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Abstract. We consider an offline car-sharing assignment problem with
flexible drop-offs, in which n users (customers) present their driving de-
mands, and the system aims to assign the cars, initially located at given
locations, to maximize the number of satisfied users. Each driving de-
mand specifies the pick-up location and the drop-off location, as well as
the time interval in which the car will be used. If a user requests several
driving demands, then she is satisfied only if all her demands are ful-
filled. We show that minimizing the number of vehicles that are needed
to fulfill all demands is solvable in polynomial time. If every user has
exactly one demand, we show that for given number of cars at locations,
maximizing the number of satisfied users is also solvable in polynomial
time. We then study the problem with two locations A and B, and where
every user has two demands: one demand for transfer from A to B, and
one demand for transfer from B to A, not necessarily in this order. We
show that maximizing the number of satisfied users is NP-hard, and even
APX-hard, even if all the transfers take exactly the same time. On the
other hand, if all the transfers are instantaneous, the problem is again
solvable in polynomial time.
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1 Introduction

In car sharing services, a company manages a fleet of cars that are offered to
customers for rent for a short period of time. Every car is stationed at a fixed
parking location, and a customer who wishes to rent the car is usually required
to return the car back to the very same location. This is a constraint that many
customers would like to abolish. It is thus a natural question to find alternatives
allowing the customers a flexible drop-off possibility. We investigate this “flexible
drop-off” idea in the case where the demands for driving (pick-up at location A
at time tA and drop-off at location B at time tB) are known in advance, and
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we study the problem of finding a maximum number of demands that can be
realized by the existing fleet of cars and parking locations.

We show that the problem can be solved in polynomial time by a reduction
to the minimum-cost maximum-flow problem in a dedicated auxiliary graph. We
further consider the problem when every user (customer) has multiple driving
demands. A user is satisfied if all her demands are fulfilled (the user needs to
get a car for all the requested drivings, and has no interest in partial rentals).
We show that satisfying the maximum number of users is an APX-hard problem
already when there are only two locations, every user has two demands, the
time for driving is the same for every demand, and there is only one car. An
exemplary problem that falls into this setting is the situation where a single
car is used to commute between two popular, but (by public transportation)
badly connected locations. The users want to use this car for their daily travel:
Every user wants to get from one location to the other one, and later in the day
also from the other location back to her original one. Interestingly, the hardness
holds only whenever the travelling takes non-zero time, as we also show that for
an instantaneous travel (that takes zero time), the problem becomes solvable in
polynomial time.

1.1 Formal Problem Description and Outline of the Paper

We define formally only the setting with two locations, as this setting forms the
base of our main results. The problem definition for more locations is straight-
forward. User that rents a car at location A effectively blocks the car for a fixed
time interval, and makes it available at the drop-off location B. The usage and
trajectory of the car in the rental period is irrelevant for our scheduling prob-
lem, and we can simply model the renting as a transfer of the car from location
A to location B at the given time interval. We abstract from our car-sharing
motivation, and refer to the cars as resources.

We consider two locations, A and B, with an initial distribution of indis-
tinguishable resources within these two locations, say there are a resources at
location A and b resources at location B in the beginning. A transfer from A
to B is a movement of a resource from A to B. A transfer is possible only if
there is an available resource. There are n users and each of them has one or
more demands: A demand d is specified by a direction X → Y (either A → B
or B → A) and time interval (tsd, t

e
d), and represents a request for a resource

transfer from location X to location Y , leaving the origin X at time tsd and
arriving at the destination Y at time ted. The demand d is fulfilled by moving
one resource from X to Y . In this case, the resource is blocked (i.e., cannot be
transferred further) for the time period (tsd, t

e
d). The goal is to select a feasible set

of demands that maximizes the number of satisfied users. Here, a set of demands
is feasible if: (i) whenever a demand of a user is selected, then all demands of
the user are selected, and (ii) all selected demands can be fulfilled, i.e., we can
move the resources as suggested by the demands.

