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Abstract

This thesis is concerned with simple agents that move from vertex
to vertex along straight lines inside a simple polygon with the goal
of reconstructing the visibility graph. The visibility graph has a
node for each vertex of the polygon with an edge between two
nodes if the corresponding vertices see each other, i.e., if they
can be connected by a straight line inside the polygon. While
at a vertex, the agent perceives all vertices visible to its current
location in the order in which they appear along the boundary.
In each step, the agent can choose one of these vertices and move
there.
We show that an agent that can distinguish whether two visible
vertices are neighbors on the boundary cannot always solve the
visibility graph reconstruction problem when restricted to mov-
ing along the boundary only. This even remains true if the agent
knows the total number of vertices beforehand and if it can mea-
sure the angles formed by the boundary of the polygon. On the
other hand, we show that an agent that can measure the angles
between edges of the visibility graph can always solve the visibil-
ity graph reconstruction problem, even when restricted to moving
along the boundary only.
We further consider an angle-type sensor which allows to distin-
guish whether the angle between any two edges is convex or reflex,
and a look-back sensor which allows the agent to move back to
where it came from in its last move. We show that an agent
equipped with both sensors can always solve the visibility graph
reconstruction problem, even without prior knowledge about the
total number of vertices. The same is true for an agent that can
measure the angle between any two edges and has a compass.
For agents that have knowledge of an upper bound on the total
number of vertices, we show stronger results. We show that in
this setting an agent with look-back sensor or angle-type sensor
can always solve the visibility graph reconstruction problem. We
further show that multiple, identical, deterministic, indistinguish-
able such agents can find each other in any polygon.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Agenten, die sich von Eckpunkt
zu Eckpunkt entlang gerader Linien innerhalb eines Polygons be-
wegen, mit dem Ziel den Sichtbarkeitsgraphen zu rekonstruieren.
Dabei ist der Sichtbarkeitsgraph der Graph mit einem Knoten
für jeden Eckpunkt des Polygons und einer Kante zwischen je
zwei Eckpunkten, die sich sehen, deren geradlinige Verbindung
also vollständig innerhalb des Polygons liegt. Während sich der
Agent an einer Ecke befindet, nimmt er alle von dort sichtbaren
Ecken in ihrer Reihenfolge entlang des Polygonrands wahr. In je-
dem Schritt kann der Agent einen dieser Eckpunkte wählen und
sich dort hin begeben. Wir konzentrieren uns auf das Sichtbar-
keitsgraphrekonstruktionsproblem, bei dem ein Agent in einem
anfangs unbekannten Polygon den Sichtbarkeitsgraphen bestim-
men muss.

Wir zeigen, dass Agenten, die unterscheiden können, ob zwei
sichtbare Eckpunkte Nachbarn entlang des Rands sind, das Sicht-
barkeitsgraphrekonstruktionsproblem nicht immer lösen können,
wenn sie sich nur entlang des Polygonrands bewegen dürfen. Die-
ses Ergebnis bleibt auch dann bestehen, wenn die Agenten zu-
sätzlich die Zahl der Eckpunkte kennen und die Winkel am Poly-
gonrand messen können. Andererseits zeigen wir, dass Agenten,
die den Winkel zwischen zwei beliebigen Kanten messen können,
das Sichtbarkeitsgraphrekonstruktionsproblem immer lösen kön-
nen, selbst wenn sie sich nur entlang des Polygonrands bewegen
dürfen.

Wir zeigen, dass Agenten, die unterscheiden können, ob der Win-
kel zwischen zwei beliebigen Kanten konvex oder konkav ist und
die sich immer zu ihrer letzten Position zurück begeben können,
das Sichtbarkeitsgraphrekonstruktionsproblem immer lösen kön-
nen, selbst ohne jegliches anfängliche Wissen über die Gesamtzahl
der Ecken.

Wir zeigen weiterhin, dass Agenten, die sich immer zu ihrer letz-
ten Position zurück begeben können und denen eine obere Schran-
ke für die Gesamtzahl der Ecken bekannt ist, das Sichtbarkeits-
graphrekonstruktionsproblem immer lösen können. Wir zeigen,
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dass mehrere, deterministische, identische und ununterscheidbare
solche Agenten sich in jedem Polygon gegenseitig finden können.
Außerdem zeigen wir, dass beide Resultate auch für Agenten gel-
ten, die unterscheiden können, ob der Winkel zwischen zwei be-
liebigen Kanten konvex oder konkav ist und denen eine obere
Schranke auf die Gesamtzahl an Ecken bekannt ist.
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Chapter 1.

Introduction

Autonomous, mobile robots are taking over more and more tasks
that have traditionally been performed by humans. Advances in
microelectronics have made robots affordable which are able to
perform tasks that we prefer not to do ourselves. A common
example are robots that do household chores for us, like clean-
ing floors or mowing lawns. Some tasks, like demining of land
mines, are dangerous and thus best performed by robotic agents.
In other situations, autonomous robots are better qualified than
humans, especially when a constant awareness level is required,
as in guarding or surveillance duties.
Robots for the mass market usually have quite a simple design
in terms of hardware. Many cleaning robots, for instance, rely
on contact sensors only and make more or less random move-
ment decisions rather than using sophisticated hardware in order
to be able to optimize their trajectory. While simple hardware
often requires robots to employ somewhat inefficient movement
strategies, a simplistic design has many advantages. Foremost, of
course, a simple hardware makes robots cheap and thus accessi-
ble for the mass market. Cheap robots can be deployed in large
numbers for tasks which require robotic coordination, like guard-
ing. In addition, simplistic sensors are generally more robust in
terms of measurement inaccuracies and hardware defects. A sim-
ple design makes it possible for laymen to deal with maintenance
of the robot, which is important for household robots.
The complexity of a robot model can mainly vary in three re-
gards: the sophistication of the robot’s movement capabilities,
the sophistication of its sensors, and the sophistication of its com-
munication model when multiple robots have to coordinate. The
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sophistication of the robot’s computational power, on the other
hand, is usually not a limiting factor due to the availability of
powerful and cheap microelectronic components.
Evidently, robots targeted for a certain task cannot be made arbi-
trarily simple. Some sophistication is needed in order to be able
to solve the task. It is a natural question how much complex-
ity is needed for a given task. The aim is to design robots that
are weakest possible but still able to solve the task at hand. In
general, for a given task, there might be different such minimal
designs. An ultimate goal would be to develop a catalogue which
lists minimal robot designs required for all common tasks that
an autonomous, mobile robot might face. Given one or multiple
tasks, this catalogue could then be used to comfortably select
a robot design that suffices for solving the given tasks, and that
suits other requirements like the cost or availability of the individ-
ual components. Ideally, this catalogue would also differentiate
how efficiently a task can be solved with different robot designs.
This thesis aims to provide first steps towards such a catalogue.
In order to make robotic designs easily comparable, it makes sense
to establish a very basic theoretical robot model as well as ad-
ditional atomic capabilities with which the basic model can be
configured. Also, the environment of the robot needs to be cap-
tured by a theoretic model. While the resulting model may be
not entirely realistic anymore, it allows a more rigorous analysis
than a fully realistic counterpart. Still, results for a theoretic
model can provide a reference for a realistic design. From now
on, we distinguish realistic robots from theoretical agents.
Before defining an agent model, we have to choose a theoretical
representation of the environment in which the robot operates.
We could either stay closer to the real-world scenario and model
the environment geometrically in two or even three dimensions,
or assume a structurally simpler combinatorial approach and as-
sume the environment to be, for instance, a graph. In a geo-
metrical setting, the environment could be bounded by a curve,
polygon, etc., or the environment could be unbounded. We could
allow obstacles inside the environment, again using our choice of
geometric primitives. In a graph-like setting, we might restrict
the structure of the graph, for example by assuming the graph to
be planar. In this thesis, we go with an environment model that
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combines both geometrical and graph-like aspects.
We model the environment as a simple polygon without obsta-
cles, but restrict the movements of an agent to be along the edges
of the visibility graph of the polygon. More precisely, we assume
that an agent moves from vertex to vertex inside the polygon,
along straight lines that we call lines of sight. While located at a
vertex, the agent can observe the polygon locally through its sen-
sors. In order to make informed, local movement decisions, the
agent needs a way to distinguish the vertices it sees, i.e., the ver-
tices which can be connected to its current location via a straight
line inside the polygon. We provide a means of distinguishing
visible vertices by allowing the agent to sense the order in which
they appear along the boundary of the polygon. We later equip
this basic model with various additional sensors, e.g., for mea-
suring angles between lines of sight. We do generally not impose
limitations on the computational power or the amount of memory
that an agent possesses.
This thesis mainly focuses on the problem of mapping unknown
environments – simple polygons in our case. This problem lies
at the heart of many complex tasks and requires an agent to ex-
plore an initially unknown polygon with the goal of drawing a
map. The map of the polygonal environment for us will always
be its visibility graph, i.e., the graph that has a node for every
vertex of the polygon and an edge for every line of sight between
two vertices. Throughout this thesis, we analyze different exten-
sions of the above basic agent model with the goal of deciding
whether the resulting agent can always map its environment or
not. For some extensions, we will briefly discuss how multiple,
identical agents can coordinate. In scenarios with many agents
a fundamental problem for the agents is how to find each other
deterministically. Throughout the thesis, we present some results
for this so-called rendezvous problem.

1.1. Results

We now give a brief and intuitive overview over the results and
techniques of this thesis. The exact model will be made formal
in the next chapter. For an outline in terms of formal definitions,
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consider Tables 10.1 and 10.2 in Chapter 10.

The thesis is split into two parts. The first part considers agents
that move only along the boundary of the environment. Roughly
speaking, the data available to such agents is easy to collect sys-
tematically. Therefore, the main challenge of the mapping prob-
lem becomes to understand how to use this data algorithmically.
The results we develop in this part of the thesis mainly require
geometrical reasoning and intuition. In Chapter 4, we consider
agents equipped with a combinatorial sensor that allows to distin-
guish whether two visible vertices are neighbors along the bound-
ary. We show that such agents cannot always draw a map of the
polygon, even if they can measure the angles formed by the poly-
gon boundary at their current location. The proofs in this chap-
ter are by giving examples for polygons with different visibility
graphs that cannot be distinguished in terms of the data obtained
from the agent’s sensors. In Chapter 5 we consider agents that
can measure the angles between lines of sight. We first show that
such agents can always draw a map if they know the number of
vertices beforehand. As a proof we give an algorithm that recon-
structs the visibility graph from the data collected during a tour
around the boundary. We then extend this result to agents that
have no prior information about the number of vertices. Essen-
tially, this is because the algorithm from before can be adopted
to collect additional data only when it is actually needed.

In the second part of the thesis, we consider agents that can move
along any line of sight. We interpret this scenario in the more
general context of exploring arc-labeled graphs with certain prop-
erties. Chapter 6 considers agents that can distinguish whether
the angle formed by two lines of sight is convex or reflex and that
can go back the way they came after a sequence of moves. We
show that such agents can always draw a map even without any
initial knowledge about the total number of vertices. We show
that the same is true for agents that can measure angles between
lines of sight and have a compass. In Chapter 7 we use techniques
from distributed computing in networks of processors in order to
develop general methods for the exploration of arc-labeled graphs
with an agent that can read arc labels and knows an upper bound
on the number of vertices. We show that in this setting agents
can always systematically collect all data available to them and
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we give an algorithm to accomplish this. We establish a certain
structure of arc-labeled graphs which allows us to expose useful
properties. We show that agents can generally find each other
in any graph that admits this structure. In Chapter 8 we direct
our attention back at the exploration of visibility graphs. We
show that a visibility graph labeled according to the capabilities
of agents which can always move back the way they came from
admits the desired structure from Chapter 7. Using our general
tools, we are able to deduce that such agents can always con-
struct a map, and that multiple such agents can always find each
other in the polygon. We then develop an alternative algorithm
for collecting the required data, which allows us to improve the
algorithm to a polynomial running time overall. Finally, in Chap-
ter 9, we consider agents that can distinguish whether the angle
formed by two lines of sight is convex or reflex. We are again
able to show that the corresponding visibility graphs admit the
desired structure, and use our general tools to show that multiple
such agents can always find each other. We then go on to show
that the data available to the agent always suffices to construct
a map.
It remains an open problem whether the basic agent model with-
out additional sensors already enables agents to always construct
a map. In Chapter 10, we give some starting points for further in-
vestigations of this question. In particular, we show that convex
polygons can always be mapped.





Chapter 2.

Preliminaries

In this chapter we introduce the formal foundation for the thesis.
In the process, we summarize well-known properties of polygons
and visibility graphs. While we sometimes give alternative proofs
for known results, none of the definitions and properties in this
chapter are original contributions of this thesis.

2.1. Notational Conventions

Throughout this thesis we use the following notational conven-
tions. We use [n] to denote the set of integers {1, 2, . . . , n} and(
S
k

)
to denote the set of subsets of size k of a set S. We refer

to k-tuples as sequences of length k. Let L = (e1, e2, . . . , ek)
and L′ = (e′1, e

′
2, . . . , e

′
k′) be two sequences and let S be a set.

We use the following notations. By |L| := k we denote the
length of L, by Li := ei we denote the i-th element of L, and
by e ∈ L we denote that Li = e for some i ∈ [k]. By L ⊕ L′ :=
(e1, e2, . . . , ek, e

′
1, e
′
2, . . . , e

′
k′) we denote the concatenation of L

and L′, and we say that L is a prefix of L ⊕ L′. If there exist
indices 1 ≤ i1 < i2 < . . . < ik ≤ k′ such that Lj = L′ij

for all
j ∈ [k], we write L ⊆ L′ and say that L is a subsequence of L′. By
L∩ S we denote the longest subsequence of L that contains only
elements of S. By L\L′ we denote the longest subsequence of L
that contains no elements of L′. Let L= be the longest sequence
that is a prefix of both L and L′, and let k= = |L=| be its length.
We say that L is lexicographically smaller than L′ (with respect
to a partial order ’<’ on the elements of L and L′) if k= < k′ and
either k = k= or Lk=+1 < L′k=+1. We say that L is periodical
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with period p, if p ≤ k/2, p divides k, and Li = Li+l·p for all
i ∈ [k] and all l ∈ [k/p]. If L is periodical with period p, we say
for every i ∈ [k] that the elements of {Li+l·p|0 ≤ l < k/p} are
periodical partners.

2.2. Polygons

We will define a polygon in terms of triangles. This approach
allows us to quickly derive properties of polygons which will be
used throughout the thesis. From now on all geometric consider-
ations are in the plane, and we speak of points meaning elements
of R2.

Definition 2.1. The convex combination of the points p1, p2, . . . ,convex
combination pn is the set of points p that can be expressed in the form

p =
n∑

i=1

wipi,

where wi ∈ R, wi ≥ 0 for each i ∈ [n], and
∑n

i=1 wi = 1.

Definition 2.2. The line segment pq is the convex combinationline segment
of two distinct points p and q. We refer to p and q as the endpoints
of pq.

Definition 2.3. A triangle 4pqr is the convex combination oftriangle
three distinct points p, q, r that is not a line segment. We call
p, q, r the vertices and pq, qr, rp the edges of 4pqr.

We now define a polygon in terms of triangles. Note that, for
the sake of a unified presentation, we assume no three points of
a polygon to be collinear.

Definition 2.4. We define a polygon recursively:polygon

1. Every triangle is a polygon.
2. Let P1,P2 be two polygons and e be an edge of both P1

and P2 with e = P1 ∩ P2. If no three vertices of P1 and
P2 lie on one line, then P = P1 ∪ P2 is a polygon. Every
vertex of P1 or P2 is a vertex of P and every edge of P1 or
P2 except for e is an edge of P.
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Definition 2.5. The boundary of a polygon is the union of its boundary
and interioredges, the interior of a polygon is the polygon without its bound-

ary.

We can now show that our definition of a polygon in terms of tri-
angles is equivalent to the standard definition in terms of polyg-
onal curves.

Definition 2.6. Consider a sequence of m points p1, p2, . . . , pm polygonal
curveand the curve C along the sequence of line segments p1p2, p2p3, . . ..

If C does not self-intersect except in p1 and pm, we call it a
polygonal curve. If p1 = pm is the only self-intersection of C,
then C forms a closed polygonal curve. The points p1, p2, . . . , pm

are the vertices of C, p1 and pm are the endpoints of C, and
p2, p3, . . . , pm−1 are the interior vertices of C.

We will need the following classical result that formalizes the
intuition behind closed curves.

Theorem 2.7 ([33, 52]). A closed curve that does not self-intersect
separates the plane into two connected components with the curve
as their common boundary. The component containing the point
(∞,∞) is referred to as the exterior and the other component as
the interior of the curve.

Proposition 2.8. The boundary of every polygon is a closed
polygonal curve, and every closed polygonal curve is the boundary
of a polygon.

Proof. For the first part of the proof we claim that every vertex
of a polygon P is the endpoint of exactly two of its edges. It
then follows that the boundary of a polygon is a closed curve.
By definition of a polygon, the boundary does not self-intersect,
which completes the proof of the first part of the statement. We
still need to prove our claim. We do this by induction on the
definition of P. If P is a triangle, then trivially every vertex of P
is an endpoint of exactly two of its edges. Otherwise, let P1,P2, e
as in Definition 2.4 and consider any fixed vertex v. Without
loss of generality, assume v is a vertex of P1. Then, by induction,
there are exactly two edges a, b of P1 which have v as an endpoint.
If e /∈ {a, b}, both a and b are edges of P and the claim holds for



10 Chapter 2. Preliminaries

v. Otherwise, v is an endpoint of e and hence must be a vertex
of P2, too. Therefore, by induction, there is a second edge c 6= e
of P2 which contains v. Together, v is the endpoint of the edges
{a, b, c} in P1 and P2 combined. By definition, in P, the set of
edges with v as an endpoint is {a, b, c} \e and thus has size two.
This concludes the proof of the claim as for any choice of v we
showed that exactly two edges of P have v as an endpoint.
For the second part of the proof we consider any closed polygonal
curve C and show that it is the boundary of a polygon. We prove
this by induction on the number of line segments in the definition
of C. A closed polygonal curve of three line segments forms the
boundary of a triangle, which by definition is a polygon. Now
assume that C consists of k > 3 line segments. First note that
C is a closed curve and hence, by Theorem 2.7, it separates the
plane into interior and exterior. Let v be an endpoint of two line
segments s, t of C that form an angle smaller than π in C. Let
u,w be the other endpoints of s and t, respectively. Consider the
line segment uw. We distinguish two cases. First, assume uw
does not intersect the exterior of C. Then we can define a new
closed polygonal curve C′ that uses the line segment uw instead
of s and t. By induction, C′ is the boundary of a polygon P ′. We
can identify P1 = P ′, P2 = 4uvw, e = uw in Definition 2.4, and
deduce that since C is the union of the boundaries of P1 and P2

without e, it is indeed the boundary of a polygon. Now, assume
uw intersects the exterior of C. This means that there are points
of C in the interior of 4uvw. Let z be the point closest to v
among them. The line segment zv is contained in 4uvw and, by
definition of z, it does not intersect the exterior of C. We split C
at z and v, and close the two resulting polygonal curves each with
the line segment zv. By induction, both curves are the boundary
of a polygon and setting e = zv in Definition 2.4 gives us that C
in turn is the boundary of a polygon.

From now on, we adopt the following conventions whenever we
consider a polygon P. By Proposition 2.8, the boundary of P
is a closed curve and we can thus fix an (arbitrary) orientation
of the boundary which we will call the boundary order of P.1

1In all illustrations and examples we will use the intuitive “counter-
clockwise” order along the boundary as our fixed orientation.
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Figure 2.1.: Illustration of RE/LE and REP/LEP. Observe that
in this example RE(v, u) = LE(v, u) = ∅.

Also, we fix some (arbitrary) vertex and call it v0. We denote
the number of vertices of P by n and speak of the size of P when
we mean n. We denote the vertices of P by v0, v1, ..., vn−1 in
the order they appear along the boundary starting at v0. For
each index i, the two vertices vi and vi+1 are neighbors (along
the boundary). We write chain(vi, vj) to denote the sequence of chain(vi, vj)

vertices vi, vi+1, . . . , vj−1, vj . For two points x, y on the boundary
of P let x̃y be the part of the boundary of P between x and
y in boundary order. If x̃y does not contain vertices of P, we
define chain(x, y) to be empty. Otherwise we define chain(x, y) :=
chain(u,w), where u,w are the first and last vertices of P on x̃y in
boundary order, respectively. In many cases only an upper bound
n̄ ≥ n on the size of a polygon is known. Here and throughout,
all operations on indices of vertices are understood to be modulo
n or n̄, depending on the context.

Definition 2.9. Let u, v be two distinct vertices of a polygon P visibility
with uv ⊂ P. We say that u and v see each other, and refer to
uv as the line of sight between u and v.

Consider Figure 2.1 along with the following definitions.

Definition 2.10. Let u, v be two vertices of a polygon P that see RE / LE
each other, and x be the point at which the ray −→uv first crosses the
boundary of P. We define the right extension of chain(u, v) to be
RE(u, v) := chain(u, x) \chain(u, v). Similarly, we define the left
extension of chain(v, u) to be LE(v, u) := chain(x, u) \chain(v, u).
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Definition 2.11. Let u, v be two vertices of a polygon P thatREP / LEP
see each other. We define the right-extended pocket REP(u, v) :=
chain(u, v) ∪ RE(u, v) and the left-extended pocket LEP(u, v) :=
chain(u, v) ∪ LE(u, v).

Proposition 2.12. Let u, v be two vertices of a polygon P that
are not neighbors and see each other. There exist two unique
polygons P1,P2, with P1 ∩ P2 = uv and P1 ∪ P2 = P. We say
that P1 and P2 are obtained by cutting P along uv.

Proof. By Proposition 2.8, we can split the boundary of P at u
and v and close each of the two resulting polygonal curves using
the line segment uv. The resulting closed polygonal curves do
not self-intersect, because no other vertex can lie on uv. By
Proposition 2.8, each of the new curves is the boundary of a
polygon. We denote these two polygons by P1 and P2. Because
the original boundary of the polygon did not self-intersect, and by
definition of uv, we have P1 ∩P2 = uv. By definition, P1 ∪P2 =
P.

Definition 2.13. A triangulation of a polygon P is a set oftriangulation
triangles T such that

1. the union of all vertices of triangles in T is equal to the set
of vertices of P,

2. the interiors of any two triangles in T do not intersect,
3. P is the union of all triangles in T .

Proposition 2.14. The edges of any triangle in a triangulation
of a polygon P are lines of sight in P.

Proof. The vertices of a triangle T in the triangulation of a poly-
gon P are vertices of P. Therefore, its edges are line segments
connecting vertices of P and, since T ⊆ P, they lie in P.

Proposition 2.15. Every polygon admits a triangulation.

Proof. The claim follows immediately from Definition 2.4.

Proposition 2.16. Let P be a polygon and s be a line of sight
between two vertices in P. The following holds:
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1. If s is an edge of P, every triangulation of P has exactly
one triangle with edge s.

2. Else, P admits a triangulation in which exactly two trian-
gles have s as an edge.

Proof. In order to prove the first statement we consider an edge s
of P and any fixed triangulation T . Certainly, s cannot intersect
the interior of any triangle in T . On the other hand, since T must
cover s, there must be a triangle containing s as an edge. Since
the interiors of two triangles may not overlap, there can only be
one such triangle in T .
Now consider the case that s is not an edge of P. Let u, v be
the endpoints of s. If we cut P along uv, we obtain two smaller
polygons P1 and P2 (cf. Proposition 2.12). By Proposition 2.15
and the first part of the proof, there is a pair of triangulations of
P1 and P2, respectively, that both contain exactly one triangle
that has s as an edge. The union of both these triangulations is
a triangulation of P which has exactly two triangles having s as
an edge.

Definition 2.17. An ear of a polygon P is a vertex vi for which ear
vi−1 and vi+1 see each other.

