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Abstract. We study an offline interval scheduling problem where every
job has exactly one associated interval on every machine. To schedule a
set of jobs, exactly one of the intervals associated with each job must
be selected, and the intervals selected on the same machine must not
intersect. We show that deciding whether all jobs can be scheduled is NP-
complete already in various simple cases. In particular, by showing the
NP-completeness for the case when all the intervals associated with the
same job end at the same point in time (also known as just-in-time jobs),
we solve an open problem posed by Sung and Vlach (J. Sched., 2005). We
also study the related problem of maximizing the number of scheduled
jobs. We prove that the problem is NP-hard even for two machines and
unit-length intervals. We present a 2/3-approximation algorithm for two
machines (and intervals of arbitrary lengths).
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1 Introduction

We consider an interval scheduling problem with m machines and n jobs. A job
consists of m open intervals—each associated with exactly one machine. In other
words, each job has exactly one interval on each machine. To schedule a job,
exactly one of its intervals must be selected. To schedule several jobs, no two
selected intervals on the same machine may intersect. The goal is to schedule the
maximum number of jobs. We will refer to this problem as IntervalSelection.

The presented problem (much like general interval scheduling problems) is
motivated by several applications, see, e.g., [2,5,6]. Our motivation comes from
the area of car-sharing where a set of users (jobs) wish to reserve a car (machine)
for a certain amount of time (interval), sufficiently large to drive to an appoint-
ment location (specific to each user) and back. The distance of the parking place
of each car to the destination may vary, and this results, for each user, in various
time intervals for the cars.

In the special case of a single machine, our problem becomes the classical
interval scheduling problem which is solvable in polynomial time by a simple
greedy algorithm that considers the intervals in increasing order of their right
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end-points. For the case of two machines, it can be decided in polynomial time
whether all jobs can be scheduled (by a reduction to 2-Sat). In contrast to this,
in the present paper we show that the same question is NP-complete for the
case of three machines. Moreover, we show that the problem of maximizing the
number of scheduled jobs is NP-hard already for two machines. Both results hold
even if all the intervals have unit length.

We also consider variants of IntervalSelection where all intervals of the
same job, when seen on the real line, have a non-empty intersection (e.g., this
would be the time around the user’s appointment in the mentioned car-sharing
application). We call such a non-empty intersection a core of a job. We refer to
IntervalSelection where each job has a core as IntervalSelection with
cores. A special case of such a variant is when all intervals of a job have the
same end-point (so called just-in-time jobs [16]). We show that, in this setting,
the problem of deciding whether all jobs can be scheduled is NP-complete. This
solves an open problem posed by Sung and Vlach [14,16]. If the cores do not have
to be at the right-end of the intervals, we show that deciding whether all jobs
can be scheduled is NP-complete already when all intervals have unit length.

Our problem can be seen as a special case of the job interval selection problem,
denoted as JISPk, where each job has k associated intervals on the real line. To
see the relation, consider the machines of an instance of IntervalSelection
in any order, and just concatenate the intervals for the machines along the real
line, thus creating an instance of JISPm. JISPk is APX-hard for any k ≥ 2, and
only a deterministic 1/2-approximation algorithm is known (in fact, a simple
greedy algorithm) [15], and a randomized ≈ e−1

e -approximation algorithm [5]
that gives a 3/4-approximation for JISP2. We present a simple deterministic
2/3-approximation algorithm for IntervalSelectionwith two machines. Thus,
our algorithm is the first deterministic algorithm for a non-trivial special case of
JISP2 that beats the barrier of 2.

Table 1 provides an overview of the known (white background) and new (grey
background) complexity results for IntervalSelection and related problems.
The columns distinguish three basic computational goals: scheduling all jobs,
the maximum number of jobs, or jobs of maximum weight. Each row, from top
to bottom, is a generalization of the problem in the previous row, starting with
IntervalSelection on a single machine, and ending with JISPk. As can be
seen from the table, the (general) IntervalSelection, denoted as “no core
required” in the table, is closely related to well-known and studied problems:
it offers a natural generalization of the setting “with cores” [14,16], and it is
an interesting special case of JISPk [5,6,15]. Previous work left a gap in the
understanding of the complexity of the problems (the grey areas in the table),
which we address and completely close in this paper. To achieve tight hardness
results for the boundary cases of 2 and 3 machines (for the decision variant), or
1 and 2 machines (for the maximization objective), we devise gadgets that we
plug together using known results on a specific graph coloring problem (solvable
in polynomial time), which might be of independent interest. Notably, where
meaningful, the hardness results hold even if all intervals are of unit length.
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Table 1. Summary of the complexity of IntervalSelection problems with n jobs,
and m machines. The cells in gray indicate our contribution.

