
Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles∗

Jiehua Chen† Wojciech Czerwiński‡ Yann Disser§ Andreas Emil Feldmann¶

Danny Hermelin‖ Wojciech Nadara‡ Marcin Pilipczuk‡ Michał Pilipczuk‡

Manuel Sorge‡ Bartłomiej Wróblewski‡ Anna Zych-Pawlewicz‡

Abstract
We present a data structure that in a dynamic graph
of treedepth at most d, which is modified over time by
edge insertions and deletions, maintains an optimum-
height elimination forest. The data structure achieves
worst-case update time 2O(d2), which matches the best
known parameter dependency in the running time of
a static fpt algorithm for computing the treedepth of
a graph. This improves a result of Dvořák et al. [ESA
2014], who for the same problem achieved update time
f(d) for some non-elementary (i.e. tower-exponential)
function f . As a by-product, we improve known upper
bounds on the sizes of minimal obstructions for having
treedepth d from doubly-exponential in d to dO(d).

As applications, we design new fully dynamic
parameterized data structures for detecting long paths
and cycles in general graphs. More precisely, for a fixed
parameter k and a dynamic graph G, modified over time

∗This work is the result of research conducted within research
project number 2017/26/D/ST6/00264 financed by National
Science Centre (Anna Zych-Pawlewicz). Andreas Emil Feldmann
was supported by the Czech Science Foundation GAČR (grant #17-
10090Y), and by the Center for Foundations of Modern Computer
Science (Charles Univ. project UNCE/SCI/004).
This work is a part of projects that have received
funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation programme: Grant Agreements no. 714704
(W. Nadara, Ma. Pilipczuk, M. Sorge) and no. 677651
(Mi. Pilipczuk).
The full version of this extended abstract can be found at [1313].

†TU Wien, Austria, jiehua.chen@tuwien.ac.at.
‡University of Warsaw, Poland,

{wczerwin, w.nadara, marcin.pilipczuk,
michal.pilipczuk, manuel.sorge, anka}@mimuw.edu.pl,
bw371883@students.mimuw.edu.pl

§TU Darmstadt, Germany,
disser@mathematik.tu-darmstadt.de.

¶Charles University in Prague, Czechia,
feldmann.a.e@gmail.com.

‖Ben-Gurion University of the Negev, Israel,
hermelin@bgu.ac.il.

by edge insertions and deletions, our data structures
maintain answers to the following queries:

• Does G contain a simple path on k vertices?
• Does G contain a simple cycle on at least k vertices?

In the first case, the data structure achieves amortized
update time 2O(k2). In the second case, the amortized
update time is 2O(k4) + O(k log n). In both cases we
assume access to a dictionary on the edges of G.

1 Introduction
In this paper we work with dynamic data structures for
graph problems. The usual setting is as follows. We are
given a graph G that has an invariant vertex set, but is
modified over time by edge insertions and edge deletions.
The goal is to design a data structure that efficiently
maintains G under such modifications, while supporting
queries about some properties of interest in G. We would
like to optimize the worst-case or amortized guarantees
on both the update time and the query time offered by
the data structure.

Classically, the research on dynamic data struc-
tures concentrates on problems that, in the static set-
ting, are polynomial-time solvable, such as testing con-
nectivity and maintaining minimum weight spanning
trees [2828, 2929, 5050, 3232, 2323, 3535, 3737, 4040, 5151, 4141, 2222], test-
ing higher connectivity [2828, 2929, 3131, 2424, 2222, 3434], main-
taining maximum matchings [4646, 2626, 77, 88], testing pla-
narity [2222, 3030], or maintaining the distance matrix of the
graph [1616, 4848, 11, 2727]. In this work we study problems
that in the classic sense are NP-hard, but are considered
tractable from the point of view of parameterized com-
plexity. In this paradigm, the usual goal is to design a
fixed-parameter tractable (fpt) algorithm with running
time of the form f(k) · nO(1), where n is the total input
size and k is a parameter — an auxiliary quantitative
measure of the hardness of an instance. As function f is
allowed to be super-polynomial, this enables us to con-
fine the combinatorial explosion, (seemingly) inherent in
all NP-hard problems, to the specific parameter under

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited796

study.
The idea of parameterized measurement of complex-

ity can be also applied to dynamic data structures: just
use auxiliary parameters in upper bounds on the update
and query times, allowing exponential dependence in
case the considered problem is NP-hard in the classic
sense. Despite the naturalness of this concept, so far
there has been little systematic work on parameterized
dynamic data structures. Here, the main point of ref-
erence is the work of Alman et al. [22], who considered
a large set of problems fundamental for parameterized
complexity, such as Vertex Cover, Hitting Set,
Feedback Vertex Set, or Long Path, and delivered
a number of parameterized dynamic data structures for
them. Following the earlier work of Iwata and Oka [3333],
many results of Alman et al. are based on dynamization
of standard techniques of parameterized algorithms, such
as branching, kernelization, or color-coding.

Apart from [22, 3333], we are aware of several scattered
works on parameterized dynamic data structures; some
of them will be mentioned later on. However, roughly
speaking, parameterized dynamic data structures present
in the literature achieve update and query times of the
forms (here, k is always the solution size):

• f(k), i.e., independent of the input size n (examples:
Vertex Cover, d-Hitting Set for fixed d [22, 66]);

• f(k) · logc n, where c is a universal constant (exam-
ples: Feedback Vertex Set, Long Path [22]);

• logf(k) n (example: counting k-vertex patterns in
sparse graphs [2020]).

Moreover, there are problems for which already for
some constant value of k, every dynamic data structure
requires Ω(nδ) update time or Ω(nδ) query time, for
some δ > 0. As shown by Alman et al. [22], under certain
assumptions from fine-grained complexity, the directed
variant of Long Path falls into this category.

This charts an intriguing and still largely unexplored
complexity landscape. In order to make this area well-
founded, we are particularly interested in developing new
techniques for designing parameterized data structures,
specific to the dynamic setting. We contribute to this
direction by developing decomposition-based techniques
and applying them to the Long Path and Long Cycle
problems.

Dynamic treedepth. In this work we explore a
new approach to the design of parameterized data
structures, which is based on elimination forests and
the parameter treedepth. Here, an elimination forest of
a graph G is a rooted forest F on the same vertex set as
G, where for every edge uv of G, either u is an ancestor
of v or vice versa. The treedepth of G is the minimum
possible height of an elimination forest of G.

Treedepth can be regarded as a variant of treewidth

where instead of the width of a decomposition, we
measure its height; in fact, the treedepth of a graph
is never larger than its treewidth. The importance
of treedepth in the hierarchy of parameters has been
gradually realized throughout the recent years. It is
a central parameter in the theory of sparse graphs
(see [4242] for an overview), it has interesting combinatorial
properties related to obstructions [1515, 1919, 3636], and it was
rendered an important dividing line from the points of
view of logic [2121] and of space/time complexity trade-
offs [4444]. In this work we are interested in the dynamic
aspects of treedepth, and our first contribution is the
following result.

Theorem 1.1. Suppose G is a dynamic graph on n
vertices that is updated by edge insertions and edge
removals, subject to a promise that the treedepth of
G never exceeds d. Then there is a data structure
that, under such updates, maintains a minimum-height
elimination forest of G using 2O(d2) time per update in
the worst case. Upon receiving an edge insertion that
would break the promise, the data structure does not
carry out the insertion and reports this fact. The data
structure uses O(d · n) memory.

In fact, we are not the first to consider dynamic
data structures for graphs of bounded treedepth. This
problem was considered by Dvořák et al. [1818], who gave
a data structure with the same functionality as that
provided by Theorem 1.11.1, but achieving update time
f(d) for some non-elementary function f . Recall that
this means that f(d) is tower-exponential: it is not
bounded by the t-fold exponential function, for any
constant t. The starting idea for our design of the data
structure of Theorem 1.11.1, which will be further called
the dynamic treedepth data structure, lies in the general
strategy proposed by Dvořák et al. [1818]. However, we rely
on a new, deeper understanding of the combinatorics
of treedepth and implement updates in a completely
different way, which results in the improved update time
of 2O(d2). We include a comprehensive comparison of
the approaches later in this introduction.