Proposition 2.18. Every polygon of size n ≥ 4 has two ears
that are not neighbors along the boundary.

Proof. We prove this by induction on the size of the polygon. In
a triangle, every vertex is an ear, since its two neighbors along the
boundary are neighbors of each other. By definition, a polygon
of size n = 4 is the union of two triangles that intersect along a
line segment s. Let u,w be the vertices that are not endpoints of
s. Both u and v are ears, since s is a line of sight in the polygon.
For the induction step, consider a polygon P of size n > 4. By
Definition 2.4, there is a line of sight s which is not an edge of P.
Consider the two polygons P1,P2 obtained by cutting P along s.
For i ∈ [2], we claim that Pi has an ear ui that is not an endpoint
of s. The claim follows immediately if Pi is a triangle. Otherwise,
by induction, Pi has two ears that are not neighbors along the
boundary, hence one of these ears cannot be an endpoint of s.
Now, since u1,u2 are no endpoints of s, they must be ears of P.
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By construction, u1 and u2 are not neighbors along the boundary
of P.

Proposition 2.19. Every polygon has two ears.

Proof. The claim follows immediately from Proposition 2.18 and
the fact that every triangle has three ears.

Proposition 2.20. Let v be an ear of a polygon P of size n.
Cutting P along the line of sight between v’s neighbors yields a
triangle and a polygon P ′ of size n− 1. We say P ′ is the polygon
resulting from cutting v off of P.

Proof. The claim follows from the proof of Proposition 2.12.

For three points x, y, z in the plane we use ]x(y, z) to denote the
angle at x formed by the rays −→xy and −→xz in this order. Angles are
measured in the same rotational direction as the fixed boundary
order that is assumed for polygons. We will call angles larger
than π reflex and all other angles convex. The next definition
should be clear intuitively.

Definition 2.21. Let P be a polygon and vu, vw be two linesangle in P
of sight in P. The angle between vu and vw in P is ]v(u,w) if
u ∈ chain(v, w), and ]v(w, u) otherwise.

Definition 2.22. The interior angle of a vertex vi of a polygoninterior
angle P is ]vi

(vi+1, vi−1). If ]vi
(vi+1, vi−1) > π, we say vi is reflex,

otherwise vi is convex.

Definition 2.23. A Euclidean shortest path in P between twoEuclidean
shortest path vertices u, v of P is a shortest curve in P with u and v as end-

points.

The following theorem shows that there is a unique Euclidean
shortest path and gives a characterization. We cite the result
and do not give a proof here.

Theorem 2.24 ([36]). The Euclidean shortest path S in a poly-
gon P between two vertices u, v is a uniquely defined polygonal
curve. Every interior vertex of S is a vertex of P, and the angle
in P between any pair of consecutive line segments in S is reflex.
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Proposition 2.25. Let u, v be two vertices of a polygon P that
see each other, and w ∈ RE(u, v) ∪ LE(v, u). Then, v is an
interior vertex of the Euclidean shortest path from u to w.

Proof. Let x be the point at which the ray −→uv first crosses the
boundary of P. By definition of RE and LE, any curve in P with
endpoints u and w needs to cross vx at some point y. The claim
now follows from the fact that the shortest curve from u to y
consists of uv and vy.

2.3. Visibility Graphs

We start by briefly giving some usual definitions concerning gen-
eral graphs. A directed graph G = (V,A) is a pair of sets, where
V contains the vertices of the graph and A ⊆ V × V contains
its arcs. An arc a = (u, v) ∈ A is an ordered pair of vertices
u, v ∈ V, u 6= v, where u is the source of a and v is the target
of a. We write u = source(a) and v = target(a) and say that
v is adjacent to u, and (u, v) is an arc at u. If (u, v) ∈ A and
(v, u) ∈ A, we say {u, v} is an edge of G. The neighborhood
Γ(u) of a vertex u ∈ V is the set of vertices adjacent to u, i.e.,
Γ(u) = {x ∈ V | (u, x) ∈ A}, and the degree d(u) of u is given by
d(u) = |Γ(v)|. An arc-labeled directed graph G = (V,A, λ) is a
triple consisting of the set of vertices V and the set of arcs A of a
directed graph, as well as a function λ that maps each arc a to its
arc-label λ(a), which can be any kind of object. A directed multi-
graph G = (V,A) is a directed graph for which A is a multiset
(i.e., A can contain the same arc multiple times) and for which
arcs may have the same source and target. In order to correctly
define arc-labeled multigraphs, we would need to extend arcs to
consist of two vertices and a third parameter used to distinguish
multiple copies of the same arc. For the sake of presentation,
we abuse notation and write arcs of an arc-labeled multigraph as
tuples, implicitly assuming that the arc-label function can distin-
guish between identical arcs using some hidden parameter.
The subgraph of a graph G = (V,A) induced by a set of vertices
V ′ ⊆ V is the graph G′ = (V ′, A′), with A′ = A ∩ (V ′ × V ′).
Consider a sequence w = (u1, u2, . . . , uk) of vertices in a directed
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graph G = (V,A). Then w is a walk in G if (ui, ui+1) ∈ A
for each i ∈ [k − 1]. The length of w is defined to be k − 1.
We say that u1, uk are the source and target of w, respectively,
and denote them by u1 = source(w) and uk = target(w). All
other vertices of w are interior vertices of w. We say w is a
path if it is a walk and contains every vertex at most once. We
say w is a cycle if (u1, u2, . . . , uk−1) is a path and uk = u1.
Finally, w is a Hamiltonian cycle if it is a cycle and contains
every vertex in V . If for every two vertices u, v ∈ V there is
a path in G from u to v, we say G is strongly connected. If
G = (V,A, λ) is an arc-labeled graph and w is a walk in G, we
say that λ(w) := (λ((u1, u2)) , λ((u2, u3)) , . . .) is a label-sequence
of G, or, more precisely, the label-sequence associated with w in
G.

Definition 2.26. A directed, arc-labeled graph G = (V,A, λ) islocal
orientation locally oriented if every two arcs emanating from the same vertex

have different labels.

Proposition 2.27. Let G = (V,A, λ) be a locally oriented graph,
let v ∈ V , and let Λ be a sequence. There is at most one walk w
in G with source(w) = v and λ(w) = Λ. We define Λ(v) := w
if such a walk exists, and Λ(v) := ∅ otherwise. Similarly, Λ(G)
denotes the set of all walks in G with associated label-sequence Λ.

Proof. We prove the claim by induction on the length of Λ. Let
Λ1 denote the first label in Λ and let Λrest denote the sequence
without Λ1. Because G is locally oriented, there is at most one
arc a1 = (v, u) at v with λ(a1) = Λ1. Every walk w as in the claim
must begin with this arc. If |Λ| = 1, we either have w = (v, u) or
there is no such arc. Now assume |Λ| > 1 and assume that the
claim holds for every shorter label-sequence. If there is no walk
w′ with source(w′) = u and λ(w′) = Λrest, there can also not be
a walk w as in the claim. Otherwise, by induction, we have that
there is a unique such walk w′. Then, the walk w = v⊕w′ is the
unique walk with λ(w) = Λ.

From now on we will simply use the term “graph” to refer to
directed, strongly connected multigraphs. We use the term “arc-
labeled graph” as a shorthand for a directed, strongly connected,
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locally oriented, arc-labeled multigraph. We will occasionally ex-
plicitly state attributes redundantly for emphasis. By G we de-
note the family of all arc-labeled graphs.

Definition 2.28. Let P be a polygon. The (unlabeled) visibility visibility
graphgraph Gvis of P is a graph (V,A) where V is the set of vertices

of P and A consists of all ordered pairs of vertices that see each
other in P.

Let P be a polygon and Gvis be its visibility graph. Every
edge of Gvis corresponds to a line of sight in P and we use
both terms interchangeably speaking of an angle between two
edges of Gvis when we mean the angle between the correspond-
ing lines of sight in P, etc. In order to avoid confusion be-
tween edges of P and edges of Gvis, we from now on refer to
the edges of P as its boundary edges. For a vertex vi of P,
we define vis(vi) := chain(vi+1, vi−1) ∩ Γ(vi) to denote the se-
quence of vertices visible to vi in boundary order. Accordingly,
visl(vi) is the l-th vertex visible to vi in boundary order starting
at vi. Conversely, Ovi

(vj) is used to denote the index x such that
visx(vi) = vj .

Definition 2.29. Let P be a polygon and Gvis = (V,A) be its arc-labeled
visibility
graph

visibility graph. The arc-labeled graph (V,A, λ) is an arc-labeled
visibility graph of P if there is a mapping ϕ with ϕ(λ(a)) = Ou(w)
for every arc a = (u,w) in A.

In other words, we require every arc (vi, vj) of an arc-labeled
visibility graph Gvis to encode Ovi

(vj) in its label, i.e., the arcs
at a vertex are ordered by the boundary order of their targets.
It is easy to see that such an arc-labeling is a local orientation
of Gvis. We will later encounter arc-labelings with more complex
labels that encode additional information. By F ⊆ G we denote
the family of all arc-labeled visibility graphs.

Definition 2.30. A family F ′ ⊆ F is complete if for every complete
familyunlabeled visibility graph G = (V,A) there is exactly one function

λ such that (V,A, λ) ∈ F ′.

Definition 2.31. Let Gvis be a visibility graph and C = (u1, u2, ordered
cycle. . . , uk) be a cycle in Gvis with source vi. If (u1, u2, . . . , uk−1) is

a subsequence of chain(vi, vi−1), we say C is an ordered cycle in
Gvis.
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Proposition 2.32. Let P be a polygon, Gvis be its visibility
graph, and C be an ordered cycle in Gvis. The edges along C
form a closed polygonal curve that is the boundary of a subpoly-
gon P ′ ⊆ P. The subgraph of Gvis induced by the vertices in C
is the visibility graph of P ′. We will refer to P ′ as the polygon
induced by C.

Proof. Every edge along C is a line of sight in P, and because C is
ordered, no two such lines of sight can cross. Therefore, the edges
along C form a polygonal curve C. By Proposition 2.8, C is the
boundary of a polygon P ′. Since C ⊂ P, it follows by Theorem 2.7
that P ′ ⊆ P. It remains to show that the visibility graph G′vis =
(V ′, A′) of P ′ is equal to the subgraph G′′ = (V ′′, A′′) of Gvis

induced by the vertices of C. Both V ′ and V ′′ are the set of
vertices of C, hence V ′ = V ′′.

For every a ∈ A′ we have that a is a line of sight of P ′. Since
P ′ ⊆ P, a must also be a line of sight of P and hence a ∈ A′′.
Now consider an arc a ∈ A′′. If a is a boundary edge of P,
its two endpoints must be neighbors along the boundary of P ′,
and we thus have a ∈ A′. Otherwise, since both endpoints of
a are on C, and since C is ordered, the curve C cannot cross a.
Assume, for the sake of contradiction, that a /∈ A′. Then, C must
be contained in one of the two polygons obtained by cutting P
along a. Hence, C is an ordered cycle also in the visibility graph
of this subpolygon. But in this subpolygon, a is a boundary edge
which contradicts a /∈ A′ as we saw before.

Proposition 2.33. Let vi be a vertex of a polygon P of size
n > 3. If d(vi) = 2, then d(vi−1) > 2 and d(vi+1) > 2.

Proof. By Proposition 2.16, every triangulation of P contains ex-
actly one triangle using the edge vivi−1 (or vivi+1). Let u be the
third vertex in one such triangle. Then vi sees u and so does
vi−1 (resp. vi+1). From d(vi) = 2 it follows that u must be a
neighbor of vi along the boundary, i.e., u = vi+1 (resp. u = vi−1).
Because of n > 3, u cannot at the same time be a neighbor of
vi−1 (resp. vi+1). Because vi−1 (resp. vi+1) sees u in addition to
its two neighbors, we have d(vi−1) > 2 (resp. d(vi+1) > 2).
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Proposition 2.34. No two consecutive vertices along an ordered
cycle C of length |C| > 3 have degree two in the subgraph induced
by the vertices of C.

Proof. The claim follows from Propositions 2.32 and 2.33.

Definition 2.35. Let P be a polygon and vi, vj be two vertices blocker
of P that do not see each other. A vertex vb ∈ chain(vi+1, vj−1)
is a blocker of (vi, vj) if no vertex in chain(vi, vb−1) sees a vertex
in chain(vb+1, vj).

Proposition 2.36. Let vi, vj , va, vb be four distinct vertices of a
polygon P with va ∈ chain(vi+1, vj−1) and vb ∈ chain(va+1, vj−1).
Then va and vb both block (vi, vj) if and only if va blocks (vi, vb)
and vb blocks (va, vj).

Proof. First assume that va and vb both block (vi, vj). By defini-
tion, no vertex in chain(vi, va−1) can see a vertex in chain(va+1, vj)
and hence in chain(va+1, vb), since vb ∈ chain(va+1, vj−1). In
other words va blocks (vi, vb). Similarly, vb blocks (va, vj).
Now assume that va blocks (vi, vb) and vb blocks (va, vj). For the
sake of contradiction assume that va (a similar argument holds
for vb) does not block (vi, vj). Then, there is a pair of vertices
vx ∈ chain(vi, va−1) , vy ∈ chain(vb+1, vj) that see each other. We
choose vx, vy such that |chain(vx, vy)| is minimal. Let v′x be the
last vertex in chain(vx, va) that is visible to vx and v′y be the first
vertex in chain(va, vy) that is visible to vy. Note that v′y 6= va

since vb blocks (va, vj). Both vx and vy have degree two in the
subgraph induced by the ordered cycle (vx) ⊕ chain

(
v′x, v

′
y

)
⊕

(vy). Also this ordered cycle has length greater three since v′x 6=
v′y by definition. The existence of such a cycle, however, is a
contradiction to Proposition 2.34.

Proposition 2.37. Let vi, vj be two vertices of a polygon P.
Every interior vertex of the Euclidean shortest path from vi to vj

is a blocker of (vi, vj) or of (vj , vi).

Proof. We prove the claim by induction on the length of the
Euclidean shortest path. For length one the claim is trivial,
and for length two it follows from the fact that the two line
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segments of the shortest path form an angle larger than π in-
side P (Theorem 2.24). Assume the Euclidean shortest path
u1 = vi, u2, u3, . . . , uk−1, uk = vj has length k − 1 > 3. We
can, without loss of generality, prove the claim for any vertex ul

with 1 < l ≤ dk/2e. It is clear that the Euclidean shortest path
from vi to ul+1 is vi, u2, . . . , ul, ul+1 and the Euclidean shortest
path from ul to vj is ul, ul+1, . . . , vj . Therefore, by induction,
we know that ul blocks (vi, ul+1) or (ul+1, vi) and ul+1 blocks
(ul, vj) or (vj , ul). If ul blocks (vi, ul+1) and ul+1 blocks (vj , ul),
we have vj ∈ chain(ul, ul+1), and hence ul blocks (vi, vj) since it
blocks (vi, ul+1). Similarly, if ul blocks (ul+1, vi) and ul+1 blocks
(ul, vj), we have that ul blocks (vj , vi). If ul blocks (vi, ul+1)
and ul+1 blocks (ul, vj), then both ul and ul+1 block (vi, vj) by
Proposition 2.36. Finally, if ul blocks (ul+1, vi) and ul+1 blocks
(vj , ul), then, again by Proposition 2.36, both ul and ul+1 block
(vj , vi).

We now have at our disposal a set of properties of visibility
graphs that will become useful in later chapters. The full char-
acterization of visibility graphs is a long standing open prob-
lem [1, 24, 23, 30, 31, 48], i.e., it is still unknown what proper-
ties exactly a graph needs to fulfill in order to be the visibility
graph of a polygon. Currently, four different necessary condi-
tions have been established in the literature, but there are still
graphs that satisfy them all without being valid visibility graphs.
Even though we do not investigate the characterization of visi-
bility graphs in this thesis, we give the known conditions for the
reader’s convenience. We first need a bit more terminology.

Definition 2.38. A minimal invisible pair is a pair of verticesminimal in-
visible pair vi, vj that do not see each other, such that both (vi, vj) and

(vj , vi) have at most one blocker.

Definition 2.39. Let (vi, vj , vl, vk) ⊆ chain(va+1, va−1) for someseparability
vertex va. Then the pairs vi, vj and vl, vk are called separable with
respect to va.

Definition 2.40. A blocker assignment is a mapping from min-blocker
assignment imal invisible pairs to vertices such that:

1. every minimal invisible pair vi, vj maps to the blocker of
either (vi, vj) or (vj , vi),
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2. if a minimal invisible pair vi, vj is mapped to a blocker vb

of (vi, vj), then every minimal invisible pair
(
v′i, v

′
j

)
with

v′i ∈ chain(vi, vb−1) , v′j ∈ chain(vb+1, vj) is mapped to vb,
3. no two minimal invisible pairs separable with respect to a

vertex va are mapped to va.

We are now prepared to report the currently strongest known set
of necessary conditions. For a detailed discussion with proofs,
refer to [30].

Theorem 2.41 ([23, 29, 48]). Every visibility graph fulfills the
following conditions:

1. every ordered cycle of length k ≥ 4 induces a subgraph with
at least 2k − 3 edges,

2. for every pair of vertices vi, vj that do not see each other,
there is a blocker of either (vi, vj) or (vj , vi),

3. there is a blocker assignment,
4. for any ordered cycle D, the number of different vertices in

D assigned to minimal invisible pairs of vertices in D is at
most |D| − 3.

As mentioned above, a graph is known which fulfills all necessary
conditions without being a visibility graph [49] (cf. Figure 2.2).

2.4. The Agent Model

An agent exploring an arc-labeled graph G = (V,A, λ) is an entity
that moves from vertex to vertex along arcs of G. More precisely,
we define the agent model by making the following assumptions:

1. The agent is at all times located at some (not necessarily
the same) vertex of G.

2. The agent has unlimited memory.
3. The agent can perform any kind of computation on the data

it has stored.
4. The only information about G that the agent can access is

the set of arc-labels LG(v) := {λ(v, u)| (v, u) ∈ A} of the
arcs at its current location v.
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Figure 2.2.: Example of a graph that fulfills all known necessary
conditions for visibility graphs without being one.

5. The agent can select an arc-label L ∈ LG(v) among the arc-
labels at its current location v, and move (instantaneously)
to the target of the corresponding arc. We say the agent
moves according to L.

Note that the agent can distinguish the arcs at its location only
by their labels. In particular, the agent cannot distinguish the arc
that leads to its previous location. We emphasize that an agent
exploring an arc-labeled graph G has no access to global vertex
identities. In fact, we are interested in the graph reconstruction
problem which is defined as

“Find an arc-labeled graph isomorphic to G.”
More precisely, we investigate different families of graphs with
respect to the question whether the graph reconstruction problem
can always be solved by an agent.

Definition 2.42. An exploration strategy is a terminating algo-
rithm that governs the movements and computations of an agent,
depending only on the information gathered during the execution
of the algorithm.

The time spent by an agent executing an exploration strategy A is
the total number of moves and computational steps performed by
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Figure 2.3.: Two non-isomorphic graphs that cannot be distin-
guished by an agent.

the agent upon termination of A. We say that A is polynomial for
a family G ′ ⊆ G of arc-labeled graphs if there is a polynomial p(n)
such that for an agent exploring any graph of G ∈ G ′, executing
A takes time at most p(n), where n is the size of G. We say
that A computes some quantity in G ′ if an agent exploring any
graph in G ′ computes the quantity during the execution of A.
Consider an agent exploring a fixed graph G ∈ G ′. We say that
A moves the agent to vertex v of G if the agent is located at v
upon termination of A. If A always moves an agent exploring any
graph in G ′ to its initial location, we say A is returning.

Definition 2.43. Let G ′ ⊆ G be a family of arc-labeled graphs.
We say an agent can solve the reconstruction problem in G ′ if
there is an exploration strategy that, when executed while ex-
ploring any graph G ∈ G , computes a graph isomorphic to G.

For example, on the class of arbitrary graphs and labelings, the
agent cannot solve the reconstruction problem. Intuitively, this is
because there are non-isomorphic graphs that are “indistinguish-
able” to the agent, i.e., any observations made in one of them by
the agent could originate from both (cf. Figure 2.3). We will now
capture this intuition formally.

Definition 2.44. Let G = (V,A, λ) , G′ = (V ′, A′, λ′) be two arc- indistinguish-
able verticeslabeled graphs and v ∈ V, v′ ∈ V ′. If every exploration strategy

computes the same result when executed by an agent with initial
location v and an agent with initial location v′, we say v and v′
are indistinguishable.
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Figure 2.4.: Four graphs that are indistinguishable to an agent
initially located at vertex v0 in terms of observations
made by the agent along any walk. Vertices which
appear indistinguishable to the agent can be merged
in order to obtain smaller but still indistinguishable
graphs. Graph D is prime and hence the minimum
base graph of all four graphs.

Definition 2.45. Two arc-labeled graphs G = (V,A, λ), G =indistinguish-
able graphs (V ′, A′, λ′) are said to be indistinguishable if there are indistin-

guishable vertices v ∈ V, v′ ∈ V ′.

The following proposition serves as a motivation for the definition
of indistinguishability. We defer the proof to Chapter 7.

Proposition 2.46. An agent can solve the reconstruction prob-
lem in a family G ′ ⊆ G if and only if there are no two non-
isomorphic, indistinguishable arc-labeled graphs in G ′.

Proof. The “if” follows from the definition of indistinguishable
graphs. The inverse follows from Theorem 7.3.

Definition 2.47. Let G ′ ⊆ G be a family of arc-labeled graphs.reconstruct-
ing a graph If G ∈ G ′ is not indistinguishable from any other non-isomorphic

graph in G ′, we say G can be reconstructed in G ′.

Consult Figure 2.4 along with the formal statements below.

Proposition 2.48. Let G = (V,A, λ) , G′ = (V ′, A′, λ′) be two
graphs and v ∈ V, v′ ∈ V ′. The vertices v and v′ are indis-
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tinguishable if and only if, for every label-sequence Λ, we have
Λ(v) 6= ∅ ⇔ Λ(v′) 6= ∅.

Proof. Assume v and v′ are indistinguishable and, for the sake of
contradiction, that there is a label-sequence Λ with Λ(v) 6= ∅ and
Λ(v′) = ∅, or vice versa. Then, moving according to the labels
in Λ is possible when starting from exactly one of the two ver-
tices. The exploration strategy that simply detects this difference
contradicts the assumption that v and v′ are indistinguishable.
Conversely, assume that for every label-sequence Λ we have Λ(v) 6=
∅ ⇔ Λ(v′) 6= ∅. Then any exploration strategy the agent executes
gets the same input for initial positions v and v′. Therefore all
its computations need to yield the same result.

Proposition 2.49. Let G = (V,A, λ) , G′ = (V ′, A′, λ′) be two
indistinguishable arc-labeled graphs. For every vertex v ∈ V there
is a vertex v′ ∈ V ′ such that v and v′ are indistinguishable.

Proof. Consider any fixed vertex v ∈ V . By assumption, there are
two indistinguishable vertices u ∈ V, u′ ∈ V ′. Since G is strongly
connected, there is a path p from u to v. We set Λ̄ := λ(p)
and have that Λ̄(u′) 6= ∅, since u and u′ are indistinguishable.
We claim that v′ := target

(
Λ̄(u′)

)
and v are indistinguishable as

well. Otherwise, there would be a label-sequence δ with δ(v) 6= ∅
and δ(v′) = ∅ or vice versa. With Λ := Λ̄ ⊕ δ, we would then
have Λ(u) 6= ∅ and Λ(u′) = ∅ or vice versa, which would be a
contradiction to the fact that u and u′ are indistinguishable.

Theorem 2.50 ([8]). Let G be an arc-labeled graph. There is a
unique smallest graph amongst the graphs indistinguishable from
G up to isomorphism.

Definition 2.51. The minimum base graph G? of an arc-labeled minimum
base graphgraph G is the smallest graph indistinguishable from G up to

isomorphism.

