
Annals of Operations Research
https://doi.org/10.1007/s10479-022-04891-1

ORIG INAL RESEARCH

Point-to-point andmilk run delivery scheduling: models,
complexity results, and algorithms based on Benders
decomposition

Simon Emde1 · Shohre Zehtabian1 · Yann Disser2

Accepted: 20 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We consider the problem of scheduling a set of direct deliveries between a depot andmultiple
customers using a given heterogeneous truck fleet. The trips have time windows and weights,
and they should be completed as soon after release as possible (minimization of maximum
weightedflow time).Moreover, some trips canoptionally be combined in predefinedmilk runs
(i.e., round trip tours), which need not be linear combinations of the constituent direct trips,
accounting, e.g., for consolidation effects because the loading dock needs to be approached
only once. This problem has applications, e.g., in just-in-time, humanitarian, and military
logistics. We adapt a mixed-integer programming model from the literature to this problem
and show that deciding feasibility isNP-complete in the strong sense on three levels: assigning
trips to trucks, selecting milk runs, and scheduling trips on each individual truck. We also
show that, despite this complexity, a state-of-the-art constraint programming solver and a
problem-specific approach based on logic-based Benders decomposition can solve even large
instances with up to 175 trips in many cases, while the mixed-integer programming model
is essentially unsolvable using commercial optimization software. We also investigate the
robustness of the maximum flow time objective in the face of unforeseen delays as well as
the influence of milk runs.

Keywords Scheduling · Logistics · Benders decomposition · Direct deliveries · Maximum
weighted flow time

B Simon Emde
siem@econ.au.dk

Shohre Zehtabian
szehtabian@econ.au.dk

Yann Disser
disser@mathematik.tu-darmstadt.de

1 CORAL—Cluster for Operations Research, Analytics, and Logistics, Department of Economics
and Business Economics, Aarhus University, Fuglesangs Allé 4, 8210 Århus V, Denmark

2 Institut für Mathematik and Graduate School CE, Technische Universität Darmstadt, Darmstadt,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04891-1&domain=pdf
http://orcid.org/0000-0001-6932-0166

Annals of Operations Research

1 Introduction

In many industries, parts and products are shipped directly between one source and multiple
sinks. Using such a system, items are sent via a fleet of vehicles, each of which leaves the
depot, goes to a single location, and returns to the depot to potentially set out again to another
location. Vehicles may either take goods from the depot to a location, or pick goods up from
a location to take to the depot, or both.

Direct distribution, where customer orders are not aggregated but are processed individu-
ally, is common in many industries. For instance, Queiser (2007) reports that direct shipping
from either suppliers or intermediate storage facilities to OEM assembly plants is one of
the most common delivery strategies for European and Asian automotive companies. Gen-
erally speaking, direct deliveries are proven to be the most cost-efficient distribution policy
when the economic lot size of the customers is close to the vehicle capacity (Gallego &
Simchi-Levi, 1990; Barnes-Schuster & Bassok, 1997). Moreover, this distribution strategy
minimizes pipeline stock because there are no transshipment or detour delays.

More specifically, direct delivery strategies are common, for example, in retail supply
chains (e.g., Lin et al., 2009), just-in-time logistics (e.g., Holweg & Miemczyk, 2003), and
after-sales customer service (e.g., Kutanoglu &Mahajan, 2009). Other applications of point-
to-point delivery discussed in the literature are, e.g., vendor managed inventory (Kleywegt
et al., 2002; Li et al., 2008), military resupply in combat situations via drone (McCormack,
2014), and humanitarian logistics using airplanes (De Angelis et al., 2007). Recently, Lmar-
iouh et al. (2019) describe the case of a Moroccan manufacturer of bottled water, shipping
its products directly from a central plant to regional depots and wholesalers.

Direct deliveries can, however, be less efficient than multi-stage distribution strategies if
vehicle capacities are poorly utilized. In practice, delivery networks therefore often include
a mix of direct and milk run deliveries (Meyer & Amberg, 2018). Dispatchers must take care
that resources not be wasted and deliveries be made speedily with a small vehicle fleet. In
this context, this paper tackles the following problem. Given a set of transport requests, of
which only a given subset can be combined into milk runs and most of which entail a single
round trip to one customer that takes a given processing time, when should which trip be
performed bywhat vehicle from a given heterogeneous truck fleet? Since customers cannot—
or at least prefer not to—accept deliveries at any arbitrary time, each trip is associated with
a time window, i.e., an earliest and latest execution time. As the objective, one of the main
advantages of direct deliveries is their short transit time. To account for this, optimal schedules
should avoid long response times as much as possible, i.e., we minimize the maximum flow
time.

Note that the definition of amilk run in this context is different from a tour in a classic vehi-
cle routing setting (VRP). VRP are typically concerned with less-than-truckload shipping,
where many customers can lie on a route. Adding or removing a customer to/from a route
hence typically affects the driving time on the route and the presence/absence of the fixed
service time of the specific customer. Since direct delivery networks are mostly relevant for
full or almost-full truckloads, milk runs allow for the consideration of consolidation effects:
e.g., if a larger truck is used to combine two shipments, this truck may only have to approach
the loading ramp once and only have to check-in at the customer site once (if both shipments
have the same destination), thus shortening the trip duration beyond mere savings in driving
time. Predefining such possible milk runs may hence be helpful for almost-full-truckload
shipping, while for less-than-truckload shipping, it becomes impracticable.

123

Annals of Operations Research

In their seminal papers, Emde and Zehtabian (2019) and Gschwind et al. (2020) introduce
thedirect deliveries scheduling problem (DDSP). The authors propose aMIPmodel, a branch-
cut-and-price algorithm as well as two heuristics. We adapt this problem by considering a
given heterogeneous vehicle fleet and the possibility of combining trips into milk runs.
Previous studies have considered minimizing the total weighted flow time (or response time)
as the objective. However, this may lead to unfair schedules, because individual customers
are not protected from excessively slow response times (Anand et al., 2017). Consider for
example a problem where three round trips A, B, and C must be scheduled on two different
trucks 1 and 2. Assume that trips A and B are released at time zero (i.e., a truck processing
these trips can depart from the depot immediately at the beginning of the planning horizon)
and trip C is released at time one, all deadlines are four time units later than the release
date (i.e., the trucks must return to the depot no later than four time units after the release
of the trip they are processing), and the processing times are three, one, and one time units,
respectively, on truck 1, while truck 2 is slower and takes an additional time unit of processing
time per trip. Moreover, assume that all trips have the same priority, i.e., weight one. Figure
1a shows the solution that minimizes the total flow time. Note that while trips B and C are
completed early in their time windows, trip A bumps up against its deadline. Figure 1b, on
the other hand, depicts the schedule that minimizes the maximum flow time. In this solution,
trips B and C complete a little later, albeit still ahead of their respective deadlines, but trip A
also finishes sooner, which may be considered fairer (no customer must wait for more than
three time units for their order to be delivered). Moreover, in Fig. 1b, a delay of one time
unit would not make any job tardy, unlike in the solution in Fig. 1a, where trip A must not
be delayed at all.

Consequently, we adapt the objective function to avoid extreme flow times, and investigate
in a numerical study what effect different objectives have on delays in case of unforeseen
disturbances. Moreover, we account for milk runs and a heterogeneous vehicle fleet. We dub
this problem version DDSP-het. We show that DDSP-het is computationally challenging
on multiple levels and propose a mixed-integer linear programming model, a constraint
programming model, and exact solution methods based on Benders decomposition for this
novel problem version, which we enhance with combinatorial cuts, valid inequalities, and a
specialized subproblem solution method. Our computational tests show that this procedure
solvesDDSP-het to optimality or near-optimality quite quickly, clearly outperforming default
solvers in many cases.

The rest of this paper is structured as follows. In Sect. 2, we review the pertinent literature.
Section 3 formalizes the problem, introduces a MIP and a CP model, and discusses compu-
tational complexity. In Sect. 4, we present a logic-based Benders decomposition procedure

(a) (b)

Fig. 1 Gantt charts of two different solutions for the introductory problem with three trips on two trucks

123

Annals of Operations Research

to solve DDSP-het, which we test in Sect. 5, where we also investigate the robustness of
DDSP-het solutions and the influence of milk runs. Finally, Sect. 6 concludes the paper.

2 Literature review

Generally speaking, DDSP can be viewed as a machine scheduling problem (surveyed by
Pinedo, 2015), where vehicles are parallel machines and trips are jobs. Since the truck fleet is
heterogeneous and vehicles can process trips at different speeds, the machines are unrelated.
In classic machine scheduling notation (Graham et al., 1979), this is similar to the tuple
[R|r j , d j |maxw j Fj]. However, there is a fundamental difference in that some trips can be
combined into milk runs, whose processing time need neither be the sum of the individual
processing times, nor their maximum, thus not conforming to typical batching machine
scheduling models (surveyed by Potts & Kovalyov, 2000; Mathirajan & Sivakumar, 2006;
Mönch et al., 2011). To the best of our knowledge, this problemhas not been solved before.We
refer to this problem by the tuple [R|r j , d j , batch(B)|maxw j Fj], where batch(B) indicates
that some jobs can be batched into milk runs, whose properties are explicitly defined and
need not be either the sum (i.e., serial batching) or the maximum (i.e., parallel batching) of
the constituent trips.

Possible (or impossible) combinations of trips can also be expressed through conflict
graphs (e.g., Kowalczyk & Leus, 2017) or as tours in a classic vehicle routing problem
(VRP, surveyed by Toth & Vigo, 2014). However, milk runs are significantly more flexible
than what a conflict graph or the VRP can consider. E.g., it is possible to allow the consolida-
tion of three trips A, B, and C in a milk run, but not any pairwise combination of these trips.
This may be relevant, e.g., if A, B, and C are transport requests headed for three facilities of
the same customer (e.g., an OEM). The customer may be fine with either individual direct
deliveries to the destination facilities or, alternatively, with one complete consolidated ship-
ment to a central receiving location, but not with partially consolidated shipments. Moreover,
the processing time of a milk run need not be related to the driving times of the individual
trips. E.g., a consolidated shipment may go to a central receiving store, which is different
from the individual direct destinations, or the truck need only be loaded once, which saves
on service time in a non-linear manner.

Regarding specific applications, direct delivery (or point-to-point) networks are commonly
used in industries where high-velocity, high-bulk, just-in-time, or specialty goods need to
be shipped by truck. In these cases, “vehicles” are trucks, which process transport jobs
by carrying cargo from a source (e.g., supplier plant, cross-dock, or distribution center) to
customers (e.g., OEM plants, pool points). For instance, direct deliveries are particularly
common in just-in-time logistics (Boysen et al., 2015) and grocery supply chains (Chen,
2008).