The 2O(d2) update time offered by Theorem 1.11.1
reaches a certain limit. Namely, the fastest known
static fpt algorithm for computing the treedepth of a
graph, due to Reidl et al. [4545], runs in time 2O(d2) · n,
where d is the value of the treedepth. Thus, achieving
2o(d

2) update time in Theorem 1.11.1 would automatically
improve the result of Reidl et al. to a 2o(d

2) ·n-time static
algorithm, by introducing edges one by one. Interestingly,
in the proof of Theorem 1.11.1, the 2O(d2) update time in
fact originates from applying the algorithm of Reidl et
al. [4545] as a black-box to a graph of size dO(d). This
is the only bottleneck preventing the improvement of

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited797

the 2O(d2) update time. So we can actually conclude
that improving this factor in the dynamic setting is
equivalent to improving it in the static setting (up to the
next bottleneck of dO(d)).

As a by-product of the combinatorial analysis leading
to Theorem 1.11.1, we also give improved bounds on the
sizes of minimal obstructions for having treedepth d.
More precisely, we say that a graph G is a minimal
obstruction for treedepth d if its treedepth is larger than
d, but every proper induced subgraph of G has treedepth
at most d. Note that every graph of treedepth larger
than d contains some minimal obstruction for treedepth
d as an induced subgraph, hence such obstructions
are minimal “witnesses” for having large treedepth.
Dvořák et al. [1919] proved that every minimal obstruction
for treedepth d has at most 22d−1

vertices, and they
gave a construction of an obstruction with 2d vertices.
They also hypothesized that, in fact, every minimal
obstruction for treedepth d has at most 2d vertices. We
get closer to this conjecture by showing an improved
upper bound of dO(d).

Detecting paths and cycles. We showcase the
potential of the dynamic treedepth data structure by
using it to design fully dynamic data structures for
the Long Path and Long Cycle problems. In these
problems, for a given undirected graph G and parameter
k, the task is to decide whether G contains a path on
k vertices or a cycle on at least k vertices, respectively.
The following theorem summarizes our results.

Theorem 1.2. Let k be a fixed parameter. Suppose
G is a dynamic graph on n vertices, updated by edge
insertions and edge deletions, and we are given access
to a dictionary on the edges of G using δs memory
with operations taking amortized time bounded by δt.
Then there are data structures that, upon such updates,
maintain the answers to the queries:

• Does G contain a simple path on k vertices?
• Does G contain a simple cycle on at least k vertices?

In the first case, the data structure achieves amortized
update time 2O(k2) +O(δt) and uses (n · 2O(k log k) + δs)
memory. In the second case, the amortized update time
is 2O(k4) +kO(k2) ·δt +O(k log n), and the memory usage
is (n · 2O(k2 log k) + δs).

Note that Theorem 1.21.2 concerns general graphs, not
just graphs of bounded treedepth. In Theorem 1.21.2 we do
not specify the query time, because we consider decision
problems: the answer to the query is recomputed upon
every update and can be later be provided in constant
time. Also, we assume access to a dictionary on the edges
of the graph. There are several ways of implementing
such a dictionary that differ in trade-offs between
time/space complexity and allowing amortization or

randomization. For instance, the simplest solution —
an adjacency matrix — achieves worst-case constant
operation time at the cost of quadratic space complexity,
while dynamic perfect hashing [1717] gives linear space
complexity, but guarantees only expected amortized
constant time per operation. .

Long Path occupies a central position in param-
eterized complexity theory due to serving as the main
protagonist in the development of several fundamental
techniques: representative sets [3939], treewidth-based win-
win approaches [1010], color-coding [33], algebraic coding
or monomial testing [99, 3838, 4949], and kernelization lower
bounds [1111]. Long Cycle is less prominent in com-
parison, but is known to be fpt even in the directed
variant [5252]. As mentioned above, Long Path in the dy-
namic setting was already considered by Alman et al. [22].
By dynamizing the standard color-coding approach [33],
they designed a data structure that uses k! ·2O(k) ·DC(n)
time per update, where DC(n) denotes the query/update
time for a data structure maintaining dynamic connec-
tivity. There are several implementations of dynamic
connectivity, yet they all achieve an update time that is
polylogarithmic in n, and actually there is an Ω(log n)
lower bound in the cell-probe model [4343]; see the dis-
cussion in [22]. Thus, while Theorem 1.21.2 offers worse
parametric factor of the update time compared to the
data structure of Alman et al. [22], it completely removes
the dependence on the size of the graph, which seems
difficult in the approach used in [22]. We are not aware
of any previous work on dynamic data structures for the
Long Cycle problem.

Techniques behind Theorem 1.21.2. At first
glance, it may seem surprising how the dynamic
treedepth data structure can be helpful in designing data
structures for Long Path and Long Cycle, because
these data structures should work on an arbitrary dy-
namic graph, without any promise about the treedepth.
Here, we use the following well-known connection (see
e.g. [4242, Proposition 6.1]): a graph of treedepth at least
k always contains a path on k vertices. Hence, the an-
swer to Long Path is non-trivial only if the treedepth
is smaller than k; otherwise it is trivially positive. To
capitalize on this observation, we use a technique of
postponing invariant-breaking insertions, introduced by
Eppstein et al. [2222] in the context of planarity testing.
Effectively, this enables us to focus on the case when
the treedepth of the maintained dynamic graph is at all
times bounded by k, at the cost of allowing amortization
in the update time guarantees.

Next, we show that the dynamic treedepth data
structure can be conveniently enriched with all sorts of
dynamic programming procedures on elimination forests,
so that in the dynamic setting we may maintain their

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited798

tables upon edge insertions and deletions. By doing this
for the standard dynamic programming procedure for
Long Path, we complete the proof of the first point of
Theorem 1.21.2.

When working out this part of the argument, we
make effort to introduce a convenient language for
formulating dynamic programming on elimination forests
that combines well with the dynamic treedepth data
structure. This is because we expect these parts of
our work to be of a wider applicability. In fact, we
consider this to be one of the most important conceptual
messages of this paper: dynamic programming on graphs
of bounded treedepth can be efficiently maintained in the
dynamic setting, and this is a technique for the design
of parameterized data structures.

We remark that the data structure of Dvořák
et al. [1818] can be similarly combined with dynamic
programming. In fact, they show that for every fixed
problem definable in Monadic Second Order logic MSO2

(see [1414, Section 7.4.1] for an introduction), the answer
to this problem can be maintained together with the
dynamic treedepth data structure within the same
complexity; that is, with update time f(d) for a non-
elementary function f . This is also the case for our data
structure. Since the Long Path problem is expressible
in MSO2, it is possible to derive a data structure for
dynamic Long Path with amortized update time f(k),
for a non-elementary function f , by combining the result
of Dvořák et al. [1818] with the technique of Eppstein et
al. [2222]. Here, k is the requested vertex count of the
path.

We move on to the second point of Theorem 1.21.2
— the data structure for Long Cycle. This requires
further ideas. The main issue is that the connection
with treedepth a priori fails: as witnessed by paths,
there are graphs of arbitrary large treedepth and no
cycles at all. However, to some extent the approach can
be salvaged: it can be shown (see [4242, Proposition 6.2])
that every biconnected graph of treedepth at least k2
contains a simple cycle on at least k vertices. We use
this combinatorial observation as follows.

Due to the technique of postponing insertions, we
may assume that the maintained graph G at all times
does not contain a simple cycle on at least k vertices.
Then the abovementioned combinatorial fact implies
that every biconnected component of G has treedepth
at most k2. Therefore, our data structure maintains
a partition of G into biconnected components, and
for each biconnected component H of G we maintain
an elimination forest FH of H of height at most k2.
Roughly speaking, for maintaining the partition into
biconnected components, we use the top trees data
structure of Alstrup et al. [44, 55], which introduces the

O(k log n) factor to the update time. The forests FH
for biconnected components H are maintained using the
dynamic treedepth data structures for d = k2. Observe
that, upon edge insertions and removals, the biconnected
components of the graph may merge or split. For this, we
need to design appropriate merge and split procedures
for the dynamic treedepth data structures. Fortunately,
our understanding of the combinatorics of treedepth
allows this, at the cost of significant technical effort.