Definition 2.52. A prime graph is an arc-labeled graph G for prime graph
which G? is isomorphic to G.

Proposition 2.53. No two vertices of a prime graph are indis-
tinguishable.
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Proof. Assume there was a prime graph G = (V,A, λ) with two
indistinguishable vertices u, v ∈ V . Consider the subgraph G′ =
(V ′, A′, λ) induced by V ′ = V \ {u}. Let G′′ = (V ′, A′′, λ) with
A′′ := A′∪{ (w, v)| (w, u) ∈ A ∧ w 6= u}. It is easy to see that G′′
is indistinguishable from G, which is a contradiction since G′′ is
smaller than G.

Definition 2.54. Let G be an arc-labeled graph. Consider theclasses
equivalence classes formed by indistinguishable vertices of G. We
simply call them classes of G.

For a graph G and vertex v we write Cv to denote the class
containing vertex v. By v? we denote the vertex of G? indistin-
guishable from v, and we set Cv? := Cv.

Proposition 2.55. Let G = (V,A, λ) be an arc-labeled graph and
a = (u,w) ∈ A. Then, for every v ∈ Cu, there is exactly one an
arc b at v with λ(b) = λ(a). We have Ctarget(b) = Ctarget(a).

Proof. Let u be any fixed vertex of Cv. By definition, v and u
are indistinguishable, and therefore v must have an arc b with
label λ(a). Because G is locally orientated, there can only be
one such arc. The targets a and b must be indistinguishable in
order for u and v to be indistinguishable. Therefore, Ctarget(b) =
Ctarget(a).

In an arc-labeled visibility graph the arc-label of an arc (u,w)
encodes Ou(w). Proposition 2.55 allows us to write Cu(Ou(w)) :=
Cw. By the same token, every vertex in Cu has the same degree,
which we will denote by d(Cu).

Proposition 2.56. Let B be the sequence of classes along the
boundary in an arc-labeled visibility graph Gvis = (V,A, λ). Then,
there is an integer k and a sequence B? containing every class of
Gvis exactly once, such that B =

⊕k
i=1 B?.

Proof. Let v ∈ V and u ∈ Cv. Consider the Hamiltonian cycles
p, q that contain the vertices of Gvis in boundary order starting
with v, u, respectively. Recall that λ encodes the boundary order
of each arc. Every arc in both p and q must be the first one at its
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source in boundary order. Therefore λ(p) = λ(q). By Proposi-
tion 2.55, the classes of the vertices along p must be the same as
those along q. This holds for every pair of indistinguishable ver-
tices, and both p and q visit every vertex. The claim follows.

Proposition 2.57. All classes of an arc-labeled visibility graph
have equal size.

Proof. The proof is immediate from Proposition 2.56.

Proposition 2.58. Let Gvis = (V,A, λ) be a visibility graph with
a vertex v ∈ V that is not indistinguishable from any other vertex
in V . Then Gvis is a prime graph.

Proof. Because G? has a vertex for every class of G, it is suffi-
cient to show that every class of G has size one. By definition,
this is the case for Cv. Hence every class has size one, by Propo-
sition 2.57.

Proposition 2.59. Let Gn be the family of arc-labeled graphs of
size n. Every prime graph G ∈ Gn can be reconstructed in Gn.

Proof. We need to show that no graph G′ non-isomorphic to G
is indistinguishable from G. This follows immediately from The-
orem 2.50 and Definition 2.52.

Together, the last two propositions state that a visibility graph
Gvis can always be reconstructed if at least one vertex v? of it can
be distinguished from all other vertices. The derivation of this
insight was somewhat technical, but Figure 2.5 illustrates intu-
itively how an agent can easily reconstruct G up to isomorphism
(assuming v0 = v?).

2.4.1. Agents Exploring Polygons

In this thesis we are interested in simplistic agents that explore
a polygonal environment trying to draw a map. We model this
scenario as the exploration of a visibility graph by an agent try-
ing to solve the graph reconstruction problem. This means that,
by definition, the agent moves between vertices of the polygon
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Figure 2.5.: If the agent can distinguish some vertex v? (w.l.o.g.
v? = v0), it can easily determine where edges lead:
starting at a vertex vi, the agent can identify the
target of an edge by moving along this edge and then
along the boundary until it encounters v?, counting
the number of moves it makes.

along lines of sight. While located at a vertex v of the polygon,
the agent “sees” all other vertices visible to v and is able to or-
der them according to their order along the boundary, starting
and ending with v’s neighbors. The ability to order the visible
vertices is reflected by the fact that the arc-labeling of an arc-
labeled visibility graph is defined to encode the order of the arcs
emanating from each vertex.
In later chapters we will consider various extensions of the agent’s
capabilities. There are different kinds of extensions that we can
make. For example, we might allow the agent to measure certain
angles inside the polygon, or we might assume that the agent
knows the total number of vertices already beforehand. In order
to maintain our perspective of an agent exploring an arc-labeled
visibility graph Gvis, we will encode the additional information
accessible by the agent in the arc-labeling of Gvis. This will define
a complete family of arc-labeled visibility graphs. As formulated
in Proposition 2.46, the agent can solve the reconstruction prob-
lem, and thus map any polygon, if and only if no two graphs of
this family are indistinguishable.

Definition 2.60. Let F ′ ⊂ F be a family of arc-labeled visibil-encoding
agent models ity graphs and assume a fixed agent model. We say F ′ encodes

the agent model if for every polygon P, there is an arc-labeled
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Figure 2.6.: A polygon with the corresponding directed and arc-
labeled visibility graph. Every bidirected edge rep-
resents two arcs of opposite orientation.

graph Gvis ∈ F ′ which is a visibility graph of P and encodes the
observations that an agent can make at each vertex v of P in the
arc-labels of the arcs at v in Gvis.

We will now describe how the individual extensions to the agent’s
capabilities can be encoded in the arc-labeling of the visibility
graph. We can form any combinations of these extensions simply
by combining the corresponding arc-labels for every arc. Note
that irrespective of the extensions made to the agent’s capabili-
ties, the arc-labeling of an arc-labeled visibility graph is, by defi-
nition, guaranteed to encode the order of the arcs at every vertex.
This basic property can be achieved easily by labeling each arc
by its position in the local order at its source (cf. Figure 2.6).
Among the most natural extensions to the agent’s sensing is the
addition of a distance or angle sensor. A distance sensor allows
the agent to infer its Euclidean distance to every visible vertex,
while an angle sensor allows it to measure the angle inside the
polygon between any two arcs incident to its current location
(cf. Figure 2.7). We use four different types of angle sensors
(cf. Figure 2.8):

1. The standard angle sensor allows to measure every angle
exactly.

2. The angle-type sensor only allows to distinguish whether
an angle is greater π or not.
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Figure 2.7.: Illustration of distance and angle sensors.

Figure 2.8.: Local perception with different kinds of angle sensors.
From left to right: angle sensor, angle-type sensor,
inner-angle sensor, compass with global reference N .

3. The inner-angle sensor allows only to measure the interior
angle at the agent’s location.

4. The compass defines a global reference direction and allows
the agent to measure the angle of each arc with respect to
this direction.

The data made accessible by each of these sensors can be encoded
in the arc-labeling of the visibility graph in a similar fashion. As
an example, consider the data available through the angle-type
sensor. Let a1, a2, . . . , ad(v) be the arcs at vertex v. We can
simply extend the label of arc ai by a sequence s of bits of length
d(v), where sj = 1 if ai and aj form a reflex angle inside the
polygon, and sj = 0 otherwise (cf. Figure 2.9). For the distance
sensor, we can simply extend the label of each arc by its length.
Another sensor that we will use to extend the basic capabili-
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Figure 2.9.: Illustration of how to extend the basic arc-labeling
for an angle-type sensor.

Figure 2.10.: The combinatorial visibility vector of a vertex v en-
codes which vertices visible to v are neighbors on
the boundary.

ties of the agent is the cvv sensor. This sensor yields the com-
binatorial visibility vector of the agent’s current location v: a
sequence of bits cvv(v) ∈ {0, 1}d(v)+1 with the property that
cvv1(v) = cvvd(v)(v) = 1, and cvvj(v) = 1 for 1 < j ≤ d(v) if
and only if the (j − 1)-th and j-th vertices that v sees (in bound-
ary order) are neighbors on the boundary (cf. Figure 2.10). Intu-
itively, the cvv sensor provides information between which of the
vertices visible to v there are other vertices which are not seen
by v.
We mentioned before that the agent cannot distinguish the arc
that leads to its last location – we say the agent cannot look back.
In other words, the agent has no direct way of backtracking its
moves. It is natural to consider an extended model that does not
have this limitation. To this purpose we introduce a look-back
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Figure 2.11.: An illustration of how the look-back capability can
be encoded in the arc-labeling of the visibility graph
from Figure 2.6.

sensor that provides the identity of the arc the agent would have
to choose in order to backtrack its last move. Note that in a
visibility graph every arc has an arc of opposite orientation. We
can adapt the arc-labeling to reflect the look-back capability by
adding to every arc-label the standard label of the opposing arc
(cf. Figure 2.11).
Most of the time, we will assume the agent to be aware of the
total number of vertices n or at least an upper bound n̄ ≥ n.
We say the agent knows n or the agent knows n̄, respectively.
We can see this assumption as another extension to the agent’s
capabilities, and reflect it in the arc-labeling by adding n (or n̄)
to every arc-label (technically, adding it to the label of one arc
at each vertex would be sufficient).

2.4.2. Visibility Graph Reconstruction and
Rendezvous

Throughout this thesis we are concerned with the visibility graph
reconstruction problem. This problem is defined with respect to a
fixed choice of set of extensions to the basic agent model. As de-
scribed above, these extensions can be reflected in the arc-labeling
of an arc-labeled visibility graph. We say that an agent can solve
the visibility graph reconstruction problem, if it can solve the re-
construction problem for any family F ′ ⊆ F that encodes the
agent model. We say that the agent can reconstruct an arc-labeled
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visibility graph Gvis if for every family F ′ ⊆ F that encodes the
agent model there is no other graph in F ′ that is non-isomorphic
to, and indistinguishable from Gvis.

Another very natural problem that becomes important when mul-
tiple agents need to cooperate is the rendezvous problem. We
always assume agents to be deterministic, identical, and indistin-
guishable, in particular all agents execute the same deterministic
exploration strategy. We only allow an agent to count the num-
ber of agents present at every vertex visible to it. We distinguish
two variants of the problem. The strong rendezvous problem re-
quires all agents to gather at the same vertex, while the weak ren-
dezvous problem requires the agents to position themselves that
they are all mutually visible to each other. We say that agents
can strongly/weakly meet in an arc-labeled graph G if there is a
deterministic exploration strategy A that, for every combination
of starting locations, moves any number of agents executing A
to positions that establish (strong or weak) rendezvous. We say
that agents can solve the strong/weak rendezvous problem in a
family of arc-labeled graphs F ′ ⊆ F if there is a deterministic
exploration strategy A that, for every graph in F ′ and every
combination of starting locations, moves any number of agents
to positions that establish (strong or weak) rendezvous.

Proposition 2.61. If agents can strongly meet in an arc-labeled
graph G, then G is a prime graph.

Proof. Assume that G is not prime and let C be a class of G. We
have |C| > 1. Position one agent on each vertex of C and assume
the agents make movement decisions simultaneously. Because
the vertices of C are indistinguishable, and because all agents
execute the same exploration strategy, all agents make the same
movement decisions and hence their locations always remain in-
distinguishable. Hence, the agents maintain their formation in-
definitely.

We will see in Section 7.3 that the converse holds as well.
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2.4.3. Operations of the Agent

So far we have adopted an omniscient view on polygons and their
visibility graphs. In order to express the local nature of an agent’s
perception when speaking about strategies for the agent, we now
introduce some formalism for atomic operations of the agent. In
the following, assume the agent is located at some vertex v and
let i, j ∈ [d(v)].
By ’degree’ we denote d(v). By ’move to i’ we denote the
operation that moves the agent along the i-th arc at v. By
’look back’ we denote the operation yielding the index b ∈ [d]
such that visb(v) is the vertex the agent visited before v. Let
∠v(i, j) := ]v(visi(v) , visj(v)) (note the difference between ’]’
and ’∠’). By ∠(i, j) we denote the operation yielding ∠v(i, j).
By ∠reflex(i, j) we denote the operation yielding ’true’ if ∠v(i, j)
is reflex and ’false’ otherwise. By ∠ we denote the operation
yielding ∠v(1, d(v)). By ∠(i) we denote the operation yielding
the angle between the i-th arc at v and a global reference di-
rection. Finally, by cvvl, l ∈ [d(v) + 1] we denote the operation
yielding cvvl(v).
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Related Work

A variety of minimalistic agent models have been studied, focus-
ing on different types of environments and objectives [3, 27, 34,
50]. Some attempts at defining hierarchical relationships between
models have been made [9, 22, 40]. The basic agent model that we
introduced in the previous chapter originates from [50] and was
studied previously in [9, 28, 35, 50]. We now give a brief overview
over the most prominent results concerning simple agents.
One of the first problems that was considered for mobile agents
is the art-gallery problem which asks to place guards at some ver-
tices of a polygon of size n, such that every point of the polygon
is visible to at least one of the guards. The famous art-gallery
theorem asserts that every polygon can be guarded in this way
by placing at most bn/3c guards [13, 25]. While the theorem
assumes full knowledge of the geometry of the polygon, Ganguli
et al. considered the art-gallery problem in an initially unknown
polygon, where the guards are autonomous mobile agents [27].
The guards in this study are allowed to move freely inside the
polygon and to communicate over any distance as long as they
see each other. Ganguli et al. showed that bn/2c such mobile
guards can always self-deploy at vertices such that the polygon is
guarded. This result raises the question whether the gap between
bn/2c and bn/3c is inherent, due to the fact that the global ge-
ometry of the polygon is initially unknown to the agents. Suri et
al. showed that this is not the case, and in fact bn/3c guards can
self-deploy to guard the polygon [50]. The paper considered the
basic agent model of Chapter 2 and additionally equipped each
agent with a cvv sensor and a pebble. The agent can drop or pick
up the pebble at its current location and distinguish vertices that
hold a pebble. Note that the resulting agent model is weaker than
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the one employed by Ganguli et al. Suri et al. showed that their
guards can compute the visibility graph of any polygon and thus
also a triangulation of the polygon. As shown by Fisk, the trian-
gulation can be colored with three colors [25], which is sufficient
in order to conclude a bound of bn/3c guards for the art-gallery
problem.

Another common problem is to determine the number of vertices
n of a polygonal environment. Evidently, computing n is a trivial
task for an agent with a pebble – such an agent can even infer n
if the environment has holes [50]. Similarly, the task is easy when
some vertex is locally distinguishable from all other vertices and
an upper bound on n is known to the agent, where the upper
bound is needed in order for the agent to find this distinguish-
able vertex. In this thesis, we show that, without prior knowledge
about n, an agent can infer the size of a polygon in the follow-
ing three cases: (a) the agent is restricted to moving along the
boundary only and can perform angle measurements (Chapter 5),
(b) the agent can move freely along edges of the visibility graph,
can look back and has an angle-type sensor (Chapter 6), (c) the
agent can move freely along edges of the visibility graph, has an
angle-type sensor and has a compass (Chapter 6). An agent with
cvv sensor and look-back sensor, on the other hand, cannot infer
the size of a polygon in general [9]. While the sensing capabilities
of the agent model introduced in Section 2.4.1 are very simple
and hence inherently robust, we require that all visible vertices
can be perceived. Komuravelli et al. [35] considered a faulty sce-
nario in which it can happen that the agent perceives two distant
vertices as a single virtual vertex (e.g., vertices that appear very
close to each other). Komuravelli et al. studied whether an agent
equipped with pebbles can infer the size of the polygon, showed
that with a single pebble this is not possible, conjectured that two
pebbles are also still insufficient, and showed that three pebbles
allow computing the size of the polygon.

Yet another problem in polygonal environments is to count the
number k of target points inside the polygon. Of course, the
sensing model of the agent has to be extended in order to make
it aware of the target points first. For example, at any vertex,
the agent might be able to perceive a list of visible targets and a
list of visible vertices, rather than visible vertices only. Gfeller et
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al. [28] showed that an agent with a pebble cannot approximate
the number of points within a factor of 2− ε, for any ε > 0. Let
a ρ-approximation of the number of points k refer to an upper
bound z with k ≤ z ≤ ρk. The results of Gfeller et al. im-
ply that an agent knowing the vertex-edge visibility graph of the
polygon, together with its initial position in it, can compute a
2-approximation of the number of points. The vertex-edge vis-
ibility graph is a bipartite graph with a node for every vertex
and every boundary edge of the polygon, with an edge between a
node corresponding to a boundary edge and a node correspond-
ing to a vertex if at least one point on the boundary edge is
visible to the vertex. Note that the vertex-edge visibility graph
induces the visibility graph [42]. Komuravelli et al. later showed
that the vertex-edge visibility graph is not needed to compute
a 2-approximation [35] – knowing the visibility graph instead is
already sufficient, at the cost of an exponential running time.
The idea is simply to iterate over all vertex-edge visibility graphs
that are compatible with the given visibility graph and run the
2-approximation of Gfeller et al. on each of those. The output is
the smallest estimation of the number of points encountered in
the process.

An important problem in unbounded, two-dimensional environ-
ments is the coordination of multiple agents. There is a large
variety of studies concerned with this setting, and we can only
mention a few examples here. The most prominent problem in
this context is the rendezvous or convergence problem in which
the agents need to meet in one point or at least converge to one
point. Various agent models have been considered. Some as-
sume all agents to act in a synchronized fashion, where others
do not [37, 38]. Some agent models make restrictions on avail-
able memory or the range of the agent’s vision [3]. Other studies
are concerned with robustness issues in terms of measurement
imprecisions [2, 14]. Instead of requiring the agents to gather
at a common location, sometimes they are required to position
themselves according to a given pattern [51].
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3.1. Reconstructing Polygons from Data

One major challenge for an agent mapping an unknown environ-
ment is that it needs to collect the required data in a systematic
fashion. Assume instead that we are given some data that was
measured in some way or other in the environment. We can now
ask wether we can construct a map or even the exact geometry of
the environment from this data alone. This is a typical problem
in computational geometry. We now list some prominent results
for the reconstruction of polygons from measurement data.

3.1.1. Constructing a Consistent Polygon

There are two main variants of the general problem of recon-
structing a polygon from measurement data. The first variant
asks to find some polygon P ′ that is consistent with the data
measured in the original polygon P. Being consistent means that
this data could have originated from a series of measurements in
P ′. Studies that consider this variant of the reconstruction prob-
lem usually focus on the complexity of the problem rather than
the question whether a unique solution exists.
The first reconstruction problem that was studied in this context
asked to construct a polygon which is consistent with a given
visibility graph. The problem is only known to be in PSPACE,
its complexity is still open [23].
Jackson and Wismath studied the problem of reconstructing an
orthogonal polygon from the “stabbing information” at all ver-
tices [32] (cf. Figure 3.1 (left)). An orthogonal polygon is a
polygon P for which every boundary edge is either horizontal
or vertical. The orthogonal polygon is assumed to have no three
vertices lying on a vertical or horizontal line, i.e., in particular,
every vertex has a horizontal and a vertical boundary edge ad-
jacent to it. A horizontal stab of vertex v is the horizontal ray
starting at v and going to the “opposite” side of v’s horizontal
boundary edge. A vertical stab is defined analogously. The stab-
bing information of vertex v is the pair of boundary edges of P
with which the horizontal and the vertical stab of v intersect first.
If there is no intersection, a placeholder “phantom” line-segment
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Figure 3.1.: Constructing consistent polygons from different
kinds of data. From left to right: reconstruction of
orthogonal polygons from stabbing information; re-
constructing of polygons from line intersections; re-
construction of polygons from visibility polygons of
certain points in the interior.

is provided instead. Jackson and Wismath present an algorithm
with a running time of O(n log n) that computes an orthogonal
polygon P ′ of size n that is consistent with the given stabbing
information at every vertex. Note that there can be more than
one polygon consistent with this stabbing information.

Sidlesky et al. considered a similar reconstruction problem in
which all intersections of P with a given set of lines L are known
[46] (cf. Figure 3.1 (middle)). One may assume that every bound-
ary edge of P is intersected by at least two lines from L, as other-
wise there are infinitely many polygons P ′ that intersect L in the
same way that P does. The authors present an exponential-time
algorithm that constructs all polygons P ′ that are consistent with
the given intersections, including non-simple polygons.

Biedl et al. considered various types of measurements in a poly-
gon, and considered the complexity of the problem to decide
whether or not there is a polygon that is consistent with the
given data [6]. Examples for the measurements considered are
(1) a set of points on the boundary of the original polygon, such
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that every boundary edge contains at least one point, and (2) a
set of visibility polygons, i.e. the regions of the polygon that are
visible from certain points in the polygon (cf. Figure 3.1 (right)).
The problem was shown to be NP-hard for each type of data con-
sidered in the study, if no restriction on the shape of the polygon
is enforced. Polynomial-time algorithms were given for special
cases only, such as when the polygon is required to be orthogonal
and monotone, or star-shaped. Other special cases remain NP-
hard, such as when the polygon is required to be orthogonal but
not monotone.

Rappaport considered the orthogonal-connect-the-dots problem
[44]: Given a set of points in the plane, find an orthogonal polygon
whose vertices coincide with these points (cf. Figure 3.2 (left)).
Note that here the points are not given in a particular order.
Rappaport was able to show that the problem is NP-complete.

3.1.2. Reconstructing the Polygon Uniquely

The second variant of the reconstruction problem asks to recon-
struct the original polygon P from data measured in P. Solving
this problem not only involves constructing a consistent polygon,
but also requires to show that among all polygons, P itself is
the only polygon that is consistent with the data measured in
P. This type of reconstruction problem arises naturally in the
context of autonomous agents mapping polygonal environments:
It is not enough for an agent to construct some polygon which
is consistent with its observations, the agent wants to find the
exact polygon it is located in. Here the focus is on the question
whether reconstruction is at all possible from given data, finding
efficient algorithms is only of secondary interest.

Recall the orthogonal-connect-the-dots problem mentioned above
(cf. Figure 3.2 (left)). O’Rourke considered the problem further
and showed that if no three consecutive vertices on the bound-
ary of the polygon lie on a vertical or horizontal line, then the
coordinates of the vertices determine the polygon uniquely [41].
What is more, he showed that in this case the problem is not NP-
hard anymore, by providing an algorithm that finds the unique
solution of the reconstruction problem in time O(n log n).
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Coullard and Lubiw studied the problem of deciding whether a
given edge-weighted graph is the distance visibility graph of a
polygon, i.e. a visibility graph with edge-weights equal to the
length of the corresponding line segments in the plane [15]. Note
that this question is easy to decide in exponential time, by trying
out all Hamiltonian cycles and repeatedly triangulating the graph
based on the current cycle. If one of these triangulations can be
embedded in the plane as a polygon, and only then, the given
graph is a distance visibility graph. Furthermore, the resulting
polygon is uniquely defined by the distances. Coullard and Lubiw
gave a necessary condition for a graph to be the visibility graph
of a polygon, and, based on this property, the authors proposed
a polynomial-time algorithm that decides whether a given edge-
weighted graph is the distance visibility graph of a polygon.
Snoeyink showed that every polygon P on n vertices is uniquely
determined by its triangulation given as a graph, its inner angles,
and its (n− 3) cross-ratios [47] (cf. Figure 3.2 (right)). A cross-
ratio is defined in terms of quadrilaterals, i.e. pairs of triangles
with a common edge in the triangulation. If a, b, c and a, d, e are
the edges of the triangles of a quadrilateral in counter-clockwise
order, its cross-ratio is the product of the lengths of b and d
divided by the product of the lengths of c and e. An inner angle
of a polygon at vertex v is the angle inside P which is enclosed
by the two boundary edges adjacent to v (cf. Section 2.4.1).
In Chapter 5 we focus on reconstructing a polygon P from an
ordered list of angle measurements, and we show that P is in-
deed the unique polygon consistent with this data. Moreover,
we develop a polynomial-time algorithm that finds the original
polygon P.