Schedule all jobs Max # jobs Max
∑

weights

single machine O(n log n) O(n log n) O(n log n)

identical intervals per job O(n log n) O(n log n) O(n2 log n)

with cores, any m NP-complete † § NP-hard † § NP-hard † §
O(mnm+1) O(mnm+1) O(mnm+1)

no core required NP-complete † NP-hard † NP-hard †
2 machines O(n2) NP-hard † NP-hard †

≥ 3 machines NP-complete † NP-hard † NP-hard †
JISPk (single machine)

2 intervals per job O(n2) NP-hard† NP-hard†
≥ 3 intervals per job NP-complete† NP-hard† NP-hard†
§ even if † even if all intervals have unit length

– all cores at the end, or
– all cores in the middle

Related Work. The general interest in interval scheduling problems dates back
to the 1950s. The classical variant, in which each job has associated an interval
and can be scheduled on any of the machines (i.e., in our setting, each job has
exactly the same interval on every machine) and the goal is to decide whether all
the jobs can be scheduled, is polynomially solvable [1]. The maximization version
is polynomially solvable as well, even if the jobs are weighted [4]. However, Arkin
and Silverberg [1] showed that if each job can only be scheduled on a subset of
the m machines, the problem becomes NP-hard (even in the unweighted case).
They also gave a O(nm+1)-time algorithm (i.e., polynomial for a constant m).

The special case of our problem with just-in-time jobs (i.e., where all inter-
vals of a job have the same right end point) has been studied by Sung and
Vlach [16]. They showed that the weighted version is NP-hard and presented a
dynamic programming algorithm that solves the problem in time O(m · nm+1).
Settling the complexity of the problem with unit-weight jobs was posed as an
open problem [16]; this open problem has also been stated in a recent survey on
just-in-time job scheduling [14].

As outlined beforehand, our problem is a special class of JISPk (job interval
scheduling problem on a single machine with k intervals per job). Nakajima and
Hakimi [11] showed that the decision version of JISP3 is NP-complete. Keil [8]
showed that this is the case even if the intervals have the same length, while
the general decision version of JISP2 can be solved in polynomial time. The
maximization version has been studied as outlined earlier by Spieksma [15] and
Chuzhoy [5]. Erlebach and Spieksma [6] consider the weighted JISPk with more
than one machine (every job has the same set of k intervals on every machine)
and they study myopic (single-pass) greedy algorithms.

JISPk is, in some sense, a discrete variant of the throughput-maximization
problem (also known as the time-constrained scheduling problem, or the real-
time scheduling problem), in which each job has a length, a release time, and a
deadline, and a job is associated with the (infinite) set of intervals of given length
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lying between the job’s release time and the deadline. Bar-Noy et al. [2] study
this problem and give the currently best approximation algorithms for most of
the existing variants of the problem.

There are many other, for the scope of the paper less relevant variants of
scheduling where intervals “come into play”. We refer to the survey by Kolen et
al. [9] for more information on the topic. We also stress that online variants of
the presented problems have been studied as well, see e.g., the recent paper of
Sgall [13] on online throughput maximization.

2 Approximation of Interval Selection on Two Machines

In this section we present a 2/3-approximation algorithm for IntervalSelec-
tion with two machines. We stress that by interval we understand a time interval
associated with both a job, and a machine. Recall that IntervalSelection on
one machine is solvable by a simple greedy algorithm that considers all intervals
on the machine sorted by the right end-points in the ascending order and selects
each considered interval if it does not intersect any of the previously selected in-
tervals. We denote this algorithm by A1. We can also apply the greedy algorithm
in the setting with two machines MA and MB. More formally, let A2(MA,MB)
be the algorithm that first runs A1 on machine MA, removes from MB the inter-
vals for jobs whose intervals were selected on machine MA, and runs A1 on MB.
This algorithm gives a 1/2-approximation [15], which is tight for the algorithm.