We first considered the simplest questions: (1) Decide whether all users can
be satisfied (or equivalently, decide whether all the demands can be fulfilled);
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(2) Compute the minimum number of resources initially needed at each location
to satisfy all the users. We observed that straightforward “simulation-like” algo-
rithms can answer these questions for any number of users, demands per user,
locations, and resources.

In Section 2, we study the problem where each user has only one demand. We
show that the problem of maximizing the number of satisfied users for given num-
ber of resources at locations (i.e., in this case, the number of fulfilled demands)
is polynomially solvable, by reducing it to the minimum-cost maximum-flow
problem. This approach works even if there are multiple locations and multiple
resources in the system.

In Section 3, we study the variant where every user has exactly two demands:
One transfer from A to B and one transfer from B to A, but not necessarily in
this order. Recall that a user is satisfied only if both the demands are fulfilled. We
show that in this setting, it is APX-hard to maximize the number of satisfied
users even if (i) there is only one resource in the system, initially placed at
location A, and (ii) all transfers take the same non-zero time (independently of
the user and the direction). On the other hand, if the transfer time is always 0
(i.e., tsd = ted for every demand d), we show that this problem is polynomially
solvable even if there are many resources in the system.

1.2 Related Work

Our problem lies in the area of interval scheduling (for recent surveys see [10,
11]), where, in the simplest case, one asks for a maximum non-intersecting subset
of a given set of intervals. This simplest case would correspond to our setting
with only one location A and every request of type “pick-up at A and drop-off
at A”.

In our problem with several locations, the transfers of a resource correspond
to non-intersecting intervals (demands), with the following additional require-
ment: we label the interval with the corresponding pick-up and drop-off locations,
and any two consecutive intervals for the same resource need to be compatible,
i.e., the drop-off location of the first interval needs to be identical to the pick-up
location of the second interval. For the setting with one resource and one demand
per user, we ask for a maximum set of non-intersecting intervals with exactly this
compatibility condition. With k resources (and one demand per user), we ask
for k “chains” of such compatible solutions that together contain the maximum
number of intervals (demands).

If every user has two or more demands, our problem relates to results on split
intervals. A t-split interval is simply a union of t disjoint intervals. A t-interval
graph is a conflict graph of n t-split intervals. Bar-Yehuda et al. [2] study the
problem of finding the maximum number of non-intersecting t-split intervals, and
show that it is APX-hard even when t = 2, and present a 2t-approximation algo-
rithm. Neither the approximation algorithm (or its techniques) nor the hardness
result carries over to our problem with one resource and two locations. The main
reason is that in our problem we require neighboring intervals in the solution
to be compatible. These local compatibility requirements that we impose on the
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Fig. 1. An example of TransfersOneDemand transformed into minimum-cost
maximum-flow problem. The labels on the edges in the second figure specify the ca-
pacity and the cost of the edges.

solution is what also makes our problem hard. As we will see, the hardness of our
problem arises even in some configurations of intervals that would be trivially
polynomially solvable under the split intervals setting (no local compatibility
requirement). In particular, if every split interval intersects at most one other
split interval, then the conflict graph forms a matching, and finding a maximum
independent set becomes trivial. In our hardness result, in the reduction we use
we obtain exactly such instances. The hardness arises due to the compatibility
requirements.

Finding the maximum number of non-intersecting split intervals with certain
additional pattern requirement has been studied before with the relation to
problems in RNA secondary structure prediction. The 2-interval pattern problem
(see e.g., [3, 7]) asks for a non-intersecting subset of 2-split intervals such that
every pair of selected split intervals are in one of the prescribed relations R ⊆
{<,@, G} (with < meaning preceding, @ nested, and G crossed split intervals).
The complexity as well as (approximation) algorithms for different subsets of
{<,@, G} were studied.

2 Resource Transfers with One Demand per User

If every user has only one demand (either of the form A → B or B → A), and
there are, initially, a resources at location A and b resources at location B, we
show that TransfersOneDemand, the problem of maximizing the number of
satisfied users (which is in this case equal to the number of fulfilled demands),
is solvable in polynomial time.

Theorem 1. TransfersOneDemand is solvable in polynomial time, for any
number of locations.