While there are some papers looking at direct deliveries from a strategic perspective (e.g.,
Gallego&Simchi-Levi, 1990;Barnes-Schuster&Bassok, 1997), to the best of our knowledge
the only other papers explicitly dealingwith direct deliveries from an operational perspective,
where a given set of trips must be assigned to truck fleet, are Emde and Zehtabian (2019) and
Gschwind et al. (2020). Apart from introducing the problem, the authors’ main contributions
are two heuristic procedures and an exact branch-cut-and-price algorithm, which are shown
to solve large instances (with up to 125 trips) within a time limit of up to one hour of CPU
time. The solution methods from these previous papers are not immediately applicable to

123

Annals of Operations Research

DDSP-het, however, because of the different objective functions, heterogeneous truck fleet,
and inclusion of milk runs.

The problem of assigning trips to a fleet of vehicles also bears some resemblance to classic
vehicle routing. DDSP, however, is a scheduling, not a routing problem. Even combining trips
into milk runs in this context bears little resemblance to classic VRPs because the processing
times and time windows of the milk runs may not be a linear combination of the constituent
trips. In a sense,DDSP-het hence sits somewhere between a scheduling and a routing problem;
see also Beck et al. (2003) for a discussion about the relationship between routing with time
windows and job shop scheduling.

The most closely related family of routing problems may be the full-truckload vehicle
routing problem (FTVRP), which is also concerned with assigning trips between origin and
destination pairs to a fleet of (possibly heterogeneous) vehicles. Since the seminal work by
Ball et al. (1983), many papers have been published in this stream of research (reviewed by
Annouch et al., 2016). The FTVRP, however, is mostly considered in the context of shuttling
containers between multiple terminals over longer time horizons (i.e., multiple shifts), often
necessitating some type of shift scheduling to be included in the model (e.g., Bai et al., 2015;
Xue et al., 2021).Moreover, the objective of FTVRP inmost cases involves costminimization
or profit maximization, sometimes minimization of total travel distance or deadheading. To
the best of our knowledge, customer response times have never been considered, which is not
surprising since FTVRP is typically formulated in the context of container movements, not
just-in-time direct deliveries. Consequently, FTVRP often includes a decision as to which
transport requests to accept in the first place, i.e., some trips may not be performed at all,
which is not possible in DDSP-het. Finally, the concept of a milk run, although common in,
e.g., part logistics, has no equivalent in the FTVRP.

Vehicle scheduling problems (Bodin & Golden, 1981; Bunte & Kliewer, 2009), on the
other hand, concern themselves with scheduling already timetabled trips and are often used
in the context of public transportation. DDSP trips, however, are not timetabled, they merely
have time windows. The most similar model from this general stream of literature may be
Tzur and Drezner (2011), who also consider scheduling direct deliveries between a depot
and multiple customers. The authors dub their problem the assignment and scheduling of
transportation tasks to vehicles (ASTV), which deals with less-than-truckload shipping, i.e.,
loading constraints on the homogeneous truck fleet must also be satisfied. The objective is
to minimize the total cost for vehicles, driving time, and time spent waiting during loading
and unloading of commodities. The problem is solved with a decomposition heuristic.

3 Problem description

The direct deliveries scheduling problem with a heterogeneous fleet (DDSP-het) can be
described as follows. Given is a set of direct deliveries that have to be performed during
the planning horizon (e.g., one day) from one depot to any number of customers by a given
heterogeneous fleet of trucks. Each trip takes a certain processing time, which includes the
time to load the truck at the depot, drive to the customer, unload, and drive back to the
depot, plus any break, refuelling, and/or refitting times, if applicable. Since the truck fleet is
heterogeneous, certain trucks may be slower than others or possibly not capable of certain
deliveries at all, e.g., for lack of capacity (e.g., Al Theeb et al., 2019). Note that a trip
may of course also entail picking up goods from the customer to be transported back to the
depot. Moreover, while we mostly consider direct delivery round trips, it may be possible to

123

Annals of Operations Research

optionally combine some trips into milk runs, where a vehicle makes multiple deliveries in
the same run, if the time windows, truck capacities and other considerations allow it. Such a
milk run is presumably faster than processing the constituent trips individually, although the
decrease in processing time may be different from the mere savings in driving time, because
some other steps can also be combined (e.g., the truck needs to approach the loading dock at
the depot only once for all combined trips etc.).

Usually, customers will set time windows for deliveries. For instance, some perishable
items like baked goods or fresh produce must be delivered such that they can be sold imme-
diately (e.g., Hsu et al., 2007), while OEMmanufacturing plants may have tight just-in-time
policies (Boysen et al., 2015). As the objective, response times are often considered central
(e.g., Hong & Park, 1999). Apart from the immediate effect on customer satisfaction, this
also carries the added benefit of making schedules more robust in the face of unplanned
disturbances (e.g., unexpectedly heavy traffic). We investigate this further in Sect. 5.2.3.

3.1 Formal description

Let I = {1, . . . , n} be the set of trips from the depot to one customer each, and let the set
of different truck types be C = {1, . . . , c}. Each trip i ∈ I takes a processing time of pic
if it is processed by a truck of type c ∈ C , which includes the time to load the vehicle in
the depot, drive to the customer, unload the vehicle, and drive back to the depot. This time
may differ depending on such things as the size of the truck (heavier and/or older trucks tend
to be slower). Some trips may be incompatible with certain truck types altogether (e.g., if
the truck capacity is too low), in which case the corresponding processing time can be set
to a prohibitively large value (pic = ∞). Moreover, each trip is associated with an earliest
start time ri and a latest completion time di , respectively, depending on the customers’ time
windows. Customer service should be completed as soon as possible within the time window.
Consequently, weminimize the maximumweighted difference between completion time and
release date over all trips. Of each truck class c ∈ C , there are γc ∈ N>0 trucks available,
such that the total size of the vehicle fleet is m = ∑

c∈C γc. Finally, let B ⊂ ℘(I) the set
of all subsets of trips that can be combined in a milk run, where ℘(I) denotes the powerset
of I . To give an example, if all pairs of trips (and only those) can be combined into milk
runs, then B = {{i, i ′} | i, i ′ ∈ I , i < i ′}. If assigned to the same truck, the trips i ∈ B
(B ∈ B) can be combined into one milk run tour with processing time pBc for each truck
class c ∈ C , release date rB , deadline dB , and weight wB . Note that we do not make any
assumptions regarding the parameters of the combined trip, although we would typically
expect pBc <

∑
i∈B pic for at least one c ∈ C . Also note that this implies that the customer

sequence inside a milk run is fixed in preprocessing, presumably such that the total driving
time is minimal. Other factors that may influence the processing time of a milk run may also
be, among other things, the expected registration and waiting time at the customer(s) and the
loading time at the depot, which may be shorter if the truck need only approach the loading
dock once.

A schedule for DDSP-het is defined by sets R1, . . . , Rm , where set Rk ⊆ I ∪ B is the
set of trips and milk runs processed by truck k ∈ {1, . . . ,m}, and a permutation πk of Rk ,
denoting the order in which the trips and milk runs are processed, i.e., πk(j) ∈ Rk denotes
the j-th trip or milk run, j = 1, . . . , |Rk |, to be processed by truck k. Note that each set Rk

may contain both integers (trips) as well as sets of integers (milk runs combining multiple
trips). For ease of notation, let η(k) ∈ C denote the truck class of truck k ∈ {1, . . . ,m}, and

123

Annals of Operations Research

(a) (b)

Fig. 2 Example problem and Gantt chart of the optimal solution

let Ĩ (i) = {B ∈ B | i ∈ B} be the set of milk runs that contain trip i ∈ I . A feasible schedule
has the following properties.

• Each trip i ∈ I must be assigned exactly once, either on its own or as part of a milk run,
i.e., either ∃!k ∈ {1, . . . ,m} : i ∈ Rk or

∑m
k=1 |Rk ∩ Ĩ (i)| = 1 must hold.

• Let τ(i) be the completion time of trip or milk run i . Then τ(πk(j)), ∀ j = 1, . . . , |Rk |,
can be calculated recursively as

τ(πk(j)) =
{
max{rπk (j); τ(πk(j − 1))} + pπk (j)η(k) if 2 ≤ j ≤ |Rk |
rπk (j) + pπk (j)η(k) if j = 1

.

• Each trip is processed within its time window, i.e., for all i ∈ Rk, k = 1, . . . ,m, it must
hold that ri + piη(k) ≤ τ(i) ≤ di .

The goal of the optimization is minimizing response times, that is, the difference between
trip completion time and release date, should be minimal. Emde and Zehtabian (2019) and
Gschwind et al. (2020) propose to minimize the total sum of weighted flow times; however,
this does not preclude individual customers from having long response times. Consequently,
among all feasible schedules, we seek one where the maximum weighted flow time

Z = max
i∈⋃m

k=1 Rk

{wi · (τ (i) − ri)}

is minimal.
Example Consider the example problem given in Fig. 2a. In this example, there are 5 trips

to be made by two trucks of different types (C = {1, 2}, γ (1) = γ (2) = 1). Moreover, trips
3 and 5 can optionally be combined in a milk run, i.e., B = {{3, 5}}. A feasible and optimal
solution consists of the two vehicles performing 3 and 2 trips, respectively, i.e., R1 = {2, 4, 5}
and R2 = {1, 3}, in order π1 = 〈2, 4, 5〉 and π2 = 〈1, 3〉. The schedule is depicted as a Gantt
chart in Fig. 2b. Using this schedule, trip 5 has a flow time ofw5 ·(τ (5)−r5) = 4 ·(11−6) =
20 = Z . Note that in this example, it is not optimal to combine trips 3 and 5, even though
that would have been possible for truck 1 and led to a processing time shorter than the sum
of both. Also note that truck 2 is incapable of processing this milk run altogether, possibly
due to its capacity being too low.

123

Annals of Operations Research

Table 1 Notation for the MIP model

Î Set of trips and milk runs (index i ∈ Î = I ∪ B)

n̂ Total number of trips and milk runs (n̂ = | Î |)
Ĩ (i) Set of milk runs that include trip i (Ĩ (i) = {B ∈ B | i ∈ B})
C Set of truck classes

M Big integer, M = maxi∈ Î {di }
γ (c) Number of trucks in the fleet of type c ∈ C

pic Processing time of trip or milk run i on truck type c

ri Earliest start time of trip or milk run i

di Latest completion time of trip or milk run i

wi Weight of trip or milk run i

xcii ′ Binary variable: 1, if trip or milk run i ′ is the direct successor of trip or milk
run i on the same vehicle of type c; in case of xc0,i = 1 (xci,n̂+1 = 1), i is
the first (last) trip or milk run of a vehicle of type c; 0, otherwise

yi Binary variable: 1, if trip or milk run i is processed; 0, otherwise

ti Continuous variable: completion time of trip or milk run i

3.2 Mathematical models

To enable the use of default solvers, using the notation from Table 1, DDSP-het can
be expressed by the following MIP model [DDSP-OP], adapted from Emde and Zehtabian
(2019). To concisely model the problem, we introduce set Î = I ∪ B of all trips and milk
runs as well as n̂ = | Î | as the total number of trips and milk runs.

