(v, y) ≤ 5β + 3 + 4ε = 5n/2 + 3 + 14ε,

where the second inequality holds as the two longest edges of the cycle have length
β′ + 2ε = β + 1 + 2ε and β′ = β + 1, respectively. From this chain of inequalities we
obtain n ≤ 2 + 12ε < 4 + 2/5, contradicting the assumption n ≥ 5.

This ends the proof of Theorem 6.

The reader might be tempted to “simplify” the previous reduction proof by omit-
ting the four special edges of length ε, β′, and β′ + 2ε and by setting β := n/2
instead. However, this would invalidate Claim 2 (specifically, the estimate (15) would
not always hold).

5.2. Inapproximability of contraction. We are able to extend the afore-
mentioned hardness result for Contraction as follows:

Theorem 7. For any fixed β > 0 and ε > 0, it is NP-hard to approximate the
problem Contraction with tolerance function ϕ(x) = x − β, β ≥ 0, to within a
factor of n1−ε.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1625

For the following theorem the additive error is fixed to β = 1.

Theorem 8. For any ε > 0, it is NP-hard to approximate the problem Con-
traction with tolerance function ϕ(x) = x − 1 on bipartite graphs with unit length
edges ` = 1 to within a factor of m1/2−ε.

Our reductions are based on the inapproximability of the well-known Clique
problem. Recall that a clique in a graph G is a complete subgraph of G.

Clique
Input: A graph G.

Output: A clique in G of maximum size.

It was shown in [36] that for any ε > 0, it is NP-hard to approximate Clique to
within a factor of n1−ε.

The following lemma will be used in our proofs. It shows that for (1, β)-contractions
the feasibility condition (1) need not be checked for all pairs of vertices u and v, but
only for those satisfying certain extra conditions.

Lemma 5.2. A set of edges C ⊆ E is a (1, β)-contraction if and only if all pairs of
vertices u, v ∈ V with the property that every shortest path with respect to `C between
u and v starts and ends with an edge from C satisfying condition (1).

Proof. Suppose for the sake of contradiction that all pairs of vertices u, v ∈ V as
in the lemma satisfy condition (1) and that C is not a (1, β)-contraction. Then there
is a pair of vertices u, v ∈ V violating (1) and a shortest path P with respect to `C
between u and v that does not start or end with an edge from C. We choose u and
v such that dist`C (u, v) is minimal, and we may assume that the first edge {u,w} of
P is not contained in C, so dist`(u, v) − dist`C (u, v) = dist`(w, v) − dist`C (w, v). By
our choice of u and v, the vertices w and v satisfy (1), i.e., the right-hand side of this
equation is bounded by β, a contradiction.

Proof of Theorem 7. Let β, ε > 0 be fixed and let G = (V,E) be an instance of
Clique.

We define a graph H = H(G) as follows (see Figure 4): The vertex set of H is
given by (V × {1, 2}) ∪ {s}, i.e., we create two copies of each original vertex and add
a special vertex s. The edge set of H is given by {{(u, 1), (v, 1)} : {u, v} ∈ E} plus
the edges {(v, 1), (v, 2)} and {s, (v, 2)} for all v ∈ V . The first set of edges are simply
the original edges of G on the first copies of the vertices, the second set is a perfect
matching between the two copies of the vertex set, and the third set of edges connects
the special vertex s to all vertices of the second copy of the vertex set. The length
function ` on the edges of H is set to 2β+ 2, β, or β+ 1 for those three sets of edges,
respectively.

Now consider the instance I := (H, `, ϕ) of the problem Contraction with the
tolerance function ϕ(x) = x − β. Clearly, any (1, β)-contraction C in H can contain
only edges of the form {(u, 1), (u, 2)} for some u ∈ V . As H does not contain two edges
between two different connected components of (V,C), our objective function defined
in (2) satisfies Φ(C) = |C| for any feasible solution C of I. We will show that it allows
a feasible solution with k edges (and thus of value k) if and only if G has a clique
with k vertices. Formally, for U ⊆ V we define C(U) := {{(u, 1), (u, 2)} : u ∈ U} (see
Figure 4). We proceed to show that U induces a clique in G if and only if C(U) is a
(1, β)-contraction in H = H(G).

1626 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

u v

w

t

G

(u, 2)

(u, 1)

(v, 2)

(v, 1)

(w, 2)

(w, 1)

(t, 2)

(t, 1)

s

β β β β

β + 1 β + 1 β + 1 β + 1

2β + 2 2β + 2 2β + 2

2β + 2

H = H(G)

Fig. 4. An instance G of Clique (left) and the corresponding instance I = (H, `, ϕ) (right)
of Contraction constructed in the proof of Theorem 7. The dashed edges form the set C(U) for
U = {u, v, w}.

Note that for any two vertices u, v ∈ U we have

dist`C(U)
((u, 1), (v, 1)) = 2β + 2 =

{
dist`((u, 1), (v, 1)) if {u, v} ∈ E,
dist`((u, 1), (v, 1))− 2β otherwise,

dist`C(U)
((u, 1), (v, 2)) = 2β + 2 = dist`((u, 1), (v, 2))− β,

dist`C(U)
((u, 2), (v, 2)) = 2β + 2 = dist`((u, 2), (v, 2)),

dist`C(U)
((u, 1), (u, 2)) = 0 = dist`((u, 1), (u, 2))− β.