Obviously, we can run the greedy algorithm in the other direction, i.e., first
on MB and then on MA (denoted by A2(MB,MA)), which again gives a 1/2-
approximation. Perhaps surprisingly, the algorithm that chooses the better solu-
tion of the two provided by A2(MA,MB) and A2(MB,MA) is a 2/3-
approximation. Even though the algorithm, let us call it A3, is extremely simple,
the analysis thereof is more interesting.

Consider an optimum solution O where OA denotes the intervals selected on
MA and OB the intervals selected on MB. Consider A

2(MA,MB) and let SA be
the intervals selected by A2(MA,MB) on MA. Obviously, A2(MA,MB) selects
on MA at least |OA| intervals (which follows from the fact that A1 finds an
optimum on a single machine). The only reason that A2 selects less than |OB |
intervals on MB is that it cannot select intervals that correspond to jobs already
scheduled on MA (see Figure 1 for illustration). In fact, every job scheduled on
machine MA prevents selecting one interval on MB (the one that corresponds
to the same job) and each such selected interval on MA can cause that we can
select one interval less on MB. We introduce the following definition to measure
how a selection SA on MA reduces the size of the solution on MB with respect
to O. We say that a set I of intervals reduces the selection on MB by k if after
selecting the intervals I on MA the algorithm A1 selects |OB | − k intervals on
MB. Note that a set I can never reduce the selection by more than |I| intervals;
in particular, a single interval can reduce the selection by at most one.

In Figure 1, the interval for job β1 on MA reduces the selection on MB by
one, but the interval for job α1 on MA reduces the selection on MB by one
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MA MBα1 β1α2 β2α3 β3

β1
β2

β3 α1
α2

α3

Fig. 1. Instance where A3 returns exactly 2/3 · |O| jobs: O contains all jobs αi and
βi for i = 1, 2, 3 (in grey), but both A2(MA,MB) and A2(MB,MA) schedule only the
jobs α1, α2, β1, β2.

only with the help of β2 on MA. That is, sometimes we need more than one
interval to reduce the selection by one. Accordingly, we will further distinguish
the intervals in SA as follows. SO

A are the intervals that are both in SA and in
OA. Observe that every interval iO ∈ OA \SA has an interval iA ∈ SA such that
its right end-point intersects iO. For each such iO we place the leftmost such
interval iA in the set S∩

A. We define S∅
A to be the remaining intervals of SA. Note

that, by definition, |SO
A ∪S∩

A| = |OA|. Similarly, we define SB to be the intervals
scheduled by the “reverse” algorithm A2(MB,MA) on MB, and we analogically
define the sets SO

B , S∩
B, S

∅
B.

Intuitively, if S∩
A or S∩

B is small, then the choice of A2(MA,MB) or A
2(MB,

MA) on the first machine reduces the selection on the second machine only a
little (and thus it schedules many jobs). On the other hand, if both S∩

A and S∩
B

are large, we need to select twice as many jobs to reduce the selection. We will
show that the trade-off between these constraints lies at |S∩

A| = 1/3 · |O|. To
make this formal, we analyze how much the selection SA reduces the selection
on MB.

Lemma 1. Assume that A2(MA,MB) selects r intervals on MA corresponding
to jobs from SO

B , s intervals corresponding to jobs from S∩
B, and t intervals

corresponding to jobs from OB \ SO
B . Then the selection on MB is reduced by at

most r +min{s, t}.
Proof. Observe that OB and SO

B ∪ S∩
B are two selections of size |OB| having

exactly SO
B in common. Now, it is enough to realize that, after removing the

intervals corresponding to jobs in SA, we can select |OB | − r − t intervals from
OB, and we can select |OB | − r − s intervals from SO

B ∪ S∩
B. ��

Theorem 1. A3 is a 2/3-approximation algorithm. This bound is tight for the
algorithm.