Proof. We formulate the problem as a minimum-cost maximum-flow problem,
which is polynomial-time solvable. For simplicity, we present this reduction con-
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sidering two locations (A and B) only. The generalization for arbitrary number
of locations is straightforward.

Consider an arbitrary instance of TransfersOneDemand with two loca-
tions. We construct an instance of the network flow problem, where the only
arcs of non-zero cost correspond to the demands of the users, and have cost -1.
Formally, we proceed as follows (see Figure 1 for illustration). For every demand
d = (tsd, t

e
d) there are two vertices in the network, vsd and ved, one for each endpoint

of d. The network contains two additional vertices – a source s, and a target t.
Based on the location of each demand’s endpoint, the corresponding vertex is
either of type A, or B. Let 〈va1, . . . , van〉 be the vertices of type A ordered by
the time of the corresponding demands’ endpoints, and let 〈vb1, . . . , vbn〉 be the
vertices of type B ordered by the time of the corresponding demands’ endpoints.
The network contains edges of three types. For every demand d = (tsd, t

e
d), there

is a directed demand edge (vsd, v
e
d) from the vertex corresponding to the start-

point of d to the vertex corresponding to its endpoint. All demand edges have
capacity 1 and cost −1. For every two consecutive vertices vai, vai+1 of type A,
there is a directed connecting edge (vai, vai+1). Similarly, there is a connecting
edge for every two consecutive vertices of B. There are also connecting edges
(van, t) and (vbn, t), from the last vertices of each type to the target vertex. For
all the connecting edges, the capacity is set to∞ and the cost is set to 0. Finally,
there is an edge from s to vertex va1 with capacity a and cost 0, and there is an
edge from s to vb1 with capacity b and cost 0.

Observe that from any vertex other than s, there is unlimited capacity for a
flow to t, using the connecting edges. Clearly, any st-flow has to pass via va1 or
vb1, and the sum of capacities of (s, va1) and (s, vb1) is a+b. Thus, the maximum
st-flow is of size a+ b.

We now determine the cost of an optimum minimum-cost maximum st-flow.
Since all the costs and capacities are integral, then, thanks to the integrality
theorem [5], there exists an integral optimum solution (which can be found in
polynomial time). From the above it follows that there is a maximum st-flow
of cost 0 that does not use any demand edge. Since the network is acyclic, the
capacity of a demand edge is 1, and its cost is −1, it follows that a minimum-cost
st-flow aims at using as many demand edges as possible (with unit flow on each
edge). We can see the integral flow as the course of the a+ b resources between
the locations – one st-flow of size one per resource. Obviously, an integral st-flow
of cost −C satisfies C demands (users), and every schedule satisfying C users
gives an integral flow of cost C. ut

3 Resource Transfers with Two Demands per User

If the users have more than one demand, the problem of maximizing the number
of satisfied users becomes NP-hard, even APX-hard. We will show the hardness
even for the special case of “using the car to commute between two badly con-
nected locations”, i.e., for the setting with two locations A and B, where every
user has exactly two transfer demands, one per each direction A→ B, B → A.
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Fig. 2. Placement of the gadgets for the given instance Φ of Max-3-Sat(3) with clauses
C = {c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}.

We refer to this optimization problem as TransfersForCommuting. We ac-
tually show that the problem is APX-hard even if there is only a single resource.
We prove the hardness of TransfersForCommuting by an L-reduction (see
Proposition 1) from a Max-3-Sat(3), which is an APX-hard variant [1] of the
maximum satisfiability problem with at most 3 literals per clause and with each
variable appearing in the formula at most twice as a positive, and (exactly) once
as a negative literal.

Theorem 2. TransfersForCommuting is APX-hard even if there is only
one resource, originally placed at location A, and all the transfer times are equal,
but positive.

First we describe a construction used to prove Theorem 2 and its properties.
Construction. Let Φ be an instance of Max-3-Sat(3) given by a set of clauses

C = {c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}. We
construct from Φ the following instance I of TransfersForCommuting. There
is a single resource in the system, initially located at A. There are two users for
each occurrence of a variable in a clause and there are 26 users for each of the
r clauses, in total there are at most 32r users. In the following we describe how
the demands of the users are organized into gadgets, how they are placed, and
how they interact.