3.2. Exploration of Graphs

In this thesis we consider agents exploring a polygon by moving
along the edges of the visibility graph. The more general prob-
lem of exploring graph-like environments has received consider-
able attention in the past. In the following, we mention some key
results in this area. Research has mostly focused on determining
under which circumstances an agent can explore and reconstruct
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Figure 3.2.: Reconstructing a polygon uniquely from different
kinds of data. Left: reconstruction of an orthogonal
polygon from the coordinates of its vertices. Right:
reconstruction of a polygon from the triangulation
of its visibility graph with cross-ratios and inner an-
gles. The top figure shows the triangulation of the
visibility graph, where each edge is labeled by the
cross-ratio of the corresponding quadrilateral. The
bottom picture shows the underlying triangulation of
the polygon, where each edge is labeled by its length.
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an arbitrary connected graph. A very basic form of graph explo-
ration is to traverse all the edges at least once; the corresponding
problem is called the graph traversal problem. A stronger form
of exploration is the reconstruction of (an isomorphic copy of)
the graph, called the map construction problem. Similar to the
reconstruction problem for visibility graphs, an important goal
is to find minimum capabilities that the agent needs in order to
solve one or both of these problems.

Intuitively, exploring a general graph-like environment is more
difficult for the agent, since it cannot exploit the structure of the
underlying geometry. For example, a visibility graph always con-
tains a Hamiltonian cycle (the boundary), and we even assume
the agent to be able to distinguish the edges of this cycle from
other edges by their labels (recall that the boundary edges corre-
spond to the first and last arc in the local order at each vertex).
In the general setting, there is no such assumption on the label-
ing, except that the edges incident to each vertex are assumed
to be mutually distinguishable, i.e., the graph is assumed to be
locally oriented. On the other hand, in the general setting, the
agent is usually assumed to be able to look back. We will see
shortly that in contrast to the exploration of visibility graphs, in
general graphs the ability to look back alone does not empower
the agent to reconstruct the graph. Because of the ability to look
back, we can model the general setting as the exploration of an
undirected, edge-labeled graph of n vertices and m edges.

The exploration becomes drastically less involved when the nodes
of the graph are labeled by distinct identifiers. In this case, the
map construction problem is equivalent to the traversal problem,
since the map can easily be constructed as soon as the identifiers
of the endpoints of every edge are known. As the agent is capa-
ble of looking back, it can retrace its movements and solve the
traversal problem by employing a conventional depth-first search
algorithm. In fact, the depth-first traversal is asymptotically op-
timal in terms of the number of required moves, as it needs Θ(m)
moves – obviously no other solution can do better as it has to
travel along each edge at least once. A modified version of the
algorithm which takes m + O(n) moves has been proposed by
Panaite and Pelc [43]. Another variation of the traversal prob-
lem, the so-called piece-meal exploration, has been studied by
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Awerbuch et al. [4]. Here the agent can only execute a certain
number of moves before it has to return to its home-base (e.g.,
for refueling).
The map construction problem becomes more challenging in an
anonymous graph in which nodes are unlabeled. In this case,
traversing the graph is not equivalent to map construction except
for some special classes of graphs – like trees. If an upper bound
on the diameter of the graph (for example n or the diameter
itself) is known, traversal can always be achieved by trying all
possible walks up to a length equal to this bound. Note that
the knowledge of an upper bound on the diameter is necessary
for terminating the traversal, without this bound the agent can
still travel all edges within a finite time, but it does not know
when this point is reached and can thus not stop after any finite
number of steps. While we generally do not assume a bound
on the memory of the agent, it was shown that it needs at least
Ω(log n) bits to traverse a graph of size n [26]. The long standing
open question about the space complexity of graph traversal was
closed by Reingold [45], who showed a matching upper bound of
O(log n) bits on the required memory.
Even though all (connected) graphs can systematically be tra-
versed by an agent that knows an upper bound on the num-
ber of vertices, the map construction problem cannot be solved
in general. We have seen examples for indistinguishable, non-
isomorphic, directed graphs in Section 2.4 (cf. Figure 2.4). We
will show later that in polygonal environments, the capability
of “looking back” empowers the agent to distinguish any pair of
visibility graphs. Intuitively, this does not carry over to general
graphs due to symmetries that can occur. As an example for
indistinguishable undirected graphs, consider the pair of graphs
G,H shown in Figure 3.3. Both graphs are non-isomorphic, but
an agent traversing graph G makes the exact same observations
as an agent traversing graph H, provided that both agents start
on corresponding vertices. Thus, both these graphs are non-
recognizable, i.e., the map construction problem cannot be solved
for either of them. The class of all recognizable graphs has been
characterized by Yamashita and Kameda [53].
One way of breaking symmetries in a graph is to equip the agent
with some means of marking a node, i.e., making a node locally
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Figure 3.3.: Two non-isomorphic graphs G,H that are indistin-
guishable together with their minimum base graph
B. The numbers on the nodes represent the equiva-
lence classes with respect to symmetry. Edge labels
are omitted for clarity.

distinguishable from all other nodes (cf. Figure 2.5). For instance,
the agent may have a pebble – a simple device that can be placed
on a node such that the agent recognizes the node whenever it
comes back to it. A stronger model assumes that there is a white-
board at each node, which allows the agent to leave information,
that it can access and modify on subsequent visits of the node.
The simple model with a single pebble is already enough to fully
break all symmetries and enable the agent to construct a map of
any graph: Starting with a map containing just the initial node,
the agent extends its map one edge at a time by traversing an
edge, marking the other end with the pebble, and then back-
tracking and checking whether the now marked node was visited
before and thus already is part of the map. The model fails if
there are multiple identical and indistinguishable agents (with in-
distinguishable pebbles) working in parallel. In this case not even
a whiteboard at each node is sufficient [16].
If the agents cannot look back, i.e., in directed graphs, an agent
can still always systematically traverse the graph assuming an
upper bound on its size is known, by trying all possible graphs
and starting locations and traversing all walks for each choice.
There are families of graphs in which traversal algorithms can
in fact not do better asymptotically, i.e., any algorithm requires
an exponential number of moves in at least some of the graphs.
Bender et al. showed that if the size of the graph is known a
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priori, an agent with a pebble can always construct a map of
a directed, strongly connected and locally oriented graph using
a polynomial number of moves [5]. Without prior knowledge
on the total number of vertices n, they showed that Θ(log log n)
pebbles are necessary and sufficient to solve the map construction
problem.
We will see in Chapter 7 that an agent exploring any directed
graph G can always construct the minimum base of G, provided
that at least an upper bound on the number of vertices is known.
When operating in an undirected graph, the same result of course
carries over.
The initial knowledge of an agent does not necessarily have to
be about the number of vertices n. An important question is
how much prior information is necessary for mapping any general
(undirected) graph. It has recently been shown that, in the worst
case, solving the map construction problem can require initial
knowledge of Ω(m log n) bits [17]. This is as much information
as it takes to store the graph itself, if we store a list of edges for
instance.



Part I.

Boundary Exploration
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The first part of the results presented in this thesis concerns
agents with restricted movement capabilities. More precisely, we
limit the movement of agents to be along boundary edges of the
polygon only. We will refer to such restricted agents as agents
with boundary movement. Moving along the boundary implic-
itly allows agents to look back, i.e., to identify where they came
from after each move. Another reason for considering agents with
boundary movement is that moving along the boundary allows an
agent to systematically collect the observations made at every ver-
tex. Of course, we have to counterbalance a movement restriction
with extensions to the sensory of the agent if we hope to obtain
agents that are able to solve the visibility graph reconstruction
problem.

Definition. Let F be a family of arc-labeled visibility graphs. boundary
movementWe say an agent with boundary movement can solve the recon-

struction problem in F if there is an exploration strategy A that
involves only boundary moves and that, when executed by an
agent exploring any graph G ∈ F , computes a graph isomorphic
to G .

The family of visibility graphs is always implicitly fixed by the
agent’s capabilities, as explained in Section 2.4.1.
There is a particularly clean way of dealing with agents with
boundary movement and knowledge of n, irrespective of the agent’s
other capabilities. In this setting, we can define a measurement
at a vertex to be the information observed by the agent’s sen-
sors when located at the vertex. Because of the restriction to
boundary moves, the data available to the agent is encoded in a
sequence of measurements, one for each vertex in boundary order.
Because the agent knows n, it can simply collect this data in one
tour of the boundary. Any exploration strategy solving the re-
construction problem can hence be split in a data collection phase
and a computation phase. The data collection phase is always the
same: the agent is sent once around the boundary, collecting its
observations in the process. The computation phase then only
depends on the sequence of measurements and does not involve
any further exploration of the polygon. Solving the reconstruc-
tion problem essentially reduces to finding an algorithm for the
computation phase.





Chapter 4.

The Weakness of
Combinatorial Visibilities∗

In this chapter we consider agents with cvv sensor and knowledge
of the total number of vertices n. We saw in Section 2.4.1 how
to adapt the arc labeling of the visibility graph to account for
these extensions. It will turn out that the agent model is weak in
the sense that an agent that only ever moves along the boundary
cannot solve the reconstruction problem. Because n is known
beforehand, the agent can readily collect all the data it can hope
for. This data consist of a sequence of the observations made
with the cvv sensor on a tour along the boundary. The following
definition makes this formal.

Definition 4.1. The combinatorial visibility sequence cvs of a
polygon consists of the combinatorial visibility vectors of its ver-
tices in boundary order, i.e.,

cvs := (cvv(v0) , . . . , cvv(vn−1)) .

4.1. Agents with cvv Sensor

We obtain the following negative result for agents with cvv sensor.

Theorem 4.2. An agent with boundary movement, cvv sensor,
and knowledge of n cannot solve the visibility graph reconstruction
problem.

∗The results presented in this chapter appeared in [7, 18].



52 Chapter 4. The Weakness of Combinatorial Visibilities

Figure 4.1.: Two polygons PA and PB with identical cvs and dif-
ferent visibility graphs.

Proof. It is sufficient to provide two polygons with different visi-
bility graphs, but with the same numbers of vertices and with the
same combinatorial visibility sequence. In Figure 4.1 we present
two such polygons PA and PB . The proof is by inspection of the
polygons together with the list of cvv’s and sequences of visible
vertices for each vertex in Figure 4.2. Note that our construction
is not in general position in the sense that it contains collinear
triples of points, however the polygons can easily be perturbed
slightly without changing visibilities or cvv’s.

The idea behind the construction of the polygons is to use multi-
ple copies of a “pocket” of vertices (cf. Figure 4.1 for an illustra-
tion). Each pocket forms a convex curve, but the vertices con-
necting the pockets form reflex angles, resulting in a non-convex
polygon P. The vertices inside a pocket thus do not see all ver-
tices of P, they see (apart from their own pocket) only parts of
exactly two pockets. We use the fact that the vertices have no
way to distinguish what pockets they are “looking into” and we
modify the polygon PA by shifting the vertex c (cf. Figure 4.2) so
that in PB the shifted vertex c̃ looks into different pockets, while
not changing the combinatorial visibility vector of any vertex.

We determined experimentally, by exhaustive enumeration of vis-
ibility graphs, that no counterexample exists with ten or fewer
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v cvv(v) vis(v)

a
ã

1111101111011111
abcdeadeabcabcde

ãb̃c̃d̃ẽãc̃d̃ẽãb̃ãb̃c̃d̃ẽ

b

b̃
11110111101

bcdeadeabca

b̃c̃d̃ẽãc̃d̃ẽãb̃ã

c
c̃

11101111011
cdeadeabcab

c̃d̃ẽãc̃d̃ẽãb̃ãb̃

d

d̃
11011110111

deadeabcabc

d̃ẽãc̃d̃ẽãb̃ãb̃c̃

e
ẽ

10111101111
eadeabcabcd

ẽãc̃d̃ẽãb̃ãb̃c̃d̃

Figure 4.2.: The sequences cvv(c) and vis(v) of every vertex
within a pocket of PA and PB , where a, b, c, d, e each
refer to all four vertices at the corresponding position
within their pocket in PA and ã, b̃, c̃, d̃, ẽ refer to their
counterparts in PB .
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Figure 4.3.: Two polygons with twelve vertices each that have
identical combinatorial visibility sequences and dif-
ferent visibility graphs.

vertices. Figure 4.3 gives another example with twelve vertices.
The example essentially uses the same principle as the one above,
but its construction is somewhat more tedious.

Theorem 4.2 shows that the knowledge of the combinatorial visi-
bility sequence is not sufficient to reconstruct the visibility graph
of a polygon. A natural question is how to extend this informa-
tion “minimally” in order to make the reconstruction possible. In
the following we show that adding the knowledge of the interior
angles of a polygon is still not enough. We prove the following
theorem.

Theorem 4.3. An agent with boundary movement, cvv sensor,
inner-angle sensor, and knowledge of n cannot solve the visibility
graph reconstruction problem.

Proof. Figure 4.4 shows a modified version of the polygons PA

and PB of Figure 4.1. As one can easily check, the polygons
still have the same combinatorial visibility sequence and differ-
ent visibility graphs. In addition, they also have the same inner
angles at the vertices. The existence of such polygons proves the
theorem.
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Figure 4.4.: Two polygons with identical combinatorial visibility
sequences and identical interior angles but different
visibility graphs. The visibilities are similar to those
of PA and PB .

Note that Theorems 4.2 and 4.3 do not imply that an agent that
is not constrained to move along the boundary and is equipped
with sensors for measuring cvv’s and/or inner angles cannot re-
construct the visibility graph. Such an agent would be able to
distinguish PA and PB by moving to a specific vertex of a dis-
tant pocket and inspecting its cvv. However it seems difficult for
such a agent to reconstruct the visibility graph in general – the
question whether this is always possible remains open.

4.2. Periodical Visibility Sequence

The following theorem considers a related question about poly-
gons with periodical combinatorial visibility sequence S. Let vi

and vj be two vertices corresponding to two periodical partners
in S. The question is whether the l-th vertex visible to vi and the
l-th vertex visible to vj need to correspond to periodical partners
in S themselves. The existence of such a property would have
an impact on various interesting problems in the field of polygon
exploration; for example, on the weak rendezvous problem for
two agents in symmetrical polygons. We show however that the
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property does not hold.

Theorem 4.4. There is a polygon P with periodical combinato-
rial visibility sequence S of period p, a vertex vi of P, and an
index x ∈ [d(vi)] for which

cvv(visx(vi)) 6= cvv(visx(vi+p)).

Proof. We construct a polygon P with visibility sequence of pe-
riod p = n/2 and with the aforementioned property from the two
polygons PA and PB in Figure 4.1. The construction can then
easily be generalized to p < n/2.
The idea of the construction is to “glue” PA and PB together
at vertices v and ṽ of PA and PB , respectively, where v and
ṽ are as depicted in Figure 4.1. We want to glue the polygons
such that every two corresponding vertices w and w̃ of the two
polygons are periodical partners in S. Thus, we need to glue the
polygons such that the cvv’s of corresponding vertices w and w̃
are the same. We can then use the result of Theorem 4.2 which
guarantees the existence of vertices w and w̃ with the same cvv
but different vision. Formally, if w from PA is a vertex vi in P
and w̃ from PB is a vertex vi+n/2 in P, there is an index x such
that visx(vi) = vk and visx

(
vi+ n

2

)
= vl 6= vk+ n

2
. Because of the

structure of the two polygons, we will have cvv(vk) 6= cvv(vl)
which proves the theorem.
The problem when gluing at v and ṽ is that these vertices have to
be split in the process, which makes them appear different than all
other vertices. By inserting spikes (cf. Figure 4.5) at all vertices,
we can again make vertices appear the same from afar while still
maintaining equal combinatorial visibility sequences. Spikes can
easily be inserted at convex vertices such that no distant vertex
is visible from the spike tip and the spike tip’s neighbors retain
the vision of the original vertex (except for seeing the former
vertices as gaps and seeing the new spike tip). It is however not
generally clear how to do the same for reflex vertices, Figure 4.5
shows how it can be accomplished for the four reflex vertices in
our case. Figure 4.6 shows the spiked versions of PA and PB

before gluing. Figure 4.7 lists how the cvv’s change with the
introduction of spikes.
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Figure 4.5.: Left: The concept of inserting spikes at vertices.
Right: Illustration of how the spikes are inserted at
reflex vertices. We chose our modification such that
the right neighbor of the spike tip retains the visibil-
ity of the original vertex.

Once we have spiked versions of PA and PB , we can glue them
together in a straightforward way by simply splitting the spike
tip of v and ṽ and attaching the open ends to one another. It
can easily be seen that the gluing produces a periodical visibility
sequence S. Figure 4.8 shows the resulting polygon P. The
extension to p < n/2 is easily made, as we can attach more than
two copies of the two spiked polygons around a common center
(cf. Figure 4.9). Note that we could also have used the smaller
polygons from Figure 4.3 for gluing, but then the process becomes
more tedious (cf. Figure 4.10).
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Figure 4.6.: The two polygons from Figure 4.1 equipped with
spikes and still with identical combinatorial visibil-
ity sequences. The areas visible from the different
spike-tips are indicated.

v cvv(v)

a1 1100101010100101010101
a2 101
a3 10101010100010101010010101010111
b1 1110101010001010101001
b2 101
b3 1010101000101010100111
c1 1110101000101010100101
c2 101
c3 1010100010101010010111
d1 1110100010101010010101
d2 101
d3 1010001010101001010111
e1 1110001010101001010101
e2 101
e3 1000101010100101010111

Figure 4.7.: The combinatorial visibilities of each vertex in a
pocket of PA after adding spikes (the same cvv’s
arise for PB). We write v1−3 to denote the group
of vertices v1, v2, v3.
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Figure 4.8.: The polygon with n = 120 that proves Theorem 4.4.

Figure 4.9.: Illustration of how to glue multiple copies of two
spiked polygons in order to obtain a polygon with
periodical combinatorial visibility sequence.
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Figure 4.10.: An alternative example for the proof of Theorem 4.4
with n = 72.



Chapter 5.

Mapping with Angles

Intuitively, in order to obtain an agent model that allows to solve
the visibility graph reconstruction problem, we need to coun-
terbalance the movement restriction to boundary movements by
giving the agents powerful sensing capabilities. In the previous
chapter we saw that the ability to measure interior angles is insuf-
ficient, even when combined with the cvv sensor and knowledge
of n. In this chapter we consider agents equipped with an angle
sensor. We show that such agents can solve the visibility graph
reconstruction problem. We start by proving this for the case
that n is known to the agent beforehand. Afterwards we will
show how the agent can accomplish the reconstruction without
this additional knowledge.

5.1. Reconstruction when Knowing n∗

As explained before, knowledge of nmakes it easy for the agent to
separate the reconstruction problem into a collection and a recon-
struction phase. The data that the agent obtains during a tour
of the boundary can be described as a sequence of angle measure-
ments. An angle measurement for a vertex v is defined as the se-
quence (∠v(1, 2) ,∠v(2, 3) , . . . ,∠v(d(v)− 1, d(v)). Obviously, an
angle measurement implicitly encodes the angle between any two
arcs at v (cf. Figure 5.1). For the remainder of this section, we
can forget about the agent and focus on the problem whether a
sequence of angle measurements contains enough information to
uniquely infer the visibility graph from which it originates. Note
∗The results presented in this section appeared in [19, 21].
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vi

α

Figure 5.1.: Left: An angle measurement at a vertex yields the list
of angles between adjacent edges of Gvis in boundary
order, here (32◦, 66◦, 34◦). Right: The angle between
non-adjacent edges can easily be computed by sum-
ming the angles in between.

that we assume angle measurements to be ordered according to
the perception of the agent. Figure 5.2 shows that this order is
necessary in order to reconstruct the visibility graph.
Once we have shown that the visibility graph Gvis can uniquely
be reconstructed from the sequence of angle measurements, it
follows that we can also uniquely reconstruct the shape of the
corresponding polygon. This is because from Gvis we can find the
set of edges of the triangles in some triangulation of the polygon.
From the angle data we can then infer the shape of each triangle
up to scaling, and hence the shape of the polygon. Note that we
can do this in linear time, as we can find a triangulation in linear
time using Proposition 2.19. It remains to argue that independent
of the triangulation, the resulting polygon is the same. This is
due to the fact that every possible triangulation uniquely leads
to a polygon, and this polygon in turn admits every single one of
the possible triangulations. Of course, conversely, the visibility
graph can be computed from the shape of the polygon. The
visibility graph reconstruction problem therefore is equivalent to
the reconstruction of the polygon shape (cf. Figure 5.3).
The key question when trying to reconstruct the visibility graph
of a polygon is how to identify a vertex visible to a known ver-
tex v. Knowing all angles at every vertex may seem to be more
information than necessary and the reconstruction problem may



5.1. Reconstruction when Knowing n 63

v v

Figure 5.2.: Two polygons with different visibility graphs and the
same set of angles at every vertex.

Figure 5.3.: Given the angle measurement for each vertex in
counter-clockwise order (left), the goal is to find the
unique polygon shape that fits these angle measure-
ments (right).
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thus seem easily solvable by some greedy algorithm. Before we
actually present an algorithm that solves the reconstruction prob-
lem, we show that some natural greedy algorithms do not work
in general.

5.1.1. A Greedy Approach

It is a natural idea to first orient all angles with respect to a sin-
gle, global orientation (e.g. the line vn−1v0) by summing angles
around the polygon boundary. Then, if a vertex v sees some other
vertex u under a certain global angle α, u must see v under the
inverse angle α + π, as the line uv has a defined orientation. A
simple greedy approach to identify the vertex u in the view from
v would be to inspect vertices along the boundary starting from
v and find the first vertex in boundary order that sees some other
vertex under the global angle α + π. The example in Figure 5.4
shows that this approach does not work in general.
A similar but somewhat more rigorous approach is to allow global
angles to go beyond [0, 2π) while summing around the polygon
boundary (cf. Figure 5.4). This prevents pairing vertex v0 with
vertex v1 in the example. Nevertheless, there are still examples
where this strategy fails, and in fact it is not possible at all to
greedily match angles: Inspect Figure 5.5 for an example of two
polygons for which any greedy way of pairing up the vertices
vertices has to fail for one of the two.

5.1.2. Triangle Witness Algorithm

We now give an algorithm for the reconstruction of a visibility
graph Gvis = (V,A) from the angles at each vertex. Note that
from now on we map all angles to the range [0, 2π). Our algorithm
considers all vertices at once and incrementally identifies edges
connecting vertices that lie further and further apart along the
boundary. In step k of the algorithm, for each vertex vi, we
know which vertices in {vi+1, vi+2, . . . , vk−1} are visible to vi and
need to decide whether or not vi sees vk. Intuitively, the decision
boils down to the question whether the next unidentified vertex
in vis(vi) is vk. Our algorithm only needs to make decisions of
this type. The key ingredient here is the use of a triangle witness
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Figure 5.4.: Illustration of the idea behind the greedy pairing al-
gorithm for a single angle α and starting vertex v0.
If we map angles to the range [0, 2π), we allow v0 and
v1 to be paired which is obviously a mistake.

Figure 5.5.: An example in which only one visibility graph can
correctly be reconstructed by any greedy pairing al-
gorithm.
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Figure 5.6.: Illustration of the approximation ]↑v(vi, vj) =
]v(vi′ , vj′) of the angle ]v(vi, vj).

vertex that indicates whether two other vertices see each other.
Because any polygon can be triangulated, we know that for every
two vertices vi, vj , with vj 6= vi+1 and (vi, vj) ∈ A, there is a
“witness” vertex vl ∈ chain(vi+1, vj−1) that they both see, such
that vi, vl, and vj form a triangle with an angle sum of π. We
now extend this notion to the case where (vi, vj) /∈ A. But first
we will need the approximation ]↑v(vi, vj) of the angle ]v(vi, vj)
for vertex v, which is defined as follows (cf. Figure 5.6). We use
chainv(vi, vj) to denote the longest subsequence of chain(vi, vj)
that contains only vertices visible to v.