Proof. Without loss of generality, we assume that |S∩
A| ≤ |S∩

B|. We distinguish
two cases. First, assume that |S∩

A| ≤ 1/3 · |O|. Since SO
A are the intervals from

O, they correspond to different jobs than the jobs to which the intervals in OB

correspond. Thus, on MA, at most |S∩
A| + |S∅

A| intervals corresponding to jobs
in OB are selected, and the selection on MB is reduced by at most this amount.
Therefore, among the intervals in OB, algorithm A2(MA,MB) selects at least
|OB| − |S∩

A| − |S∅
A| intervals. In total, algorithm A2(MA,MB) selects at least

|SO
A |+ |S∩

A|+ |S∅
A|+ |OB| − |S∅

A| − 1/3 · |O| = 2/3 · |O| jobs.
Now, assume that |S∩

B| ≥ |S∩
A| > 1/3 · |O|. We analyze how much the intervals

SA can reduce the selection on MB. At most |SO
B | intervals corresponding to
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jobs in SO
B can be selected on MA. By Lemma 1, the selection on MB is reduced

at the maximum possible way if in SA there is the same number of intervals
corresponding to jobs in S∩

B as the number of intervals corresponding to jobs in
OB \ SO

B . Thus, the selection on MB will be reduced the most, if |SO
B | intervals

in SA correspond to jobs in SO
B , and the rest of SA is split evenly between S∩

B

and OB \ SO
B . The selection on MB can thus be reduced by at most

|SO
B |+ |SA| − |SO

B |
2

=
|S∅

A|+ |OA|+ |SO
B |

2
=

|S∅
A|+ |O| − |S∩

B |
2

≤ |S∅
A|+ 2/3 · |O|

2
.

Thus, also in this case, algorithm A2(MA,MB) schedules at least |SO
A |+ |S∩

A|+
|S∅

A|+ |OB | − |O|
3 − |S∅

A|
2 ≥ |OA|+ |OB| − |O|

3 = 2
3 |O| jobs.

Therefore, in every case, the algorithm A3 schedules at least 2/3 · |O| jobs.
The analysis is tight, as the example from Figure 1 shows. ��
As an obvious future work, we want to analyze the natural generalization of the
algorithm to m ≥ 3 machines.

3 Hardness Results

In this section we study the complexity of IntervalSelection and show that
most of the natural variants are NP-complete or NP-hard. We first describe
generic gadgets that we will use as building blocks in our hardness proofs. In the
subsequent sections we give the actual hardness proofs. Some of the proofs, as
well as the parts discussing the correctness of the reductions, are omitted due to
space constraints. They can be found in full version in technical report [3].

Recall that by an interval we understand a time interval associated with
both a job and a machine. In the following, we will also use time intervals not
associated with a job or a machine. To avoid confusion, we use the following
terminology. When we consider a time interval with respect to a single machine,
but independently of the jobs, we call it a slot. And when considering a time
interval independently of machines and jobs, we call it a window.

We will also use the notion of blocking. We say that an interval i blocks a slot s
if i intersects s and both are associated with the same machine. We say that a
set of intervals I blocks window w on a set of machines M if for each machine
M in M there is an interval in I that blocks the slot corresponding to w on M .
We say that a set of intervals I completely blocks a window w if each slot that
intersects the window w is blocked by some interval in I.

We call a schedule in which all jobs are scheduled a complete schedule.
Our hardness results are shown by a reduction from variants of the NP-

complete satisfiability problem (Sat). Sat is the problem of finding, for a given
a set of r clauses C = {c1, c2, . . . , cr} over a set of Boolean variables X =
{x1, x2, . . . , xs}, a truth assignment such that every clause is satisfied, i.e., at
least one literal in every clause evaluates to TRUE (see, e.g., [7] for an exact def-
inition of the problem). Sat is NP-complete, even if every clause is restricted
to have at most three literals (denoted as 3-Sat) [7], and even, if each clause
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window w

M1

M2

M3

j0j1j2
j0j1j2
j0j1j2

+slot

+slot

−slot

w

M0

M1

M2

Q+ = {M0,M1}
Q− = {M2}

j0
j1

j1
j2

j2
j0

+slot

−slot

+slot

w

M0

M1

M2

Q+ = {M0,M2}
Q− = {M1}

j0
j1

j1
j2

j2
j0

−slot

+slot

+slot

w

M0

M1

M2

Q+ = {M1,M2}
Q− = {M0}

j0
j1

j1
j2

j2
j0

Fig. 2. The first drawing illustrates how we depict a blocking gadget for a window w.
The last three drawings illustrate decision gadgets on three machines M0, M1, and M2.
Each of the decision gadgets has two positive slots on machines in Q+ and one negative
slot on the machine in Q−. The crucial intervals constituting the gadget are depicted
by the shaded boxes (always one interval spans the respective box). The associated
jobs of the intervals are indicated on the sides. The remaining intervals of the jobs are
blocked by a blocking gadget, and thus never selected. These intervals and the blocking
gadget are for simplicity not displayed. The two different shades in the boxes depict
the only two possibilities how to select the intervals in the decision gadget.

contains at most three literals and each variable appears in the formula at most
three times, once as a negative literal and at most twice as a positive literal
(denoted as (≤3,3)-Sat) [7]. The problem of finding a truth assignment that
maximizes the number of satisfied clauses is NP-hard, even if each clause con-
tains two literals and each variable appears at most three times in the formula
(denoted as (2,3)-MaxSat) [12].