For every variable xi ∈ X there is a variable gadget Gxi. For each clause
cj ∈ C, there is a clause gadget Gcj , a dummy gadget DGcj , and a light forcing
gadget FGcj . Finally, there are two heavy forcing gadgets HFG1 and HFG2.
The gadgets are placed as follows (see Figure 2). First all the variable gadgets
are placed (one per variable in Φ). After that, the heavy forcing gadget HFG1

is placed. Then, all the clause gadgets are placed (one per clause in Φ), each
preceded by a light forcing gadget. Then the heavy forcing gadget HFG2 is
placed. Finally, all the dummy gadgets are placed (again, one per clause in Φ).

For each occurrence of a variable xi in a clause cj there is one variable user,
demanding a transfer B → A first and A→ B later, and a dummy variable user
demanding a transfer A → B first and B → A later. Their outbound demands
are placed in Gxi. The return demand of the variable user is placed in Gcj , and
the return demand of the dummy variable user is placed in DGcj . For each clause
cj , there is one clause user, demanding an outbound transfer B → A, placed in
Gcj , and a return transfer A → B, placed in DGcj . Finally, there is a large
number of forcing users, each demanding a transfer A → B and an immediate
return B → A, both placed in one of the forcing gadgets FGcj , HFG1, or HFG1.

We now describe the placement of the transfers within each gadget in more
detail, see Figure 3 for the exact configurations. Each light forcing gadget FGcj ,
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Fig. 3. Placement of the demanded transfers within the gadgets (building blocks of
the hardness construction). The demands of variable users are displayed as full arrows,
the demands of clause users are dashed, those of dummy variable users are dotted,
and those of forcing users are dash-dotted. The heavy forcing gadget is not illustrated
in the figure, since it is similar to the light forcing gadget, but consists of 10r users
instead of 5.

consists of five light forcing users, each demanding a transfer A → B and an
immediate return B → A. These demands are placed in such a way that all the
users of a light forcing gadget can be satisfied together. Both heavy forcing gad-
gets HFG1 and HFG2 are similar to light forcing gadgets, but instead of 5 users,
each HFG consists of 10r heavy forcing users (again demanding transfer A→ B
and an immediate return B → A, placed in such a way that all can be satisfied
together). The purpose of the light/heavy forcing gadgets is to ensure that at a
certain moment the resource is located at A. Each forcing gadget consists of a
significant number of users, such that any schedule can be transformed into the
same or a larger schedule, with all forcing users satisfied.

For a variable xi, the variable gadget Gxi consists of the outbound demands
of up to six users (two for each occurrence of xi in Φ). We describe the case when
xi appears three times in Φ, other cases are similar. The gadget Gxi contains 3
variable users—two positive users xi,1, xi,2 corresponding to the positive literals
of xi, and one negative user xi,1 corresponding to the negative literal of xi. Each
of these users demands in Gxi an outbound transfer B → A. Additionally, the
gadget contains 3 dummy variable users dxi,1, dxi,2, and dxi,1 (complementing
the variable users). Again, only their outbound demands, in direction A→ B, are
part of Gxi. The construction of Gxi ensures that positive and negative variable
users can never be satisfied together (the demand xi,1 can only be fulfilled when
xi,1 and xi,2 are not, and vice versa). Moreover, the demands of each variable
user and the demands of the corresponding dummy variable user can always be
fulfilled together. These gadgets relate satisfying of positive/negative variable
users of I with the true/false assignment of the corresponding variables in Φ.

For a clause cj , the clause gadget Gcj contains the return demands of up
to 3 variable users (in the direction A → B) that correspond to the variables
appearing in cj , and then an outbound demand B → A of a clause user cj .
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(To simplify the notation we use cj to denote both the clause of Φ and the
corresponding user.) Each Gcj is preceded by FGcj enforcing that whenever the
demand of cj is fulfilled in Gcj , also a variable demand corresponding to a literal
of cj is fulfilled there, and vice versa. Thus, these gadgets bind together clause
and variable users: User cj is satisfied if and only if the variable user of a variable
satisfying cj in Φ is satisfied.