[DDSP-OP] Minimize Z(x, y, t) = max
i∈ Î

{wi · (ti − ri)} (1)

subject to

∑

i ′∈ Î∪{n̂+1}

∑

c∈C
xcii ′ = yi ∀i ∈ Î (2)

∑

i∈ Î∪{0}

∑

c∈C
xcii ′ = yi ′ ∀i ′ ∈ Î (3)

∑

i∈ Î∪{0}
xcii ′ =

∑

i∈ Î∪{n̂+1}
xci ′i ∀i ′ ∈ Î , c ∈ C (4)

∑

i ′∈ Î
xc0i ′ ≤ γc ∀c ∈ C (5)

∑

i ′∈ Ĩ (i)
yi ′ + yi = 1 ∀i ∈ I (6)

(
1 − xcii ′

) · M + ti ′ ≥ ti + pi ′c ∀i, i ′ ∈ Î , c ∈ C (7)

ti ≤ di ∀i ∈ Î (8)

ri ′ +
∑

c∈C

∑

i∈ Î∪{0}
pi ′c · xcii ′ ≤ ti ′ ∀i ′ ∈ Î (9)

123

Annals of Operations Research

xcii ′ ∈ {0; 1} ∀i ∈ Î ∪ {0}, i ′ ∈ Î ∪ {n̂ + 1}, c ∈ C (10)

yi ∈ {0; 1} ∀i ∈ Î (11)

Objective function (1)minimizes themaximumweighted flow time. Note that we linearize
the objective function by introducing an auxiliary variable α and a set of auxiliary constraints
α ≥ wi ·(ti −ri), ∀i ∈ Î . Constraints (2) ensure that each trip i has either one successor (if the
trip or milk run is processed) or no successor (if the trip or milk run is not processed). If that
successor is dummy trip n̂+ 1, then trip i is the last one performed by the respective vehicle.
Constraints (3) have the same effect for the predecessor. Analogously, if xc0,i ′ = 1, trip or
milk run i ′ is the first trip of a vehicle of type c. Equations (4) ensure that contiguous tours
are constructed. Inequalities (5) make it impossible to use more trucks than are available.
Constraints (6) enforce that every trip must take place, either as an individual trip or as part
of a milk run. Constraints (7) assign each trip a non-overlapping processing time window,
while (8) and (9) enforce the time windows. Finally, the domain of the variables is defined
by (10) and (11). Note that we can implicitly assume that ti ≥ 0, ∀i ∈ Î , provided that all
release dates are non-negative because of Constraints (9).

Given that many scheduling problems are solved more efficiently by constraint program-
ming solvers than MIP solvers (e.g., Grimes et al. 2009; Malapert et al., 2012), we also
formulate a constraint programming (CP) model for DDSP-het. Let ωi be an optional inter-
val variable, denoting the interval during which trip or milk run i ∈ Î is processed. Let δik
be an optional interval variable denoting the interval of size piη(k) during which trip or milk
run i is processed by truck k, which cannot start sooner than ri and cannot end later than di .
Note that all interval variables are optional, i.e., it is part of the problem to decide whether
a given milk run should be processed at all, and if yes, on what truck. Finally, let κk be a
sequence variable denoting the order in which the trips assigned to truck k are processed. We
get the following CP model.

[DDSP-CP] Minimize max
i∈ Î

{wi · (endOf(ωi) − ri)} (12)

subject to

noOverlap(κk) ∀k = 1, . . . ,m (13)

alternative(ωi , {δik | k = 1, . . . ,m}) ∀i ∈ Î (14)

presenceOf(ωB) = 1 ⇒
∑

i ′∈B

∑

i ′′∈ Ĩ (i ′)∪{i ′}:
i ′′ �=B

presenceOf(ωi ′′) = 0 ∀B ∈ B (15)

presenceOf(ωi) = 0 ⇒
∑

B∈ Ĩ (i)
presenceOf(ωB) = 1 ∀i ∈ I (16)

Objective (12) minimizes the maximum weighted flow time, where endOf(ωi) denotes
the end of interval ωi if trip or milk run i is processed (zero, otherwise). Constraints (13)
ensure that the trip intervals do not overlap on any truck, while (14) enforce that if a trip or
milk run i is processed (i.e., ωi is present), then it must be scheduled on exactly one truck
(i.e., one interval δik on exactly one truck k must be present). According to implications (15),
if a milk run B is present (i.e., presenceOf(ωB) = 1), then no other milk run containing a
trip i ∈ B or the trips in B themselves can be present. Finally, (16) imply that if trip i ∈ I

123

Annals of Operations Research

is not present, then exactly one milk run containing that trip must be present. Together, (15)
and (16) enforce that each trip is processed exactly once, be it by itself or as part of a milk
run.

3.3 Time complexity

Regarding worst-case time complexity, it is hard to solve DDSP-het even to feasibility, as
we show below. Note that this distinguishes DDSP-het from the direct delivery scheduling
problems discussed in Emde and Zehtabian (2019) and Gschwind et al. (2020), for which it
is trivial to find a feasible solution.

Proposition 3.1 Deciding feasibility for DDSP-het is NP-complete in the strong sense, even
if m = 1, B = ∅.
Proof In this setting, deciding feasibility is equivalent to a singlemachine scheduling problem
with time windows ([1|r j |Lmax]), which is well-known to be NP-hard in the strong sense
(Lenstra et al., 1977). NP-completeness follows from the fact that solutions to DDSP-het can
be checked in polynomial time. ��

It is not only the time windows that make DDSP-het hard to solve, however. Even if all
trips are released at time 0 and there is a common deadline, deciding feasibility remains hard.

Proposition 3.2 Deciding feasibility for DDSP-het is NP-complete in the strong sense, even
if |C | = 1, B = ∅, and ri = 0, di = d for all i ∈ I and some d ∈ N.

Proof We showNP-hardness by reduction fromBinPacking, which is well-known to beNP-
hard in the strong sense (Garey & Johnson, 1979). An instance of BinPacking is defined as
follows. Given q positive integers a1, . . . , aq and two positive integers s,U ∈ N, does there
exist a partition of the set {1, 2, . . . , q} into s sets {A1, A2, . . . , As}, such that∑i∈A j

ai ≤ U
for all j ∈ {1, . . . , s}?

An instance ({a1, . . . , aq}, s,U) ofBinPacking is transformed into an instance ofDDSP-
het as follows. We set C = {1}, γ1 = s, B = ∅, and I = {1, . . . , q}. Each trip i ∈ I is
released at time ri = 0 and has processing time pi,1 = ai . The common deadline of all
trips i ∈ I is di = d = U . This construction can be carried out in linear time. It is easy
to see that every solution {A1, A2, . . . , As} to the BinPacking instance corresponds to a
solution {R1, . . . , Rs} with Ak = Rk for all k ∈ {1, . . . , s}, and vice-versa, irrespective of
the permutations πk . NP-completeness follows from the fact that solutions to DDSP-het can
be checked in polynomial time. ��

If there are multiple truck classes, deciding feasibility remains hard even if there are only
two types of time windows, and all processing times are either 2 or ∞.

Proposition 3.3 Deciding feasibility for DDSP-het is NP-complete in the strong sense, even
if B = ∅, pic ∈ {2,∞} for all i ∈ I and c ∈ C, and [ri , di] ∈ {[0, 4], [1, 3]} for all i ∈ I .

Proof We reduce from the strongly NP-hard 3Sat problem with clauses C1, . . . ,Cq over a
set of variables {x0, . . . , xs−1}, where s denotes the number of variables. We may assume
that every variable appears exactly two times positively and exactly two times negatively
(2P2N-3Sat or (3, 2B)- Sat, Berman et al., 2007). Given such an instance, we construct the
following DDSP-het instance (cf. Fig. 3).

123

Annals of Operations Research

Fig. 3 Example of the reduction from 2P2N-3Sat to DDSP-het with q = 4 clauses and s = 3 variables in
the proof of Proposition 3.3. Square vertices represent the set of trips I , round vertices represent the truck
classes C . Each truck can either serve two trips connected to it by a dashed edge or a single trip connected to
it by a solid edge. Bold edges indicate a satisfying assignment

We introduce truck classes C = {1, . . . , 2s + q} with γc = 1 truck in each class c ∈ C .
We further set B = ∅ and I = {1, . . . , 5s}. All processing times pic are taken from {2,∞},
and it suffices to specify the set Pi = {c ∈ C : pic = 2} of truck classes that can serve each
trip i ∈ I . For every variable xi , we set P5i+1 = {2i + 1, 2i + 2} and [r5i+1, d5i+1] = [1, 3].
This means that the unique truck of class 2i + 1 or 2i + 2 must be used to serve this trip,
and we interpret this decision as setting variable xi to false or to true, respectively. Note that,
because of pic ≥ 2 and di ≤ 4 for all i ∈ I , the truck assigned to serving trip 5i + 1 cannot
serve any other trips.

The trips 5i + 2, 5i + 3 correspond to the positive literal of variable xi , and the trips
5i + 4 and 5i + 5 correspond to its negative literal, for every i ∈ I . Let ji,1 and ji,2 denote
the indices of the (exactly) two clauses containing the positive literal xi , and let j̄i,1, j̄i,2
denote the indices of the (exactly) two clauses containing the negative literal x̄i . We set
P5i+2 = {2i + 2, 2s + j̄i,1}, P5i+3 = {2i + 2, 2s + j̄i,2}, P5i+4 = {2i + 1, 2s + ji,1},
P5i+5 = {2i + 1, 2s + ji,2}, and [r j , d j] = [0, 4] for all j ∈ {5i + 2, . . . , 5i + 5}.

Our construction ensures that whenever a variable xi is set to true, the truck of class 2i +2
is free to serve the trips 5i + 2 and 5i + 3, while the trips 5i + 4 and 5i + 5, corresponding
to the negative literal x̄i , need to be served by the trucks of classes {2s + 1, . . . , 2s + q}.
Conversely, if xi is set to false, the truck of class 2i + 1 is free to serve the trips 5i + 4 and
5i + 5, while the trips 5i + 2 and 5i + 3, corresponding to the positive literal xi , need to
be served by the trucks of classes {2s + 1, . . . , 2s + q}. Every truck 2s + j of these classes
corresponds to a clause C j and is able to serve any (up to) two trips corresponding to the
negations (!) of literals that appear in clause C j . In other words, every clause can absorb
up to two wrong literals, but not all three. Since each trip corresponding to a literal can be
served by exactly one truck, this implies that at least one variable needs to be set correctly
per clause.

With this interpretation, it is easy to verify that the constructed instance of DDSP-het is
feasible if and only if the original 2P2N- 3Sat instance has a satisfying assignment. Observe
that our construction can be carried out in polynomial time. NP-completeness follows from
the fact that solutions to DDSP-het can be checked in polynomial time. ��

The above results hold even if there are no milk run trips at all. As soon as milk runs are
considered, deciding feasibility becomes hard even in the absence of time windows and if
the truck fleet size is not limiting.