These relations together with Lemma 5.2 show that C(U) is a (1, β)-contraction in H
if and only if U is a clique in G.

As n(H) differs from n(G) only by a constant factor, an n1−ε-approximation algo-
rithm for Contraction would yield an n1−ε

′
-approximation algorithm for Clique

via this reduction. Together with the aforementioned inapproximability of Clique
[36] this proves the theorem.

The rest of this section is devoted to proving Theorem 8, so we now focus on
(1, 1)-contractions in bipartite graphs with unit length edges ` = 1. The next lemma
characterizes the structure of contractions in this setting.

Lemma 5.3. Let G = (V,E) be a bipartite graph with unit edge lengths ` = 1 and
let C ⊆ E be a set of edges.

(i) If C is a (1, 1)-contraction, then C is a matching.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1627

(ii) If C = {e, f} with edges e = {u1, u2}, f = {v1, v2} ∈ E, then C is a (1, 1)-
contraction if and only if dist`(u1, v1) = dist`(u2, v2) and dist`(u1, v2) =
dist`(u2, v1).

(iii) C is a (1, 1)-contraction if and only if all two-element subsets of C are.

Proof.
(i) Suppose for the sake of contradiction that C contains a path (u, v, w) on

two edges. As G is bipartite, it has no triangles, so dist`(u,w) = 2 and
dist`C (u,w) = 0, a contradiction to the assumption that C is a (1, 1)-contrac-
tion.

(ii) For the edges e = {u1, u2} and f = {v1, v2} we define di,j := dist`(ui, vj) for
i, j ∈ {1, 2}.
Let C = {e, f} be a (1, 1)-contraction. Both d1,1 and d2,2 must have the
same parity (as G is bipartite), so if d1,1 < d2,2, the difference between
them is exactly 2. However, this would mean that dist`C (u2, v2) = d1,1 =
d2,2−2 = dist`(u2, v2)−2, a contradiction to the assumption that C is a (1, 1)-
contraction. Repeating the same argument with d1,1 and d2,2 interchanged
shows that d1,1 = d2,2. An analogous argument shows that d1,2 = d2,1.
Now suppose that d1,1 = d2,2 and d1,2 = d2,1. From these conditions it
follows that for all i, j ∈ {1, 2} every path between ui and vj that contains
both edges e and f has length at least di,j+2 with respect to `. Consequently,
we have dist`C (ui, vj) ≥ dist`(ui, vj)− 1 for C = {e, f}. By Lemma 5.2, C is
a (1, 1)-contraction.

(iii) One direction of the equivalence is obvious, so we only need to prove the
other direction. So we assume that all two-element subsets of C are (1, 1)-
contractions, and we need to prove that C is a (1, 1)-contraction. The argu-
ment is a straightforward generalization of the argument for (ii) from be-
fore. Let P be a path that contains exactly k edges from C, and that
starts and ends with an edge from C. Let e1, e2, . . . , ek be those edges
and u1,1, u1,2, u2,1, u2,2, . . . , uk,1, uk,2 their end vertices as they are encoun-
tered when traversing P (so u1,1 and uk,2 are the end vertices of P). For
all i = 1, 2, . . . , bk/2c the pair of edges e2i−1 and e2i and their end ver-
tices satisfy the distance conditions from (ii). From these conditions it fol-
lows that the subpath of P between u2i−1,1 and u2i,2 has length at least
dist`(u2i−1,1, u2i,2)+2. So overall the length of P is at least dist`(u1,1, uk,2)+
2bk/2c ≥ dist`(u1,1, uk,2)+(k−1). Consequently, we have dist`C (u1,1, uk,2) ≥
dist`(u1,1, uk,2)− 1. By Lemma 5.2, C is a (1, 1)-contraction.

With Lemma 5.3 in hand, we are now ready to prove Theorem 8.

Proof of Theorem 8. Let ε > 0 be fixed and let G = (V,E) be an instance of
Clique. We construct a bipartite graph H = H(G) as follows (see Figure 5): For
every vertex v ∈ V , the graph H contains two vertices (v, 1) and (v, 2) and the edge
fv := {(v, 1), (v, 2)}. For every edge e = {u, v} ∈ E, we add a vertex xe and the edges
fe,u := {xe, (u, 1)} and fe,v := {xe, (v, 1)} to H. Furthermore, we add a new special
vertex s to H and all the edges {s, (v, 2)}, v ∈ V , and {s, xe}, e ∈ E. It is easy to
check that the graph H defined in this way is bipartite.

All edges of H receive unit lengths (` = 1) and we consider the instance I =
(H, `, ϕ) of the problem Contraction with the tolerance function ϕ(x) = x− 1.

For any set of vertices U ⊆ V we define C(U) := {fu : u ∈ U} (see Figure 5).