Lower bounds. Observe that the update time
offered by Theorem 1.21.2 for the Long Cycle problem
contains an O(log n) factor. This is in fact unavoidable:
a data structure for detecting simple cycles of length
at least 3 (aka just cycles) can be used for maintaining
dynamic connectivity in forests, for which there is an
Ω(log n) lower bound in the cell-probe model [4343]. See
Corollary 12.5 in the full version [1313] for a formal
derivation of this result. Thus, there is a qualitative
difference between Long Path and Long Cycle in
the dynamic setting: the first problem admits a data
structure with amortized update time independent of n,
while in the second factors linear in log n are necessary
in the update time guarantees.

Here, let us point out another curious application
of the data structure offered by Theorem 1.11.1. Using
it, it is very easy to implement connectivity queries
(whether given vertices u and v are in the same connected
component) in time O(d): it will be always the case that
the maintained forest F has one tree per each connected
component of G, so it suffices to check whether u and
v are in the same tree of F , which can be done by
following parent pointers to respective roots. This gives
a data structure for dynamic connectivity in graphs
of treedepth at most d with update time 2O(d2) and
query time O(d). On the other hand, the Ω(log n)
lower bound for dynamic connectivity of Demaine and
Pǎtraşcu [4343] applies even to forests of paths, which
can be thought of the simplest classes that do not have
bounded treedepth. This means that in some sense, the
possibility of maintaining dynamic connectivity with
update and query time independent of n is tightly linked
with assuming a bound on the treedepth of the considered
dynamic graph.

A different lower bound methodology was proposed
by Alman et al. [22]. Among other results, they proved
that any data structure for the directed variant of
Long Path for k = 5 has to assume Ω(nδ) query
time, or Ω(nδ) update time, or Ω(n1+δ) initialization
time on an edgeless graph, for some δ > 0. This lower
bound is conditional, subject to a hypothesis called `-
layered reachability oracle (`LRO) Conjecture, which in
turn is implied by the Triangle Conjecture and by the
3SUM Conjecture — assumptions commonly adopted in

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited799

fine-grained complexity. Using this technique, we give
analogous lower bounds for the following variations of
the considered problems:

• dynamic undirected 5-Path, where instead of asking
for any 5-path, we look for a 5-path with a specified
pair of endpoints; and

• dynamic undirected Exact-5-Cycle, where we ask
for the existence of a cycle on exactly 5 vertices,
instead of at least 5 vertices.

See Theorem 12.3 in the full version [1313] for a formal
statement.Note that in the static setting, all the varia-
tions mentioned above can be solved in fpt time using
color coding or algebraic coding. Thus, the tractability
domain for Long Path and related problems is much
narrower in the dynamic setting. It seems that the com-
binatorial links with treedepth, heavily exploited in our
approach, are a necessary ingredient without which not
only the technique breaks, but the problems actually
become provably hard.

Other works on parameterized dynamic data
structures. To give a broader background, we review
some results on dynamic data structures for parame-
terized problems that are not directly relevant to the
motivation of our work.

Dvořák and Tůma [2020] investigated the problem
of counting occurrences (as induced subgraphs) of a
fixed pattern graph H in a dynamic graph G that is
assumed to be sparse (formally, always belongs to a
fixed class of bounded expansion C). They gave a data
structure that maintains such a count with amortized
update time O(logc n), where the constant c depends
both on H and on the class C. As classes of bounded
treedepth have bounded expansion (see [4242]), by taking
H to be a path on k vertices we obtain a data structure
for the dynamic k-path problem in graphs of treedepth
smaller than k with amortized polylogarithmic update
time, where the degree of the polylogarithm depends on
k. Note that this result is significantly weaker than the
one provided by us and by Alman et al. [22], though it is
obtained using very different tools. The result of Dvořák
and Tůma [2020] is based on a data structure of Brodal
and Fagerberg [1212] for maintaining a bounded-outdegree
orientation of a graph of bounded degeneracy, which
also can be considered a dynamic parameterized data
structure.

The dynamic setting for parameterized vertex cover
and other vertex-deletion problems was first considered
by Iwata and Oka [3333]. As explained in Section 11, this
work was continued and significantly extended by Alman
et al. [22]. More recent advances include dynamic kernels
for hitting and packing problems in set systems with
very low update times [66], and work on monitoring timed
automata in data streams [2525]. Also, Schmidt et al. [4747]

investigated a combination of parameterization and the
concept of DynFO. This setting is, however, somewhat
different, as the main focus is on performing updates
that can be described using simple logical formulas, and
not necessarily executable efficiently in the classic sense.

Comparison with Dvořák et al. [1818]. We
present a quick overview of the approach that Dvořák et
al. [1818] used in their dynamic treedepth data structure.
While doing this, we explain how our techniques differ
and improve upon this approach. In this overview, we
assume familiarity with MSO2 and basic understanding
of MSO2-types.

We assume the following setting. We have a dynamic
graph G, a fixed MSO2 sentence ϕ, and a parameter d so
that the treedepth of G is promised to always be upper
bounded by d at all times. Our goal is to maintain a
fully dynamic data structure Dϕ[F,G] that maintains
a recursively optimal elimination forest F of G and an
answer to the query whether G |= ϕ. Let q be the
maximum of d and the quantifier rank (i.e. maximum
number of nested quantifiers) in ϕ. Note that thus, q is
at least d.

With each vertex u ∈ V (G), let us associate a
graph Gu defined as in Section 2.22.2: Gu has vertex set
SReachF,G(u) ∪ descF (u) and edge set comprising of all
the edges of G with at least one endpoint in descF (u).
The idea is to associate with each vertex u the type of Gu,
which is a piece of information that concisely describes
all the properties of Gu needed both for the task of
computing the treedepth, and for verifying satisfaction
of ϕ. In the work of Dvořák et al. [1818], this type is the
MSO2 type of Gu of quantifier rank q. The number of
such types is bounded by a function of q only, but this
function is non-elementary: it is a tower of height q,
which is not smaller than d.

We note that in [1818], this is presented somewhat
differently. Namely, the type of Gu is maintained implic-
itly by storing a bounded-size S-code: a representantive
subgraph of Gu having the same MSO2-type of quantifier
rank q as Gu, obtained by trimming superfluous subtrees
in F .

Now, basic compositionality and idempotence prop-
erties of MSO2 imply that in order to compute the type
of Gu, it suffices to know the multiset of types of graphs
Gv for all children v of u in F . Moreover, there is a
threshold τ depending on d and ϕ such that within this
multiset, each type appearing more than τ times can be
treated as if it appeared exactly τ times. This can be
related to the discussion of compositionality and idem-
potence in Section 2.22.2. Thus, for every vertex u one can
compute the type of Gu from the types associated with
the children in constant time, assuming we know the
multiplicity of each type among the children up to the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited800

threshold τ . This applies even though the number of
children is unbounded. Intuitively, this allows efficient
recomputation of the types upon modifications of the
forest F , through a bucketing approach similar to that
presented in Section 2.22.2.

Thus, the design of the data structure itself in [1818]
is similar to ours: every vertex remembers all its
children, but these children are partitioned into buckets
(represented in [1818] using merge nodes) according to their
types. Note that thus, the number of buckets per vertex
is bounded by a non-elementary function of q ≥ d. The
basic idea of achieving update time independent of n is
the same: during modifications of the elimination forest,
we operate on whole buckets. Thus, re-attaching a whole
bucket at a different place of the elimination forest can
be done using a single operation in constant time.