Proposition 3.4 Deciding feasibility for DDSP-het is NP-complete in the strong sense, even
if |C | = 1, γc = ∞, pB,1 = 0 and [rB , dB] = [0,∞] for all B ∈ B.

123

Annals of Operations Research

Proof We reduce from the strongly NP-hard 3Sat problem with clauses C1, . . . ,Cq over a
set of variables {x1, . . . , xs}. We again assume, without loss of generality, that every variable
appears exactly two times positively and exactly two times negatively (Berman et al., 2007).
Given such an instance, we construct the following DDSP-het instance.

We set I = {1, . . . , s+q},C = {1}, and γ1 = ∞. For i ∈ {1, . . . , s}, let C[i] ⊆ {1, . . . , q}
denote the set of indices of all clauses that contain the literal xi , and let C̄[i] ⊆ {1, . . . , q}
denote the set of indices of all clauses that contain the literal x̄i . We define Bi = {{q+ i}∪C :
C ⊆ C[i] ∨ C ⊆ C̄[i])} for i ∈ {1, . . . , s} and let the set of milk runs be B = ⋃s

i=1 Bi .
1

Finally, we set pi,1 = ∞ for all i ∈ I , and pB,1 = 0 and [rB , dB] = [0,∞] for all B ∈ B.
Note that at most one milk run in Bi can be served, since all milk runs share the trip {q + i}
that may not be served more than once.

Now, a solution to the constructed DDSP-het instance corresponds to a selection of at
most one milk run from each set Bi , i.e., to a selection of clauses that can simultaneously be
satisfied by each variable xi , and vice-versa. Observe that the construction can be carried out
in polynomial time, since every variable appears in at most four clauses, which bounds the
size of the sets Bi . NP-completeness follows from the fact that solutions to DDSP-het can
be checked in polynomial time. ��

We conclude that DDSP-het combines multiple decisions, each of which is hard in its own
right: scheduling trips with time windows, assigning trips to a limited fleet of trucks, and
choosing a subset of milk runs. In light of this, we do not expect default solvers working on
MIP model [DDSP-OP] to perform well for instances of realistic size, which is confirmed
by our computational study (Sect. 5). Moreover, this indicates that even subproblems in a
decomposition approach cannot be expected to be easily tractable. We propose problem-
specific exact solution methods in the following.

4 Benders decomposition

To improve performance, we propose an exact algorithm based on Benders decomposition
(Benders, 1962) in this section. The main advantage of this type of decomposition approach
lies in splitting the problem into two smaller, more manageable partial problems, for which
specialized algorithms may be used. Benders decomposition based approaches have proven
to be quite successful in solving complex scheduling problems (recently, e.g., Li & Womer,
2009; Cao et al., 2010; Verstichel et al., 2015; Emde et al., 2020)

However, straightforward application of a classic Benders decomposition scheme as origi-
nally proposed by Benders (1962) is not promising because the presence of big-M constraints
weakens theLP relaxation of themastermodel and/or theBenders cuts, depending onwhether
they end up in the master or subproblem (Codato & Fischetti, 2006). Therefore, we present
a logic-based Benders decomposition of DDSP-het that foregoes the use of these constraints
altogether in Sect. 4.1.

4.1 Logic-based Benders decomposition

The presence of big-M Constraints (7) weakens the LP relaxation of model [DDSP-OP],
which makes it significantly harder to solve for default solvers. In this section, we will there-

1 For example, for the formula (x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x̄1 ∨ x̄2) ∧ (x̄0 ∨ x1 ∨ x̄2) ∧ (x̄0 ∨ x̄1 ∨ x2), we get
B1 = {{5, 1, 2}, {5, 1}, {5, 2}, {5, 3, 4}, {5, 3}, {5, 4}}, B1 = {{6, 1, 3}, {6, 1}, {6, 3}, {6, 2, 4}, {6, 2}, {6, 4}},
and B3 = {{7, 1, 4}, {7, 1}, {7, 4}, {7, 2, 3}, {7, 2}, {7, 3}}.

123

Annals of Operations Research

fore generate so-called combinatorial cuts in the spirit of Hooker (2000) and Codato and
Fischetti (2006) with the goal of by-passing the big-M constraints altogether. This approach
is generally referred to as logic-based Benders decomposition (LBBD) (Hooker and Ottos-
son, 2003). Recently, Lam et al. (2020) proposed a partially automated LBBD approach by
combining default MIP and CP solvers. Unlike this approach, we reformulate the master
problem and propose valid inequalities as well as a specialized procedure for solving the
subproblem.

4.1.1 Reformulation of the master problem

For ease of notation, without loss of generality, we assume that trips are sorted by non-
decreasing release date, i.e., we assume that i < i ′ if ri < ri ′ . We reformulate the master
problem by introducing binary variables υik , taking value 1 if trip i ∈ I is assigned to truck
k ∈ {1, . . . ,m}. We also use auxiliary continuous variable z, which constitutes a lower bound
on the maximum weighted flow time.

[Master-C] Minimize ZCB(υ, z) = z (17)

subject to

m∑

k=1

υik = 1 ∀i ∈ I (18)

υik ∈ {0, 1} ∀i ∈ I , k = 1, . . . ,m (19)

z ≥ 0 (20)

Objective function (17) minimizes the surrogate objective of the maximum weighted
flow time as expressed by auxiliary variable z. This is also called a subproblem relaxation
(Hooker, 2007). Constraints (18) ensure that every trip is assigned to exactly one truck, and
the remaining constraints define the domain of the variables.

Model [Master-C] is a relaxation of the original problem thatmerely assigns trips to trucks,
but does not sequence them and, consequently does not calculate the objective value. The
constraint set of [Master-C] is iteratively extended by cuts as we describe in detail in Sect.
4.1.3. Whenever the solver finds a candidate integer solution for the master model, i.e., an
assignment of trips to trucks, it is passed to the subproblem, where the assigned trips are
sequenced. Information about the feasibility and optimality is then fed back to the master
model by way of cuts. The search continues until all nodes have been fathomed or cut off.
The best found solution is optimal.

4.1.2 Valid inequalities

While the procedure outlined above, using the cuts outlined in Sect. 4.1.3, will find the
optimal solution eventually, it may take a long time, because model [Master-C] contains no
meaningful information about solution quality. The solver will thus most probably generate
a lot of mediocre candidate solutions before a sufficient number of rows have been added to
guide the search into the promising regions of the search space. To speed up convergence,
we therefore propose a number of valid inequalities to be added to model [Master-C].

First off, we can discard milk runs in set B that are not necessary in an optimal solution.
This is clearly the case for any milk run B ∈ B where rB + minc∈C {pBc} > dB . Similarly,

123

Annals of Operations Research

B need not be considered if wB · minc∈C {pBc} ≥ ∑
i∈B wi · (di − ri), i.e., if the minimum

cost of the milk run is not less than the sum of the maximum cost of the constituent trips.
Regarding valid inequalities, we forbid the assignment of pairs of trips that cannot be

processed by the same truck without violating at least one of the time windows, i.e.,

υik + υi ′k ≤ 1,∀i, i ′ ∈ I , k = 1, . . . ,m :
¬(∃B ∈ B : i ∈ B ∨ i ′ ∈ B) ∧ ri + piη(k) > di ′

− pi ′η(k) ∧ ri ′ + pi ′η(k) > di − piη(k).

(21)

If two trips i and i ′ are compatible, theymay contribute to the objective value of the solution
if assigned to the same truck. If the trips are processed in order 〈i, i ′〉, then the maximum flow
time cannot be less than gii ′ = wi ′ ·(ri+piη(k)+pi ′η(k)−ri ′). Similarly, if the processing order
is 〈i ′, i〉, then themaximumflow time cannot be less than gi ′i = wi ·(ri ′ + pi ′η(k)+ piη(k)−ri).
Note that we can set gii ′ := ∞ if ri + piη(k) + pi ′η(k) > di ′ (analogous for gi ′i). Therefore,
we can bound the surrogate objective z by

min{gii ′ , gi ′i } · (υik+υi ′k−1) ≤ z,∀i, i ′ ∈ I , k=1, . . . ,m : ¬∃B ∈ B : i ∈ B ∨ i ′ ∈ B.

(22)

We can extend the idea of the previous inequalities to sets of more than two trips. Let
N (i) = {i ′ ∈ I : ri ′ ≥ ri }, ∀i ∈ I , be the set of trips whose release date is not sooner than that
of trip i . Furthermore, let Nl(i) ⊆ N (i) be the l trips from set N (i) with the earliest release
dates. Let p̃ic = pic if ¬∃B ∈ B : i ∈ B, i.e., if trip i is not part of any potential milk run.
Otherwise, let p̃ic = min{pic,minB∈B:i∈B{ pBc

|B| }}. Then, we add the following constraints to
[Master-C].

ri +
∑

i ′∈Nl (i)

p̃i ′η(k) · υi ′k ≤ max
i ′∈Nl (i)

{di ′ },∀i ∈ I ; k = 1, . . . ,m; l = 1, . . . , |N (i)|. (23)

Note that these constraints are based on the (mild) assumption that milk run trips do not have
a later deadline than their constituent individual trips. If that is not the case, the right-hand
sides must be adjusted similarly to the processing time p̃.

Inequalities (23) essentially state that the last job in a set of jobs in earliest release date
order cannot finish sooner than the earliest release date of those jobs, plus their processing
times if assigned to the same machine. The same idea can be exploited for determining the
minimum contribution to the objective function by adding

min
i ′∈Nl (i)

{wi ′ } ·
⎛

⎝ri +
∑

i ′∈Nl (i)

p̃i ′η(k) · υi ′k − max
i ′∈Nl (i)

{ri ′ }
⎞

⎠

≤ z,∀i ∈ I ; k = 1, . . . ,m; l = 1, . . . , |N (i)| (24)

to [Master-C].
Finally, we can break symmetries by including Constraints (25) in the master model,

inspired byBertoli et al. (2018). For truck classes c containingmore thanone truck (γ (c) > 1),
truck k + 1 must have at least one higher-index trip than truck k, thus excluding many
symmetric solutions with equivalent objective values.

υik ≤
∑

i ′∈I :
i ′>i

υi ′,k+1,∀i ∈ I ; k =
c−1∑

c′=1

γ (c) + 1, . . . ,
c∑

c′=1

γ (c); c ∈ C (25)

123

Annals of Operations Research

Example (cont.) Consider the example from Sect. 3.1. Trips 4 and 5 can never be together
on the same truck of class c = 2, because no matter in what order they are processed, a time
window will be violated. Hence, one inequality (21) is added as

υ4,2 + υ5,2 ≤ 1.

Similarly, trips 1, 2, and 3 can never be processed by the same truck of class 2 in any
order, therefore the assignment is made impossible by an inequality of type (23) for N3(1) =
{1, 2, 3}

1 + 2 · υ1,2 + 3 · υ2,2 + 3 · υ3,2 ≤ 8.