1628 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

u v

w

t

e

G

(u, 2)

(u, 1)

(v, 2)

(v, 1)

(w, 2)

(w, 1)

(t, 2)

(t, 1)

s

xe

fu fv fw ft

fe,u fe,v

H = H(G)

Fig. 5. An instance G of Clique (left) and the corresponding instance I = (H, `, ϕ) (right)
of Contraction constructed in the proof of Theorem 8. The dashed edges form the set C(U) for
U = {u, v, w}.

Claim 6. If U ⊆ V is a clique in G, then C(U) is a (1, 1)-contraction in H and
Φ(C(U)) = |U |.

Proof of Claim 6. Let U be a a set of vertices in G that form a clique, and
let u, v ∈ U be two vertices from this clique. Then we have dist`((u, 1), (v, 1)) =
dist`((u, 2), (v, 2)) = 2 and dist`((u, 1), (v, 2)) = dist`((u, 2), (v, 1)) = 3, so Lemma
5.3(ii) implies that C({u, v}) is a (1, 1)-contraction in H. Repeating this argument
for every pair of vertices from U and applying Lemma 5.3(iii) yields that C(U) is a
(1, 1)-contraction in H. As there are never two edges in H between any two connected
components of the graph (V,C(U)), we have Φ(C(U)) = |C(U)| = |U |.

For any set of edges C ⊆ E(H), we let U(C) be the set of vertices v ∈ V for
which (v, 1) is incident to an edge in C.

Claim 7. If C ⊆ E(H) is a (1, 1)-contraction, then C is a matching in H and
U(C) is a clique in G of size at least Φ(C)− 3.

Proof of Claim 7. C is a matching by Lemma 5.3(i).
Let u, v ∈ U(C). We will show that e = {u, v} ∈ E by applying Lemma 5.3(ii)

to the two edges in C incident to (u, 1) and (v, 1). To prove that e ∈ E it suffices to
show that dist`((u, 1), (v, 1)) = 2.

Let us first consider the case that fu, fv ∈ C. As dist`((u, 2), (v, 2)) = 2 (the
shortest path between those vertices goes via s), Lemma 5.3(ii) implies that

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1629

dist`((u, 1), (v, 1)) = 2. We now consider the case that there is an edge e′ ∈ E \ {e}
with fu, fe′,v ∈ C. We then have dist`((u, 2), xe′) = 2 (via s), so Lemma 5.3(ii)
yields dist`((u, 1), (v, 1)) = 2. Finally, we consider the case that there are two edges
e′, e′′ ∈ E \ {e} with fe′,u, fe′′,v ∈ C. We then have dist`(xe′ , xe′′) = 2 (via s), again
implying that dist`((u, 1), (v, 1)) = 2. This proves that indeed e ∈ E, so U(C) forms
a clique in G.

Every edge in H is either incident to s or to a vertex of the form (v, 1), v ∈ V .
Since at most one of the edges incident to s can be in C, the definition of U(C)
shows that the size of U(C) is either |C| − 1 or |C|. Therefore, to finish the proof of
Claim 7, it suffices to show that Φ(C) ≤ |C| + 2. If C contains no two edges that
are connected by more than one edge in H, then we have Φ(C) = |C|. Otherwise
we consider two such edges f and g from C. It is easy to check that either f or
g must be incident to s, so suppose that the edge f contains s. We first consider
the case that f = {s, xe} for some edge e = {u, v} ∈ E. In this case it follows
that g = {(u, 1), (u, 2)} or g = {(v, 1), (v, 2)}, so we have Φ(C) = |C| + 2. Now
consider the case that f = {s, (u, 2)} for some vertex u ∈ V . In this case it follows
that g = {(u, 1), xe} for exactly one edge e ∈ E incident to u in G, showing that
Φ(C) = |C|+ 2. In all three cases we have Φ(C) ≤ |C|+ 2, as claimed.

Combining Claims 6 and 7 will allow us to prove the following claim.

Claim 8. If there is an n1/2−ε-approximation algorithm for Contraction, then
there is an n1−ε/2-approximation algorithm for Clique.

Proof of Claim 8. Suppose for the sake of contradiction that such an approxima-
tion algorithm for Contraction exists. We use it to compute a clique in a given
instance G of Clique as follows: We construct I = (H(G), `, ϕ) and compute a so-
lution C of Contraction for this instance, and we define the clique U(C) as before
(recall Claim 7). If U(C) 6= ∅, we return U(C), otherwise we return any vertex from
G. We denote the clique computed in this fashion by U .

We may assume that n(G) ≥ 161/ε, in particular, n(H) ≥ 161/ε. It follows that

(22) n(H) = 1 + 2n(G) +m(G) ≤ 1 + 2n(G) +

(
n(G)

2

)
≤ n(G)2.

By assumption we know that

(23) Φ(C) · n(H)1/2−ε ≥ Φ(C∗),

where C∗ is an optimal solution of I. In particular, Φ(C) is positive.
Combining these observations we get

|U | · n(G)1−ε/2
(22)

≥ |U | · n(H)1/2−ε/2

≥ max{Φ(C)− 3, 1} · n(H)1/2−ε/2

=
(

max{Φ(C)− 3, 1} · n(H)ε/2
)
· n(H)1/2−ε

≥ Φ(C) · n(H)1/2−ε

(23)

≥ Φ(C∗)

≥ ω(G),

where the second inequality holds because of Claim 7, and the last inequality involving
the clique number ω(G) holds because of Claim 6.