The implementation of updates in [1818] is, however,
very different to ours and works roughly as follows.
Suppose F is a tree for simplicity. First, one finds a
candidate new root: a vertex that may be the new root of
an optimal elimination tree after the update. Now comes
the main trick: being a candidate root can be expressed
by a (quite complicated) MSO2 formula of quantifier
rank d, hence we can use the types of rank q ≥ d, stored
in the data structure before the update, we can locate
a candidate root. Once the new root is located, we
iteratively move the new root up the tree. During this
process we need to fix a bounded number of subtrees,
which can done by recursion, because each of the trees
that needs to be fixed is of height at least one smaller.
All in all, this update thus uses a fairly convoluted
recursion scheme, where the number of recursive calls
heavily depends on the number of types that the data
structure keeps track of.

Thus, the aspect that contributes the most to the
time complexity is the number of types on which the
data structure relies, which directly corresponds to the
number of buckets stored per vertex. As we explained
above, Dvořák et al. [1818] use MSO2 types of a quantifier
rank q ≥ d, whose number is a tower of exponentials
of height q. Note that the assumption that q ≥ d is
necessary to be able to efficiently evaluate the MSO2

query locating a new root, which is needed in the update
operation.

In our data structure, we are much more frugal when
defining types of vertices for the purpose of maintaining a
recursively optimal elimination forest. More precisely, we
show that it is enough to classify each vertex u according
to (1) the treedepth of the subgraph induced by the
descendants of u, including u; and (2) the set of ancestors
of u that are adjacent to u or any of its descendants.
This gives only d · 2d different types. Moreover, we
perform the update in a different way than Dvořák et

al.: to construct an elimination forest F̂ of the updated
graph, we extract a core K ⊆ V (G) of size dO(d) that
contains both endpoints of the updated edge, compute an
optimum elimination forest FK of G[K] using the static
algorithm of Reidl et al. [4545] in time 2O(d2), and construct
F̂ by re-attaching parts of F lying outside of K to
FK . While this method is conceptually simpler than the
approach used in [1818], justifying the correctness requires
a quite deep and technical dive into the combinatorics
of treedepth and of elimination forests. This analysis is
explained in Section 2.12.1. We remark that the concept
behind the construction of the cores is analogous to that
behind the construction of the S-codes in [1818], but we
execute it so that the size of the core is much smaller.
We also use the cores in a quite different way.

As far as augmentation of the data structure with
a dynamic programming procedure is concerned, this
is automatic in the approach of Dvořák et al. [1818] for
MSO2-expressible problems. Namely, the data structure
anyway stores all the information about MSO2-types
up to quantifier rank q, so the answers to all boolean
MSO2 queries up to this quantifier rank are explicitly
maintained. This, of course, comes at the cost of a huge
explosion of complexity due to maintaining a partition
into types that is potentially much finer than needed
for the problem we are interested in. The language of
configuration schemes and its implementation in the
dynamic treedepth data structure via mugs, which we
present in [1313], is designed to remedy this complexity
explosion. Namely, it allows one to design a dynamic
programming procedure and automatically combine it
with the dynamic treedepth data structure so that the
overhead in the update time paid for augmentation is
polynomial in the number of states.

In the following, we present a concise overview of
the reasoning leading to our main results, focusing on
explaining the key ideas rather than technical details.
These details can be found in the full version [1313].

2 Overview
2.1 Treedepth, elimination forests, and cores
In this subsection we give an overview of the material
presented in the full version [1313]. Our first goal is to
obtain a fine combinatorial understanding of elimination
forests of optimum height, so that we will be able to
efficiently recompute them upon edge insertions and
deletions.

Recall that an elimination forest (or equivalently
treedepth decomposition) of a graph G is a rooted forest
on the same vertex set as G satisfying the following
property: for every edge uv of G, either u is an ancestor
of v in F , or vice versa. Note that edges of F do

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited801

not need to be present in G. Elimination forests
are graph decompositions underlying the parameter
treedepth, defined as the minimum possible height of
an elimination forest. Note that an elimination forest of
a connected graph is necessarily a tree.

We will work with elimination forests that are in
some sense also “locally optimal”, as explained in the
following definition. Here, for a forest F and vertex
u ∈ V (F), by Fu we denote the subtree of F induced
by u and all its descendants. Also, descF (u) denotes the
set of descendants of u in F , including u itself.

Definition 2.1. An elimination forest F of a graph G
is recursively optimal if for every vertex u, the graph
G[descF (u)] is connected and has treedepth equal to the
height of Fu.

In other words, in a recursively optimal elimina-
tion forest F , each subtree Fu is an optimum-height
elimination tree of G[descF (u)]. Thus, the height of a
recursively optimal elimination forest F always matches
the treedepth of the graph, as F needs to optimally de-
compose each connected component in a separate tree. It
is easy to see that every graph has a recursively optimal
elimination forest, and, up to technical details, such a
forest can be computed in time 2O(d2) · nO(1) using the
algorithm of Reidl et al. [4545].

From now on, let us fix a graph G and assume, for
simplicity, that G is connected. Let T be a recursively
optimal elimination tree of G, say of height d. For a
vertex u, we define the strong reachability set SReach(u)
as the set NG(descT (u)), that is, SReach(u) consists of
all (strict) ancestors of u that have neighbors among
descT (u). The intuition is that SReach(u) is the set to
which the subtree Tu is “attached” in T . In other words,
if we temporarily removed Tu from T and wanted to
attach it back, then the optimal way would be to find
the deepest vertex m of SReach(u) and attach Tu by
making u a child of m. In this way, the conditions in
the definition of an elimination forest are satisfied, while
Tu is attached as high as possible.

A prefix of T is an ancestor-closed subset of vertices
of T . For a non-empty prefix K of T , an appendix of K
is a vertex that does not belong to K, but whose parent
already belongs to K. The set of appendices of K will
be denoted by App(K). The following definition is the
cornerstone of our analysis.

Definition 2.2. Let q ∈ N. A non-empty prefix K
of T is a q-core (of (G,T)) if the following property
holds: for every appendix a ∈ App(K) and subset
X ⊆ SReach(a) of size at most 2, a has at least q distinct
siblings w in T such that w ∈ K, X ⊆ SReach(w), and
height(Tw) ≥ height(Ta).

Before we continue, let us verify that we can always
find very small cores.

Lemma 2.1. For each q ≥ 2, there is a q-core of size at
most (qd)O(d).

Proof. [Sketch] Consider the following recursive marking
procedure that can be applied to a vertex u ∈ V (G).
For each set X consisting of at most 2 ancestors of u
(including u), consider all the children w of u satisfying
X ⊆ SReach(u), and mark q of them with the largest
values of height(Tw), or all of them if their number is
smaller than q. Then apply the procedure recursively
on each marked child of u. It is straightforward to see
that if K comprises of all vertices that got marked after
applying the procedure to the root of T , then K is a
q-core. Since for a marked vertex u we also mark at
most q · (1 + d+

(
d
2

)
) = O(qd2) children of u, and T has

height at most d, it follows that |K| ≤ (qd)O(d).

Let us now explain the idea behind the definition
of a core. Suppose K is a q-core, a ∈ App(K), and
w is a sibling of a satisfying the property from the
definition for some X = {x, y} ⊆ SReach(a). Since T
is recursively optimal, G[descT (w)] is connected. As
x, y ∈ SReach(w) = NG(descT (w)), we conclude that in
G there is a path P x,yw such that P x,yw has endpoints x
and y, and all the internal vertices of P x,yw belong to
descT (w). As we have q such siblings w, we can find
q such paths P x,yw , and they will be pairwise internally
vertex-disjoint. It can now easily be seen that, provided
q ≥ d, such a set of q paths forces that in every
elimination tree of G of depth at most d, x and y have
to be in the ancestor-descendant relation. Since none of
the paths P x,yw intersects descT (a), this conclusion can
be drawn even if we removed all the vertices of descT (a)
from G. This reasoning can be applied for every pair
{x, y} ⊆ SReach(a). After fixing technical details, this
amounts to the following statement.

Lemma 2.2. Suppose K is a d-core and TK is any
elimination tree of the graph G[K] of height at most
d. Then for each a ∈ App(K), the set SReach(a) is
straight in TK , that is, all the vertices of SReach(a) lie
on one root-to-leaf path in TK .