By inequalities (24), the objective contribution z for set N2(1) = {1, 2} on truck 1 cannot
be less than

2 · (1 + 2 · υ1,1 + 3 · υ2,1 − 2) ≤ z,

i.e., the objective value cannot be less than 8 if trips 1 and 2 are assigned to truck 1.

4.1.3 Combinatorial cuts

Whenever the branch and cut process solving model [Master-C] finds a candidate integer
solution ῡ, the subproblem is invoked. From the viewpoint of the subproblem, the assign-
ment of trips to trucks is given, but not the order in which these trips are processed. More
specifically, for each k = 1, . . . ,m, the trips assigned to truck k are R̂k = {i ∈ I | ῡik = 1}.
The subproblem then consists of finding the optimal permutation πk for each given set Rk ,
such that all trips complete within their time windows (ri + piη(k) ≤ τ(i) ≤ di , i ∈ Rk) and
the maximum flow time maxi∈Rk {wi · (τ (i) − ri)} is minimal.

To determine the optimal job sequence for each truck k, we need to solve a single machine
scheduling problemwith release dates and deadlinesminimizing themaximumweighted flow
time ([1|r j , d j |maxw j Fj]), where trips can potentially be combined into milk runs. Note
that even without the additional complication of milk runs, just solving [1|r j , d j |maxw j Fj]
remains NP-hard in the strong sense as merely finding a feasible solution is equivalent to
solving [1|r j |Lmax].

We propose the following dynamic programming (DP) scheme, based on the classicDP for
sequencing problems as originally introduced by Held and Karp (1962). The DP is divided
into stages, where in each stage one trip or milk run is added to the emerging schedule.
Each stage consists of states (�,C), denoting the set � of trips already scheduled and
the makespan C of the (partial) schedule. Starting from dummy stage l = 0 with dummy
state (�,C) = (∅, 0), a successor state (�′,C ′) = (� ∪ {i},max{C + pik; ri + pik}) or
(�′,C ′) = (� ∪ B,max{C + pBk; rB + pBk}) in stage l + 1 is reached by appending
one trip i ∈ R̂k\� or one milk run B ∈ B : B ⊆ R̂k\� to the emerging schedule. We
only consider a transition from state (�,C) to state (�′,C ′) if it can still lead to a feasible
solution. Specifically, the following criteria must be satisfied.

First, all remaining trips can still be processed in no-wait earliest deadline (EDD) order,
i.e.,

C ′ +
∑

j=1

p̃πEDD
�′ (j)η(k) ≤ dπEDD

�′ (),∀ = 1, . . . , |R̂k | − |�′|,

where πEDD
�′ (j) denotes the j-th trip in EDD order from set R̂k\�′. Note that if the remaining

trips cannot be processed in EDD order, they cannot be processed within their time windows

123

Annals of Operations Research

at all (Lawler, 1973), and state (�′,C ′) can consequently be pruned. Also note that processing
time p̃ is adjusted to account for potential milk runs in R̂k\�′, similar to Eq. (23).

Second, state (�′,C ′) must not be dominated by another state. A state is dominated if
another state exists that covers (at least) the same trips, whose last trip ends no later, and
whose partial objective value is no greater. Formally, a state (�′,C ′) is dominated by another
state (�′′,C ′′) if �′ ⊆ �′′ and C ′ ≥ C ′′ and H(�′,C ′) ≥ H(�′′,C ′′), where H(�,C)

denotes the (partial) objective value of state (�,C).
Let �(�′,C ′) be the set of states from which a transition to state (�′,C ′) exists. For ease

of notation, let I ∗ be either the trip that is appended in this transition (if |�′\�| = 1) or
the milk run B that is appended (if �′\� = B). Then the (partial) objective value of state
(�′,C ′) can be calculated recursively as

H(�′,C ′) = min
(�,C)∈�(�′,C ′)

{max{H(�,C), wI ∗ · (C ′ − rI ∗)}},

where H(∅, 0) := 0. The optimal objective value is minC∈N{H(R̂k,C)}; the corresponding
optimal trip and milk run assignment Rk , trip sequence πk , and completion times τ are
determined by backward recovery along the optimal path.

The number of states in the DP is bounded by O(2n · maxi∈ Î {di }). Each state can have
O(n+ |B|) successors, and the objective value can be calculated in O(1). Consequently, the
total computational effort is bounded by O((n + |B|) · 2n · maxi∈ Î {di }).

DP may not return any feasible solution at all if all states have been pruned before ever
reaching a final state (R̂k,C). In this case, the trip assignment R̂k simply does not allow a trip
sequence which does not violate time windows. Consequently, we generate the minimum
infeasible subsets of R̂k by checking for each subset R̄ ∈ ℘(R̂k) (where ℘(R̂k) denotes
the powerset of R̂k) whether there is at least one permutation of the trips in R̄ that does not
violate a time window. Note that this may also require checking any potentially milk runs
if some trips in R̄ can be combined. If no such permutation exists, then the trips in R̄ can
never feasibly be processed by the same truck and we add them to the set of infeasible trip
combinations Rk := Rk ∪ R̄. Finally, after all infeasible trip combinations have been added
to Rk , we prune set Rk by removing all sets R̄ ∈ Rk that are true supersets of other sets
R̄′ ∈ Rk , i.e., we delete set R̄ ∈ Rk if ∃R̄′ ∈ Rk : R̄ ⊃ R̄′. Then we add cuts
∑

i∈R̄

(1 − υiη(k)) ≥ 1,∀R̄ ∈ Rk; k = 1, . . . ,m : DP outputs no feasible solution for R̂k .

(26)

Example (cont.) Assume that R̂2 = {1, 2, 3, 4}. The set of all infeasible subsets is
{{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 4}, {2, 3, 4}, {3, 4}, {1, 3, 4}}.After pruning, theminimum infea-
sible subsets are Rk = {{1, 2, 3}, {1, 2, 4}, {3, 4}}, leading to cuts

(1 − υ1,2) + (1 − υ2,2) + (1 − υ3,2) ≥ 1

(1 − υ1,2) + (1 − υ2,2) + (1 − υ4,2) ≥ 1

(1 − υ3,2) + (1 − υ4,2) ≥ 1

Note that the powerset ℘(R̂k) may contain a prohibitively large number of elements if
|R̂k | is large. Therefore, we can restrict the size of subsets R̄ to some sufficiently low number
of elements ζ , i.e., we only consider subsets that satisfy |R̄| ≤ ζ . That cuts down on the
computational effort, but carries the risk that no infeasible subset is found if ζ is too small.
In that case, a cut of type (26) is added where Rk := {R̂k}, i.e., the whole schedule for truck

123

Annals of Operations Research

k is made infeasible. In our computational experiments, this turned out to be unnecessary,
and we left ζ = ∞.

If the solution is feasible, it may still be suboptimal. Let i∗ = argmaxi∈⋃m
k=1 Rk

{wi ·(τ (i)−
ri)} be the trip or milk run with the greatest weighted flow time. Let k∗ ∈ {1, . . . ,m} such
that i∗ ∈ Rk∗ be the truck processing trip or milk run i∗ in the current solution. Moreover, let
j∗ ∈ {1, . . . , |Rk∗ |} such that πk∗(j∗) = i∗ be the sequence position of trip i∗. Finally, let
j∗∗ = argmax j=1,..., j∗ {τ(πk∗(j))− pπk∗ (j)η(k∗) = rπk∗ (j)} be the last trip before the critical
trip i∗ to start without delay at its release date. To lower the objective value, at least one of the
trips in subsequence 〈πk∗(j∗∗), . . . , πk∗(j∗)〉 must change its vehicle. Hence, we add cut

j∗∑

j= j∗∗
(1 − υπk∗ (j)η(k∗)) ≥ 1. (27)

Finally, if a new feasible best solution has been found, it is stored, and the following cut
is added

z ≤ UB − ε, (28)

whereUB is the objective value of the new best solution and ε is a sufficiently small number
(ε = 1 if all parameters are integer).

Note that these cuts make the current incumbent solution infeasible. The branch and cut
scheme solving [Master-C] will thus terminate when there are no more unfathomed nodes
left to explore. The best feasible solution found up to that point is then guaranteed to be
optimal. An outline of the entire procedure is provided in Algorithm 1.

input: instance of DDSP-het
1 UB := ∞;
2 Start solving IP model [Master-C] with valid inequalities from Sect. 4.1.2 using CPLEX;
3 while there are feasible solutions in the search space do
4 ῡ := a candidate integer solution of model [Master-C];
5 Solve the subproblem for the given ῡ via dynamic programming;
6 if the subproblem has no solution then
7 Determine minimum infeasible subets of trip assignments;
8 Add cuts of type (26) to [Master-C];
9 else

10 Add cuts of type (27) to [Master-C];
11 if UB > objective value of the current solution then
12 Save new best solution;
13 UB := objective value of the current solution;
14 Add a cut of type (28) to [Master-C];
15 return the optimal solution with objective value U B;

Algorithm 1: Logic-based Benders decomposition for DDSP-het.

Example (cont.) Consider the example from Sect. 3.1. Assume that the current master
solution is ῡ1,1 = ῡ3,1 = ῡ4,1 = ῡ2,2 = ῡ5,2 = 1, all other ῡ variables are 0. This implies
that trips R̂1 = {1, 3, 4} are assigned to truck 1 and trips R̂2 = {2, 5} to truck 2. The resulting
DP graph for the first truck is depicted in Fig. 4. The optimal path π1 = 〈1, 3, 4〉 is bold. The
solution is feasible. Trip i∗ = 3 is the trip with the greatest weighted flow time (tied with trip
5). Trip 3 is at sequence position j∗ = 2. The last trip to be on-time before trip 3 is trip 1 in
sequence position j∗∗ = 1. Consequently, at least one of these two trips needs to be moved
to a different truck for the objective value to improve, i.e., (1 − υ1,1) + (1 − υ3,1) ≥ 1.

123

Annals of Operations Research

Fig. 4 DP graph in the example for R1 = {1, 3, 4}

5 Computational study

We test the models and solution methods in this section. First, we describe the test setup and
instances in Sect. 5.1. In Sects. 5.2.1 and 5.2.2, we analyze the performance of themodels and
algorithms. We then look into the effect of minimizing the maximum flow time as opposed
to the total flow time (Sect. 5.2.3) and, finally, investigate the effect of combining trips in
milk runs in Sect. 5.2.4.

5.1 Test data and setup

Since DDSP-het is based on the direct delivery scheduling problem as introduced by Emde
and Zehtabian (2019) and Gschwind et al. (2020), we adopt their instance generation scheme
to generate the fundamental trips. As in the previous publications, we consider instances
with n ∈ {25, 125} trips. Assuming a 24 hour planning horizon, subdivided into periods of
10 minute length, we set the release date of trip i to ri = rndU ({1, . . . , 144}), the deadline
to di = ri + pi,1 + rndU ({3, . . . , 48}), and the weight to wi = 1, where rndU denotes a
uniformly distributed random integer from the set given in the argument.