1630 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

As m(H) = Θ(n(H)), Claim 8 implies the theorem (using the inapproximability
of Clique proved in [36]).

6. Hardness for multiplicative tolerance function. By Theorem 5, the
problem Weak Contraction with purely additive tolerance function ϕ(x) = x− β
is NP-hard on cycles. In this section we prove the hardness and inapproximability of
this problem also in the case of a purely multiplicative tolerance function ϕ(x) = x/α,
α ≥ 1. Recall that the problem Contraction is trivial for this tolerance function
(we may not contract any edges). The proofs of the two main results of this section,
Theorems 9 and 10 below, are omitted here and can be found in the preprint version
of [11].

To state the next result recall that the girth of a graph G is defined as the
minimum length of a cycle in G.

Theorem 9. For any g ≥ 2, the problem Weak Contraction with tolerance
function ϕ(x) = x/2 is NP-hard for planar graphs with girth at least 3g and unit
length edges ` = 1.

Theorem 9 implies that Weak Contraction is hard for a general multiplicative
tolerance function ϕ(x) = x/α, α ≥ 1, but it leaves open the question of whether this
is true also for other fixed values of α other than 2 (when α is not part of the input).
The arguments in the proof for α = 2 carry over straightforwardly to any fixed value
2 ≤ α < 3, but not to 3 or larger values (for α < 2 and unit length edges the problem
is trivial).

We prove Theorem 9 by a reduction from a variant of the Planar 3SAT problem,
which is characterized by additional properties of the bipartite variable-clause graph.

We are able to extend our hardness results for Weak Contraction as follows.

Theorem 10. For any ε > 0, it is NP-hard to approximate the problem Weak
Contraction with tolerance function ϕ(x) = 2x/3 to within a factor of n1−ε.

Theorem 10 implies that Weak Contraction is hard to approximate for general
multiplicative tolerance functions ϕ(x) = x/α, α ≥ 1, but it leaves open the question
of whether this is true also for other fixed values of α other than 3/2 (when α is not part
of the input). The arguments in the proof for α = 3/2 carry over straightforwardly
to any fixed value 1 < α < 2, but not to 2 or larger values (for α = 1 the problem is
trivial).

We prove Theorem 10 by a reduction from the well-known Independent Set
problem (which is equivalent to Clique by considering the complement graph).

7. Asymptotic bounds. In this section we show how to compute contractions
for graphs that are not optimal, but can be computed efficiently despite our hardness
results from the previous section. In this vein, the main results of this section are
Theorem 11 and the corresponding (not tight) lower bound (Theorem 13) for the case
of tolerance functions of the form ϕ(x) = x/α−1. Further we consider purely additive
tolerance functions (section 7.2) and the factor by which a contraction can reduce the
number of vertices (section 7.3). Throughout this section, we assume all graphs to
have unit length edges ` = 1.

7.1. Almost multiplicative contractions. As mentioned in the introduction,
a purely multiplicative tolerance function (β = 0) forbids decreasing any distances.
In this section we thus consider an “almost” purely multiplicative tolerance function
of the form ϕ(x) = x/α− 1.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1631

Theorem 11. Let k ≥ 1 be a real number. Any graph G has a (2k − 1, 1)-
contraction C such that the contracted graph G/C has at most n1+1/k edges, and such
a contraction can be computed in time O(m).

Recall that here and throughout, n and m denote the number of vertices and
edges of the input graph G, not of the contracted graph G/C. Setting k := log2 n in
Theorem 11 yields the following corollary.

Corollary 12. Any graph G has a (2 log2 n− 1, 1)-contraction C such that the
contracted graph G/C has at most 2n edges, and such a contraction can be computed
in time O(m).

To prove Theorem 11, we use a clustering approach as presented in [4], yielding
the next lemma. Specifically, the following crucial lemma appears in a slightly weaker
form in that paper. For any real number r ≥ 1, we define an r-partition of a graph
G = (V,E) as a set of clusters Pi ⊆ V , i ∈ [l], with corresponding cluster centers
pi ∈ Pi, where the sets Pi are required to form a partition of the vertex set V and
where dist`(pi, u) ≤ r−1 for all u ∈ Pi and i ∈ [l]. We denote the resulting r-partition
by P := {(pi, Pi) : i ∈ [l]}. We write ρ(P) for the number of pairs 1 ≤ i < j ≤ l for
which Pi and Pj are connected by at least one edge, and we refer to this quantity as
the density of P .

Lemma 7.1. Let r ≥ 1 be a real number. Any graph G with unit length edges has
an r-partition P with density ρ(P) ≤ n1+1/r, and such a partition can be computed
in time O(m).