A dummy gadget DGcj consists of the return demand of the clause user cj ,
in the direction A → B, and the return demands of up to 3 dummy variable
users (again, based on the literals appearing in cj) in the direction B → A.
Gadget DGcj in a sense mirrors Gcj and allows fulfilling the return demand
of cj whenever its outbound demand is fulfilled. In a schedule where all the
forcing users are satisfied, for every satisfied cj , also a variable user and a dummy
variable user (both corresponding to the same literal of cj) will be satisfied.

Let I be an instance of TransfersForCommuting constructed as above.

Lemma 1. Given a schedule S of I, we can construct a schedule of size at least
|S| where all the users of heavy forcing gadgets HFG1 and HFG2 are satisfied.

Proof. If |S| < 25r, we can construct a schedule where all the 25r users of heavy
and light forcing gadgets are satisfied. Thus, assume that |S| ≥ 25r. Since the
total number of users of I is at most 32r and each HFG consists of 10r users, at
least one user of each heavy forcing gadget HFG is satisfied. Clearly, whenever
a user of a HFG is satisfied in S, all users of that HFG can be added to S. ut

Lemma 2. Given a schedule S of I, we can construct a schedule of size at
least |S| where all the users of light forcing gadgets are satisfied, and whenever
a clause user cj is satisfied, also a variable user corresponding to an occurrence
of a literal in cj is satisfied, as well as the corresponding dummy variable user.

Proof. Using an iterative transformation of the given schedule S into a new one
with the required parameters. The details are omitted due to space constraints.

To prove APX-hardness in Theorem 2, we use the following proposition.

Proposition 1 (L-reduction [6]). Consider two optimization problems H and
P , and let H be APX-hard. Assume that for each instance Φ of H, we can con-
struct an instance I of P in polynomial time. Also, assume that for each solution
S of I, we can construct a solution φ of Φ in polynomial time. Let OPT(I), and
OPT(Φ) denote the size of the optimum solution of I, and Φ, respectively. Fi-
nally, assume that there exist positive constants α and β (independent on S)
such that the following two conditions are met.

(A) OPT(I) ≤ αOPT(Φ)

(B) |OPT(Φ)− |φ|| ≤ β|OPT(I)− |S||

Then, we have an L-reduction from H to P , and P is also APX-hard.
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Proof (Of Theorem 2). We show the APX-hardness by an L-reduction from
Max-3-Sat(3). Given an instance Φ of Max-3-Sat(3) with r clauses over s
variables, construct an instance I of TransfersForCommuting as above.
First we show the following: (⇒) For every solution φ of Φ of size |φ|, we con-
struct a solution of I of size at least 25r + 3|φ|. (⇐) For every solution S of I
of size |S|, we construct a solution φ of Φ of size at least (|S| − 25r)/3. Thus, in
particular, we get OPT(I) = 25r + 3 OPT(Φ).

(⇒) Given an assignment φ satisfying |φ| clauses of the given instance Φ
of the Max-3-Sat(3) problem, we construct a schedule where all 25r forcing
users together with exactly 3|φ| other users are satisfied as follows. We schedule
|φ| clause users corresponding to the |φ| satisfied clauses. We select a subset
of (dummy) variable users: For each clause cj , we select exactly one literal of
those that satisfy cj in φ and we schedule both the corresponding variable user
and dummy variable user. We schedule all the users of the forcing gadgets.
Let us now observe that the created schedule is feasible. Clearly, the transfers
of the satisfied users do not overlap: The only overlapping transfers are those
of positive/negative literals in variable gadgets and those are never satisfied
together, since every variable is set either to TRUE, or to FALSE in φ. We now
observe that the movement of the resource induced by the selected transfers is
feasible. In each variable gadget the resource is moved A → B → A for every
picked literal: A→ B by a dummy variable user and then B → A by the variable
user. After all the variable gadgets, the resource is moved 10r times A→ B → A
by the users of the forcing gadget HFG1. In each clause gadget Gcj the resource
is moved A→ B by a variable user and then B → A by the clause user. Before
each variable gadget, the resource is moved five times A→ B → A by the users
of the forcing gadget FGcj . After the last clause gadget, the resource is moved
10r times A → B → A by the users of HFG2. Finally, in each dummy gadget
the resource moves A→ B → A.