Supposing that K is a d-core, let R = T −K be the
rooted forest obtained by removing all the vertices of
K from T ; see Figure 11. Note that R is an elimination
forest of the graph G − K. Then the conclusion of
Lemma 2.22.2 means for every elimination tree TK of G[K]
of height at most d (possibly very different from T [K]),
R is attachable to TK in the following sense: for each tree
S of R, the set NG(V (S)) is straight in TK . Recalling

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited802

Figure 1: Treedepth cores and their replaceable elimination trees.

our previous intuition, this suggests that we can compute
a new elimination forest T̂ of G by attaching R “below”
TK as follows (note that App(K) coincides with the
set of roots of R). For each a ∈ App(K), we let m be
the deepest vertex of SReach(a) in TK , and we attach
the tree Ra = Ta by making a a child of m. It is
straightforward to see that if R is attachable to TK ,
then the tree T̂ obtained in this manner is indeed an
elimination tree of T ; we shall call it the extension of
TK via R.

We see that T̂ constructed as above is indeed an
elimination forest of G, but so far we cannot say much
about its height. Fortunately, from the definition of a
core we can also derive useful properties in this respect.
In particular, this is why in this definition we insisted
that for each of the distinguished siblings w of a, the
height of Fw is not smaller than the height of Fa.

The intuition is as follows. Suppose K is a (d+ 1)-
core and TK is a recursively optimal elimination forest
of G[K] of height at most d. Consider any a ∈ App(K).
By Lemma 2.22.2, the set SReach(a) is straight in TK . Let
then m be the vertex of SReach(a) that is the deepest
in TK . Then, by the definition of the core we can find a
set W ⊆ K consisting of d+ 1 siblings w of a such that

m ∈ SReach(w) and
td(G[descT (w)]) = height(Tw)

≥ height(Ta) = td(G[descT (a)]).

Here, the first and the last equality follows from the
recursive optimality of T . Through a fairly complicated
inductive scheme, we can show for one of the trees Tw for
w ∈W , the graph G[K ∩ descT (w)] has same treedepth
as G[descT (w)] and its vertex set is fully contained in a
subtree TKx for some x that is a child of m in TK . This
witnesses that height(TKx) ≥ height(Tw) ≥ height(Ta).
We infer that attaching Ta below m in the construction
of T̂ — the extension of TK via R = T −K — cannot
increase the height of T̂ above height(TK). This is
because after the attachment, there anyway is a subtree
rooted at a sibling of a whose height is not smaller than
the height of Ta. We may conclude the following.

Lemma 2.3. Let K be a (d + 1)-core and let TK be
any elimination tree of G[K] of height at most d. Let
R = T−K and let T̂ be the extension of TK via R (which
is well-defined by Lemma 2.22.2). Then T̂ is a recursively
optimal elimination tree of G and the height of T̂ is equal
to the height of TK .

Recall that in the first place, we were interested in
recomputing a recursively optimal elimination forest of
a graph under edge insertions and edge deletions. Let
then H be a graph obtained from G by either inserting
an edge uv, or deleting an edge uv. By following the
same reasoning that led us to Lemmas 2.22.2 and 2.32.3, but
additionally keeping track of the modified edge uv, we
can prove the following.

Lemma 2.4. Let K be a (d + 2)-core of (G,T) that
includes both u and v, and let TK be any elimination
tree of H[K] of height at most d. Let R = T −K. Then
R is attachable to TK . Moreover, if T̂ is the extension
of TK via R, then T̂ is a recursively optimal elimination
forest of H whose height is equal to the height of TK .

Note that in Lemma 2.42.4 we require that K is a
(d+ 2)-core, while Lemma 2.32.3 only assumed that K is
a (d+ 1)-core. This is because some of the witnessing
structures, for instance paths P x,yw considered in the
reasoning leading to Lemma 2.22.2, might be affected by
the removal of the edge uv. However, as this is just a
single edge, adding 1 to the requirement on the core
suffices for the argument to go through.

Lemma 2.42.4 suggests the following strategy for
recomputing a recursively optimal elimination tree upon
inserting or deleting an edge uv. Here, H is the updated
graph.

• Using the procedure described in the proof of
Lemma 2.12.1, compute a (d+ 2)-core K of T of size
dO(d). By modifying this procedure slightly, we may
make sure that u, v ∈ K.

• Using the static algorithm of Reidl et al. [4545],
compute a recursively optimal elimination forest
TK of H[K]. Since the treedepth of H[K] does not
exceed the treedepth of H, which in turn does not

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited803

exceed d+ 1, this takes time 2O(d2). Observe that if
the treedepth of H[K] turns out to be larger than
d, then the same can be concluded about H.

• Letting R = T −K, compute T̂ : the extension of
TK via R.

Then Lemma 2.42.4 asserts that T̂ is a recursively optimal
elimination forests of H.

Note that this procedure readily can be implemented
as a static algorithm, but the idea seems useful in the
dynamic setting as well. This is because the forest R —
which constitutes a vast majority of the graph, provided
d � n — first gets detached from T and then gets
attached below TK while keeping its structure intact.
In the next section, our goal will be to implement this
detachment and attachment so that the internal data
about R does not need to be updated at all.

Observe that from Lemma 2.32.3 we may immediately
derive the following conclusion: the subgraph induced
by a d-core inherits the treedepth of the original graph.

Lemma 2.5. Let K be a (d+1)-core. Then the treedepth
of G[K] is equal to the treedepth of G.

Proof. Let TK be an elimination forest of G[K] of
minimum height. By Lemma 2.32.3, there exists an
elimination forest of G of height equal to the height
of TK . This means that the treedepth of G is not larger
than the treedepth of G[K]. As the reverse inequality is
obvious, the lemma follows.

We note that in reality, we prove (the formal analogs
of) Lemmas 2.32.3 and Lemmas 2.52.5 in the reverse order,
as (a generalization of) Lemma 2.52.5 is needed in the
inductive scheme used in the proof of Lemma 2.32.3.

From Lemmas 2.12.1 and 2.52.5 we may now immediately
derive the improved bounds on minimal obstructions
for bounded treedepth. Recall here that a graph G is a
minimal obstruction for treedepth d if the treedepth of
G is larger than d, but every proper induced subgraph
of G has treedepth at most d.

Theorem 2.1. Every minimal obstruction for treedepth
d has at most dO(d) vertices.

Proof. Let G be a minimal obstruction for treedepth
d. Clearly, G is connected. As removing one vertex
decreases the treedepth by at most 1, the treedepth of
G is equal to d + 1. Let T be a recursively optimal
elimination tree of G; then T has height d + 1. By
Lemma 2.12.1, we may find a (d+ 1)-core K of (G,T) of
size dO(d). By Lemma 2.52.5, the treedepth of G[K] is d+1.
Since G is a minimal obstruction, we necessarily have
K = V (G). So G has dO(d) vertices.

2.2 Dynamic treedepth data structure In this
subsection we explain the proof of Theorem 1.11.1. The
idea is to design the dynamic treedepth data structure
so that the detachment/attachment strategy described
in the previous subsection can be implemented efficiently.
We note that the internal organization of information in
our data structure roughly follows the general strategy of
Dvořák et al. [1818], but the approach we use to implement
the update methods, which is based on the analysis
of cores that we developed in the previous section, is
completely new and different from [1818]. This is the part
of the reasoning that leads to the improvement.

Suppose that G is the considered graph, say con-
nected for simplicity, and T is an elimination tree of G of
depth at most d. Suppose further that G is updated by
inserting or deleting an edge uv, and H is the updated
graph. As outlined in the previous subsection, we should
compute a (d+ 2)-core K of (G,T) of size dO(d), recom-
pute a recursively optimal elimination forest TK of H[K]
using a static algorithm, and reattach R := T −K below
TK . Consider any appendix a ∈ App(K) and recall that
reattaching Ra = Ta boils down to making a a child of
the vertex of SReach(a) that is the deepest in TK . Now
comes the main observation: for any other appendix
a′ ∈ App(K) satisfying SReach(a′) = SReach(a), the
tree Ra′ = Ta′ will be attached at exactly the same place
as Ra. Therefore, we can treat all trees Ra with the
same SReach(a) as one “batch”, which will be detached
from T and reattached to T̂ concurrently. Here, it is not
hard to see that all the trees of this batch have the same
parent in T , which obviously belongs to K.