Building Blocks for Hardness Proofs. In order to simplify the explanation
of the hardness proofs, we define the following two gadgets (specific sets of jobs)
and use them as building blocks in our reductions.

The purpose of the blocking gadget is to completely block a certain window w,
i.e., to make sure that in any complete schedule no interval that intersects w is
ever scheduled, with the exception of the intervals of the jobs that constitute
the gadget itself. Let w be a window (that we want to completely block). The
gadget consists of m jobs, each having w as their interval on every machine. We
visually depict a blocking gadget as in Figure 2.

Lemma 2. In any complete schedule for IntervalSelection that contains the
blocking gadget B for window w, no selected interval outside B intersects w.

The purpose of the decision gadget is to mimic a truth assignment to a vari-
able in a boolean formula of 3-Sat. This is done by blocking a certain window
either on one set of machines or on another disjoint set. Given a window w and
two disjoint subsets Q−, Q+ of machines, we will call the window w on the ma-
chines in Q+ the positive slots and w on Q− the negative slots of the gadget (cf.
Figure 2). With our gadget we want to achieve that in any complete schedule
either all the positive slots of the gadget are free and all the negative slots are
blocked by the schedule, or vice versa. Let us refer to the former situation as
the positive decision of the gadget and to the latter as the negative decision.
Intuitively, we achieve this effect by using jobs with intervals placed so that we
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have exactly two ways how to schedule all jobs. To ensure that there is no other
way to schedule the jobs of the gadget, we may need to block some intervals of
these jobs. For this purpose we use a blocking gadget.

Formally, we construct the decision gadget as follows. We denote by Q the
union of Q−, Q+, by k the size of Q, and by M0,M1, . . . ,Mk−1 the machines
in Q. Without loss of generality, we assume that w has unit length. We use k
jobs j0, j1, . . . , jk−1, one job per machine in Q. The intervals for all these jobs
have unit length |w|. There is a blocking gadget B such that all intervals of the
decision gadget except for intervals of ji on Mi,Mi−1 intersect B (we write Mi−1

instead of Mi−1 mod k for simplicity). The exact placement of ji and ji+1 on Mi

depends on whether the window w is supposed to be a positive or a negative slot
on Mi. In particular, if Mi is in Q− (w is a negative slot on Mi), the interval
for ji is placed directly to the right of w and the interval for ji+1 is placed so
that its left end is at the center of w. Otherwise, if Mi is in Q+, the left end of
the interval for ji is at the center of w and the interval for ji+1 is directly to the
right of w. Note that the intervals constituting the gadget occupy a window of
length 2 (excluding the intervals that are blocked by the blocking gadget).

Lemma 3. In any complete schedule for an instance of IntervalSelection
that contains the decision gadget D for window w and subsets Q−, Q+ of ma-
chines, either D blocks w on all machines in Q− and leaves it free on all machines
in Q+, or vice versa.

Corollary 1. Given a window w and subsets Q−, Q+ of machines, in any com-
plete schedule, the intervals of the decision gadget as constructed above enforce
the following. Either on all the positive slots of the gadget intervals can be sched-
uled and all the negative slots are blocked, or vice versa.

3.1 Interval Selection with Shared Cores

In this section we analyze the complexity of IntervalSelection with cores.
We study two variants. First, we consider the case when every job has a core at
the end, i.e., all intervals of a job end at the same point in time. We show that
deciding whether there is a complete schedule for this variant is NP-complete. By
this we resolve an open problem posed by Sung and Vlach [14,16]. Afterwards,
we consider the case where every job has a core at an arbitrary position and
show that this variant is NP-complete even if all intervals have unit length. We
note that both variants are solvable in time O(m ·nm+1), and thus in polynomial
time if m is constant [16].