Proof. The idea of the algorithm is to build an r-partition P of G iteratively
in rounds. In each round, we build a new cluster and remove all vertices from that
cluster from the graph, processing the subgraph on the remaining vertices in the next
round. The algorithm proceeds until all vertices are assigned to a cluster. In round
i, we choose an arbitrary vertex pi as a cluster center, and define layers Li,0, Li,1, . . .
around the vertex pi, where the layer Li,j consists of all vertices at distance exactly
j from pi (this distance is measured in the subgraph of G under consideration in this
round). We continue computing these layers as long as the number of vertices in the
new layer is at least the number of vertices in all previous layers times the factor n1/r.
The cluster Pi is defined as the union of all layers around pi satisfying this expansion
condition. We refer to the first layer violating this condition (which is not added to
Pi anymore) as the rejected layer. We let P denote the partition of the vertices of G
computed in this fashion.

To verify that P is indeed an r-partition, we proceed to show that each vertex
within a cluster has distance at most r− 1 from the center vertex of that cluster, and
that the density ρ(P) of the partition is at most n1+1/r. Intuitively, the expansion
condition in the definition of the layers ensures that a cluster has few layers and that
the number of edges that go to unclustered vertices is small.

Consider a cluster Pi with center vertex pi and the layers Li,0, Li,1, . . . , Li,d. Sup-
pose for the sake of contradiction that d ≥ r. By the definition of the layers in the
algorithm we know that |Li,j | ≥ n1/r

∑j−1
k=0 |Li,k| holds for all j ∈ [d], implying that

|Li,j | ≥ nj/r. Consequently, the size of the cluster satisfies |Pi| =
∑d
j=0 |Li,j | ≥

1 + nr/r = n+ 1, a contradiction.
We now show that ρ(P) ≤ n1+1/r. The key idea is that the number of vertices in

the rejected layer of a cluster Pi is at most n1/r|Pi|. Thus the number of edges from
Pi to clusters that are created later is at most n1/r|Pi|. For every edge between two
clusters we let the cluster that is created first account for that edge. Summing over

1632 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

all these edges between clusters yields the desired upper bound of ρ(P) ≤ n · n1/r =
n1+1/r.

Using breadth-first search, the partitioning algorithm described above runs in
time O(m) (recall that G is assumed to be connected). This completes the proof of
the lemma.

With Lemma 7.1 in hand, we are now ready to prove Theorem 11.

Proof of Theorem 11. Given G = (V,E), we first compute a k-partition P into l
clusters as described by Lemma 7.1. We define the set C of contracted edges as the
union of all edges within the clusters, C := {{u, v} ∈ E : u, v ∈ Pi for some i ∈ [l]}.
We thus contract each cluster into a single vertex and remove from every set of
resulting parallel edges all but a single edge.

We proceed to show that C is a (2k − 1, 1)-contraction, i.e., we show that
dist`C (u, v) ≥ dist`(u, v)/(2k − 1) − 1 for all u, v ∈ V . Consider two vertices u ∈ Pi
and v ∈ Pj , where i and j might be equal. Let Qu,v be the shortest path from u
to v in G with edge lengths `C (all edges from C receive length zero). The length
d of Qu,v is the number of edges on that path that connect different clusters. Note
that Qu,v enters and leaves each of the d + 1 visited clusters at most once, using at
most 2k− 2 edges in every cluster, so in G (where all edges have unit lengths) we get
dist`(u, v) ≤ d+ (d+ 1)(2k − 2).

Combining these observations we obtain

dist`C (u, v) = d ≥ d− 1

2k − 1
=
d+ (d+ 1)(2k − 2)

2k − 1
− 1 ≥ dist`(u, v)

2k − 1
− 1,

proving the claim. It remains to show that the contracted graph G/C has at most
n1+1/k edges, which is an immediate consequence of the upper bound m(G/C) =
ρ(P) ≤ n1+1/k given by Lemma 7.1. This completes the proof of the theorem.

Erdős’ girth conjecture [23] asserts that there exist graphs with Ω(n1+1/k) edges
and girth 2k + 1. It has been verified for k = 1, 2, 3, 5 [34] and the strongest spanner
lower bounds depend on it. We derive from the conjecture the following (not tight)
lower bound.

Theorem 13. Assuming Erdős’ girth conjecture, there exists for any integer k ≥
2 a graph G such that any (k − 1, 1)-contraction C results in a graph G/C with
Ω(n1+1/k) edges.

Proof. For a given integer k ≥ 2 let G be a graph that is guaranteed by Erdős’
girth conjecture, i.e., G has girth 2k+1 and Ω(n1+1/k) edges. Consider any (k−1, 1)-
contraction C on G, and consider a connected component of the graph (V,C). Ap-
plying (1) shows that dist`(u, v) ≤ k − 1 holds for any two vertices u and v in that
component. Using that the girth of G is 2k+ 1, it follows that for any cycle in G, the
connected component of (V,C) does not contain a contiguous segment of cycle edges
of length at least half of the cycle. This implies that all connected components of the
graph (V,C) are trees with diameter at most k − 1. Therefore, the total number of
edges within all connected components of (V,C) is at most n. We will further argue
that there is at most one edge between any two connected components. Suppose for
the sake of contradiction that there are two components of (V,C) with two different
edges connecting them, say {u, v} and {u′, v′}, where u and u′ lie in the same con-
nected component and v and v′ in the other. As the diameter of each component is

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1633

at most k − 1, it follows that in G there is a path from u to u′ of length at most
k − 1, and a path from v to v′ of length at most k − 1. Together with the two edges
connecting the components we obtain a cycle of length at most 2(k − 1) + 2 = 2k,
contradicting the assumption that G has girth 2k + 1.