We now implement this idea algorithmically. The
tree T is stored as follows. For every vertex u,
we remember the parent of u in T , SReach(u), and
NeiUp(u) := SReach(u) ∩ NG(u); the last set is used
to represent the edge set of G. Further, u remembers
all its children, but these children are partitioned into
buckets as follows: for each X ⊆ SReach(u) ∪ {u} and
i ≤ d, we store the bucket

B[u,X, i] := { v ∈ children(u) : SReach(v) = X

and height(Tv) = i }.

Thus, buckets B[u, ·, ·] form a partition of the children
of u and there are at most 2d · d buckets associated with
u. Buckets are represented using doubly-linked lists.

Inserting or deleting the edge uv can now be
implemented as follows:

• Construct a (d+2)-coreK of size dO(d) that includes
u and v. Having access to buckets, this can be done
by simulating the marking procedure presented in
Lemma 2.12.1 in time dO(d).

• Apply the static algorithm of Reidl et al. [4545] to
compute a recursively optimal elimination tree TK

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited804

of H[K]. This step takes time 2O(d2) · |K|O(1) =

2O(d2) and is the only bottleneck: all the other
steps take time dO(d). Also, if it turns out that
height(TK) > d, then the treedepth of H exceeds d
and the update should be rejected.

• Remove all vertices of K from all the buckets. This
can be done in time O(|K|) by remembering, for
each vertex, a pointer to a list element representing
it in the bucket to which it belongs.

• For each u ∈ K, X ⊆ SReach(u) ∪ {u}, and i ≤ d,
rename the bucket B[u,X, i] to B[m,X, i], where m
is the vertex of SReach(u) that is the deepest in
TK . Note that there are at most |K| · 2d · d = dO(d)

buckets that need to be renamed in this way.
• Recompute the information for the vertices of K

and place them in appropriate buckets. This can be
done in time 2O(d) · |K|O(1) = dO(d) by a bottom-up
traversal of TK .

The key observation is that in such an implementation,
the following assertion holds: for each renamed bucket
B[u,X, i], all the values stored for vertices of trees Ra
for a ∈ B[u,X, i] do not need to be updated at all.
The only exception are the parent pointers for vertices
a ∈ B[u,X, i], which after renaming should all point
to the new parent m. This can be easily remedied by
storing one parent pointer per bucket, and changing
it in a single operation. This concludes the proof of
Theorem 1.11.1.

Configuration schemes. As mentioned in Sec-
tion 11, the dynamic treedepth data structure can be
conveniently augmented to maintain a run of a dynamic
programming procedure on the stored elimination for-
est. This applies to a wide range of dynamic program-
ming procedures, in particular those obtained for MSO2-
expressible problems through the classic connection with
tree automata. In [1313] we present a general formalism
of configuration schemes that can be used to formulate
such dynamic programming procedures. To keep the
overview simple, we now explain how this idea applies
to Long Path.

Suppose T is the maintained elimination tree and
consider any u ∈ V (G). Let X = SReach(u) and let Gu
be the subgraph of G such that the vertex set of Gu
is X ∪ descT (u), while the edge set of Gu comprises of
all the edges of G that have an endpoint in descT (u).
Note that, thus, X forms an independent set in Gu.
We now define a set C(X) of configurations on X: a
configuration c is a pair (F, j), where F is a linear forest
(i.e. a forest of paths) on vertex set X ∪{s, t}, where s, t
are special vertices, and j is an integer not larger than
k (the requested vertex count of the path). Note that
|C(X)| ≤ |X|O(|X|) · (k + 1) ≤ dO(d) · k. Configuration
c = (F, j) is realizable in Gu if in Gu there is a family

of paths {Pe : e ∈ E(F)} of total length j such that the
paths Pe are disjoint apart from endpoints in X, and
the endpoints of Pe match the endpoints of e. Here, the
special vertices s, t can be replaced with any vertices in
Gu. Then with each u ∈ V (G), we can associate the set
conf(Gu) ⊆ C(X) comprising configurations realizable
in Gu. Whether G contains a k-path can be determined
by checking whether conf(Gr), where r is the root of T ,
contains configuration (Fst, k − 1), where Fst has only
one edge: st.

This configuration scheme has two important prop-
erties:

• Compositionality: conf(Gu) can be computed from
the multiset {{conf(Gv) : v ∈ children(u)}}.

• Idempotence: There is a threshold τ (equal to d+ 2)
such that for the computation above, it is immaterial
whether a configuration is realized in τ or more
children of u (see [1313] for a formal definition).

We show that these two basic properties alone are
sufficient for augmenting the dynamic treedepth data
structure so that with each u ∈ V (G), we also implicitly
store conf(Gu). This of course introduces factors
depending on the configuration scheme to the update
time, but in case of Long Path and assuming k ≤ d,
these factors are dominated by the 2O(d2) update time
of the data structure.

The augmentation is done as follows. For every
bucket B[u,X, i] stored in the data structure, we addi-
tionally store a mug B[u,X, i, c] for each configuration
c ∈ C(X). This mug comprises all v ∈ B[u,X, i] for
which c ∈ conf(Gv), and is organized as a doubly-linked
list (a sublist of B[u,X, i]). Note that each v ∈ B[u,X, i]
can appear in multiple mugs, but the number of mugs
is bounded by |C(X)|, which depends only on d and
the configuration scheme in question. The set conf(Gv)
corresponds to the set of mugs to which v belongs. It is
now not hard to maintain the mugs during updates using
the assumptions of compositionality and idempotence,
similarly as we do for buckets.

2.3 Postponing insertions Using all the tools pre-
pared so far for d = k − 1, we can implement a fully
dynamic data structure that for a graph G, promised to
be always of treedepth smaller than k, maintains an elim-
ination forest of G of height smaller than k together with
the answer to the query whether G contains a k-path.
Upon receiving an invariant-breaking edge insertion, the
data structure rejects the update and reports this. We
now use the technique of Eppstein et al. [2222] to turn this
into a data structure working without the promise.

We maintain the dynamic treedepth data structure
D described above, which stores a subgraph G′ of G.
Additionally, we have a queueQ of edges whose insertions

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited805

are postponed. We maintain the invariants: G consists
of G′ and all the edges stored in Q; G′ has treedepth
smaller than k; and if Q is non-empty, then G′ + e has
treedepth at least k, where e is the edge at the front
of Q. Thus, if Q is empty then G′ = G. The query
about a k-path can be implemented as follows: if Q
is empty then we can simply query D, and otherwise
the answer is true, because G has treedepth at least k.
When inserting an edge, we either try to insert it into
D in case Q is empty, or we push it at the back of Q
otherwise. The former case may result in rejecting the
insertion and pushing the edge into Q. Finally, when
deleting an edge we either delete it from D or from Q,
depending where it is currently stored. We may now
need to perform a clean-up: iteratively pop an edge
from the front of Q and insert it into D. This can take
large worst-case time, but it is not hard to see that the
amortized time remains constant. We use the dictionary
to quickly locate edges within Q.

2.4 Detecting cycles Finally, we show how the
whole machinery can be put into motion to handle also
the Long Cycle problem.

Recall that a biconnected graph of treedepth at
least k2 necessarily contains a simple cycle on at least
k vertices [4242, Proposition 6.2]. Hence, if G does not
contain a simple cycle on at least k vertices — and
using the technique of Eppstein et al. [2222] we can focus
on this case — then every biconnected component of
G has treedepth smaller than k2. Therefore, in our
data structure we maintain the partition N of G into
biconnected components and, for each H ∈ N , the
dynamic treedepth data structure D[H] for d = k2,
which stores H together with some recursively optimal
elimination tree TH of height at most d.