Theorem 2. The problem of deciding whether there exists a complete schedule
in IntervalSelection with cores at the end is NP-complete.

Proof. The problem is in NP, since the completeness of a given schedule can be
checked in linear time. To show the hardness, we present a reduction from 3-Sat.
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αx1
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w0 w1 w2 w3 w4
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Fig. 3. Example of the construction of IntervalSelection with cores at the end
for an instance Φ of the 3-Sat problem (each figure shows the intervals on a single
machine, the figures of the machines Mx3,+, Mx3,−, Mx4,+, Mx4,− are not displayed),
where Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Let us consider an arbitrary instance Φ of 3-Sat given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variablesX = {x1, x2, . . . , xs}. We construct
the following instance S of the IntervalSelection problem (cf. Figure 3 along
with the construction). We use two machines for each variable xi, denoted by
Mxi,+ and Mxi,−. The machine Mxi,+ corresponds to the positive literal of xi,
whereas Mxi,− corresponds to the negative literal of xi. On the machines we
consider a window of r + 1 units and we denote the unit windows constituting
it by w0, w1, w2, . . . , wr. We place a blocking gadget over all machines on the
window w0. Next, for each variable xi we add a job αxi with two possible ways
of scheduling it (in any complete schedule). This mimics a truth assignment to
the variable xi. We call these jobs the variable jobs. We place the intervals of
a variable job αxi as follows. On Mxi,+ and Mxi,− we place an interval such
that it covers w1, w2, . . . , wr , and on every other machine we place an interval
such that it covers w0, w1, w2, . . . , wr. Note that the blocking gadget ensures
that in any complete schedule each job αxi is scheduled on one of the machines
Mxi,+, Mxi,−, and no other job is scheduled on that machine on any window
w1, w2, . . . , wr. Intuitively, by scheduling αxi , one of the two literals of xi is
selected and thus set to FALSE, implicitly setting a truth assignment for variable
xi. Lastly, we add r jobs linked to the clauses so that the actual scheduling of
these jobs is related to the way how the clauses of Φ are satisfied. For each clause
cj we have one clause job denoted by βcj . We place the intervals for the job βcj

on window wj on those machines that correspond to literals that appear in the
clause cj , and on the windows w0, w1, . . . , wj on the other machines. In other
words, in any complete schedule, a job βcj can only be scheduled on a machine
that corresponds to a literal that appears in clause cj , since on all other machines
the intervals for βcj intersect the blocking gadget. Moreover, if the same literal
appears in clauses cj and cj′ , j 	= j′, then the intervals for jobs βcj and βcj′ do
not intersect on the machine that corresponds to this literal.

Note that the constructed instance of IntervalSelection has the property
that all the intervals corresponding to one job have at their end a unit window in
common. Obviously, the above construction can be done in polynomial time. ��
The presented hardness implies the hardness of other variants of IntervalSe-
lection, such as that of cores at arbitrary positions, or with no required core at
all. Similarly, the presented hardness implies the hardness of the maximization
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versions of these variants. Moreover, using the gadgets described before, we can
construct a reduction from (≤3,3)-Sat to prove the following theorem concerning
IntervalSelection with arbitrary cores and unit length intervals.

Theorem 3. The problem of deciding whether there exists a complete schedule
in IntervalSelection with cores is NP-complete even if all intervals have unit
length.

3.2 Interval Selection with Restricted Number of Machines

In this section we consider the complexity of non-restricted IntervalSelec-
tion. We show that, in contrast to IntervalSelection with cores, the problem
is NP-hard even if the number of machines is constant. In particular, we prove
that deciding whether there is a complete schedule is NP-complete already for
three machines. In contrast, the problem is polynomially solvable for two ma-
chines [8]. We show that the problem of maximizing the number of scheduled
intervals, on the other hand, is NP-hard already for two machines (while polyno-
mially solvable for one machine). Moreover, all these hardness results hold even
when all intervals have the same length.

We believe that the techniques used in the proofs may be of independent
interest. The decision gadgets capture the relation between a schedule and an
assignment. However, we also use properties of edge coloring that provide us
with a mapping that lets us put the pieces together and finalize the construction
of a scheduling problem under the required, rather restrictive conditions.

Unit Interval Selection with Three Machines. We consider IntervalSe-
lection with three machines and unit length intervals, with the objective of
deciding whether there is a complete schedule. We will present a reduction from
(≤3,3)-Sat. We will use the following lemma in the subsequent hardness result.