(⇐) Now assume that we have a schedule S with |S| satisfied users. It follows
from Lemma 1 and Lemma 2 that there is a schedule S′ of size at least |S|,
where all 25r forcing users are satisfied. Moreover, it also follows that at least
(|S|−25r)/3 clause users are satisfied, such that for each of them also a variable
user corresponding to an occurrence of a literal in cj is satisfied, as well as
the corresponding dummy variable user are satisfied. Since the variable gadgets
ensure that for each variable, either the users corresponding to the positive
literals can be satisfied, or only the user corresponding to the negative literal
can be satisfied, we can directly construct an assignment for Φ that satisfies at
least (|S| − 25r)/3 clauses.

To show that the above reduction is an L-reduction, we need to prove that
conditions (A) and (B) of Proposition 1 are met. First note that OPT(Φ) ≥ r/2
(either all-TRUE or all-FALSE assignment satisfies at least 1/2 of all the clauses).
Recall that OPT(I) = 25r + 3 OPT(Φ). Also recall that for any solution S of I,
we can construct a solution φ of Φ of size |φ| ≥ (|S| − 25r)/3. Thus we get:

(A) OPT(I) = 25r + 3 OPT(Φ) ≤ 53 OPT(Φ),
(B) (|OPT(I)| − |S|) ≥ 25r + 3|OPT(Φ)| − 25r − 3|φ| = 3(|OPT(Φ)| − |φ|).
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It follows that the presented construction is an L-reduction from Max-3-Sat(3)
to TransfersForCommuting with α = 53 and β = 1/3. ut

3.1 Resource Transfers with Two Demands and Zero Transfer
Times

In the hardness result, we used “crossing” arrows (demands) to exclude schedul-
ing both demands. This is only possible if the transfer time is non-zero. In this
section we show that whenever all transfer times are zero, i.e., when they are
instantaneous, TransfersForCommuting becomes tractable, even if there is
more than one resource (initially, a resources at location A, and b resources at
location B). As a corollary, we obtain that TransfersForCommuting with
non-zero transfer times is polynomially-time solvable, whenever no two demand
arrows cross.

Depending on the direction of the first demanded transfer of a user, we
distinguish two types of users: an ABA-type demands to transfer in direction
A→ B first, and in direction B → A second, whereas user of type BAB demands
first the transfer in direction B → A, and later in direction A→ B.

We can equivalently specify the problem with zero transfer times as follows
(see an example in Figure 4). We represent the two demands of a user i (demand-
ing instantaneous transfers at times ti,1 and ti,2) by a time interval (ti,1, ti,2),
with a value v(i) := −1 if user i is of type ABA and v(i) := 1 if i is of type BAB.
Each such time interval indicates the induced change in the number of available
resources present at location A. That is, if user i of type ABA transfers a re-
source from A to B at time ti,1 and back to A at time ti,2, it implies that during
the time (ti,1, ti,2) there is one less resource item at A (and one more at B).

Clearly, satisfying a user i in the original problem corresponds to selecting the
corresponding interval i in the modified problem. In the original problem, there
must be a resource available for each selected transfer, but since the transfers
are instantaneous, we only need to ensure that, at any time, both locations have
a non-negative amount of resources. In particular, at A there can never be more
than a+ b items and less than 0 items. Therefore, the original goal translates to
choosing a maximum subset I of the intervals (representing the users) such that
at any time point t we have

−a ≤
∑

t∈i∈I
v(i) ≤ b.