The original instances assume a homogeneous vehicle fleet, whereas we consider |C | ∈
{3, 10} truck classes. For each trip i ∈ I and truck class c ∈ C , we set the processing time
to pic = rndU ({6, . . . , 36}), similar to the original papers for the homogeneous case. We set
the total number of trucks over all classes tom = max{|C |, �n/5.5�}, and then distribute this
total number randomly among the truck classes such that

∑
c∈C γ (c) = m and γ (c) ≥ 1,

∀c ∈ C .
Since we fundamentally consider a direct delivery logistics system, the assumption is

that only small groups of trips can be combined as milk runs. Specifically, we consider all
combinations of two or three trips, i.e.,B = {{i, i ′} | i, i ′ ∈ I , i < i ′}∪{{i, i ′, i ′′} | i, i ′, i ′′ ∈
I , i < i ′ < i ′′}. Let B = {i, i ′} (B = {i, i ′, i ′′}) be such a pair (triplet) of trips. The parameters
of combined trip B are set to pBc = ⌈

φ · rndU ({pic, . . . ,∑i ′∈B maxc′∈C {pi ′c′ }})⌉, rB =
mini∈B{ri }, dB = mini∈B{di }, wB = ∑

i∈B{wi }, where φ > 0 is a factor determining the
time savings when combining trips, which we set to one unless otherwise noted. Only such
combined trips are created where rB + maxc∈C {pBc} ≤ dB .

This instance generation scheme does not guarantee that a feasible solution even exists
for a given instance. Therefore, if none of our solution schemes finds a feasible solution, the
instance is scrapped, and a new one is generated in its stead.

123

Annals of Operations Research

For each combination of truck class count and trip count, we generate 10 instances,
plus two other sets of 10 instances with n = 125 and n = 175 trips, respectively, where
|C | = 2, i.e., 60 random instances in total. Instances are named according to the following
scheme: Rn_|C |_ j , where n is the number of trips, |C | the number of truck classes, and
j a running index. Finally, we also adapt 24 famous R1 instances from Solomon (1987),
originally proposed for the VRP with time windows. All instances are available at https://
github.com/ECdQGt/DDSP-het.

5.2 Computational results

We implement all algorithms in C# 8. As a default solver, we use ILOG CPLEX 12.9. All
tests are run on an x64 PC equipped with an Intel Core i5-8265UCPU and 8 GB of RAM. All
codes (including the default solver) are executed on a single thread. Otherwise, all parameters
are left in their default settings unless otherwise noted.

In Sect. 5.2.1 we test the usefulness of the valid inequalities proposed in Sect. 4.1.2. We
compare several different solution methods and investigate the computational performance
in Sect. 5.2.2. Finally, in Sects. 5.2.3 and 5.2.4, we compare different objective functions to
check whether they can serve to minimize delays in case of unforeseen disturbances of the
schedule and the influence of milk runs, respectively.

5.2.1 Effect of valid inequalities

As we describe in Sect. 4.1.2, we add valid inequalities to the master model of LBBD to
speed up convergence. To test whether the proposed inequalities have the intended effect,
we run LBBD with and without these inequalities on 5 instances generated as described in
Sect. 5.1 with n = 20 trips and |C | = 2 truck classes. The results, averaged over the five
instances, are in Table 2. The table shows the number of combinatorial Benders cuts added,
the total time spent solving the subproblem, and the total CPU time (including master and
subproblem).

All inequalities contribute to lowering the CPU times. The most effective valid inequali-
ties are apparently the time window constraints (23), which stop many infeasible candidate
solutions from being generated. The subproblem relaxation constraints (22) and (24), setting
the surrogate objective value z, also have a strong effect on runtimes, while the influence of
the symmetry breaking constraints (25) is relatively weak but still noticeable. The best result,
however, is achieved when all constraints are active.

Table 2 Solution performance of LBBD with and without valid inequalities

Valid inequalities # cuts CPU sec (sub) CPU sec (total)

None 2869.8 32.7 33.4

Only (21) and (22) 491.0 2.4 2.6

Only (23) 422.4 0.2 0.7

Only (24) 467.6 4.4 4.4

Only (25) 2799.0 22.7 23.3

All 21.6 0.1 0.2

123

https://github.com/ECdQGt/DDSP-het
https://github.com/ECdQGt/DDSP-het

Annals of Operations Research

5.2.2 Algorithmic performance

We test five different solution approaches on the small instances with n = 25 trips. First,
CPLEX solving the single MIP model from Sect. 3.2. Second, the classic Benders decom-
position scheme as implemented in the automated Benders decomposition logic that ships
with CPLEX since version 12.7 (IBM , 2016). We use the fully automated level, meaning
that CPLEX decides on its own how best to decompose model [DDSP-OP], and do not oth-
erwise change any parameters or settings. Third, the constraint programming (CP) model
introduced in Sect. 3.2 solved by ILOG CP Optimizer 12.9. Fourth, LBBD using restarts,
i.e., the master model is re-solved from scratch every time new cuts have been added via the
subproblem. Note that this is the classic approach as proposed by Benders (1962). Finally,
LBBD using lazy constraints, where cuts are added iteratively to the branch and cut tree as
it grows. This general approach is sometimes called branch and Benders cut (Rahmaniani
et al., 2017) or branch and check (Thorsteinsson, 2001). We set a time limit of 1800 CPU
seconds for the approaches based on Benders decomposition and 3600 s for the single model
approaches (MIP and CP).

The results are in Table 3. All approaches can solve all small instances to optimality
within the time limit. However, classic Benders cuts without lifting (e.g., Tang et al., 2013)
or other acceleration techniques (e.g., Saharidis & Ierapetritou, 2013) do not work well
in the presence of big-M constraints (Codato & Fischetti, 2006). The automatic Benders
decomposition integrated into CPLEX exhibits CPU times that are weak compared to the
other approaches.

CPLEX solving the single model performs well on the very smallest instances (n =
25, |C | = 3), but quickly loses ground to CP and LBBD when the instances grow larger.
Comparing CP and LBBD, the performance is similar, which is maybe not surprising, given
that the basic algorithmic concepts (iteratively paring down the search space via logic-based
considerations) are somewhat related. Regarding the two LBBD versions, it is interesting
to note that the lazy version of LBBD often generates more cuts than the restart version,
because the latter can profit from the additional cuts when solving the root node relaxation
in later iterations, thus requiring fewer iterations overall. Generally speaking, however, this
does not appear to offset the additional effort wasted on revisiting the same branches of the
branch-and-bound tree over and over again, as both versions are about equally fast.

Since lazy LBBD, CP, and CPLEX solving the single model are the three most successful
approaches on the small instances, we restrict ourselves to these three solution methods for
the large instances (n = 125). However, it turns out that CPLEX is incapable of solving the
single model to feasibility for any large instance within the 60-minute time limit. At least in
some instances—specifically, those with a low number |C | ≤ 3 of truck classes – it manages
to find relatively tight lower bounds, however. Table 4 therefore only shows the best lower
bound for CPLEX as well as the best upper bound for CP and LBBD using lazy constraints.

Overall, CP performs well on the instances with high truck heterogeneity (|C | ≥ 3). It
works particularly well on the large instances with |C | = 10 truck classes, but takes a long
time on the instanceswith amediumnumber of truck classes (|C | = 3), exhibiting runtimes in
excess of 30 minutes in the majority of cases. On the low-heterogeneity instances (|C | = 2),
CP struggles to find tight upper bounds for several instances and is clearly outperformed by
LBBD, which finds a greater number of optimal solutions and tighter bounds in less time on
average. For all instances, LBBD finds at least a good feasible solution, with only instance
R125_10_42 showing a substantial optimality gap. On the other hand, the solution times for
the |C | ≤ 3 instances are shorter for LBBD than CP in the majority of cases. Looking at the

123

Annals of Operations Research

Ta
bl
e
3

R
es
ul
ts
on

sm
al
li
ns
ta
nc
es

(n
=

25
)

In
st
an
ce

Z
si
ng

le
m
od

el
C
PL

E
X
B
en
de
rs

C
P

L
B
B
D
(r
es
ta
rt
s)

L
B
B
D
(l
az
y)

C
PU

s.
#
cu
ts

C
PU

s.
C
PU

s.
#
cu
ts

C
PU

s.
#
cu
ts

C
PU

s.

R
25

_3
_0

27
1.
3

14
6.
6

0.
2

2
0.
5

19
0.
7

R
25

_3
_1

25
0.
5

4
0.
5

0.
1

4
0.
6

14
0.
1

R
25

_3
_2

30
0.
8

17
7.
8

0.
1

2
0.
2

12
0.
2

R
25

_3
_3

32
0.
6

19
10

.4
0.
3

2
0.
4

21
0.
6

R
25

_3
_4

26
2.
1

14
10

.8
0.
2

2
0.
4

27
0.
5

R
25

_3
_5

25
0.
3

4
1.
3

0.
1

4
0.
2

10
0.
3

R
25

_3
_6

25
1.
2

12
3.
3

0.
1

2
0.
2

11
0.
5

R
25

_3
_7

29
1.
2

16
4.
6

0.
2

2
0.
5

26
0.
4

R
25

_3
_8

27
0.
5

5
1.
8

0.
2

4
0.
3

21
0.
2

R
25

_3
_9

32
1.
2

4
2.
7

0.
1

2
0.
5

23
0.
5

A
vg

.
1.
0

10
.9

5.
0

0.
2

2.
6

0.
4

18
.4

0.
4

R
25

_1
0_

10
15

2.
1

3
12

.2
0.
6

4
0.
5

11
0.
3

R
25

_1
0_

11
13

2.
2

7
3.
4

0.
2

2
0.
3

13
0.
4

R
25

_1
0_

12
16

3.
2

0
8.
2

0.
3

4
0.
6

13
0.
3

R
25

_1
0_

13
15

2.
6

6
14

.0
0.
2

2
0.
3

17
1.
4

R
25

_1
0_

14
16

3.
3

5
8.
8

0.
0

6
0.
6

14
0.
3

R
25

_1
0_

15
17

4.
6

14
12

.5
0.
5

2
0.
3

10
0.
2

R
25

_1
0_

16
12

1.
9

1
2.
4

0.
2

13
2.
4

21
0.
4

R
25

_1
0_

17
11

1.
5

8
4.
0

0.
0

2
0.
3

12
0.
7

R
25

_1
0_

18
15

3.
6

2
12

.0
0.
3

4
0.
5

13
0.
3

R
25

_1
0_

19
15

2.
9

6
21

.5
0.
3

4
0.
4

11
2.
1

A
vg
.

2.
8

5.
2

9.
9

0.
3

4.
3

0.
6

13
.5

0.
7

123

Annals of Operations Research

Table 4 Results on large instances (n = 125); optimal objective values are bold

Instance Single model CP LBBD

LB UB CPU s. UB # cuts CPU s. (sub) CPU s.