Lemma 4. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C
over a set of Boolean variables X. Then, there exists a mapping p from E =
{(x, c) ∈ X × C | x ∈ c} to the set {M1,M2,M3}, such that p(x, c) 	= p(x, c′)
for c 	= c′ and p(x, c) 	= p(x′, c) for x 	= x′. Moreover, such a mapping p can be
found in polynomial time.

Proof. We prove the statement by edge-coloring the bipartite graph G = (X ∪
C,E). The structure of (≤3,3)-Sat implies that all vertices of the constructed
graph G have a degree at most 3. A bipartite graph is Δ-edge-colorable in poly-
nomial time, where Δ is the maximum degree [10]. Therefore, the graph G is
3-edge-colorable, with colors from {M1,M2,M3}. This coloring gives us the de-
sired mapping from E to {M1,M2,M3}. ��
Theorem 4. The problem of deciding whether there exists a complete schedule
in IntervalSelection is NP-complete even for three machines and unit length
intervals.



180 K. Böhmová et al.

βc1

βc2

βc3

βc2

βc1

βc3

βc1 βc2

M1
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M3

w0 w1,1 w1,2 w2,1 w2,2 w3,1 w3,2 w4,1 w4,2

Fig. 4. Instance Φ = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3) of (≤3,3)-Sat and the cor-
responding instance of IntervalSelection with three machines. Intervals intersecting
the blocking gadget are not shown in the figure.

Proof. The problem is obviously in NP. To show the hardness, we reduce (≤3,3)-
Sat to it. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variablesX = {x1, x2, . . . , xs}. We construct
from Φ the following instance S of the IntervalSelection problem (cf. Figure 4
along with the construction), using three machinesM1,M2,M3. We use a window
of 2s + 1 units, and denote the unit windows constituting it by w0, w1,1, w1,2,
w2,1, w2,2, . . . , ws,1, ws,2. We introduce jobs with unit length intervals as follows.
We place a blocking gadget on window w0 over all machines. For each variable xi

we place a decision gadget Dxi on the machines such that it has two positive and
one negative slot on window wi,1, in an arrangement that we will specify later.
The gadget Dxi occupies windows wi,1 and wi,2 and uses internally the blocking
gadget on w0. The positive/negative decision of gadget Dxi corresponds to the
truth assignment of the variable xi and the decision of Dxi is independent of
the other decision gadgets. We introduce a clause job βcj for each clause cj . To
place the intervals for βcj , we look at the literals that appear in cj . For each
appearance of a positive literal of some variable xi in cj we place an interval for
βcj on a positive slot of Dxi , and for each appearance of a negative literal of xi′

in cj we place an interval for βcj on the negative slot of Dxi′ . If cj contains only
two literals, we place one interval for βcj on the window w0 so that it intersects
the blocking gadget and cannot be selected in any complete schedule.

To obtain a valid construction, we need to ensure that all the intervals for
each clause job βcj are placed on different machines, and at the same time, we
require that each positive/negative slot of the decision gadgets is occupied by at
most one interval. We now explain the exact placement of the positive/negative
slots, as well as the distribution of the clause jobs over the slots that achieve
this. We have three machines and we need to place each decision gadget so that
it has its negative slot on some machine and its positive slots on the other two
machines. Finding a way to arrange the decision gadgets and distribute their
slots is equivalent to finding a mapping from a set of pairs (variable x, clause
c containing x) to the set {M1,M2,M3} that assigns different machines to the
variables in each clause and different machines to the clauses containing a fixed
variable. Such a mapping can be efficiently constructed due to Lemma 4. ��

Unit Interval Selection with Two Machines. The maximization variant of
IntervalSelection turns to be NP-hard already for two machines. The proof
is similar to that of Theorem 4, but uses a reduction from (2,3)-MaxSat.



Interval Selection with Machine-Dependent Intervals 181

Theorem 5. Maximizing the number of scheduled intervals in IntervalSelec-
tion is NP-hard, even for two machines and unit length intervals.
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Google Europe Fellowship in Optimization Algorithms, and this research is sup-
ported in part by this Google Fellowship. We would like to thank Thomas Graffa-
gnino from Swiss Federal Railways (SBB) and Rastislav Šrámek for pointing out
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