To efficiently handle the partition N upon updates,
we maintain a spanning forest Υ of G using the top
tree data structure of Alstrup et al. [44, 55]. This data
structure supports adding and removing edges from Υ in
time O(log n), as well as the following two queries about
a pair of vertices u, v:

• What is the distance between u and v in Υ?
• If u, v are in the same connected component of Υ,

return the path in Υ between u and v.
These queries take time O(log n) and O(` log n), respec-
tively, where ` is the length of the reported path.

Consider now the operation of inserting an edge uv.
First, we check what is the distance between u and v
in Υ. If u and v are in different connected components
of Υ, and therefore also of G, then we add uv to Υ and
we add a new biconnected component consisting only of
uv. If u and v are in the same connected component of
Υ, but the distance between them in Υ is at least k − 1,

then the insertion should be rejected: uv would close
a simple cycle of length at least k. Otherwise, in time
O(k log n) we can retrieve a path P ⊆ Υ with endpoints
u and v, and this path has length smaller than k − 1.

It may happen that the edges of P belong to different
biconnected components of G. It is easy to see that then,
the following should happen to the partition N after
the insertion of uv: all the biconnected components
containing edges of P get merged into one biconnected
component. To carry this out, we iterate through the
(at most k − 2) edges on P and if two consecutive edges
xy and yz belong to different biconnected components
H1 and H2, then we merge H1 and H2. This requires
merging the data structures D[H1] and D[H2], and in
particular computing a recursively optimal elimination
forest of the union of H1 and H2. We show that this
can be done using the toolbox of cores as follows. Let
T1 and T2 be the elimination trees of H1 and H2 stored
in D[H1] and D[H2], respectively.

• First, we compute (d + 1)-cores K1 and K2 of
(H1, T1) and (H2, T2), respectively, each of size
dO(d) = kO(k2). We make sure that {x, y} ⊆ K1

and {y, z} ⊆ K2.
• Letting K := K1 ∪ K2, we compute a recursively
optimal elimination forest TK of G[K] using the
static algorithm of Reidl et al. [4545]. This takes time
2O(d2) = 2O(k4).

• We construct an elimination forest T̂ of H1 ∪ H2

by attaching both the forests T1 −K1 and T2 −K2

below TK , as in the extension operation.
It can be argued that T̂ constructed in this manner
is a recursively optimal elimination forest of H1 ∪ H2.
Moreover, all of this can be done in time 2O(d2) = 2O(k4)

using our representation of the dynamic treedepth data
structure. Note that since the length of P is smaller
than k − 1, we perform at most k − 3 such merges.

The operation of edge deletion is essentially symmet-
ric: we need to split biconnected components instead of
merging them, which can be done analogously. However,
there is one issue: the deleted edge uv may belong to
Υ, in which case it is pointless to query Υ for a u-to-v
path P along which the splits should be performed. For-
tunately, we show that in this case, we can retrieve a
suitable path P from the data structure D[H], where H
is the biconnected component that contains uv. Note
that P has length smaller than k, for otherwise together
with uv it would constitute a simple cycle of length at
least k. Another caveat is that in order to maintain the
invariant that Υ is spanning, after deleting uv from Υ
we may need to find a replacement edge and insert it
into Υ. Again fortunately, the retrieved path P provides
at most k − 2 candidates for such a replacement edge.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited806

3 Conclusions
In this work we presented a fully dynamic data structure
that for a dynamic graph G, promised to be of treedepth
at most d at all times, maintains an elimination forest
of G of optimum height. The data structure offers
2O(d2) update time in the worst case. We used this
result to give data structures for the dynamic variants
of the Long Path and the Long Cycle problems. For
Long Path, the data structure offers amortized update
time 2O(k2) +O(τ), where τ is the amortized operation
time in a dictionary on the edges of the maintained
graph. For Long Cycle, the amortized update time is
2O(k4) + kO(k2) · τ +O(k log n).

As argued in Section 11, the results for Long Path
and Long Cycle are tight as far as the dependence
on n is concerned. However, there is a lot of room
for improvements of the parametric factor, that is, the
dependency on k. In particular, the data structure
for Long Path of Alman et al. [22] achieves a better
parametric factor of kO(k), at the cost of allowing a
factor that is polylogarithmic in n. Would it be possible
to obtain amortized update time kO(k), without any
additional factors depending on n? Perhaps more
interestingly, static fpt algorithms for Long Path,
designed for instance using color-coding [33] or algebraic
coding [99, 3838, 4949], achieve parametric factor 2O(k) in
their running times. Can one design a data structure
for dynamic Long Path with amortized update time
2O(k) · logc n for some constant c, or even 2O(k)?
Similar questions can be also asked about Long Cycle,
where the 2O(k4) factor seems even more amenable to
improvements.

The 2O(k2) update time offered by our dynamic
data structure for Long Path is a direct consequence
of the 2O(d2) update time of the dynamic treedepth
data structure. As we argued in Section 11, improving
this factor is equivalent to improving the parametric
factor in the complexity of the static fpt algorithm of
Reidl et al. [4545] for computing the treedepth of a graph.
However, note that for an application to the Long Path
problem, we do not necessarily need to maintain an
elimination forest of optimum height; a constant-factor
approximation would perfectly suffice. Unfortunately,
approximation algorithms for treedepth remain largely
unexplored even in the static setting, which brings us to
an old question (see e.g. [1515]): is there a constant-factor
approximation algorithm for treedepth with running
time 2o(d

2) ·nO(1), where d is the value of the treedepth?
Finally, we hope that our work might give some

insight into the problem of maintaining an approximate
tree decomposition of a dynamic graph of bounded
treewidth. Here, even achieving polylogarithmic-time
updates would be very interesting. This direction was

also mentioned both by Alman et al. [22] and by Dvořák
et al. [1818].

References

[1] I. Abraham, S. Chechik, and S. Krinninger. Fully
dynamic all-pairs shortest paths with worst-case update-
time revisited. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 440–452, USA, 2017. Society for
Industrial and Applied Mathematics.

[2] J. Alman, M. Mnich, and V. Vassilevska Williams.
Dynamic parameterized problems and algorithms. In
Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017,
volume 80 of LIPIcs, pages 41:1–41:16. Schloss Dagstuhl
— Leibniz-Zentrum für Informatik, 2017.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.
ACM, 42(4):844–856, 1995.

[4] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup.
Minimizing diameters of dynamic trees. In Proceedings
of the 24th International Colloquium on Automata,
Languages and Programming, ICALP 1997, volume
1256 of Lecture Notes in Computer Science, pages 270–
280. Springer, 1997.

[5] S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup.
Maintaining information in fully dynamic trees with
top trees. ACM Trans. Algorithms, 1(2):243–264, Oct.
2005.

[6] M. Bannach, Z. Heinrich, R. Reischuk, and T. Tantau.
Dynamic kernels for hitting sets and set packing.
Electronic Colloquium on Computational Complexity
(ECCC), 26:146, 2019.

[7] S. Bhattacharya, M. Henzinger, and D. Nanongkai.
New deterministic approximation algorithms for fully
dynamic matching. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing,
STOC ’16, pages 398–411, New York, NY, USA, 2016.
Association for Computing Machinery.

[8] S. Bhattacharya, M. Henzinger, and D. Nanongkai.
Fully dynamic approximate maximum matching and
minimum vertex cover in o(log3 n) worst case update
time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’17, pages 470–489, USA, 2017. Society for Industrial
and Applied Mathematics.

[9] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Narrow sieves for parameterized paths and packings. J.
Comput. Syst. Sci., 87:119–139, 2017.

[10] H. L. Bodlaender. On linear time minor tests with
depth-first search. J. Algorithms, 14(1):1–23, 1993.

[11] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and
D. Hermelin. On problems without polynomial kernels.
J. Comput. Syst. Sci., 75(8):423–434, 2009.

[12] G. S. Brodal and R. Fagerberg. Dynamic representation
of sparse graphs. In 6th International Workshop on
Algorithms and Data Structures, WADS 1999, volume

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited807

1663 of Lecture Notes in Computer Science, pages 342–
351. Springer, 1999.