R125_2_20 34 135 3600.4 35 213 0.2 1808.9

R125_2_21 32 34 1734.1 34 199 0.2 1442.8

R125_2_22 31 154 3600.5 34 208 17.5 318.5

R125_2_23 32 86 3600.5 35 287 9.2 1385.5

R125_2_24 32 32 2881.6 37 350 0.9 1811.7

R125_2_25 34 34 3294.2 34 99 0.2 284.8

R125_2_26 33 126 3602.1 33 118 0.2 1717.2

R125_2_27 32 32 1729.1 34 193 0.9 1807.4

R125_2_28 34 96 3600.7 34 120 0.1 415.9

R125_2_29 32 33 2465.9 33 104 0.2 1127.2

Avg. 32.6 76.2 3010.9 34.3 189.1 3.0 1212.0

R125_3_30 29 31 3451.6 32 132 2407.7 3245.2

R125_3_31 30 32 1765.1 33 450 457.1 1804.3

R125_3_32 35 35 1966.6 35 83 199.7 463.5

R125_3_33 31 31 2661.3 31 423 136.3 1002.5

R125_3_34 29 33 1929.5 33 68 19.5 410.8

R125_3_35 25 32 732.9 32 53 39.5 280.3

R125_3_36 33 33 2260.2 33 106 158.7 1786.1

R125_3_37 31 31 1940.4 31 87 1173.6 1469.9

R125_3_38 30 30 912.1 30 145 67.6 578.9

R125_3_39 24 32 1793.1 33 294 25.7 1805.7

Avg. 29.7 32.0 1941.3 32.3 184.1 468.5 1284.7

R125_10_40 0 16 57.5 16 221 64.7 1575.2

R125_10_41 0 17 96.3 17 20 0.7 1626.6

R125_10_42 2 20 99.2 31 56 9.8 1801.7

R125_10_43 1 19 79.1 21 117 0.7 1801.4

R125_10_44 1 15 30.7 18 263 224.5 1801.2

R125_10_45 0 18 42.6 18 61 195.1 567.6

R125_10_46 0 17 42.5 19 105 144.0 1801.3

R125_10_47 4 20 15.3 22 185 167.9 1801.1

R125_10_48 1 19 79.4 19 218 173.5 1613.1

R125_10_49 1 18 61.7 18 137 120.6 1693.1

Avg. 1.0 17.9 60.4 19.9 138.3 110.1 1608.2

detailed results, it is striking that LBBD spends a good part of the time solving the subproblem
inmany instances. This leads the procedure to exceed the time limit in one case (R125_3_30),
because the time limit is only checked in the master solution process. Overall, we draw the
conclusion that CP is a viable approach to solve DDSP-het with high truck heterogeneity,
although LBBD is faster and finds tighter upper bounds on large instances with relatively
few different truck classes. A reason for this behavior may be that it is easier for the master

123

Annals of Operations Research

Table 5 Results on very large
instances (n = 175) for LBBD;
CP and MIP run out of time or
memory before finding any
solution

Instance UB # cuts CPU s. (sub) CPU s.

R175_2_50 36 166 0.3 1818.9

R175_2_51 47 90 0.1 1820.2

R175_2_52 34 181 1.9 1835.0

R175_2_53 35 127 0.1 1824.1

R175_2_54 35 211 0.3 1825.0

R175_2_55 37 174 0.4 1838.0

R175_2_56 49 142 0.1 1830.1

R175_2_57 38 143 0.7 1830.7

R175_2_58 48 178 0.3 1823.4

R175_2_59 40 155 0.3 1840.0

Avg. 39.9 156.7 0.5 1828.5

problem to balance the workload among the trucks if they are relatively homogeneous, thus
avoiding long trip sequences in the subproblem.

To test the limits of the solution methods, we also generate a set of very large instances
with n = 175 trips. The results are in Table 5. Neither the CP nor the MIP solver manage
to solve any of these instances even to feasibility due to running out of memory or time.
LBBD, on the other hand, finds decent solutions within the half-hour time limit, at least
for the low-heterogeneity instances (|C | = 2). On our test system with 8 GB of RAM, no
method—including LBBD—can consistently solve very large instances with |C | ≥ 3 truck
classes. Nonetheless, the results in Table 5 suggest that LBBD scales comparatively well, at
least for instances where the truck fleet is not too varied.

We also adapt the classic R1 instances with 25 and 50 customer locations from Solomon
(1987), originally proposed for the VRP with time windows. For each customer location,
we create a trip with a processing time equal to two times the Euclidean distance between
the depot and the customer plus the given service time. We copy the time windows from
the original instances, except that we normalize them such that the earliest release date is 0.
Moreover, we generate milk runs as described in Sect. 5.1. The results are in Table 6. Both
CP and LBBD are capable of solving the majority of these instances to optimality (CP solves
17, LBBD solves 19). However, LBBD is faster on most instances and finds much better
upper bounds on many of those instances that are not solved to optimality by CP.

To get a clearer picture of the solution process of LBBD, we plot in Fig. 5 the evolution
of the best lower and upper bounds of LBBD solving an example instance with n = 50 and
|C | = 3 truck classes. The objective value of the master model serves as a lower bound on
the maximum weighted flow time, because the master model is a relaxation of the original
problem. The more combinatorial Benders cuts are added, the tighter the relaxation. The best
upper bound is updated whenever a new best feasible solution is found when solving the
subproblem.

Looking at the figure, the lower bound is quite strong from the outset: even in the root
node, the lower bound is already 29, where the optimal objective value is 31. The evolution
of the upper bound is somewhat slower. It takes about 5 s before the first feasible solution is
found. The upper bound then improves quickly; after about 20 s, the optimal solution with
objective value 31 has been found. However, it takes another approximately 25 s to prove its
optimality. More broadly speaking, a very good solution is found after about a third of the
runtime, suggesting that truncated versions of LBBD may deliver fair heuristic solutions.

123

Annals of Operations Research

Table 6 Results on Solomon R1 instances (n = 25 and n = 50) for LBBD and CP

Instance CP LBBD

UB CPU s. UB # cuts CPU s. (sub) CPU s.

R101_025 82 0.0 82 13 < 0.1 0.1

R102_025 82 43.7 82 7 < 0.1 0.4

R103_025 82 43.4 82 8 < 0.1 0.9

R104_025 83 3600.1 83 268 < 0.1 1807.6

R105_025 82 0.0 82 6 < 0.1 0.2

R106_025 82 8.5 82 10 < 0.1 0.5

R107_025 82 16.6 82 8 < 0.1 1.3

R108_025 86 3600.0 86 21 < 0.1 1807.1

R109_025 82 0.2 82 12 < 0.1 0.4

R110_025 82 9.7 82 22 < 0.1 0.3

R111_025 82 47.6 82 11 < 0.1 0.5

R112_025 84 3600.0 84 55 < 0.1 1803.6

Avg. 82.6 914.1 82.6 36.8 < 0.1 451.9

R101_050 98 0.0 98 10 < 0.1 1.3

R102_050 98 455.4 98 28 < 0.1 4.1

R103_050 288 3600.6 98 5 < 0.1 6.5

R104_050 603 3600.3 99 89 < 0.1 1807.4

R105_050 98 0.1 98 11 < 0.1 2.8

R106_050 98 468.0 98 10 < 0.1 3.6

R107_050 98 1914.9 98 12 < 0.1 5.2

R108_050 543 3600.3 98 42 < 0.1 1808.8

R109_050 95 5.2 95 57 < 0.1 11.5

R110_050 98 819.6 98 50 < 0.1 3.8

R111_050 98 1857.0 98 19 < 0.1 4.0

R112_050 387 3600.2 98 22 < 0.1 4.0

Avg. 216.8 1660.1 97.8 29.6 < 0.1 305.2

5.2.3 Comparison of objectives

Apart from improving customer satisfaction and reducingwork-in-process, one of the reasons
for minimizing the weighted flow time cited in the literature on direct delivery scheduling
is improving the robustness of the schedule (Emde & Zehtabian, 2019). The thinking is that
starting trips early in their timewindow (which is encouraged by a flow time objective) makes
it less likely that they will violate their deadlines in case of unforeseen delays. To investigate
the veracity of this claim, Emde and Zehtabian (2019) propose the following simulation
experiment, which they use to show a positive effect of their flow time objective on total
delays.

Given a DDSP instance and a (feasible) solution, randomly increase the processing time of
20% of the trips in the instance by rndU ({1, . . . , 12}). Following the same trip partition and
sequence as in the given solution, the delays (i.e., increased processing time) may propagate
because subsequent trips cannot be started as planned. Count the total weighted tardiness

123

Annals of Operations Research

Fig. 5 Development of lower and upper bound over time for LBBD (n = 50, |C | = 3)

Fig. 6 Correlation between
maximum weighted flow time
and total tardiness

of all trips, i.e., the difference between the actual completion time including (propagated)
delays and the deadline.

Unlike Emde and Zehtabian (2019) and Gschwind et al. (2020), we do not minimize the
total weighted flow time but the maximum weighted flow time. To investigate whether this
objective also protects against unforeseen disturbances, we adapt the simulation procedure
outlined above. We generate 100 DDSP-het instances with n = 100 trips and |C | = 1 truck
class. For each of these instances, we create a feasible solution by solving the single model
[DDSP-OP] without an objective function, i.e., minimize 0, s.t. (2)–(11). For each solution,
we then calculate three values: the maximumweighted flow time as we define it in this paper;
the total weighted flow time as it is used in Emde and Zehtabian (2019) and Gschwind et al.
(2020); and the median weighted flow time.

Figures 6 and 7a, b plot the maximum, total, and median weighted flow time, respectively,
against the total tardiness from the simulation experiment for all 100 instances. All three
objectives correlate with the measured tardiness in a highly significant manner (99% con-
fidence level). The differences in the Pearson correlation coefficients are relatively minor,
with minsum having the strongest correlation, and the median and maximum weighted flow

123

Annals of Operations Research

(a) (b)

Fig. 7 Correlation between objectives and total tardiness

time correlating a bit less strongly. Still, the correlation is highly significant in all cases.
This suggests, at the very least, that minimizing the maximum weighted flow time can serve
as an adequate objective when considering the robustness against unexpected time window
violations, apart from the other benefits discussed in the introduction.

5.2.4 Effect of milk runs

While we fundamentally consider full-truckload direct deliveries, we also assume that it is
possible to combine some trips in milk runs. Unlike tours in classic routing problems like
the VRP, the total processing time of a milk run need not be a simple linear combination of
its constituent arc weights. Since we deal with industrial deliveries, it is quite reasonable to
assume that there are significant economies of scale, going beyond mere saved driving time,
when multiple deliveries are combined, e.g., because the truck needs to approach the loading
dock only once etc. To investigate the effect this consolidation of multiple shipments has, we
generate another set of ten instances with n = 25 trips and |C | = 1 truck type. We generate
these instances exactly as outlined in Sect. 5.1, except that we vary the factor φ between 0.25
and 1.5, determining how much the processing time of the milk run is compressed compared
to the total processing time of the constituent trips: if φ = 0.25, a milk run is a lot faster than
processing its individual trips; if φ = 1.5, milk run processing time tends to be longer than
processing the trips individually.