In the following, we show that the problem (in the equivalent alternative
formulation) is polynomially solvable by formulating it as an integral linear pro-
gram (i.e., linear program that has an optimum solution which is integral). To
prove that the constructed linear program Ax ≤ b is integral, we will show that
A is totally unimodular (a matrix A is totally unimodular if the determinant of
every square submatrix of A has value -1, 0 or 1).

Theorem 3 ([12]). Every linear program in variables x with a totally unimod-
ular constraint matrix A is integral.
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Fig. 4. An example of TransfersForCommuting with zero transfer time, with 3
users; the transformation to an equivalent problem; and the corresponding system of
linear inequalities Ax ≤ b.

To show that A is totally unimodular, we use the following theorem [9].

Theorem 4 (Ghouila-Houri). A matrix is totally unimodular if and only if
for every subset of rows R, there exists a function f : R → {−1,+1} such that∑

r∈R f(r) · r ∈ {−1, 0, 1}n.

Theorem 5. The problem TransfersForCommuting with zero transfer time
and multiple resources is solvable in polynomial time.

Proof. Consider the following integer linear program formulation of the problem.
Let n+ be the number of positive intervals (i.e., intervals of value 1) and let n−

be the number of negative intervals (then n = n+ + n−). For each interval we
define one variable indicating whether this interval was chosen into the optimum
solution or not. In particular, for each positive interval i we define a binary
variable pi ∈ {0, 1} and for each negative interval j we define a binary variable
nj ∈ {0, 1}. The goal is to maximize

n+∑

i=1

pi +

n−∑

j=1

nj

subject to the following constraints. We divide the time axis into N segments,
defined by the endpoints of the n given intervals. Note that the number of re-
sources present at A may change from segment to segment, but within each
segment it does not change. For each segment s we have the following two con-
straints, based on the number of intervals that overlap s. We abuse the notation
here, and use pi and nj both as a variable and as the corresponding interval.

+
∑

i∈[n+], pi∩s 6=0

pi −
∑

j∈[n−], nj∩s6=0

nj ≤ b (1)

−
∑

i∈[n+], pi∩s 6=0

pi +
∑

j∈[n−], nj∩s6=0

nj ≤ a (2)
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We now consider the linear relaxation of the ILP, i.e., we additionally have
the linear constraints, for every i ∈ [n+] and j ∈ [n−],

0 ≤ pi, nj ≤ 1. (3)

We can write the constraints as a linear system Ax ≤ b (see Figure 4 for
an example). To show that this linear program is integral, we show that the
matrix A is totally unimodular. For that let us first dwell into the structure
of the matrix. Matrix A contains one column for each variable (pi or nj) and
one row for each constraint. We first discuss the first 2N rows corresponding to
the constrains (1) and (2). For each segment s, the matrix A contains 2 rows.
If the segment s coincides with an interval pi, then the submatrix A(s, pi) is
(1,−1)T , otherwise, A(s, pi) = (0, 0)T . Similarly, if s coincides with an interval
nj , then A(s, nj) = (−1, 1)T , otherwise, A(s, nj) = (0, 0)T . Since all pi and nj
are intervals, each of them spans only consecutive segments. Thus, each column
(restricted to the first 2N rows) contains exactly one contiguous block of non-
zero entries (alternating 1s and −1s). We now look at the remaining 2n = 2(n++
n−) rows of A corresponding to the constraints (3). Clearly, each of these rows
contains exactly one non-zero symbol per row and it is either 1 or −1.

Using Theorem 4, we show that A is totally unimodular as follows. We first
observe that if the first 2N rows of A form a totally unimodular matrix A′, then
the whole A is totally unimodular. Each of the last 2n rows contains exactly one
non-zero element that is either 1 or −1. Thus, for every subset R′′ of these rows,
we can easily find a function f : R′′ → {−1,+1} so that each component of the
vector v′′ =