Definition 5.1. For any v, vi, vj ∈ V , let vi′ be the last vertex]↑v(vi, vj)

in chainv(vi+1, vi) and vj′ be the first vertex in chainv(vj , vj−1).
We define ]↑v(vi, vj) := ]v(vi′ , vj′).

Observe that if (v, vi), (v, vj) ∈ A, we have ]↑v(vi, vj) = ]v(vi, vj).
With this in mind, we can define a generalized condition.

Definition 5.2. Let vi, vj ∈ V be two different vertices and vj 6=triangle
witness vi+1. Let further vl ∈ chain(vi+1, vj−1) with (vi, vl), (vj , vl) ∈ A.

We say vl is a triangle witness of (vi, vj) if it fulfills the generalized
angle-sum condition (cf. Figure 5.7)

]↑vi
(vl, vj) + ]↑vj

(vi, vl) + ]vl
(vj , vi) = π.
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Figure 5.7.: Illustration of the generalized angle sum condition
of Definition 5.2. On the left (vi, vj) ∈ A and the
three angles αi = ]↑vi

(vl, vj), αj = ]↑vj
(vi, vl), αl =

]vl
(vj , vi) of the condition sum up to π – hence vl is a

triangle witness of (vi, vj). On the right, (vi, vj) /∈ A
and the sum of the angles is strictly less than π –
hence vl is no triangle witness of (vi, vj).

We will show later that two vertices vi, vj ∈ V, |chain(vi, vj)| > 2,
see each other if and only if there is a triangle witness of (vi, vj).
Note that if vj = vi+1, the ordered pair (vi, vj) does not have a
triangle witness even though (vi, vj) ∈ A. Let us briefly motivate
the generalized angle-sum condition. As before, we know that
if two vertices vi, vj ∈ V, vj 6= vi+1, see each other, there must
be a vertex vl ∈ chain(vi+1, vj−1) which sees both of them. For
any such choice of vl, the condition ]vi

(vl, vj) + ]vj
(vi, vl) +

]vl
(vj , vi) = π is trivially fulfilled. In the case that vi does not

see vj , the only difference from vi’s perspective is that for any
choice of vl, the angle between vivl and vivj does not appear
in vi’s angles ∠vi (although another angle with the same value
might still appear in ∠vi

). In order to capture this difference,
we replace vj in ]vi

(vl, vj) by an expression that evaluates to
vj if and only if vi sees vj . We choose the expression “the first
vertex in chainvi

(vj , vj−1)”, which is vj exactly if vi sees vj . If,
similarly, we also replace vi in ]vj (vi, vl) by “the last vertex in
chainvj (vi+1, vi)”, we obtain the generalized angle-sum condition
of Definition 5.2.

We can now describe the triangle witness algorithm. It iterates
over an increasing step-size k along the boundary, focusing in iter-
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ations k on all arcs of the form (vi, vi+k) and (vi+k, vi). Through-
out, it maintains two maps F ,B that store for every vertex all
the arcs identified so far that go at most k steps forward or back-
ward along the boundary, respectively. Both F [vi] [vj ] = s and
B[vi] [vj ] = s denote that (vi, vj) is the s-th arc at vi in boundary
order. The difference between F [vi] and B[vi] is that B[vi] is filled
in reversed boundary order by the algorithm, i.e., its first entry
will be B[vi] [vi−1] = d(vi). Whenever convenient, we use F [vi]
and B[vi] like a set, e.g., we write vl ∈ F [vi] to denote that there
is an entry vl in F [vi] and write |F [vi]| to denote the number of
entries in F [vi]. It is clear that once we computed the maps for
k up to

⌈
n
2

⌉
, we essentially have computed A.

The initialization of the maps for k = 1 is simple as every ver-
tex sees its neighbors on the boundary. In later iterations, for
every vertex vi there is always exactly one candidate vertex for
vi+k, namely the (|F [vi]|+ 1)-th vertex visible to vi. We de-
cide whether or not vi and vi+k see each other, by going over
all vertices between vi and vi+k in boundary order along the
boundary and checking whether there is a triangle witness vl ∈
chain(vi+1, vi+k−1) of (vi, vi+k). If and only if this is the case, we
update A,F , and B with the arcs (vi, vi+k) and (vi+k, vi). For a
listing of the triangle witness algorithm see Algorithm 1.
In the following we prove the correctness of the triangle witness
algorithm. For this we mainly have to show that having a triangle
witness is necessary and sufficient for a pair of vertices to see each
other. We first give the following lemma.

Lemma 5.3. Let vi, vj ∈ V with i = j + 2 be two vertices that
do not see each other. If w := vj+1 = vi−1 is convex, we have
that both vj′ = arg minvb∈chainvi

(vi+1,vj−1) ]vi
(vb, w) as well as

vi′ = arg minvb∈chainvj
(vi+1,vj−1) ]vj

(w, vb) are blockers of (vi, vj)
and lie in the interior of the triangle 4vivjw.

Proof. As w is convex, the shortest path pij from vi to vj only
contains vertices of chain(vi, vj). As pij either only makes left
or only makes right turns (depending on the boundary order),
all interior vertices of pij lie in the interior of 4vivjw. Further-
more vj′ and vi′ are the first and the last interior vertices of pij

respectively. By Proposition 2.37 we have that both vj′ and vi′
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Algorithm 1: Triangle witness algorithm.
input : n, d(·), ∠·(·, ·)
output: the set of arcs A

F ,B ← [array of n empty maps], A ← ∅1

for i← 0, . . . , n− 1 do2

A ← A ∪ {(vi, vi+1), (vi+1, vi)}3

F [vi] [vi+1]← 14

B[vi+1] [vi]← d(vi)5

for k ← 2, . . . ,
⌈

n
2

⌉
do6

for i← 0, . . . , n− 1 do7

j ← i+ k8

for l← i+ 1, . . . , j − 1 do9

if vl ∈ F [vi] ∧ vl ∈ B[vj ] then10

αi ← ∠vi(F [vi] [vl] , |F [vi]|+ 1)11

(= ]↑vi
(vl, vj), cf. Theorem 5.5)

αj ← ∠vj (d(vj)− |B[vj ]| , B[vj ] [vl])12

(= ]↑vj
(vi, vl), cf. Theorem 5.5)

αl ← ∠vl
(F [vl] [vj ] , B[vl] [vi])13

(= ]vl
(vj , vi), cf. Theorem 5.5)

if αi + αj + αl = π then14

A← A ∪ {(vi, vj), (vj , vi)}15

F [vi] [vj ] = |F [vi]|+ 116

B[vj ] [vi] = d(j)− |B[vj ]|17

abort innermost loop18
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are blockers of (vi, vj) or of (vj , vi). But since all interior vertices
from pij are in chain(vi, vj), it follows that vj′ and vi′ are blockers
of (vi, vj).

Now to the central lemma:

Lemma 5.4. Let vi, vj ∈ V with |chain(vi, vj)| > 2. There is a
triangle witness vl of (vi, vj) if and only if vi sees vj.

Proof. Assume vi sees vj . By Proposition 2.16 there exists a
triangulation of the polygon using the line segment vivj . Hence
there must be a vertex vl ∈ chain(vi+1, vj−1) for which both
(vi, vl) and (vl, vj) are in A. For this vertex we have ]↑vi

(vl, vj) +
]↑vj

(vi, vl)+]vl
(vj , vi) = ]vi(vl, vj)+]vj (vi, vl)+]vl

(vj , vi) = π
as all three relevant edges are lines of sight in the polygon, and
because the sum over the angles of any triangle is π.
For the converse implication assume there is a triangle witness vl

of (vi, vj). For the sake of contradiction, assume vi does not see
vj .
Consider the polygon P ′ induced by the closed polygonal chain
(vi, vl, vj)⊕chain(vj+1, vi−1) (cf. Figure 5.8). As (vi, vl), (vl, vj) ∈
A, P ′ is simple and well defined by Proposition 2.8. In P ′, vl is
a convex vertex: By assumption, vl fulfills the generalized angle-
sum condition of Definition 5.2 and thus ]vl

(vj , vi) ≤ π, because
all angles are non-negative. We can therefore apply Lemma 5.3
(on vj , vi) with respect to P ′ and conclude that both vj′ and vi′

block (vj , vi), where vj′ = arg minvb∈chainvi
(vj+1,vi−1) ]vi

(vl, vb)
and vi′ = arg minvb∈chainvj

(vj+1,vi−1) ]vj
(vb, vl). This is then also

true in our original polygon P and thus vi′ ∈ chain(vj , vj′) as
otherwise vj′ would block (vj , vi′) and vi′ would block (vj′ , vi)
contradicting the definition of vj′ and vi′ , respectively. Observe
that vi′ is the last vertex in chain(vi+1, vi) visible to vj and vj′ is
the first vertex in chain(vj , vj−1) visible to vi.
By applying Lemma 5.3 to P ′, we know that both vj′ and vi′ lie
in the interior of 4vivlvj

. This means ]↑vi
(vl, vj) = ]vi

(vl, vj′) <
]vi

(vl, vj) and ]↑vj
(vi, vl) = ]vj

(vi′ , vl) < ]vj
(vi, vl) and thus

]↑vi
(vl, vj) + ]↑vj

(vi, vl) + ]vl
(vj , vi) < ]vi(vl, vj) + ]vj (vi, vl) +

]vl
(vj , vi) = π, which is a contradiction with our assumption

that vl is a triangle witness of (vi, vj).
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Figure 5.8.: Sketch of the definitions in the proof of Lemma 5.4.

Using this, we can now prove the main result of this section.

Theorem 5.5. The triangle witness algorithm is correct and
computes a unique solution.

Proof. As the arcs in A are the same as the arcs stored in F and
the same as the arc stored in B throughout the algorithm, it is
sufficient to show that after step k of the iteration both F and B
contain exactly the arcs between vertices that are at most k steps
apart along the boundary. As no two vertices can be further apart
than

⌈
n
2

⌉
steps along the boundary, this implies that A eventually

contains exactly the arcs of the visibility graph. More precisely,
we inductively show that after step k of the iteration, F [vi] con-
tains the vertices of chainvi

(vi+1, vi+k) and B[vi] contains the
vertices of chainvi(vi−k, vi−1) for all vi ∈ V . For the sake of sim-
plicity we abuse notation and write F [vi] = chainvi(vi+1, vi+k)
and B[vi] = chainvi

(vi−k, vi−1).
The discussion for k = 1 is trivial as every vertex has an arc to
both its neighbors. The algorithm initializes F and B to consist
of these arcs. It remains to show for all 0 ≤ i < n that, assuming
F [vi] = chainvi

(vi+1, vi+k−1) and B[vi] = chainvi
(vi−k+1, vi−1)

after step k − 1, we have F [vi] = chainvi
(vi+1, vi+k) and B[vi] =

chainvi(vi−k, vi−1) after step k.
The algorithm adds an arc between two vertices vi and vi+k

if and only if there is a vertex vl ∈ chain(vi+1, vi+k−1) with
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vl ∈ F [vi] and vl ∈ B[vi+k] for which αi + αj + αl = π, where
αi, αj , αl are defined as in Algorithm 1. As vi and vl are less
than k steps apart along the boundary, the induction assump-
tion implies that F [vi] = chainvi

(vi+1, vi+k−1) and B[vi+k] =
chainvi+k

(vi+1, vi+k−1). Therefore, vl ∈ F [vi] and vl ∈ B[vi+k]
is equivalent to (vi, vl), (vi+k, vl) ∈ A and, by Lemma 5.4, it suf-
fices to show that αi = ]↑vi

(vl, vi+k) , αj = ]↑vi+k
(vi, vl) and αl =

]vl
(vi+k, vi) for all vl ∈ F [vi] ∩ B[vi+k]. By induction, we have

F [vi] = chainvi
(vi+1, vi+k−1), and thus we have visF [vi][vl](vi) =

vl and vis|F [vi]|+1(vi) = arg minvb∈chainvi
(vi+k,vi−1) ]vi

(vi+1, vb).
Consequently, we obtain that αi = ∠vi(F [vi] [vl] , |F [vi]|+ 1) =
]↑vi

(vl, vi+k) . Similarly, as vl and vi+k are less than k steps
apart along the boundary, we get αj = ]↑vi+k

(vi, vl). By the
induction assumption we also have visF [vl][vi+k](vl) = vi+k and
visB[vl][vi](vl) = vi and thus αl = ∠vl

(F [vl] [vj ] , B[vl] [vi]) =
]vl

(vi+k, vi).
The uniqueness of the algorithm’s solution follows from the fact
that the existence of a triangle witness is necessary and sufficient
for two vertices to see each other.

Note that a polynomial running time is already achieved by a
naïve implementation of the triangle witness algorithm.

Theorem 5.6. An agent with boundary movement, angle sensor,
and knowledge of n can solve the visibility graph reconstruction
problem.

Proof. We can simply define an exploration strategy that first
collects all angle measurements while moving n times along the
boundary. By Theorem 5.5, this information is sufficient to infer
the visibility graph of the polygon that the agent is exploring.

5.2. Reconstruction without Knowing n†

In the previous section we saw that an agent with angle sensor
and knowledge of n can solve the visibility graph reconstruction
problem, even if restricted to moving along the boundary only.
†The results presented in this section appeared in [20].
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We will now show that in fact the agent does not need to know
n a priori. Without this knowledge, there is no obvious way how
to separate data collection and computation. Let Gvis denote
the visibility graph that the agent is operating in. We propose
an exploration strategy that computes in step j a subgraph of
Gvis induced by a part of the boundary of length j. To be more
precise, we will require some formalism.
We define the graph Gj

i = (V j
i , A

j
i ) to be the subgraph of Gvis

induced by {vi, vi+1, . . . , vj}. The degree of vk in Gj
i is denoted

by dj
i (vk), with dn−1

0 (vk) = d(vk). Observe that Gvis = Gn−1
0 . By

~αk = (αk,1, αk,2, . . . , αk,dk−1) we denote the sequence of angles at
vk, such that αk,x = ∠vk

(x, x+ 1) is the angle between the x-th
and (x+ 1)-th arc at vk (in boundary order). Furthermore, we
write

]↑vi
(vj) :=

dj−1
i (vi)∑
x=1

αi,x, ]↓vj
(vi) :=

dj−dj
i+1(vj)−1∑
x=1

αj,x

(cf. Figure 5.9). Note that the latter two quantities can be com-
puted from (Gj−1

i , ~αi) and (Gj
i+1, ~αj), respectively. The following

lemma relates these angles to the ones in the generalized angle-
sum condition. Using this relation allows the agent check for a
triangle witness of (vi, vj) as long as it has at its disposal Gj−1

i ,
, Gj

i+1, and ~αi, ~αi+1, . . . , ~αj .
Lemma 5.7. For any vertices vi, vj and vl ∈ chain(vi+1, vj−1),
where vl sees both vi and vj, we have

]↑vi
(vl, vj) = ]↑vi

(vj)− ]↑vi
(vl) ,

]↑vj
(vi, vl) = ]↓vj

(vl)− ]↓vj
(vi) ,

]vl
(vj , vi) = ]↓vl

(vi)− ]↑vl
(vj) .

Proof. Because vi sees vl, we have ]↑vi
(vl, vj) = ]vi(vl, vj′), where

vj′ is the last vertex in chain(vi+1, vj) visible to vi. By definition,
]↑vi

(vl) = ]vi
(vi+1, vl) and ]↑vi

(vj) = ]vi
(vi+1, vj′). The first

line follows. The remaining lines can be shown analogously.

Lemma 5.8. The graph Gj
i , 0 ≤ i < j, can be computed from

Gj−1
i , Gj

i+1, and ~αi, ~αi+1, . . . , ~αj.
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Figure 5.9.: Illustration of the angles ]↑vi
(vj) and ]↓vj

(vi).

Proof. Observe that Aj
i simply is the union of Aj−1

i and Aj
i+1,

except for maybe the arcs (vi, vj) and (vj , vi). In order to com-
pute Gj

i , it is hence sufficient to find out whether vi sees vj

or not. If j = i + 1, this is always the case. Otherwise, by
Lemma 5.4, vi sees vj if and only if there is a triangle witness of
(vi, vj). As we know Gj−1

i and Gj
i+1, we can easily find all ver-

tices vl ∈ chain(vi+1, vj−1) that see both vi and vj . For each such
vertex we can compute ]↑vi

(vj), ]↑vi
(vl), ]↓vj

(vl), and ]↓vj
(vi). By

Lemma 5.7, these angles are sufficient in order to check the gen-
eralized angle-sum condition and thus to verify whether vl is a
triangle witness. Note that the entire procedure can be done in
time polynomial in j − i.

We can now give the exploration strategy that reconstructs the
visibility graph (cf. Algorithm 2) and prove its correctness.

Theorem 5.9. An agent with boundary movement and angle sen-
sor can solve the visibility graph reconstruction problem.

Proof. We prove that Algorithm 2 is correct and computes a
unique solution. To this end, we claim that the exploration strat-
egy maintains the invariant that in iteration j, the graphs Gy

x as
well as ~αx have been determined for all 0 ≤ x ≤ y < j. This is
the case in the first iteration, because of the initialization in lines
1-3. In iteration j, the exploration strategy then computes Gj

x
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Algorithm 2: Reconstructing Gvis without knowing n.
output: Gvis

d0 ← degree1

~α0 ← (∠(1, 2),∠(2, 3), . . . ,∠(d0 − 1, d0))2

G0
0 ← (v0, ∅)3

for j ← 1, 2, . . . do4

if dj−1
0 (v0) = d0 then5

return Gj−1
06

move to 17

dj ← degree8

~αj ← (∠(1, 2),∠(2, 3), . . . ,∠(dj − 1, dj))9

Gj
j ← (vj , ∅)10

for l← j − 1, j − 2, . . . , 1, 0 do11

compute Gj
l from Gj

l+1, G
j−1
l , ~αl, ~αl+1, . . . , ~αj12

(using Lemma 5.8), for all x ∈ [j − 1], as well as ~αj . Hence, the
invariant is maintained.
The strategy terminates in the n-th iteration of the outer loop,
since dn

0 (v0) = d(v0) = d0. At that point, by the invariant, Gn−1
0

has been determined. Correctness follows from Gvis = Gn−1
0 .

Observe that the agent performs exactly n− 1 moves during the
execution of Algorithm 2.





Part II.

Visibility Graph
Exploration





Chapter 6.

Results for Strong Sensors∗

In Chapter 5, we saw that an agent with boundary movement and
angle sensor can solve the visibility graph reconstruction problem.
Clearly, the angle-type sensor provides less information than the
angle-sensor, and it remains an open problem whether an agent
with boundary movement and angle-type sensor can solve the
visibility graph reconstruction problem. Without movement re-
striction, we can show that an agent with angle-type sensor can
solve the reconstruction problem, as long as it can also look back.
In Chapters 8 and 9 we employ more advanced analysis to show
that each of these capabilities on their own already suffices. We
need the following lemmas.
Lemma 6.1. Let u, v, w be three vertices of a polygon P, such
that v sees both u and w. Then, RE(v, w)∩LE(u, v) = RE(v, u)∩
LE(w, v) = RE(v, w) ∩ RE(v, u) = LE(u, v) ∩ LE(w, v) = ∅.

Proof. By Proposition 2.25, v does not see any vertex in RE(v, w),
RE(v, u), LE(w, v), or LE(u, v). Since v sees both u and w, we get
u /∈ RE(v, w)∪LE(w, v) and w /∈ RE(v, u)∪LE(u, v). Therefore,
RE(v, w) ∩ RE(v, u) = LE(u, v) ∩ LE(w, v) = ∅.
Without loss of generality, assume v ∈ chain(u,w), and let x, y
be the points where the rays −→vw,−→vu first cross the boundary of
P, respectively. Since v ∈ chain(u,w), we have that x lies be-
fore y in boundary order starting at v (x 6= y, as P has no
three collinear vertices). By definition of RE and LE, we have
RE(v, w) ∩ LE(u, v) = ∅. Because, by definition, RE(v, u) only
contains vertices from chain(u, v) and LE(w, v) only contains ver-
tices from chain(v, w), we get RE(v, u) ∩ LE(w, v) = ∅.
∗The results presented in this chapter appeared in [7, 18].
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Lemma 6.2. Let u, v be two vertices of a polygon P and A ∈
{RE(u, v) ,LE(v, u)}. For every w ∈ A, exactly one of the fol-
lowing holds

1. v sees w,
2. there is exactly one vertex vb ∈ vis(v), with w ∈ RE(v, vb)∪

LE(vb, v).

Proof. If v sees w, there cannot be a vertex vb ∈ vis(v), such
that w ∈ RE(v, vb)∪LE(vb, v), because such a vertex would be a
blocker of (u,w) by Proposition 2.25.
Conversely, assume that there is a vertex vb ∈ vis(v), such that
w ∈ RE(v, vb)∪LE(vb, v). In this case, by Proposition 2.25, v does
not see w. Also, there cannot be a second vertex vb′ ∈ vis(v) \vb,
such that w ∈ RE(v, vb′) ∪ LE(vb′ , v), because

(RE(v, vb) ∪ LE(vb, v)) ∩ (RE(v, vb′) ∪ LE(vb′ , v))
= (RE(v, vb) ∩ RE(v, vb′)) ∪ (RE(v, vb) ∩ LE(vb′ , v))
∪ (LE(vb, v) ∩ RE(v, vb′)) ∪ (LE(vb, v) ∩ LE(vb′ , v))

= ∅,

by Lemma 6.1.

Theorem 6.3. An agent with angle-type sensor and look-back
sensor can solve the visibility graph reconstruction problem.

Proof. We prove the theorem by presenting an exploration strat-
egy for the agent to reconstruct the visibility graph of any polygon
P.
The agent moves from vertex to vertex along the boundary of
P in boundary order. At each vertex vi it iteratively identifies
all visible vertices, i.e., it determines their global indices. The
agent starts by identifying the vertex vis1(vi), which trivially has
the global index i + 1. Further vertices can be identified using
the following procedure. Observe that after each execution of the
procedure, the agent is back at vi.
Let

(
u1, u2, . . . , ud(vi)

)
:= vis(vi). Now, let vk := ux be the first

vertex in vis(vi) that has not yet been identified, and let vj :=
ux−1. In other words, the agent knows the index j and needs
to find the index k. This is accomplished by counting all the
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vertices that are in RE(vi, vj) or LE(vk, vi). The total number
N of these vertices simply needs to be added to j + 1 in order to
obtain k = j +N + 1. It remains to show how to determine N .

By Lemma 6.1, we have RE(vi, vj) ∩ LE(vk, vi) = ∅. There-
fore, N = |RE(vi, vj)| + |LE(vk, vi)| and the agent can count
the vertices in RE(vi, vj) and LE(vk, vi) separately. Algorithm 3
lists a returning exploration strategy for recursive counting. If
v is the current location of the agent, the call “count(y,LE)”
yields the number of vertices in LE(visy(vi) , vi), while the call
“count(y,RE)” yields the number of vertices in RE(vi, visy(vi)).
After the execution of the strategy, the agent is guaranteed to
be back at v. Using this method, we can determine N , because
N = count(x− 1,RE) + count(x,LE).

Algorithm 3: The method count
input : index y, parameter o ∈ {LE,RE}
output: if o = LE: |LE(visy(v), v)|, else: |RE(v, visy(v))|
N ← 01

move to y2

x← look back3

if o = LE then4

A← {x+ 1, . . . ,d}5

else6

A← {1, . . . , x− 1}7

foreach y ∈ A do8

if ∠reflex(x, y) then9

N ← N +1 + count(y,LE) + count(y,RE)10

move to i11

The idea behind the counting method is that there are two types
of vertices in RE(v, visy(v)) (respectively, in LE(visy(v) , v)): ver-
tices visible to visy(v) and vertices not visible to visy(v). For
every of the former vertices, there is a reflex angle at visy(v), and
by Lemma 6.2 the latter vertices can be counted recursively. It
follows from Lemmas 6.1 and 6.2 that no vertex is counted twice
during this procedure.
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Theorem 6.4. An agent with angle sensor and compass can re-
construct every polygon P.