Therefore, the resulting graph after the contraction has Ω(m) = Ω(n1+1/k)
edges.

7.2. Additive contractions. Turning to the case of a purely additive error, we
obtain the following two results.

Theorem 14. Let G be a graph with unit length edges.
(i) For any even integer 0 ≤ k ≤ n, the set of edges incident to the k/2 vertices

of highest degrees is a (1, k)-contraction C in G with Φ(C) ≥ km/(2n).
(ii) For any real number 0 < k ≤ n, the set of edges incident to two vertices of

degree at least n/k is a (1, k)-contraction C in G such that G/C has O(n2/k)
edges.

These contractions can be computed in time O(m).

As mentioned in the introduction, Bernstein and Chechik analyzed the contraction
of Theorem 14(ii) in [9] and used it in their dynamic shortest paths algorithm, so this
part is already proved.

Proof of Theorem 14(i). Let U be the set of k vertices in G of highest degree.
Then we have ∑

u∈U
deg(u) ≥ k/n

∑
v∈V

deg(v) = k/n · 2m = 2km/n.

Let C be the set of edges incident to any vertex in U . As each edge is incident to
at most two vertices in U , we get |C| ≥ 1/2

∑
u∈U deg(u) ≥ km/n from the previous

inequality. As no shortest path visits a vertex in U twice, C is indeed a (1, 2k)-
contraction. The set C can be computed as follows: We first compute the degrees of
all vertices in time O(m), then find the kth largest element in this list in time O(n),
and by another linear time sweep over this list we select k vertices of highest degree.
Overall, the required time is O(m).

This result implies that the number of edges in G/C is at most m − km/n.
If G is a path, no (1, 2k)-contraction has an objective value greater than 2k, and
km/n = k(1−1/n), showing that the objective value in Theorem 14(i) can be improved
by at most a factor of two.

The information theoretic lower bound in [1] implies that for all ε > 0, any
contraction C such that G/C has O(n4/3−ε) edges does not admit a constant additive
error.

7.3. Vertex reduction. All of the results above show that contractions can be
effectively used to reduce the number of edges in a dense graph. But one possible
advantage of using a contraction instead of a spanner is that it also has the potential to
reduce the number of vertices in the graph. Unfortunately, for constant approximation
errors, it is not possible to guarantee more than a constant-factor reduction in general
graphs: it is not hard to see that given a path on n vertices, any (k, 1)-contraction
will still result in at least n/(k + 1) vertices. The same problem applies to general
dense graphs, since they could still contain a long path within them. That being said,

1634 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

it seems likely that in practice contraction can lead to significant vertex reduction in
many dense graphs. We ground this practical intuition with the following theoretical
result for the special case of graphs with large minimum degree.

Theorem 15. Let D be an integer. Any graph G with minimum degree at least
D has a (5, 1)-contraction C such that the contracted graph G/C has at most n/D
vertices, and such a contraction can be computed in time O(m).

Proof. Recall the definition of an r-partition. For a cluster Pi with center vertex
pi we refer to r as the radius of that cluster. This is the maximum distance of all
cluster vertices from pi.

We will show how to construct a 3-partition in which the number of clusters Pi
is at most n/D. Using the exact same argument as in the proof of Theorem 11,
such a 3-partition yields the desired (5, 1)-contraction. Our construction first builds
clusters of radius 1, and then extends them to clusters of radius 2. The clustering
with radius 1 proceeds very similarly to the proof of Lemma 7.1 before with r = 1.
The crucial difference is that we choose as center vertices only vertices with degree
at least D. If no such vertices are left, the clustering process terminates, and the
remaining unclustered vertices have degree strictly less than D. It is easy to see that
since those vertices have degree at least D in the original graph, they must be adjacent
to a vertex in a radius 1 cluster. We can thus assign each of those vertices to such a
cluster arbitrarily, yielding a clustering of all vertices of G with radius 2.

The number of clusters is at most n/D because by construction every cluster
contains at least D vertices. This shows that the number of vertices in the contracted
graph is at most n/D.

This algorithm can be implemented in time O(m) by using an adjacency list
representation where we keep track of degree information after removing an edge
from the graph.

To see that we cannot guarantee less than n/D vertices, even with larger ap-
proximation error, consider the graph G that consists of n/D isolated D-cliques. We
now show that even if G is connected, we cannot guarantee o(n/D) vertices in the
contracted graph, even if we allow a larger (constant) approximation error.

Theorem 16. Let D and k be integers. There exists an infinite family of n-vertex
graphs G with minimum degree D such that any (k, 1)-contraction C results in a graph
G/C with n/((k + 1)D) vertices.