∑
r∈R′′ f(r) ·r is either 0, or we can choose between 1 and −1. Then,

for any vector v′ = {−1, 0, 1}n (any vector obtained from A′ due to Theorem 4)
we can choose the components of v′′ = {0,−1/1}n so that v′+v′′ = {−1, 0, 1}n. It
remains to be shown that the submatrix A′ corresponding to the first 2N rows of
A is totally unimodular. Let R′ be a subset of the 2N rows. As a preparatory step
we multiply every second row of A′ by −1 and obtain a matrix where each column
contains a single nonzero block of either 1s (if it corresponds to pi) or −1s (if it
corresponds to nj). We set the function g : R′ → {−1,+1} to be alternating 1
and −1 for the r ∈ R′ ordered by row number. Since each column c contains only
one block of consecutive 1s or −1s, we get

∑
r∈R′ g(cr)·cr ∈ {−1, 1}. Now we can

combine the function g with the preparatory step and obtain f : R′ → {−1,+1}
such that

∑
r∈R′ f(r) · r ∈ {−1, 0, 1}n.

Thus, the matrix A is totally unimodular, the constructed linear program is
integral and the considered problem is polynomially solvable. ut

Corollary 1. If all the demands do not cross in their arrow representation, the
problem TransfersForCommuting is solvable in polynomial time.

Proof. By shrinking the given instance so that all the intervals are of length 0,
we obtain an equivalent, polynomially solvable problem. ut
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d2,2

d2,1

d1,1

Fig. 5. An example of TransfersForCommuting with 1 resource in the system,
modeled as longest path problem with prescribed pairs of vertices. The edges in bold
indicate the longest path.

4 Further Notes

Longest path containing subset of prescribed pairs of vertices. By proving hard-
ness in Theorem 2, we prove also the following problem to be APX-hard. Given
a directed graph and a set of pairs of its vertices, the goal is to find a longest
path such that for each of the given pairs it either contain both vertices or none
of them. This problem is APX-hard even in directed acyclic graphs, since it can
be reduced from TransfersForCommuting with 1 resource as follows (see
Figure 5). Every demand is modeled as one vertex, every user defines one pre-
scribed pair of vertices, and there is one directed edge for every pair of demands
that can be consecutively fulfilled. The constructed graph is acyclic. Clearly,
any path that uses from each pair either none or both vertices corresponds to
a feasible schedule for TransfersForCommuting and the length of the path
corresponds to twice the number of satisfied users.

We haven’t found this exact problem to be studied in the literature, but
we link to a similar problem that received a lot of attention. Given a directed
graph and a set of vertex pairs, the goal of the longest antisymmetric path prob-
lem is to find a longest path that does not simultaneously contain both vertices
of any of the prescribed forbidden pairs. This problem arises in the area of
automatic software testing and validation, and protein identification in bioinfor-
matics. Gabow et al. [8] showed that deciding whether there is an antisymmetric
st-path is NP-complete even if the given directed graph is acyclic and all the in-
and out-degrees are at most 2. Song et al. [13] showed that the longest antisym-
metric path problem cannot be approximated within (n − 2)/2 in polynomial
time unless P=NP, even in directed acyclic graphs of degree at most 6.

Any of multiple demands satisfies user. Consider a different variant of the prob-
lem, where each user has multiple demands, but is satisfied if any of her demands
is fulfilled. It turns out, that this problem, in general form where also a transfer
from a location L back to location L is allowed, is NP-hard. To see that, we
consider a degenerated problem as follows. There are two locations A and B
and exactly one unit of resource placed at each of them. There are n users and
each user demands exactly one A→ A transfer and one B → B transfer. Every
transfer can take different amount of time. Clearly, we can directly model this
problem as follows. We translate each demand into an interval, which is located
either at A or at B. Thus, each user has exactly one interval on A and one on
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B, we satisfy the user by selecting either of her intervals, and the goal is to
maximize the number of satisfied users. This problem is also known under the
name IntervalSelection with 2 machines, and is known to be NP-hard [4].

Open problems. We already know (Theorem 2) that the problem Transfers-
ForCommuting where each user has exactly one demand in each of the two
directions is APX-hard. Thus, a natural question is to seek an approximation
algorithm for the problem. However, it is not clear whether it has a decent ap-
proximation, since simple approaches fail drastically. Also, given the motivation,
it would be interesting to explore the problems we studied under online setting.
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