Proof. We are going to show that the agent can imitate an agent
with angle-type and look-back sensor. By Theorem 6.3 this con-
cludes the proof.
The angle sensor obviously yields enough information to emulate
an angle-type sensor. It therefore suffices to show that the agent
can imitate the capability of looking back. Assume the agent
moves from a vertex v to a vertex u which it saw in global di-
rection d when situated at v. From its new location u the agent
knows that v lies in direction −d. Because, by definition, no three
vertices of a polygon are collinear, the agent is guaranteed to see
no other vertices in that direction, and thus the agent is capable
of uniquely identifying the vertex it came from. In other words,
the agent is capable of looking back.



Chapter 7.

General Tools for Mapping

This chapter revolves around structural properties of the min-
imum base graph G?

vis of the arc-labeled visibility graph Gvis

induced by an agent exploring some polygon P. By definition
of the minimum base graph, G?

vis encodes all the data that the
agent can collect while exploring P. Intuitively, the knowledge
of G?

vis allows to simulate the moves and observations made by
the agent. Therefore, once the agent knows G?

vis together with
the vertex that corresponds to its current location, it does not
need to make any more moves or observations in P directly. This
suggests a natural way of dividing the question whether the agent
can solve the reconstruction problem into two parts:

1. Can the agent infer G?
vis?

2. Is the information encoded inG?
vis sufficient in order to solve

the reconstruction problem?
We will show that an agent that knows an upper bound n̄ on the
number of vertices of Gvis can always infer G?

vis. What is even
more, our proof will not exploit the special structure of visibility
graphs, and thus even yield the stronger result that an agent
knowing n̄ can find the minimum base graph of all arc-labeled
graphs of size at most n̄.
Concerning the second question, we cannot hope for a positive
answer in general, since there are pairs of non-isomorphic arc-
labeled graphs that share the same minimum base graph (cf. Fig-
ure 2.4). We will see that under certain conditions, the nature of
visibility graphs allows to expose a certain structure of the mini-
mum base graph of an arc-labeled visibility graph. This structure
will prove useful for solving the weak rendezvous problem and also
as a basis for reconstruction algorithms in later chapters.
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7.1. Finding the Minimum Base Graph∗

In this section we consider the general problem of exploring a
general arc-labeled graph G = (V,A, λ) with an agent. The only
extension to the agent model that we make is to give the agent
knowledge of an upper bound n̄ on the total number of vertices
n. We let Gn̄ ⊂ G denote the family of all arc-labeled graphs
which encode an upper bound on their size in the arc-labeling.
We first show that any two prime graphs can be distinguished
using a label-sequence of finite length. This result is mainly due
to the graphs being locally oriented.
Lemma 7.1. Let G1 = (V1, A1, λ1) , G2 = (V2, A2, λ2) be two dis-
tinct prime graphs. There is a label-sequence δ for which δ(G1) 6=
∅ and δ(G2) = ∅, or vice versa.

Proof. First observe that for every pair of vertices u1 ∈ V1, u2 ∈
V2 there is a label-sequence δu1,u2 for which δu1,u2(u1) 6= ∅ and
δu1,u2(u2) = ∅, or vice versa. This follows because, by defini-
tion, u1 and u2 cannot be indistinguishable. Hence, by Proposi-
tion 2.48, a label-sequence δu1,u2 exists, with δu1,u2(u1) 6= ∅ and
δu1,u2(u2) = ∅, or vice versa.
We now describe how to obtain the desired label-sequence δ. We
start with the empty label-sequence δ(0) and iteratively extend
it to a longer but still finite label-sequence δ(i) in step i. Let
U

(i)
l :=

{
v ∈ Vl|δ(i)(v) 6= ∅

}
, l ∈ [2], be the sets of vertices of

G1 and G2, respectively, that are “compatible” with δ(i). As
δ(i+1) extends δ(i), we have by construction that U (i+1)

l ⊆ U (i)
l for

l ∈ [2]. We show that our extension satisfies
(
U

(i+1)
1 ∪ U (i+1)

2

)
((

U
(i)
1 ∪ U

(i)
2

)
in every step and that either δ(i+1)(G1) 6= ∅ or

δ(i+1)(G2) 6= ∅. At some point we thus obtain a label-sequence
δ for which exactly one of the two graphs has no compatible
vertices. It remains to show the existence of an appropriate ex-
tension.
Let δ(i) be a finite label-sequence with δ(i)(G1) 6= ∅ or δ(i)(G2) 6=
∅. If U (i)

l = ∅ for one l ∈ [2], we have either δ(i)(G1) = ∅ or

∗The results presented in this section appeared in [11].
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δ(i)(G2) = ∅. We can thus set δ = δ(i) and we are done. So
assume U (i)

l 6= ∅ for l ∈ [2]. Then, there are two vertices wl ∈
U

(i)
l , l ∈ [2]. Let pl = δ(i)(wl), and ul := target(pl) for l ∈ [2].

By our initial observation, there is a label-sequence δu1,u2 with
δu1,u2(u1) 6= ∅ and δu1,u2(u2) = ∅, or vice versa. We set δ(i+1) =
δ(i) ◦ δu1,u2 . By definition of δu1,u2 , we have δ(i+1)(a) 6= ∅ and
δ(i+1)(b) = ∅, or vice versa. Thus U (i+1)

1 ( U
(i)
1 and δ(i+1)(G2) 6=

∅, or U (i+1)
2 ( U

(i)
2 and δ(i+1)(G1) 6= ∅.

Corollary 7.2. Let G1 = (V1, A1, λ1) , G2 = (V2, A2, λ2) be two
distinct prime graphs, and u1 ∈ V1, u2 ∈ V2. There is a label-
sequence δ for which δ(u1) 6= ∅ and δ(G2) = ∅, or δ(u2) 6= ∅ and
δ(G1) = ∅.

Proof. By Lemma 7.1, there is a label-sequence δ′ for which
δ′(G1) 6= ∅ and δ′(G2) = ∅, or vice versa. Assume δ′(G1) 6= ∅ and
let w1 ∈ V1 with δ′(w1) 6= ∅. Let p be a (possibly trivial) path
from u1 to w1 and Π = λ(p) be the associated label-sequence. We
set δ := Π ◦ δ′ and obtain a label-sequence for which δ(u1) 6= ∅
and δ(G2) = ∅. If instead δ′(G2) 6= ∅, an analogous argument
yields a label-sequence δ for which δ(u2) 6= ∅ and δ(G1) = ∅.

The following theorems give a general method for an agent explor-
ing an arc-labeled graph G to determine the minimum base graph
G? of G and the agent’s position therein. Note that while the de-
scribed exploration strategies are applicable in general graphs,
they are computationally expensive and require an asymptoti-
cally exponential number of moves in the size of the graph. For
visibility graphs with particular arc-labelings that encode geomet-
rical properties, we can hope for more efficient ways of finding the
minimum base graph.

Theorem 7.3. There is an exploration strategy that computes
the minimum base graph G? in every graph G ∈ Gn̄.

Proof. By Theorem 2.50, G? is unique. We will give an explo-
ration strategy that maintains a finite set C ⊆ Gn̄ of graphs for
which it guarantees G? ∈ C at all times. We begin by setting C
to contain all prime graphs of size at most n̄. While |C| > 1, we
let G1, G2 be two graphs in C and describe how to conclude that
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either G1 or G2 can be eliminated from C. Once |C| = 1, the only
graph left will have to be G?. In the following, let phist denote
the walk in G that the agent has travelled along so far during
the execution of the exploration strategy, and let Λhist = λ(phist)
be the associated label-sequence. Note that the agent is aware
of Λhist but not of phist, since it does not know the graph G nor
its starting location in G. We use vhyp(vstart) to denote the last
vertex on the walk Λhist(vstart), i.e., the vertex the agent would
currently be located at if it had started the exploration at vertex
vstart.
Given two prime graphs G1 = (V1, A1) , G2 = (V2, A2), we argue
how to conclude that one of them cannot be G?. Let V1,V2

denote the vertices of G1 and G2, respectively, at which the agent
could possibly have started the exploration. We begin by setting
Vl = {v ∈ Vl|Λhist(v) 6= ∅} for l ∈ [2]. Let u1 ∈ V1, u2 ∈ V2. By
Corollary 7.2, there is a label-sequence δ for which δ(vhyp(u1)) 6=
∅ and δ(G2) = ∅ or δ(vhyp(u2)) 6= ∅ and δ(G1) = ∅. The agent
can compute such a sequence δ simply by checking all possible
label-sequences in order of increasing lengths. The agent tries
to move along a path corresponding to δ. If that turns out not
to be possible because at some point no arc has the required
label, it can discard a from V1 if δ(vhyp(u1)) 6= ∅, and u2 from
V2 otherwise. If it successfully traced δ, the agent can eliminate
G1 from C if δ(G1) = ∅, and G2 otherwise. As long as neither
G1 nor G2 is discarded, the agent continues with a new choice of
u1 ∈ V1, u2 ∈ V2. Once V1 or V2 is exhausted, the corresponding
graph G1 or G2, respectively, can be eliminated.

The following theorem states that an agent can move to any given
vertex of a prime graph G without knowing its starting location.
Afterwards, the agent can maintain knowledge of its location,
since it can keep track of all moves in G.

Theorem 7.4. Let G ′n̄ ⊆ Gn̄ contain only prime graphs. There is
an exploration strategy that moves an agent exploring any given
graph G ∈ G ′n̄ to a specified vertex v of G.

Proof. By definition of prime graphs, no two vertices u 6= w of
G are indistinguishable. By Proposition 2.48, this means that
for every two vertices u 6= w of G, there is a label-sequence δu,w
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with δu,w(u) 6= ∅ and δu,w(w) = ∅, or vice versa. We now give
an exploration strategy that maintains a set V ⊆ V of possible
locations at which the agent could be located according to its
observations so far. In the beginning, we set V = V since the
agent has not made any observations yet. In each step, the agent
reduces the size of V, so that in the end only its actual location
remains. We will now show how to perform this reduction.
While |V| ≥ 2, let u,w ∈ V be two distinct candidates for the
agent’s location. The agent tries to move according to the label-
sequence δu,w. If this is possible, the agent updates V to the
new set V ′ = { target(δu,w(v))| v ∈ V ∧ δu,w(v) 6= ∅}. We have
|V ′| < |V|, since δu,w(u) = ∅ or δu,w(w) = ∅. If the agent could
not move according to δu,w, let δ denote the prefix of δu,w that the
agent could successfully trace. It updates V to the new set V ′ =
{ target(δ(v))| v ∈ V ∧ δu,w(v) = ∅ ∧ δ(v) 6= ∅}. We have |V ′| <
|V|, since δu,w(u) 6= ∅ or δu,w(w) 6= ∅.
Once |V| = 1, the agent is located at the last vertex remaining
in V. All that remains is to move from this vertex to v, which is
possible as G is known to the agent and strongly connected.

Corollary 7.5. There is an exploration strategy for Gn̄ that moves
an agent exploring any graph G ∈ Gn̄ to an arbitrary vertex v of G
and computes G? as well as the identity of the vertex representing
Cv in G?.

Proof. By Theorem 7.3, the agent can determine G?. Afterwards,
the agent can pretend to be exploring G? instead of G, since G
and G? are indistinguishable. By Theorem 7.4, the agent can
move to any vertex v? of G? that it chooses. In G, the agent will
then be located at a vertex of Cv? .

7.2. Visibility Graphs with Optimal
Substructure

We now come back to the exploration of visibility graphs. We
expose a particular structure which is present in many cases and
allows us to derive useful properties.
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Definition 7.6. We say an arc-labeled visibility graph Gvis en-encode
ears codes ears if for every ear e of Gvis, all vertices in the class Ce

are ears.

Definition 7.7. Let G = (V,A, λ) , G′ = (V ′, A′, λ′) be arc-structural
subgraph labeled visibility graphs. We say G′ is a structural subgraph of G

if (V ′, A′) is an induced subgraph of (V,A).

Definition 7.8. We say Gvis ∈ F has local substructure withlocal
substructure respect to a family F ′ if for all structural subgraphs G′vis ∈ F ′

of Gvis, the arc-label of any arc (u, v) of G′vis can be inferred from
the arc-label of the arc (u, v) in Gvis and the arc-labels in Gvis of
the arcs at u and v in G′vis.

Definition 7.9. We say Gvis ∈ F has optimal substructure ifoptimal
substructure there exists a complete family F ′ ⊂ F , Gvis ∈ F ′, such that

every structural subgraph G′vis ∈ F ′ of Gvis encodes ears and
has local substructure with respect to F ′.

Definition 7.10. Let F ′ ⊂ F be a family that encodes someadmit optimal
substructure agent model. We say the agent model admits optimal substructure

if every graph in F ′ has optimal substructure.

Theorem 7.11. Every Gvis = (V,A, λ) ∈ F with optimal sub-
structure has a class that forms a clique.

Proof. First note that, by Proposition 2.19, Gvis has an ear e.
We prove the theorem by induction on the number k of classes
of Gvis. For k = 1, every vertex of Gvis is an ear, since Gvis

encodes ears. Therefore, every vertex of Gvis must be convex.
By Proposition 2.37 this means that there cannot be a vertex on
the interior of any Euclidean shortest path in any polygon P with
visibility graph Gvis. In other words, all vertices of Gvis see each
other, i.e., Gvis is a clique.
Now assume k > 1. Let F ′ ⊂ F be as in Definition 7.9. By
Proposition 2.20, we can cut all the vertices of Ce off P, obtaining
a smaller polygon P ′. Let G′vis = (V ′, A′, λ′) ∈ F ′ be the arc-
labeled visibility graph of P ′ in F ′. We claim that two vertices
u,w ∈ V ′ that are in the same class in Gvis are also in the same
class in G′vis. Once we established this claim, it follows that G′vis

must have fewer classes than Gvis, and hence, by induction, G′vis
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has at least one class that forms a clique. Since the vertices in
any class of Gvis except for Ce must be contained in a single class
of G′vis, it follows that at least one class of Gvis forms a clique in
Gvis. It remains to prove the claim.
Let G−vis := (V ′, A′, λ|A′), where λ|A′ denotes the restriction of
λ to A′. Let G?

vis = (V ?, A?, λ?) be the minimum base graph
of Gvis, and let G?−

vis = (V ?−, A?−, λ?|A?−) be the graph ob-
tained by removing the vertex representing the class Ce of Gvis

from G?
vis. As we removed all vertices of class Ce, we have

that G−vis is indistinguishable from G?−
vis . Let LG(v) denote the

set of arc labels of all arcs at node v in graph G. Because
Gvis has local substructure with respect to F ′, there is a func-
tion ϕ such that for every arc (a, b) ∈ A′ we have λ′(a, b) =
ϕ(λ(a, b) , LG−vis

(a) ,LG−vis
(b)). Because G?

vis, G
?−
vis are indistin-

guishable fromGvis, G
−
vis, respectively, it follows that for every arc

(a?, b?) ∈ A?− there must be an arc (a, b) ∈ A− with LG?−
vis

(a?) =
LG−vis

(a) and LG?−
vis

(b?) = LG−vis
(b). We can therefore define λ?−′

by λ?−′(a?, b?) = ϕ(λ?(a?, b?) ,LG?−
vis

(a?) ,LG?−
vis

(b?)) for every arc
(a?, b?) ∈ A?−. Let (a?, b?) be an arc of G?−

vis . Then, for every
arc (a, b) of G−vis that corresponds to the arc (a?, b?), by defini-
tion of ϕ, we have λ(a, b) = λ?(a?, b?) if and only if λ′(a, b) =
λ?−′(a?, b?), since LG?−

vis
(a?) = LG−vis

(a) and LG?−
vis

(b?) = LG−vis
(b).

Hence, G′vis is indistinguishable from G?−′
vis := (V ?−, A?−, λ?−′),

since G−vis was indistinguishable from G?−
vis . This means that G′vis

and G?−′
vis share the same minimum base graph G′?vis. Therefore,

all vertices in G′vis that are indistinguishable from a single vertex
in G?−′

vis lie in the same class. Because u,w are in the same class
of Gvis, in Gvis they must be indistinguishable from the same ver-
tex v? in G?

vis. But then, in G
′
vis, they must be indistinguishable

from v? in G?−′
vis . We conclude that u and w are in the same class

in G′vis and we established the claim.

Corollary 7.12. The size of a visibility graph Gvis ∈ F with
optimal substructure can be inferred from G?

vis.

Proof. By Theorem 7.11, Gvis has a class that forms a clique.
Let q be the number of self-loops of the corresponding vertex in
G?

vis. By Proposition 2.57, we can compute n via n = (q + 1) ·n?,
where n? is the size of G?

vis.
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7.3. Solving the Weak Rendezvous
Problem

In this section, we show that optimal substructure allows multiple
agents to agree on a class of the arc-labeled visibility graph and
meet there. To accomplish this, agents need to have a way to
distinguish between the classes of an arc-labeled visibility graph.
In the following, we establish formal means for this purpose.

Lemma 7.13. For every two vertices u,w of a prime graph Gδ<
u,w

there is a label-sequence δu,w such that δu,w(u) 6= ∅ and δu,w(w) =
∅, or vice versa. By δ<

u,w we denote the lexicographically smallest
such sequence.

Proof. No two vertices of a prime graph are indistinguishable.
Hence, by Proposition 2.48, for every two vertices u,w ∈ V there
is a label-sequence δu,w with δu,w(u) 6= ∅ and δu,w(w) = ∅, or
vice versa.

Definition 7.14. Let u be a vertex of a prime graph G =characteristic
tuple (V,A, λ), and define two sets S :=

{
δ<
u,w

∣∣w ∈ V ∧ δ<
u,w(u) 6= ∅

}
,

S̄ :=
{
δ<
u,w

∣∣w ∈ V ∧ δ<
u,w(u) = ∅

}
. The characteristic tuple of u

is the tuple
(
S, S̄

)
, where S, S̄ are the sequences containing the

elements of S, S̄, respectively, in lexicographical order.

Lemma 7.15. No two vertices of a prime graph G have the same
characteristic tuple.

Proof. Consider any two vertices u,w of G, and let their charac-
teristic tuples be (A1,B1) , (A2,B2), respectively. By definition,
δ<
u,w is either in A1 or in A2, but not in both.

Definition 7.16. Let Gvis ∈ F and u?, w? be two vertices of<
G?

vis. We write Cu? < Cw? if the characteristic tuple of u? is
lexicographically smaller than the one of w?.

Lemma 7.17. The relation ’<’ is a total order on the classes of
a visibility graph.

Proof. The claim follows from the definition of ’<’ together with
Lemma 7.15.
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Definition 7.18. Let Gvis ∈ F have optimal substructure. By C?

C? we denote the smallest class of Gvis, with respect to ’<’, that
forms a clique in Gvis.

We can now give criteria for when agents can solve the strong
and the weak rendezvous problem, respectively.

Theorem 7.19. Any number k > 1 of agents can solve the strong
rendezvous problem in G ∈ Gn̄ if and only if G is a prime graph.

Proof. The first part of the proof follows from Proposition 2.61.
For the converse, it suffices to show that in a prime graph, an
agent can move to the smallest class with respect to ’<’. If all
agents do this, they meet at the same vertex since every class has
size one.
By Theorem 7.3, and because G is a prime graph, the agent can
inferG. For every pair of vertices u, v ofG, the agent can find δu,w

simply by trying all possible label-sequences in order of increasing
lengths and checking whether they have the desired property by
inspecting G. Therefore, the agent can infer the characteristic
tuples of each vertex of G, and thus identify the smallest vertex
v< with respect to ’<’. By Theorem 7.4, the agent can continue
moving, until it knows its current location. Finally, since G is
strongly connected, the agent can then move to v< by tracing a
path from its current location in G.

Let Fn̄ ⊆ Gn̄ denote the family of all arc-labeled visibility graphs
in Gn̄.

Theorem 7.20. There is an exploration strategy for Fn̄ that
moves an agent exploring any graph Gvis ∈ Fn̄ with optimal sub-
structure to a vertex of class C?.

Proof. By Theorem 7.3, the agent can infer G?
vis. By Theo-

rem 7.11, Gvis has at least one class that forms a clique. The
agent can identify all those classes simply by inspecting the num-
ber of self-loops of every vertex of G?

vis. For every pair of ver-
tices u?, v? of G?

vis, the agent can find δu?,w? simply by trying all
possible label-sequences in order of increasing lengths and check-
ing whether they have the desired property by inspecting G?

vis.
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Therefore, the agent can infer the characteristic tuples of each
vertex of G?

vis, and thus identify the class C?. Finally, by Corol-
lary 7.5, the agent can continue moving, until it knows the class
of its current location. Since Gvis is strongly connected, the agent
can then move to a vertex of C? by tracing a path in G?

vis to the
vertex corresponding to C?.

Theorem 7.21. If an agent model admits optimal substructure,
then any number of agents with knowledge of n̄ can solve the weak
rendezvous problem.

Proof. By Theorem 7.20, every agent can position itself on a ver-
tex of C?. Once every agent has done this, all agents mutually
see each other, since, by definition, C? is a clique.



Chapter 8.

Look-Back Sensor∗

In this chapter we consider agents with look-back sensor and
knowledge of an upper bound on the number of vertices. By
FLB ⊆ Fn̄ we denote a family of arc-labeled visibility graphs
that encodes this agent model.

We show that there is a one-to-one mapping between the graphs
in FLB and their minimum base graphs. With the results from
Section 7.1 this implies that an agent with look-back sensor and
knowledge of an upper bound on the number of vertices can solve
the visibility graph reconstruction problem. We then give an al-
ternate strategy for such agents to infer the minimum base graph
of the graph they are exploring, which leads to a polynomial ex-
ploration strategy for the visibility graph reconstruction problem.

In Section 2.4.1, we described how to encode the information
available through the look-back sensor in the arc-labels (cf. Fig-
ure 2.11). Knowledge of an upper bound n̄ on the number of ver-
tices can be reflected by appending n̄ to every arc-label. We make
this precise and fix the arc-label of an arc (u, v) to be (a, b, n̄),
where a is the index of (u, v) in the local ordering at u, b is the
index of (v, u) in the local ordering at v. We define LBu(a) := b
to be the second element of the arc label (a, b, n̄) of the arc (u, v).
By −X we denote the index d(v)−X+ 1 for arcs at v. A bound-
ary arc has label (1,−1, n̄) or (−1, 1, n̄), depending on whether it
leads to the next or previous vertex along the boundary.

∗The results presented in this chapter appeared in [10, 12].
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8.1. Reconstruction with the General
Method

By Theorem 7.1, the agent can can infer the minimum base graph
of the visibility graph it is exploring. In order to show that the
agent can solve the reconstruction problem, we need to prove
that there is a one-to-one mapping between the graphs in FLB

and their minimum base graphs. We will first show that the agent
model admits optimal substructure by showing that every graph
in FLB has optimal substructure.

Lemma 8.1. Let Gvis ∈ FLB and define the label-sequence Λ :=
((1,−1, n̄) , (−2, 2, n̄)), where n̄ is the bound on the size of Gvis

as encoded in its arc-labeling. A vertex vi of Gvis is an ear if and
only if Λ(vi) 6= ∅.