Proof. Assume for simplicity that n is divisible by D. We construct the graph
G as follows. We partition the n vertices into n/D layers, with each layer containing
exactly D vertices. For 1 ≤ i < n/D, all vertices in layer i receive an edge to all
vertices in layer i+ 1. Clearly all vertices in the resulting graph have degree at least
D. Let u and v be two vertices in layers i and j, respectively. Then clearly we have
dist`(u, v) ≥ |j − i|. Now let C be any (k, 1)-contraction on G, and consider the
connected components of the graph (V,C). Applying (1) shows that dist`(u, v) ≤ k
holds for any two vertices u and v in the same component. Combining these two
inequalities shows that every connected component contains vertices from at most
k+ 1 layers. As there are n/D layers, the contracted graph has at least n/((k+ 1)D)
vertices.

Acknowledgments. We thank Martin Skutella for stimulating discussions about
the problems treated in this paper. We also thank the anonymous referees for their
valuable suggestions that helped improve the presentation of results.

DISTANCE-PRESERVING GRAPH CONTRACTIONS 1635

REFERENCES

[1] A. Abboud and G. Bodwin, The 4/3 additive spanner exponent is tight, in STOC’16—
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
ACM, New York, 2016, pp. 351–361.

[2] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani, Fast estimation of diameter and
shortest paths (without matrix multiplication), SIAM J. Comput., 28 (1999), pp. 1167–
1181, https://doi.org/10.1137/S0097539796303421.

[3] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of
weighted graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100, https://doi.org/10.1007/
BF02189308.

[4] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823, https:
//doi.org/10.1145/4221.4227.

[5] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds., Graph Partitioning and
Graph Clustering, Contemp. Math. 588, AMS, Providence, RI, 2012.

[6] J. J. Bartholdi, III, J. B. Orlin, and H. D. Ratliff, Cyclic scheduling via integer programs
with circular ones, Oper. Res., 28 (1980), pp. 1074–1085, https://doi.org/10.1287/opre.28.
5.1074.

[7] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie, New constructions of (α, β)-spanners
and purely additive spanners, in Proceedings of the Sixteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, 2005, pp. 672–681.

[8] S. Baswana and S. Sen, A simple linear time algorithm for computing a (2k − 1)-spanner of
O(n1+1/k) size in weighted graphs, in Automata, Languages and Programming, Lecture
Notes in Comput. Sci. 2719, Springer, Berlin, 2003, pp. 384–396, https://doi.org/10.1007/
3-540-45061-0 32.

[9] A. Bernstein and S. Chechik, Deterministic decremental single source shortest paths: Be-
yond the O(mn) bound, in STOC’16, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, ACM, New York, 2016, pp. 389–397.

[10] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and F. Smolny, Distance-
preserving graph contractions, in 9th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2018, 2018, Cambridge, MA, Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Wadern, Germany, 2018, 51, https://doi.org/10.4230/LIPIcs.ITCS.2018.51.

[11] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and F. Smolny, Distance-
preserving graph contractions, preprint, arXiv:1705.04544, 2019.

[12] T. C. Biedl, B. Brejová, and T. Vinař, Simplifying flow networks, in Mathematical Founda-
tions of Computer Science 2000 (Bratislava), Lecture Notes in Comput. Sci. 1893, Springer,
Berlin, 2000, pp. 192–201, https://doi.org/10.1007/3-540-44612-5 15.

[13] G. Bodwin, Linear size distance preservers, in Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2017, pp. 600–615,
https://doi.org/10.1137/1.9781611974782.39.

[14] G. Bodwin and V. Vassilevska Williams, Better distance preservers and additive spanners,
in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SIAM, Philadelphia, 2016, pp. 855–872, https://doi.org/10.1137/1.9781611974331.
ch61.

[15] T.-H. H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the Steiner
point removal problem on trees, in Approximation, Randomization and Combinatorial
Optimization, Lecture Notes in Comput. Sci. 4110, Springer, Berlin, 2006, pp. 70–81,
https://doi.org/10.1007/11830924 9.

[16] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal dis-
tances approximately - lower and upper bounds, in 43rd International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2016, 2016, Rome, Italy, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Wadern, Germany, 2016, 131, https://doi.org/10.4230/
LIPIcs.ICALP.2016.131.

[17] E. Chlamtáč, M. Dinitz, G. Kortsarz, and B. Laekhanukit, Approximating spanners and
directed Steiner forest: Upper and lower bounds, in Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2017, pp. 534–
553, https://doi.org/10.1137/1.9781611974782.34.

[18] T. Chu, Y. Gao, R. Peng, S. Sachdeva, S. Sawlani, and J. Wang, Graph sparsification,
spectral sketches, and faster resistance computation, via short cycle decompositions, in
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, 2018, IEEE, Piscataway, NJ, 2018, pp. 361–372, https://doi.org/10.1109/FOCS.
2018.00042.

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/4221.4227
https://doi.org/10.1145/4221.4227
https://doi.org/10.1287/opre.28.5.1074
https://doi.org/10.1287/opre.28.5.1074
https://doi.org/10.1007/3-540-45061-0_32
https://doi.org/10.1007/3-540-45061-0_32
https://doi.org/10.4230/LIPIcs.ITCS.2018.51
https://doi.org/10.1007/3-540-44612-5_15
https://doi.org/10.1137/1.9781611974782.39
https://doi.org/10.1137/1.9781611974331.ch61
https://doi.org/10.1137/1.9781611974331.ch61
https://doi.org/10.1007/11830924_9
https://doi.org/10.4230/LIPIcs.ICALP.2016.131
https://doi.org/10.4230/LIPIcs.ICALP.2016.131
https://doi.org/10.1137/1.9781611974782.34
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1109/FOCS.2018.00042

1636 BERNSTEIN, DÄUBEL, DISSER, KLIMM, MÜTZE, SMOLNY

[19] D. Coppersmith and M. Elkin, Sparse sourcewise and pairwise distance preservers, SIAM J.
Discrete Math., 20 (2006), pp. 463–501, https://doi.org/10.1137/050630696.