[13] J. Chen, W. Czerwiński, Y. Disser, A. E. Feldmann,
D. Hermelin, W. Nadara, M. Pilipczuk, M. Pilipczuk,
M. Sorge, B. Wróblewski, and A. Zych-Pawlewicz. Effi-
cient fully dynamic elimination forests with applications
to detecting long paths and cycles. arXiv:2006.00571,
2020.

[14] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

[15] W. Czerwiński, W. Nadara, and M. Pilipczuk. Im-
proved bounds for the excluded-minor approximation
of treedepth. In Proceedings of the 27th Annual Eu-
ropean Symposium on Algorithms, ESA 2019, volume
144 of LIPIcs, pages 34:1–34:13. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, 2019.

[16] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. J. ACM, 51(6):968–
992, Nov. 2004.

[17] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer
auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic
perfect hashing: Upper and lower bounds. In Proceed-
ings of the 29th Annual Symposium on Foundations of
Computer Science, FOCS 1988, pages 524–531. IEEE
Computer Society, 1988.

[18] Z. Dvořák, M. Kupec, and V. Tůma. A dynamic data
structure for MSO properties in graphs with bounded
tree-depth. In Proceedings of the 22nd Annual European
Symposium on Algorithms, ESA 2014, volume 8737
of Lecture Notes in Computer Science, pages 334–345.
Springer, 2014.

[19] Z. Dvořák, A. C. Giannopoulou, and D. M. Thilikos.
Forbidden graphs for tree-depth. Eur. J. Comb.,
33(5):969–979, 2012.

[20] Z. Dvořák and V. Tůma. A dynamic data structure for
counting subgraphs in sparse graphs. In Proceedings of
the 13th International Symposium on Algorithms and
Data Structures, WADS 2013, volume 8037 of Lecture
Notes in Computer Science, pages 304–315. Springer,
2013.

[21] M. Elberfeld, M. Grohe, and T. Tantau. Where First-
Order and Monadic Second-Order logic coincide. ACM
Trans. Comput. Log., 17(4):25:1–25:18, 2016.

[22] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer.
Separator based sparsification. I. Planary testing and
minimum spanning trees. J. Comput. Syst. Sci., 52(1):3–
27, 1996.

[23] G. N. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’83, pages 252–257, New York, NY, USA,
1983. ACM.

[24] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM J. Comput., 26(2):484–538, Apr. 1997.

[25] A. Grez, F. Mazowiecki, M. Pilipczuk, G. Puppis,
and C. Riveros. The monitoring problem for timed

automata. CoRR, abs/2002.07049, 2020.
[26] M. Gupta and R. Peng. Fully Dynamic (1 + ε)-

Approximate Matchings. In FOCS. IEEE Computer
Soc., 2013.

[27] M. P. Gutenberg and C. Wulff-Nilsen. Fully-Dynamic
All-Pairs Shortest Paths: Improved Worst-Case Time
and Space Bounds, pages 2562–2574.

[28] M. R. Henzinger and V. King. Randomized dynamic
graph algorithms with polylogarithmic time per oper-
ation. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’95,
pages 519–527, New York, NY, USA, 1995. Association
for Computing Machinery.

[29] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic Deterministic Fully-dynamic Algorithms
for Connectivity, Minimum Spanning Tree, 2-edge, and
Biconnectivity. Journal of the ACM, 48(4):723–760,
July 2001.

[30] J. Holm and E. Rotenberg. Fully-dynamic planarity
testing in polylogarithmic time. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 167–180, New York, NY,
USA, 2020. Association for Computing Machinery.

[31] J. Holm, E. Rotenberg, and M. Thorup. Dynamic
bridge-finding in õ(log2 n) amortized time. In Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’18, pages 35–52,
USA, 2018. Society for Industrial and Applied Mathe-
matics.

[32] S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie.
Fully dynamic connectivity in o(log n(log log n)2)
amortized expected time. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’17, pages 510–520, Philadelphia,
PA, USA, 2017. Society for Industrial and Applied
Mathematics.

[33] Y. Iwata and K. Oka. Fast dynamic graph algorithms
for parameterized problems. In Proceedings of the 14th

Scandinavian Symposium and Workshops on Algorithm
Theory, SWAT 2014, volume 8503 of Lecture Notes in
Computer Science, pages 241–252. Springer, 2014.

[34] W. Jin and X. Sun. Fully dynamic c-edge connectivity
in subpolynomial time, 2020.

[35] B. M. Kapron, V. King, and B. Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case time.
In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’13,
pages 1131–1142, USA, 2013. Society for Industrial and
Applied Mathematics.

[36] K. Kawarabayashi and B. Rossman. A polynomial
excluded-minor approximation of treedepth. In Pro-
ceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, pages 234–246.
SIAM, 2018.

[37] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and
M. Thorup. Faster worst case deterministic dynamic
connectivity. In 24th Annual European Symposium on
Algorithms, ESA 2016, August 22-24, 2016, Aarhus,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited808

Denmark, pages 53:1–53:15, 2016.
[38] I. Koutis. Faster algebraic algorithms for path and pack-

ing problems. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming,
ICALP 2008, volume 5125 of Lecture Notes in Computer
Science, pages 575–586. Springer, 2008.

[39] B. Monien. How to find long paths efficiently. In
G. Ausiello and M. Lucertini, editors, Analysis and
Design of Algorithms for Combinatorial Problems,
volume 109 of North-Holland Mathematics Studies,
pages 239–254. North-Holland, 1985.

[40] D. Nanongkai and T. Saranurak. Dynamic spanning
forest with worst-case update time: adaptive, las vegas,
and o(n1/2 - ε)-time. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 1122–1129, 2017.

[41] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen.
Dynamic minimum spanning forest with subpolyno-
mial worst-case update time. In 2017 IEEE 58th An-
nual Symposium on Foundations of Computer Science
(FOCS), pages 950–961, 2017.

[42] J. Nešetřil and P. Ossona de Mendez. Sparsity —
Graphs, Structures, and Algorithms, volume 28 of
Algorithms and combinatorics. Springer, 2012.

[43] M. Patrascu and E. D. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM Journal on
Computing, 35(4):932–963, 2006.

[44] M. Pilipczuk and M. Wrochna. On space efficiency
of algorithms working on structural decompositions of
graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36,
2018.

[45] F. Reidl, P. Rossmanith, F. Sánchez Villaamil, and
S. Sikdar. A faster parameterized algorithm for
treedepth. In Proceedings of the 41st International
Colloquium Automata, Languages, and Programming,
ICALP 2014, volume 8572 of Lecture Notes in Computer
Science, pages 931–942. Springer, 2014.

[46] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In SODA, pages 118–126, 2007.

[47] J. Schmidt, T. Schwentick, N. Vortmeier, T. Zeume,
and I. Kokkinis. Dynamic complexity meets parame-
terised algorithms. In Proceedings of the 28th EACSL
Annual Conference on Computer Science Logic, CSL
2020, volume 152 of LIPIcs, pages 36:1–36:17. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2020.

[48] M. Thorup. Worst-case update times for fully-dynamic
all-pairs shortest paths. In Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of Com-
puting, STOC ’05, pages 112–119, New York, NY, USA,
2005. Association for Computing Machinery.

[49] R. Williams. Finding paths of length k in O?(2k) time.
Information Processing Letters, 109(6):315–318, 2009.

[50] C. Wulff-Nilsen. Faster deterministic fully-dynamic
graph connectivity. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’13, pages 1757–1769, USA, 2013. Society for
Industrial and Applied Mathematics.

[51] C. Wulff-Nilsen. Fully-dynamic minimum spanning
forest with improved worst-case update time. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1130–1143, 2017.

[52] M. Zehavi. A randomized algorithm for long directed
cycle. Inf. Process. Lett., 116(6):419–422, 2016.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited809

	Introduction
	Overview
	Treedepth, elimination forests, and cores
	Dynamic treedepth data structure
	Postponing insertions
	Detecting cycles

	Conclusions

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 14
 13
 14

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 14
 0
 1

 1

 HistoryList_V1
 qi2base