Proof. If vi is an ear, then vi+1 and vi−1 see each other. In
particular, the arc (vi+1, vi−1) has index −2 ≡ d(vi+1)− 1 in the
local ordering at vi+1. Similarly, the arc (vi−1, vi+1) has index 2
in the local ordering at vi−1. Therefore, Λ(vi) = vi−1.
Now let vi be a vertex with Λ(vi) 6= ∅. We then have Λ′(vi+1) 6= ∅,
where Λ′ := ((d(vi+1)− 1, 2, n̄)). For the sake of contradiction,
assume vis−2(vi+1) 6= vi−1. Consider the ordered cycle formed by
chain(vis−2(vi+1) , vi+1). Because vis−2(vi+1) 6= vi−1, this cycle
has length at least four. In the subpolygon it induces, the vertices
vi+1 and vis−2(vi+1) have degree two. This is a contradiction with
Proposition 2.34.

Lemma 8.2. Every graph in FLB has optimal substructure.

Proof. Let F ′LB ⊂ F be the complete family that encodes the
look back sensor and knowledge of n̄ as described before. By
definition, it is sufficient to show that every graph Gvis ∈ FLB

encodes ears and has local substructure with respect to F ′LB.
Let vi be an ear of Gvis and let Λ be defined as in Lemma 8.1.
By Lemma 8.1, we have Λ(vi) 6= ∅. Since all vertices in Cvi are
indistinguishable from vi, by Proposition 2.48, Λ(v) 6= ∅ for every
v ∈ Cvi

. Applying Lemma 8.1 in the other direction yields that
every vertex of Cvi

is an ear. Hence, Gvis encodes ears.
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It is easy to see that Gvis has local substructure with respect to
F ′LB, since the relative order of the arcs at every vertex stays the
same in every induced subgraph. To obtain the new label of an
arc in the induced subgraph, its order and look-back information
in Gvis, which is encoded in its label, simply needs to be modified
by shifting all indices by the number of arcs of lower index that
fell away at its target and source vertices.

Theorem 8.3. Any number of agents with look back sensor and
knowledge of n̄ can solve the weak rendezvous problem.

Proof. The statement is a direct consequence of Theorem 7.21
combined with Lemma 8.2.

Corollary 8.4. Every graph in FLB has a class that forms a
clique.

Proof. The statement is a direct consequence of Theorem 7.11
combined with Lemma 8.2.

The remainder of this section makes use of Corollary 8.4 to show
that every graph in FLB can be computed from its minimum base
graph.

Theorem 8.5. Every graph in FLB can be determined from its
minimum base graph in polynomial time.

Proof. We describe an algorithm to determine any graph Gvis ∈
FLB, given G?

vis. Let n? denote the size of G?
vis. By Corol-

lary 7.12, we can determine the size n of Gvis from G?
vis. As

usual we use v0, v1, . . . , vn−1 to refer to the vertices of Gvis in
boundary order. By Proposition 2.56, classes repeat periodically
along the boundary, hence we know how to group the vertices into
classes. We are free to fix any vertex v?

0 of G?
vis and set Cv?

0
= Cv0 .

Because the arc-labeling of G?
vis, by definition, encodes the order

of the arcs at every vertex, this fixes the relationship between the
vertices ofG?

vis andGvis, i.e., for each vertex v ofGvis we know the
vertex v? of G?

vis such that Cv = Cv? . It remains to identify the
arcs of Gvis – their labels can then trivially be inferred from G?

vis.
In the following, let (C0, C1, . . . , Cn−1) :=

(
Cv?

0
, Cv1 , . . . , Cvn−1

)
denote the sequence of classes around the boundary.
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By Corollary 8.4, Gvis has at least one class that forms a clique.
Every such class can be recognized in G?

vis as a vertex with a max-
imum number of self-loops, since all classes of Gvis have the same
size (Proposition 2.57). Without loss of generality, assume C0 is a
clique in Gvis. Let vi ∈ C0 be a vertex of this class. We argue that
visk(vi), and hence the k-th arc at vi, is easily determined for ev-
ery k ∈ [d(vi)]. From G?

vis we know the class C with visk(vi) ∈ C.
Let xk := |{ l ∈ [k − 1]| visl(vi) ∈ C0}| be the number of arcs with
index smaller k that lead to vertices of the class C0. Because C0

forms a clique, we have visk(vi) ∈ chain
(
vi+xk·n?+1, vi+(xk+1)·n?

)
.

We can determine visk(vi), because, by Proposition 2.56, there is
only one vertex of class C in chain

(
vi+xk·n?+1, vi+(xk+1)·n?

)
. We

now give a general method how to determine the targets of all
arcs.
Let vi be a vertex of Gvis. With Dk(vi) and D−k(vi) we denote
the set of vertices in chain(vi, vi+k) and chain(vi−k, vi), respec-
tively, that vi sees. In terms of this notation, determining the
arcs of Gvis is the same as determining Ddn/2e(v) and D−dn/2e(v)
for every vertex v. We show how to obtain D±k for all vertices
by induction on k. In the same induction, we show that for any
two vertices u,w of the same class, we have |Dk(u)| = |Dk(w)|
and |D−k(u)| = |D−k(w)|.
For k = 1, we can trivially determine D±k for all vertices as every
vertex sees its neighbors on the boundary. By the same token,
we have |D±1(v)| = 1 for all vertices v.
Now assume that, for some k ≥ 1, we have determinedD±k for all
vertices, and that for any two vertices u,w of the same class, we
have |Dk(u)| = |Dk(w)| and |D−k(u)| = |D−k(w)|. Consider an
arbitrary vertex vi. It is sufficient to show how to infer Dk+1(vi)
and that |Dk+1(u)| = |Dk+1(vi)| for every u ∈ Ci. Let x :=
|Dk(vi)|. We have

Dk+1(vi) =

{
Dk(vi) ∪ {vi+k+1} , if visx+1(vi) = vi+k+1

Dk(vi) , otherwise.

Let vj := visx+1(vi) be the first vertex in chainvi
(vi, vi−1) that

is not in Dk(vi). In order to derive Dk+1(vi), it is now enough
to decide whether vj = vi+k+1 or vj 6= vi+k+1. As we know
Ci+k+1 and can infer Cj by inspecting G?

vis, this decision is trivial
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for vi+k+1 /∈ Cvj
. Assume vi+k+1 ∈ Cvj

. We then have y :=
|D−k(vi+k+1)| = |D−k(vj)|, by induction. If vj = vi+k+1, the arc
(vj , vi) has index − (y + 1) at vj , hence LBvi

(x+ 1) = − (y + 1).
We want to show that LBvi(x+ 1) = − (y + 1) if and only if
vj = vi+k+1. For the sake of contradiction assume vj 6= vi+k+1

and LBvi
(x+ 1) = − (y + 1).

Let a ∈ C0 be the first vertex from class C0 in chain(vi, vj) and
likewise let b ∈ C0 be the last vertex from class C0 in chain(vi, vj).
Note that a and b are well defined as vi+k+1 ∈ chain(vi, vj), and
hence there is a vertex of C0 between vi+k+1 and vj as Cvi+k+1 =
Cvj

(Proposition 2.56). Consider the case a 6= b (cf. Figure 8.1
(left)). We define s to be the last vertex in chain(vi+1, a) visible to
vi and t to be the first vertex in chain(b, vj−1) visible to vj . Con-
sider the ordered cycle C := (vi)⊕ chain(s, a)⊕ chain(b, t)⊕ (vj).
This ordered cycle is well defined as C0 forms a clique and hence
a sees b. Note that vi does not see any vertices in chain(b, vj−1),
likewise vj does not see any vertices in chain(vi+1, a) (recall that
vj = visx+1(vi) and LBvi

(x+ 1) = − (y + 1)). In the subgraph
induced by C, vi and vj both have degree 2 which is a contra-
diction with Proposition 2.34. We may thus assume a = b (cf.
Figure 8.1 (right)). As there has to be a vertex of class C0 in
chain(vi+k+1, vj), there can be none in chain(vi, vi+k+1) (and thus
none in chain(vj−k−1, vj), as vj−k−1 ∈ Cvi

). By Proposition 2.56,
this means that k < p−2 with p = n/n?, and thus chain(vi, vi+k)
and chain(vj−k, vj) do not overlap (|chain(vi+k+1, vj)| ≥ p+1, as
vi+k+1 ∈ Cvj

). Let now s be the last vertex in chain(vi+1, vi+k)
visible to vi and t be the first vertex in chain(vj−k, vj−1) visible
to vj . We can then define the ordered cycle (vi)⊕chain(s, t)⊕(vj)
which induces a subgraph where vi and vj both have degree 2,
which is a contradiction to Lemma 2.56.

In conclusion, we have shown that vj = vi+k+1 if and only if
LBvi

(x+ 1) = − (y + 1). We can determine LBvi
(x+ 1) and y

from x and the labeling of the arcs at the vertex v?
i corresponding

to Ci in G?
vis. We thus have a necessary and sufficient criterion for

deciding whether vj = vi+k+1 or vj 6= vi+k+1. The decision only
depends on x and the labels of the arcs at v?

i in G?
vis. Let u ∈ Ci.

By induction we have |Dk(u)| = |Dk(vi)| = x, hence we make
the same decision for u as for vi. But this means |Dk+1(u)| =
|Dk+1(vi)|.
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Figure 8.1.: Illustration of the visibility graph for the cases a 6= b
(left) and a = b (right). The ordered cycle causing
the contradiction is highlighted in both cases.

Algorithm 4 gives a straight forward implementation of the re-
construction algorithm that runs in time Θ

(
n2
)
, assuming G?

vis is
stored such that the label of an arc can be accessed in constant
time (e.g., using an adjacency matrix).

Theorem 8.6. An agent with look-back sensor and knowledge of
n̄ can solve the visibility graph reconstruction problem.

Proof. The theorem follows from Theorems 7.3 and 8.5.

8.2. Reconstruction in Polynomial Time

In the previous section, we have seen that every graph in FLB

can be reconstructed from is minimum base graph in polynomial
time. Using the general method for determining the minimum
base graph, however, results in a very inefficient exploration strat-
egy for the agent. In this section we develop an improved strategy
for finding the minimum base graph, which achieves a polynomial
running time.
The look-back sensor is quite powerful in that it allows the agent
to retrace movements. In particular, the agent become capable
of computing the view of a vertex, which is defined as follows.
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Algorithm 4: Reconstruction of Gvis ∈ FLB from G?
vis.

input : minimum base graph G?
vis = (V ?, A?, λ?) of size n̄

output: visibility graph Gvis = (V,A)

n← [maximum number of self-loops of any vertex in G?
vis] · n̄1

V ← {v0, v1, . . . , vn−1}2

(C0, C1, . . . , Cn−1)← [classes along the boundary]3

foreach vi ∈ V do4

D1(vi)← vi+15

D−1(vi)← vi−16

for k ← 2, 3, . . . , dn/2e do7

foreach vi ∈ V do8

x← |Dk−1|9

C ← Ci(x+ 1)10

y ← |D−(k−1)(vi+k)|11

if C = Ci+k ∧ LBvi(x+ 1) = d(C)− y then12

Dk(vi)← Dk−1(vi) ∪ {vi+k}13

D−k(vi+k)← D−(k−1)(vi+k) ∪ {vi}14

else15

Dk(vi)← Dk−1(vi)16

D−k(vi+k)← D−(k−1)(vi+k)17

A← {(u, v) ∈ V × V |v ∈ Ddn/2e(u)}18

return Gvis = (V,A)19
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Definition 8.7. The level-k view of a vertex v in an arc-labeled
graph G is the set of label-sequences of length at most k, for
which Λ(v) 6= 0.

Lemma 8.8. There is a returning exploration strategy for an
agent with look-back sensor that, given any label-sequence Λ, de-
termines whether Λ(v) 6= 0 in time Θ(|Λ|), where v is the agent’s
location.

Proof. The agent can simply move according to the labels in Λ.
Because of local orientation, every movement decision is unique.
We have Λ(v) 6= ∅ if and only if Λ can be traced to its end. After
finding out, the agent can retrace its movement as it is equipped
with the look-back sensor.

We can define equivalence classes with respect to views. It turns
out that these classes essentially converge to the same classes we
have used so far.

Definition 8.9. The level-k class Ck
v of a vertex v in an arc-

labeled graph G is the set of all vertices with the same level -k
view as v.

Lemma 8.10. For every vertex v of an arc-labeled graph G and
every k ≥ 1, we have Cv ⊆ Ck+1

v ⊆ Ck
v .

Proof. We have Ck+1
v ⊆ Ck

v by definition. For any u ∈ Cv, we
have that u and v are indistinguishable, and hence, by Proposi-
tion 2.48, u ∈ Ck+1

v . It follows that Cv ⊆ Ck+1
v .

Lemma 8.11. There is an integer n0 for which Cn0
v = Cv for

every vertex v of an arc-labeled graph G = (V,A, λ).

Proof. Consider the minimum base graphG? = (V ?, A?, λ?) ofG.
We let ∆ be the longest label-sequence in

{
δ<
u?,w?

∣∣u?, w? ∈ V ?
}

and set n0 = |∆|. By Lemma 8.10, we have Cv ⊆ Cn0
v . It re-

mains to show every vertex of Cn0
v is a member of Cv. For the

sake of contradiction, assume there is a vertex u ∈ Cn0
v \Cv. Let

u?, v? ∈ V ? denote the vertices of G? corresponding to Cu, Cv,
respectively. By assumption, u? 6= v?. But then, by construc-
tion, the label-sequence δ<

u?,v? has length at most n0. Because
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δ<
u?,v?(v) 6= ∅ and δ<

u?,v?(u) = ∅, or vice versa, this is a contradic-
tion to u and v having the same level-n0 view.

The following theorem states that the classes of a visibility graph
can be computed from its level-(n− 1) views.

Theorem 8.12 ([39]). Let Gvis ∈ FLB be a visibility graph of
size n. Then, for every vertex v of Gvis, we have Cn−1

v = Cv.

Unfortunately, each level-k view contains a number of label-se-
quences that is exponential in k. In an efficient reconstruction
strategy, the agent can therefore not afford to determine the
level-(n− 1) views explicitly. The following provides an alterna-
tive way for distinguishing level-k classes by using a single label-
sequence instead.

Definition 8.13. Let Gvis ∈ FLB, k ≥ 1, and u,w be two ver- distinguishing
sequencetices of Gvis with Ck

u 6= Ck
w. The lexicographically smallest se-

quence Λ of length at most k with Λ(u) 6= ∅ and Λ(w) = ∅, or
vice versa, is called the distinguishing sequence for Ck

u and Ck
w.

As the agent only knows an upper bound n̄ on the number of ver-
tices, it is inevitable to do some redundant work. To capture this,
we define redundant level-k classes C̄k

vi
⊆ {v0, v1, . . . , vn̄−1} that

may contain vertices more than once. Once the agent is able to
compute G?

vis it can discard redundant vertices by Corollary 7.12.

Lemma 8.14. There is a returning, polynomial exploration strat-
egy for an agent with look-back sensor and knowledge of n̄ that
computes the redundant class C̄k

v , k ≤ n̄, of the agent’s location
v, given the set Dk of all distinguishing sequences for pairs of
level-k classes.

Proof. Let the agent be located at some vertex vi. It suffices to
show how the agent can decide in polynomial time whether or not
Ck

vi
= Ck

vi+l
for every l ∈ [n− 1]. The level-k class is computed

under the assumption that the polygon has n̄ vertices. While
this leads to redundant vertices in the output, the result is still
correct when interpreting indices modulo n.
By Lemma 8.8, since

∣∣Dk
∣∣ ≤ (n̄2) and since every sequence in Dk

has length at most k ≤ n, the agent can determine the set D+
vi

:=
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{
δ ∈ Dk

∣∣ δ(vi) 6= ∅
}
in polynomial time. It can then move to vi+l

by moving l times along the boundary in boundary order. As
before, the agent can determine D+

vi+l
:=
{
δ ∈ Dk

∣∣ δ(vi+l) 6= ∅
}

in polynomial time. By definition of Dk, clearly Ck
vi

= Ck
vi+l

if
and only if D+

vi
= D+

vi+l
. After making this distinction, the agent

can return to vi by moving l steps along the boundary in opposed
boundary order.

It remains to show how to efficiently compute distinguishing se-
quences. We introduce a technical lemma that allows us to isolate
computations that can be performed offline without needing the
agent to move. Recall that for a class C and any vertex v ∈ C,
we denote C(x) := Cvisx(v).

Lemma 8.15. Let Gvis ∈ FLB be a visibility graph of size n ≤ n̄,
and let vi be a vertex of Gvis. For all k ≥ 2, the set Dk containing
all distinguishing sequences for pairs of level-k classes, can be
computed in polynomial time from the following data:

1. the set Dk−1 of all distinguishing sequences for pairs of
level-(k − 1) classes,

2. the sequence of sequences C̄k−1
i+l := (C̄k−1

vi+l
(1), C̄k−1

vi+l
(2), . . . ,

C̄k−1
vi+l

(d(vi+l))), for every l ∈ [n̄],
3. the level-1 view of vertex vi+l, for every l ∈ [n̄].

Proof. We consider every pair {vj , vl} ∈
({vi,vi+1,...,vi+n̄−1}

2

)
in

turn and show that we can, in polynomial time, find the distin-
guishing sequence for Ck

vj
and Ck

vl
or conclude that Ck

vj
= Ck

vl
.

The latter case can readily be detected, because Ck
vj

= Ck
vl

if and
only if C̄k−1

j = C̄k−1
l . It remains to show that when Ck

vj
6= Ck

vl
,

we can find the distinguishing sequence for Ck
vj

and Ck
vl
.

If vj and vl have different level-1 views, we immediately obtain
the distinguishing sequence of length one for Ck

vj
and Ck

vl
con-

sisting only of the lexicographically smallest label that is present
in exactly one of the views. Otherwise, d(vj) = d(vl) and there
exists an integer q ∈ [d(vj)], such that C̄k−1

vj
(q) 6= C̄k−1

vl
(q), i.e.,

the q-th neighbor of vj and the q-th neighbor of vl belong to
distinct level-(k − 1) classes. Since arc-labels encode boundary
order, by inspecting the level-1 view of vj , we can choose q such
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that the label λ of the q-th arc at vj is smallest. There is a
label-sequence δ ∈ Dk−1 with δ(vj) 6= ∅ and δ(vl) = ∅, or vice
versa. We can find we lexicographically smallest such δ in time
O
(
n̄2
)
by inspecting Dk−1 and we can conclude that λ⊕ δ is the

distinguishing sequence we are looking for.

Theorem 8.16. There is a polynomial exploration strategy for
an agent with look-back sensor and knowledge of n̄ that computes
the minimum base graph G?

vis in every graph Gvis ∈ FLB.

Proof. Assume that there is a returning, polynomial exploration
strategy that computes the redundant class C̄n̄

v of the agent’s lo-
cation v. The agent can move from vertex to vertex along the
boundary and for each vertex execute this strategy once for the
vertex itself and once for each of the vertices visible to it. This
way, the agent obtains the sequence C̄n̄ := (C̄n̄

v0
, C̄n̄

v1
, . . . , C̄n̄

vn̄−1
),

as well as the sequences C̄n̄
i := (C̄n̄

vi
(1), C̄n̄

vi
(2), . . . , C̄n̄

vi
(d(vi))),

for all i ∈ [n̄]. Let C̄+
i be such that the number qi of occurrences

of C̄n̄
vi

in C̄n̄
i is maximum. By Theorem 7.11 and Lemma 8.2 it

follows that Cvi is a clique in Gvis. By Proposition 2.57, the
agent can deduce n = (qi + 1) · p, where p is the smallest in-
teger such that C̄n̄

vi
= C̄n̄

vi+p
. Once the agent knows n, it can

compute Cn̄ := (Cn̄
v0
, Cn̄

v1
, . . . , Cn̄

vn−1
), as well as the sequences

Cn̄
i := (Cn̄

vi
(1), Cn̄

vi
(2), . . . , Cn̄

vi
(d(vi))), i ∈ [n], from C̄n̄ and C̄n̄

i .
By Lemma 8.10 and Theorem 8.12, we have Cn̄

v = Cv. Thus,
the agent can obtain C := (Cv0 , Cv1 , . . . , Cvn−1) = Cn̄, as well as
the sequences Ci := (Cvi

(1), Cvi
(2), . . . , Cvi

(d(vi))) = Cn̄
i , i ∈ [n].

Together, C and (C0, C1, . . . , Cn−1) encode the arcs and vertices
of G?

vis. The arc-labels can be observed by the agent during one
final tour of the boundary.
It remains to show how to compute the redundant class C̄n̄

vi
of

the agent’s location vi, returning to vi afterwards. The agent
can move from vertex to vertex along the boundary in boundary
order and determine the level-1 label of each vertex and all its
neighbors. After (n̄− 1) moves along the boundary, the agent
can retrace its movements to return to vi. At that point the time
spent is polynomial in n̄ and the agent has available a sequence
L, containing the level-1 views of the vertices vi, vi+1, . . . , vn̄−1

as well as the sequence Li+l of the level-1 views of the ver-
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tices visible to vi+l for every l ∈ [n̄]. It is now easily possi-
ble to infer C̄1 := (C̄1

vi
, C̄1

vi+1
, . . . , C̄1

vi+n̄−1
), as well as C̄1

i+l :=
(C̄1

vi+l
(1), C̄1

vi+l
(2), . . . , C̄1

vi+l
(d(vi+l))), for every l ∈ [n̄]. We can

obtain a set D1,
∣∣D1
∣∣ ≤ (n̄2), of distinguishing sequences for every

pair of level-1 classes simply by inspecting every combination of
distinct views in L. The above is the step s = 1 of an iterative
strategy that computes C̄s := (C̄s

vi
, C̄s

vi+1
, . . . , C̄s

vi+n̄−1
), C̄s

i+l :=
(C̄s

vi+l
(1), C̄s

vi+l
(2), . . . , C̄s

vi+l
(d(vi+l))), and a set Ds,|Ds| ≤

(
n̄
2

)
,

of distinguishing sequences for every pair of level-s classes.
Assume we have described the strategy up to step s ≥ 1. We
will now describe step s+ 1. The agent first uses Lemma 8.15 to
compute Ds+1 from Ds, L, and Cs

i+l for every l ∈ [n̄]. Next, the
agent moves along the boundary n̄− 1 times, computing C̄s

vi+l
at

vertex vi+l using Ds+1 and the strategy of Lemma 8.14. Also,
at each vertex vi+l, the agent moves to each vertex visq(vi+l),
computes C̄s+1

vi+l
(q) with the strategy from Lemma 8.14, and re-

turns to vi+l afterwards. As required, the agent in the end has
determined C̄s+1,Ds+1, and C̄s+1

i+l for every l ∈ [n̄].
In summary, the agent can complete n̄ steps of the above strategy
to compute the redundant class C̄n̄

vi
of the agent’s location vi

and return to vi afterwards. The resulting strategy executes in
polynomial time, as it involves O(n̄) steps each of which requires
polynomial time.

Theorem 8.17. An agent with look-back sensor and knowledge
of n̄ can solve the visibility graph reconstruction problem in poly-
nomial time.

Proof. The theorem follows immediately from Theorems 8.16 and
8.5.

Theorem 8.18. Any number of agents with look-back sensor and
knowledge of n̄ can solve the weak rendezvous problem in polyno-
mial time.

Proof. By Theorems 8.16 a look back agent can determine the
minimum base graph G?

vis in polynomial time. Using the strategy
described in the proof of Theorem 8.16 the agent also obtains the
distinguishing sequences for every pair of classes. From those,
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the agent can compute characteristic tuples, and thus find the
class C? in polynomial time. By Lemma 8.14, the agent can
determine the class of its current location. As it knows G?

vis, the
agent can thus trace a path to a vertex of C?. Once every agent
has executed this polynomial time strategy, weak rendezvous is
established.





Chapter 9.

Angle-Type Sensor∗

In this chapter, we consider an agent with angle type sensor and
knowledge of n̄. With FAT ⊆ Fn̄ we denote a family that encodes
this agent model. We develop an exploration strategy that makes
use of the general tools introduced in Chapter 7. By Theorem 7.3,
the agent can always infer the minimum base graph. We want to
apply Theorem 7.11. For this, we need the following lemmas.
Lemma 9.1. Let Gvis = (V,A, λ) ∈ FAT have more than two
classes and let vx, vy ∈ V such that Cvx(2) = Cvy and Cvy (−2) =
Cvx . Then, Cvx+2 = Cvy and every vertex in Cvx+1 is an ear.