[20] M. Dinitz, R. Krauthgamer, and T. Wagner, Towards resistance sparsifiers, in Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, vol. 40
of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Wadern, Germany, 2015, pp. 738–755.

[21] F. Dörfler and F. Bullo, Kron reduction of graphs with applications to electrical networks,
IEEE Trans. Circuits Syst. I. Regul. Pap., 60 (2013), pp. 150–163, https://doi.org/10.1109/
TCSI.2012.2215780.

[22] D. Durfee, R. Kyng, J. Peebles, A. B. Rao, and S. Sachdeva, Sampling random spanning
trees faster than matrix multiplication, in STOC’17—Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, ACM, New York, 2017, pp. 730–742.

[23] P. Erdős, Extremal problems in graph theory, in Theory of Graphs and its Applications (Proc.
Sympos. Smolenice, 1963), Czechoslovak Academy of Science, Prague, 1964, pp. 29–36.

[24] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), SIAM,
Philadelphia, 2001, pp. 220–227.

[25] C. Hübler, H.-P. Kriegel, K. M. Borgwardt, and Z. Ghahramani, Metropolis algorithms
for representative subgraph sampling, in Proceedings of the 8th IEEE International Con-
ference on Data Mining (ICDM 2008), 2008, Pisa, Italy, IEEE, Piscataway, NJ, 2008,
pp. 283–292, https://doi.org/10.1109/ICDM.2008.124.

[26] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tation, Plenum, New York, 1972, pp. 85–103.

[27] G. Kortsarz, On the hardness of approximating spanners, Algorithmica, 30 (2001), pp. 432–
450, https://doi.org/10.1007/s00453-001-0021-y.

[28] G. Kortsarz and D. Peleg, Generating sparse 2-spanners, J. Algorithms, 17 (1994), pp. 222–
236, https://doi.org/10.1006/jagm.1994.1032.

[29] R. Krauthgamer, H. L. Nguyẽn, and T. Zondiner, Preserving terminal distances using mi-
nors, SIAM J. Discrete Math., 28 (2014), pp. 127–141, https://doi.org/10.1137/120888843.

[30] R. Kyng and S. Sachdeva, Approximate Gaussian elimination for Laplacians—fast, sparse,
and simple, in 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS
2016, IEEE Computer Society, Los Alamitos, CA, 2016, pp. 573–582.

[31] A. L. Liestman and T. C. Shermer, Additive graph spanners, Networks, 23 (1993), pp. 343–
363, https://doi.org/10.1002/net.3230230417.

[32] E. Misio lek and D. Z. Chen, Efficient algorithms for simplifying flow networks, in Computing
and Combinatorics, Lecture Notes in Comput. Sci. 3595, Springer, Berlin, 2005, pp. 737–
746, https://doi.org/10.1007/11533719 75.

[33] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116,
https://doi.org/10.1002/jgt.3190130114.

[34] R. Wenger, Extremal graphs with no C4’s, C6’s, or C10’s, J. Combin. Theory Ser. B, 52
(1991), pp. 113–116, https://doi.org/10.1016/0095-8956(91)90097-4.

[35] F. Zhou, S. Mahler, and H. Toivonen, Network simplification with minimal loss of con-
nectivity, in ICDM 2010, 10th IEEE International Conference on Data Mining, Syd-
ney, Australia, IEEE Computer Society, Los Alamitos, CA, 2010, pp. 659–668, https:
//doi.org/10.1109/ICDM.2010.133.

[36] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chro-
matic number, Theory Comput., 3 (2007), pp. 103–128, https://doi.org/10.4086/toc.2007.
v003a006.

https://doi.org/10.1137/050630696
https://doi.org/10.1109/TCSI.2012.2215780
https://doi.org/10.1109/TCSI.2012.2215780
https://doi.org/10.1109/ICDM.2008.124
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1137/120888843
https://doi.org/10.1002/net.3230230417
https://doi.org/10.1007/11533719_75
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1016/0095-8956(91)90097-4
https://doi.org/10.1109/ICDM.2010.133
https://doi.org/10.1109/ICDM.2010.133
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

	Introduction
	Our results
	Comparison with previous results
	Further related work
	Outline of this paper

	Preliminaries
	A greedy algorithm for cycles with unit length edges
	Dynamic programs for general trees
	Contraction on trees
	Weak contraction on trees

	Hardness for additive tolerance functions
	Hardness of contraction and weak contraction
	Inapproximability of contraction

	Hardness for multiplicative tolerance function
	Asymptotic bounds
	Almost multiplicative contractions
	Additive contractions
	Vertex reduction

	References