Proof. We first prove that for all vi ∈ V and u = visvi(2), we have
that if vi = visu(−2), then u = visvi(2) = vi+2 and thus vi+1 is
an ear. For the sake of contradiction assume for some vi ∈ V and
u = visvi

(2) we have visu(−2) = vi but visvi
(2) 6= vi+2. Consider

the ordered cycle formed by chain(vi, visvi
(2)). This cycle has

size at least four, as visvi
(2) /∈ {vi+1, vi+2}. Since vi and visvi

(2)
both have degree two in the subgraph induced by this ordered
cycle, we have a contradiction with Proposition 2.34. Therefore,
visvi

(2) = vi+2 and vi+1 is an ear, as its neighbors along the
boundary see each other.
Because of the above observation, it is sufficient to show that for
every v ∈ Cvx

we have visu(−2) = v, where u := visv(2). For
the sake of contradiction assume in the following that there is a
vertex s0 ∈ Cvx

with vist1(−2) 6= s0 and t1 := viss0 (2).
We define an infinite sequence Z = (s0, t1, s1, t2, . . .) where tl :=
vissl−1(2) and sl := vistl

(−2) for all l > 0. Obviously sl ∈

∗The results presented in this chapter appeared in [11].
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Figure 9.1.: Visualization of the “zig-zag” sequence Z. As Z does
not self-intersect, there is a point l0 from which on
Z’s entries do not change anymore. There are two
cases how this point is reached: either sl0−1 is dis-
tinct from sl0 (left) or both are the same (right).

Cvx , tl ∈ Cvy , for all l ≥ 0. Intuitively, Z is the zig-zag line
obtained by alternately traveling along the first and the last non-
boundary arc in boundary order, starting at s0. It is immediate
to see that for any fixed index l′ ≥ 0 we have sl, tl ∈ chain(sl′ , tl′)
for all l ≥ l′. Hence the part of the boundary in which these
vertices lie becomes smaller and smaller, and from some index
l0 ≥ 0 on we have sl = sl0 and tl = tl0 , for all l ≥ l0. We set
l0 to be the smallest such index. Let 0 ≤ i, j < n be such that
vi = sl0 , vj = tl0 . We then have visvi

(2) = vj and visvj
(−2) = vi.

Thus, by the above observation, vi+1 is an ear and vj = vi+2. As
vi ∈ Cvx and vj ∈ Cvy , this implies Cvx+2 = Cvy . It remains to
show that every vertex in Cvx+1 is an ear.

We have to consider two cases. Either sl0−1 is distinct from sl0 or
it is the same vertex (cf. Figure 9.1). Let us assume sl0−1 6= sl0

and omit the discussion of the second case which is analogous.
Let 0 ≤ k < n, such that vk = sl0−1. As visvk

(2) = vi+2, we have
that vk does not see any vertex in chain(vk+2, vi+1) (note that this
chain is not empty as vk 6= vi). Thus, as vk+1 ∈ Cvx+1 is in the
same class as (the ear) vi+1, the arc-labels of the arcs at vk+1 and
at vi+1 encode the same angle types. Hence, the interior angle of
the polygon at vk+1 is strictly smaller than π. For geometrical
reasons (cf. Figure 9.2) no vertex in chain(vi+3, vk) can see any
vertex in chain(vk+2, vi+1). Let X ⊂ Cvx

be the set of vertices
of Cvx

in chain(vi+3, vk) and let Y ⊂ Cvy
be the set of vertices
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Figure 9.2.: No vertex in chain(vi+3, vk) can see any vertex in
chain(vk+2, vi+1).

of Cvy in chain(vi+3, vk). As Gvis has more than two classes, by
Proposition 2.56, we have that Cvx , Cvx+1 , Cvx+2 are all different
and thus X and Y are disjoint. Note that Proposition 2.56 also
implies |X| = |Y |+ 1.
We define the (undirected) bipartite graphBxy = (Cvx

∪Cvy
, Exy)

with the edge-set Exy = {{u, v} ∈ Cvx
×Cvy

| (u, v) ∈ E}. In Bxy

all vertices need to have the same degree d as |Cvx | =
∣∣Cvy

∣∣
and all vertices in either class have the same degree. We have
|X| = |Y |+ 1, we have that vertices in X can only have edges to
vertices in Y ∪{vi+2} and that vertices in Y can only have edges
to vertices in X. For all vertices to have the same degree, vi+2

cannot have any edges leading to Cvx
\X. This is a contradiction

to the fact that vi+2 sees vi which is not in chain(vi+3, vk) and
thus not in X.

Lemma 9.2. Every graph Gvis ∈ FAT has optimal substructure.

Proof. Let F ′AT ⊂ Fn̄ be the complete family that encodes the
angle-type sensor and knowledge of n̄ as described in Section 2.4.1.
By definition, it is sufficient to show that every graph Gvis ∈ FAT

encodes ears and has local substructure with respect to F ′AT. Let
G′vis ∈ F ′AT be a structural subgraph of Gvis. The arc-labels of
the arcs at a vertex v of G′vis can easily be obtained (cf. Sec-
tion 2.4.1) from the arc-labels of the arcs at v in Gvis, because
they encode the angle types of the angle between every pair of
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arcs. It remains to show that Gvis encodes ears, i.e., that for
every ear vi of Gvis we have that all vertices in Cvi

are ears in
Gvis.

First, consider the case that Gvis has more than two classes.
Since vi−1, vi+1 see each other, we have visvi−1(2) = vi+1 and
visi+1(−2) = vi−1, and thus Cvi−1(2) = Cvi+1 and Cvi+1(−2) =
Cvi−1 . By Lemma 9.1, all vertices in Cvi

are ears. Now consider
the case that Gvis has exactly one class. In that case, since vi is a
convex vertex, so are all vertices in Cvi , as convexity is encoded
in the arc-labeling. This means that the underlying polygon is
convex. Thus all vertices are ears.

It remains to consider the case where Gvis has exactly two classes.
Let Cvj 6= Cvi be the second class in Gvis. Again, vi is convex and
thus all vertices in Cvi

are. For the sake of contradiction assume
that there is a vertex vx ∈ Cvi

which is not an ear. Then vx−1 and
vx+1 do not see each other, and by Proposition 2.56, vx−1, vx+1 ∈
Cvj . Let p be the Euclidean shortest path in the polygon P
underlying Gvis between vx−1 and vx+1. By Theorem 2.24, all
vertices on p are reflex. This means that all vertices on p must be
from Cvj

and thus all vertices of Cvj
must be reflex. Moreover,

every vertex u in Cvj
has two neighbors u′, u′′ in Cvj

such that the
angle between (u, u′) and (u, u′′) is reflex. If we cut off vi from P,
we do not affect this property (every vertex u in Cvj still has two
neighbors from Cvj forming a reflex angle) and we thus obtain
a new polygon in which all vertices in Cvj

are still reflex, even
though they might not form a class anymore. We can continue
to obtain smaller and smaller subpolygons by selecting ears and
cutting them off, maintaining the property that all vertices in Cvj

are reflex. Thus, in this process, we never cut off a vertex of Cvj .
This is a contradiction, as every polygon has at least one ear and
thus the above process has to yield a triangle at some point. In
a triangle there cannot be reflex vertices however.

Theorem 9.3. Any number of agents with angle-type sensor and
knowledge of n̄ can solve the weak rendezvous problem.

Proof. The theorem follows from Theorem 7.21 together with
Lemma 9.2.
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Lemma 9.4. Let G?
vis be the minimum base graph of Gvis ∈ FAT.

Then, given G?
vis, the vertices of G

?
vis that represent classes of ears

of Gvis can be identified.

Proof. If G?
vis has one vertex, the problem is trivial since Gvis

has at least one class of ears. If G?
vis has two vertices, exactly one

of the two represents a class of convex vertices. This is because
otherwise the underlying polygon would be convex andGvis would
be a clique with only one class. Since the arc-labeling of G?

vis

encodes convexity, it is easy to identify the vertex that represents
a class of convex vertices and hence the only class of ears. Finally,
if G?

vis has more than two vertices, we can identify vertices that
represent classes of ears using Lemma 9.1.

Lemma 9.5. Let G?
vis = (V ?, A?, λ?) be the minimum base graph

of Gvis ∈ FAT. Then, given G?
vis, it is possible to infer the lexico-

graphically smallest sequence (C(1), C(2), . . .) with respect to ’<’,
such that C(i) is a class of ears in the subgraph of Gvis induced by⋃

j≥i C
(j). We write G(i)

vis to denote the subgraph of Gvis induced
by
⋃

j≥i C
(j).

Proof. First of all, by Lemma 7.12, from G?
vis it is possible to

infer the size of Gvis and hence its classes. For every two vertices
u?, w? ∈ V ?, the sequence δ<

u?,w? can be inferred by inspecting
G?

vis and trying out label-sequences in order of increasing lengths.
Using these sequences, it is possible to evaluate the relation ’<’ for
classes. By Lemma 9.4, it is possible to find the smallest class of
ears C(1), with respect to ’<’. Let G′vis be the induced subgraph
of Gvis obtained by cutting off the ears in C(0). By Lemma 9.2, we
can find a minimum base graph G?′

vis of G′vis that encodes angle-
type information by inspecting G?

vis. By Lemma 9.4, we can find
C(2) similar to before and continue with the same procedure, until
we remove the last vertex of a minimum base graph.

We now introduce a counting method similar to the one used in
the proof of Theorem 6.3.

Definition 9.6. Let vi, vh be two vertices of a polygon that do
not see each other, and vb be the first vertex other than vi on the
Euclidean shortest path from vi to vh. We say vh is hidden from
vi by vb.
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Lemma 9.7. Given G?
vis, G

(i+1)
vis =

(
V (i+1), A(i+1), λ(i+1)

)
, and

two vertices vj , vy ∈ V (i+1), it is possible to determine the number
of vertices in C(i) hidden from vj by vy in the polygon underlying
G

(i+1)
vis .

Proof. We show the claim by induction on the number k of ver-
tices hidden from vj by vy in a polygon underlying G(i+1)

vis . First,
observe that, by Lemma 9.5, we can compute the sequence (C(1),
C(2), . . .). For k = 0, trivially, no vertices in C(i) are hidden
from vj by vy. We need to show that we can detect this situa-
tion. Observe that since G(i+1)

vis is given, we know which arc of
G?

vis corresponds to (vy, vj). Hence, we can count the number
of arcs at vy in G(i) that form a reflex angle with (vy, vj) by
inspecting G?

vis. This number is zero if and only if k = 0.
Consider the case k > 0 (cf. Figure 9.3). Let H be the set of
vertices in C(i) that are hidden from vj by vy. We show how to
determine |H|. Let Hvis be the set of vertices of H visible to vy

and Hnvis := H\Hvis be the set of vertices of H not visible to
vy. We can easily determine |Hvis| as the number of arcs at vy

to vertices of C(i) that form a reflex angle with the arc (vy, vj).
Again, we can determine this number as we know which arc of
G?

vis corresponds to (vy, vj) and can distinguish convex from reflex
angles using the arc-labeling of G?

vis.
It remains to compute the number |Hnvis| of vertices in C(i) hid-
den from vj by vy and not visible to vy. Let V ⊆ V (i+1) denote
the set of vertices that are visible to vy and hidden from vj by vy.
Note that since the vertices of C(i) are convex in the underlying
polygon, they cannot hide vertices of Hnvis. In fact, every vertex
of Hnvis is hidden from vy by exactly one vertex of V. Conversely,
every vertex of C(i) that is hidden from vy by a vertex of V is
part of Hnvis. A vertex v ∈ V (i+1) is in V if and only if the
arc (vy, v) forms a reflex angle with the arc (vy, vj) at vy. From
G(i+1) and the labeling of G?

vis we can thus identify all vertices
in V. By induction we can count the number of vertices in C(i)

hidden from vy by each vertex of V in turn. We obtain |Hnvis| as
the sum of all these counts, and |H| = |Hvis|+ |Hnvis|.

Lemma 9.8. For every i ≥ 1, it is possible to determine G(i)
vis =(

V (i), A(i), λ(i)
)
from G?

vis and G(i+1)
vis =

(
V (i+1), A(i+1), λ(i+1)

)
.
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Figure 9.3.: We can count the vertices of C(i) hidden from vj by
vy by counting the vertices of C(i) that form a reflex
angle with vj at vy (light grey) and repeating the
method recursively on the other (non-C(i)) vertices
that form reflex angles with vj at vy (dark grey).

Proof. Observe that, by Lemma 9.5, we can compute the se-
quence (C(1), C(2), . . .). The set of vertices V (i) of G(i)

vis is given
by V (i) = C(i)∪V (i+1). It remains to show how to construct A(i),
as λ(i) can then be inferred from G?

vis. Let A be the set of arcs
in Gvis between vertices of C(i) and V (i+1), and B be the set of
arcs between vertices of C(i). We will first show how to construct
A using the information available through G(i+1)

vis and G?
vis. After

having determined A, we can apply the same approach in order
to obtain B. This completes the proof as A(i) = A(i+1) ∪A∪B.

Note that every arc in Gvis has a counterpart of opposite orien-
tation. In order to construct A it is thus sufficient to consider
a ∈ V (i+1) × C(i) and show how to decide whether a ∈ A or
a /∈ A. Deciding which elements of C(i) × V (i+1) are in A is then
immediate. Equivalently, we can consider vj ∈ V (i+1) with de-
gree d in G(i)

vis and 1 ≤ k ≤ d such that visvj
(k) ∈ C(i), and show

how to “identify” visvj (k), i.e., how to find the index x such that
vx = visvj (k) in Gvis. If k = 1, we have x = j+1, and if k = d, we
have x = j−1, because vj sees its two neighbors on the boundary.
Now assume 1 < k < d. We will show that vy := visvj

(k − 1)
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cannot lie in C(i). For the sake of contradiction, assume that
vy ∈ C(i). In any polygon underlying G(i)

vis all vertices of C(i) are
ears and thus convex. There is more than one class in G(i) and
thus, by Proposition 2.56, there is a vertex vz ∈ chain(vy+1, vx−1)
which is not visible to vj . The Euclidean shortest path in any
polygon underlying Gvis from vj to vz must visit vx or vy, which
is a contradiction to both vertices being convex (Theorem 2.24).
We can deduce that vy /∈ C(i) and thus (vj , vy) ∈ A(i+1) is part of
G

(i+1)
vis and has already been identified, i.e., the index y is known.

Because of Proposition 2.56, it is sufficient to know how many
vertices of C(i) are in chain(vy+1, vx−1) in order to find x. All
these vertices are hidden from vj by vy, again because vx is con-
vex. Either chain(vy+1, vx−1) is empty, or all vertices hidden from
vj by vy are in chain(vy+1, vx−1). We can distinguish these cases
by inspecting G?

vis, since knowing G(i+1)
vis allows us to infer which

edge in G?
vis corresponds to (vy, vj). In the first case, there triv-

ially are no vertices of C(i) in chain(vy+1, vx−1), and in the second
case, by Lemma 9.7, we can count the number of vertices of C(i)

in chain(vy+1, vx−1) hidden from vj by vy in order to determine
x (cf. Figure 9.3).
Using the fact that the arcs in A have already been identified, we
can apply the exact same approach to construct B. More pre-
cisely, for each vj ∈ C(i) with degree d, and 1 < k < d such that
vx := visvj (k) is in C(i), we can infer the index x by counting the
number of vertices in C(i) hidden from vj by vy := visvj

(k − 1).
We can do this because again vy /∈ C(i), and because the edge
(vj , vy) ∈ A has been identified before.

Theorem 9.9. An agent with angle-type sensor and knowledge
of n̄ can solve the visibility graph reconstruction problem.

Proof. By Theorem 7.3, the agent can determine the minimum
base graph. By Lemma 9.5, the agent can compute the sequence
(C(1), C(2), . . .). As the last element of C corresponds to a clique
in the visibility graph Gvis and since Gvis = G

(1)
vis , the agent can

determine Gvis using Lemma 9.8 repeatedly.



Chapter 10.

Outlook

The main results of this thesis are summarized in Tables 10.1 and
10.2, together with some known results and open questions. We
have analyzed various extensions to the basic agent model and
shown that most enable the agent to solve the visibility graph re-
construction problem and often also the rendezvous problem. The
only case for which we found that the agent cannot always solve
the reconstruction problem is when its movements are restricted
to be along the boundary only. In the case of unrestricted move-
ments, it even remains unclear whether the basic agent model
alone already empowers agents to always reconstruct the visi-
bility graph. In fact, this is the most important question that
remains open.
We motivated our work with the quest for finding weakest agent
models that still allow the agent to map its environment. We
therefore assumed a very simplistic agent model that lets agents
only perceive and move to vertices. No sensing or other opera-
tions are allowed while the agent is in transit between vertices.
The only additional structure that we provided was the ability to
order distant vertices according to their order along the boundary.
It is easy to see that without this assumption, agents cannot al-
ways solve the visibility graph reconstruction problem, even with
knowledge of n (cf. Figures 4.2,4.3) and even with angle sensor
(cf. Figure 5.2). It was shown prior to the results of this thesis
that without any knowledge about n, the basic agent model does
not empower agents to infer n, even if they have a cvv and a
look-back sensor [9]. In order to show that the agent models con-
sidered in Part II of this thesis are weakest in a sense, we would
need to show that an agent that only has knowledge of n̄, but
no other extensions to the basic model, cannot always solve the
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Visibility Graph Reconstruction
extras result time Source

bo
un

da
ry

cvv, n no Theorem 4.2
cvv, n, inner-angle no Theorem 4.3
angle, n yes poly Theorem 5.6
angle yes poly Theorem 5.9
angle-type, n open
distance, n open

un
re
st
ri
ct
ed

pebble yes poly [50]
look-back, cvv no [9]
angle-type, look-back yes poly Theorem 6.3
angle, compass yes poly Theorem 6.4
look-back, n̄ yes exp Theorem 8.6
look-back, n̄ yes poly Theorem 8.16
angle-type, n̄ yes exp Theorem 9.9
n open

Table 10.1.: Cases in which the visibility graph reconstruction
problem can/cannot be solved. Running times are
with respect to n or n̄.

Weak Rendezvous
extras result time Source

optimal substructure, n̄ yes exp Theorem 7.21
look-back, n̄ yes poly Theorem 8.3
angle-type, n̄ yes exp Theorem 9.3
n open

Table 10.2.: Cases in which the weak rendezvous problem
can/cannot be solved. Running times are with re-
spect to n or n̄.
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visibility graph reconstruction problem. Again, this remains an
open problem.
In Chapter 7, we developed some general results that can help in
solving this problem. By Theorem 7.3, knowledge of n̄ is suffi-
cient for an agent to find the minimum base graph of the visibility
graph. However, we are not able to show whether or not the basic
agent model with knowledge of n̄ admits optimal substructure.
Proving or disproving this might be a first step towards solving
the open problem, as optimal substructure implies the existence
of a class that forms a clique in the visibility graph (cf. Theo-
rem 7.11). This, in turn, would allow agents to infer n and solve
the weak rendezvous problem (Corollary 7.12, Theorem 7.21).
But even then it seems difficult to infer the visibility graph from
its minimum base graph. As a starting point, we give a proof that
visibility graphs of convex polygons can always be reconstructed.

Lemma 10.1. A visibility graph is regular if and only if it is
complete.

Proof. Obviously, every complete graph is regular. We claim
that there is no polygon with regular visibility graph and ver-
tices vi, vj , vk, such that vj ∈ chain(vi, vk) is the only interior
vertex of the Euclidean shortest path from vi to vk. Now, as-
sume there is a regular visibility graph that is not complete. The
visibility graph has at least one reflex vertex vi, hence the vertices
vi−1, vi, vi+1 contradict our claim. It remains to prove the claim.
For the sake of contradiction assume there is polygon with regular
visibility graph and vertices vi, vj , vk, such that vj ∈ chain(vi, vk)
is the only interior vertex of the Euclidean shortest path from vi to
vk. Choose vi, vj , vk such that max{|LEP(vi, vj)| , |REP(vj , vk)|}
is largest and among those choices take the vertices with smallest
|chain(vi, vk)|. Without loss of generality, assume |LEP(vi, vj)| ≤
|REP(vj , vk)|.
First, observe that because vj sees vk while vi does not see vk, and
because vj and vi have the same degree, there must be another
vertex vx which is visible to vi but not to vj . Since vj blocks
(vi, vk), we have vx /∈ chain(vj , vk). Let p0 = vj , p1, p2, . . . , pm =
vx denote the vertices on the Euclidean shortest path from vj to
vx. We distinguish the case vx ∈ chain(vk+1, vi−1) from the case
vx ∈ chain(vi+1, vj−1).
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Start by assuming vx ∈ chain(vk+1, vi−1). Note that no ver-
tex of p1, p2, . . . , pm can lie in chain(vi+1, vk−1), since such a
vertex would block (vi, vj) or (vj , vk). Similarly, no vertex of
chain(vx+1, vi−1) can lie on the Euclidean shortest path, since
such a vertex would block (vx, vj) and hence (vx, vi). Again,
we distinguish two cases: Either vi lies on the Euclidean short-
est path, or it does not. If vi lies on the Euclidean shortest
path, it is the only vertex on the path as it sees both vx and
vj . In this case, the triple (vx, vi, vj) contradicts the choice
of vi, vj , vk, since REP(vi, vj) ⊃ REP(vj , vk). If vi does not
lie on the Euclidean shortest path, we have p1, p2, . . . , pm−1 ∈
chain(vk+1, vx−1). The triple (vj , p1, p2) contradicts our choice of
vi, vj , vk, as LEP(vj , p1) ⊇ chain(vj , p1) ⊃ REP(vj , vk).
Now assume we have the case vx ∈ chain(vi+1, vj−1). In this case,
the vertices p1, p2, . . . , pm must lie in chain(vi, vj) as they would
otherwise block (vj , vi). If p1 = vi, the triple (vj , vi, vx) contra-
dicts our choice of vi, vj , vk, since LEP(vj , vi) ⊇ chain(vj , vi) ⊃
REP(vj , vk). Otherwise, the triple (p1, vj , vk) contradicts our
choice of vi, vj , vk, since |chain(p1, vk)| < |chain(vi, vk)|.

Theorem 10.2. An agent with knowledge of n̄ can reconstruct
the visibility graph of any convex polygon.

Proof. The visibility graph of a polygon is complete if and only
if the polygon is convex. By Theorem 7.3, an agent exploring
a polygon P can determine the minimum base graph G?

vis of a
visibility graph Gvis of P. By inspecting the number of arcs
at each vertex of G?

vis, the agent can determine whether Gvis is
regular or not. By Lemma 10.1, Gvis is regular if and only if it
is complete, or, equivalently, if P is convex. If P is convex, the
agent only needs to infer n in order to reconstruct Gvis. This is
possible as the total number of arcs in Gvis and hence in G?

vis is
exactly n (n− 1).

The results of Chapter 4 imply that, with the basic agent model,
it is not enough for agents to move along the boundary in order to
reconstruct the visibility graph, even when n is known. Again, we
can ask for weakest possible agent models that allow reconstruc-
tion with boundary moves only. In Chapter 5, we showed that an
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angle sensor is powerful enough only because of the local order-
ing of the angles. On the other hand, we do not know whether it
would be sufficient to equip the agent with an angle-type sensor.
We can also ask whether there are other agent models for which
boundary movement already provides the information that the
agent needs to draw a map. A very natural family of sensors
that we were not yet able to obtain results for, are sensors that
measure distances, for example between visible vertices. At first
glance, such sensors seem quite powerful, but we were not able to
uncover structural properties comparable to those used for angle
sensors in Chapter 5.
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