Figure 8 shows the average objective value plotted against the consolidation factor
φ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5}. Expectedly, it becomes easier to ensure responsive
customer service if milk run processing is fast (low φ). However, interestingly, consolidation
is somewhat beneficial even if the consolidation factor is high, i.e., if milk runs do not save
much time, or may even take extra time. The reason is that milk run trips may have wider
timewindows than some of their constituent trips, allowing alternative (and sometimes better)
assignments of trips to trucks. Overall, the effect of allowing milk runs is quite substantial
even for larger φ, suggesting that enabling the combination of trips may allow significantly
more flexibility for logistics providers.

123

Annals of Operations Research

Fig. 8 Effect of consolidation on the usefulness of combining trips into milk runs

6 Conclusion

We study the problem of scheduling a given set of direct delivery trips between a depot and
customers using a given heterogeneous truck fleet. Trucks differ in their processing speed
and may also be incapable of processing certain trips. Moreover, some trips can optionally
be combined in predefined milk runs, which is a novel feature of DDSP-het that has no direct
equivalent in the scheduling or routing literature because the properties of a milk run (like
processing time and time window) need not be a simple linear combination of its constituent
trips. We adapt a MIP model from the literature, propose a new constraint programming
model, investigate the computational complexity, and develop solution methods based on
Benders decomposition.

In terms of complexity, we show that even deciding feasibility of this problem is NP-
hard in the strong sense on all three levels: assigning trips to trucks, selecting milk runs,
and scheduling trips on each individual truck. Despite this complexity, our computational
tests indicate that both a default constraint programming solver and our logic-based Benders
decomposition approach perform quite well, where CP performs better on instances with
very heterogeneous trucks, while LBBD works better on instances with few different truck
classes. Moreover, LBBD scales better, solving even very large instances at the very least to
feasibility, whereas the MIP and CP solvers run out of time or memory before finding even a
feasible solution. Classic Benders decomposition as well as a default solver working on the
single model perform substantially less well.

The models, insights, and algorithms we develop for DDSP-het may fundamentally also
be applicable to related scheduling problems. For instance, it would be straightforward to
apply our valid inequalities (21) to (unrelated) parallel machine scheduling problems with
time window constraints, while inequalities (22) are also applicable to any regular minmax
objective, not just the weighted flow time. Similarly, the relatively good performance of the

123

Annals of Operations Research

constraint programming solver may also serve as an inspiration for researchers and practi-
tioners who want to solve similar problems in mostly acceptable time without implementing
problem-specific algorithms.

Our objective of minimizing the maximum weighted flow time deviates from the minsum
objectives typically considered in the literature for similar problems. Replicating a simulation
experiment originally proposed by Emde and Zehtabian (2019), we show that our minmax
objective offers a similar level of protection against deadline violations as the minsum objec-
tive. Moreover, our tests indicate that the possibility of combining trips into milk runs may
be beneficial because of the added flexibility even if the total processing time of the milk run
is not much shorter than individually processing the constituent trips.

Future research can extend the problem further by combining a heterogeneousfleetwith the
multiple depots case. Given the relatively long solution times in some of the large instances,
developing efficient heuristic approaches may also be a fruitful endeavor. Such methods
should then be compared to the performance of truncated LBBD runs. Moreover, it may be
possible to combine classic Benders cuts with logic-based combinatorial cuts to profit from
both the dual information of a given integer solution as well as the problem-specific logic
embedded in the LBBD cuts.

References

Al Theeb, N., Al-Araidah, O., & Aljarrah, M. H. (2019). Optimization of the heterogeneous vehicle routing
problem with cross docking logistic system. Logistics Research, 12, 4.

Anand, S., Bringmann, K., Friedrich, T., Garg, N., & Kumar, A. (2017). Minimizing maximum (weighted)
flow-time on related and unrelated machines. Algorithmica, 77, 515–536.

Annouch, A., Bouyahyaoui, K., Bellabdaoui, A. (2016). A literature review on the full truckload vehicle
routing problems. In 2016 3rd international conference on logistics operations management (GOL) (pp.
1–6). IEEE.

Bai, R., Xue, N., Chen, J., & Roberts, G. W. (2015). A set-covering model for a bidirectional multi-shift full
truckload vehicle routing problem. Transportation Research Part B: Methodological, 79, 134–148.

Ball, M. O., Golden, B. L., Assad, A. A., & Bodin, L. D. (1983). Planning for truck fleet size in the presence
of a common-carrier option. Decision Sciences, 14, 103–120.

Barnes-Schuster, D., & Bassok, Y. (1997). Direct shipping and the dynamic single-depot/multi-retailer inven-
tory system. European Journal of Operational Research, 101, 509–518.

Beck, J. C., Prosser, P., & Selensky, E. (2003). Vehicle routing and job shop scheduling:What’s the difference?.
In ICAPS (pp. 267–276).

Benders, J. F. (1962). Partitioning procedures for solvingmixed-variables programming problems.Numerische
Mathematik, 4, 238–252.

Berman, P., Karpinski, M., & Scott, A. D. (2007). Computational complexity of some restricted instances of
3-SAT. Discrete Applied Mathematics, 155, 649–653.

Bertoli, F., Kilby, P., & Urli, T. (2018). Vehicle routing problems with deliveries split over days. Journal on
Vehicle Routing Algorithms, 1, 1–17.

Bodin, L., & Golden, B. (1981). Classification in vehicle routing and scheduling. Networks, 11, 97–108.
Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015). Part logistics in the automotive industry: Decision

problems, literature review and research agenda. European Journal of Operational Research, 242, 107–
120.

Bunte, S., & Kliewer, N. (2009). An overview on vehicle scheduling models. Public Transport, 1, 299–317.
Cao, J. X., Lee, D. H., Chen, J. H., & Shi, Q. (2010). The integrated yard truck and yard crane schedul-

ing problem: Benders’ decomposition-based methods. Transportation Research Part E: Logistics and
Transportation Review, 46, 344–353.

Chen, L. (2008). Product & customer profiling for direct store delivery (DSD). Doctoral dissertation, Mas-
sachusetts Institute of Technology.

Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer linear programming.
Operations Research, 54, 756–766.

123

Annals of Operations Research

De Angelis, V., Mecoli, M., Nikoi, C., & Storchi, G. (2007). Multiperiod integrated routing and scheduling of
World Food Programme cargo planes in Angola. Computers & Operations Research, 34, 1601–1615.

Emde, S., Polten, L., & Gendreau, M. (2020). Logic-based Benders decomposition for scheduling a batching
machine. Computers & Operations Research, 113, 104777.

Emde, S., & Zehtabian, S. (2019). Scheduling direct deliveries with time windows to minimize truck fleet size
and customer waiting times. International Journal of Production Research, 57, 1315–1330.

Gallego, G., & Simchi-Levi, D. (1990). On the effectiveness of direct shipping strategy for the one-warehouse
multi-retailer R-systems. Management Science, 36, 240–243.

Garey,M.R.,& Johnson,D. S. (1979).Computers and intractability: A guide to the theory of NP-completeness.
W. H. Freeman.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.

Grimes, D., Hebrard, E., Malapert, A. (2009). Closing the open shop: Contradicting conventional wisdom. In
International conference on principles and practice of constraint programming (pp. 400–408). Springer,
Berlin.

Gschwind, T., Irnich, S., Tilk, C., & Emde, S. (2020). Branch-cut-and-price for scheduling deliveries with
time windows in a direct shipping network. Journal of Scheduling, 23, 363–377.

Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing problems. Journal of the
Society for Industrial and Applied Mathematics, 10, 196–210.

Holweg, M., & Miemczyk, J. (2003). Delivering the ‘3-day car’-the strategic implications for automotive
logistics operations. Journal of purchasing and supply management, 9, 63–71.

Hong, S. C., & Park, Y. B. (1999). A heuristic for bi-objective vehicle routing with time window constraints.
International Journal of Production Economics, 62, 249–258.

Hooker, J. (2000). Logic-based methods for optimization: Combining optimization and constraint satisfaction
(Vol. 2). Wiley.

Hooker, J. N. (2007). Planning and scheduling by logic-based Benders decomposition. Operations Research,
55, 588–602.

Hooker, J. N., & Ottosson, G. (2003). Logic-based Benders decomposition.Mathematical Programming, 961,
33–60.

Hsu, C. I., Hung, S. F., & Li, H. C. (2007). Vehicle routing problem with time-windows for perishable food
delivery. Journal of Food Engineering, 80, 465–475.

IBM. (2016). What’s in CPLEX Optimization Studio 12.7? Retrieved March 4, 2020 from https://developer.
ibm.com/docloud/blog/2016/11/11/whats-in-cos-12-7/.

Kleywegt, A. J., Nori, V. S., & Savelsbergh, M. W. (2002). The stochastic inventory routing problem with
direct deliveries. Transportation Science, 36, 94–118.

Kowalczyk, D., & Leus, R. (2017). An exact algorithm for parallel machine scheduling with conflicts. Journal
of Scheduling, 20, 355–372.

Kutanoglu, E., &Mahajan, M. (2009). An inventory sharing and allocation method for a multi-location service
parts logistics network with time-based service levels. European Journal of Operational Research, 194,
728–742.

Lam, E., Gange, G., Stuckey, P., Van Hentenryck, P., & Dekker, J. J. (2020). Nutmeg: a MIP and CP hybrid
solver using branch-and-check. SN Operations Research Forum, 1(3). https://doi.org/10.1007/s43069-
020-00023-2

Lawler, E. L. (1973). Optimal sequencing of a single machine subject to precedence constraints.Management
Science, 19, 544–546.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of
Discrete Mathematics, 1, 343–362.

Li, H., & Womer, K. (2009). Scheduling projects with multi-skilled personnel by a hybrid MILP/CP Benders
decomposition algorithm. Journal of Scheduling, 12, 281–298.

Li, J. A., Wu, Y., Lai, K. K., & Liu, K. (2008). Replenishment routing problems between a single supplier and
multiple retailers with direct delivery. European Journal of Operational Research, 190, 412–420.

Lin, L., Gen, M., & Wang, X. (2009). Integrated multistage logistics network design by using hybrid evolu-
tionary algorithm. Computers & Industrial Engineering, 56, 854–873.

Lmariouh, J., El Hachemi, N., Jamali, A., Bouami, D., &Rousseau, L.M. (2019). An integrated production and
distribution problem with direct shipment: A case from Moroccan bottled-water market. International
Journal of Operational Research, 34, 144–160.

Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., & Rousseau, L. M. (2012). An optimal
constraint programming approach to the open-shop problem. INFORMS Journal on Computing, 24(2),
228–244.

123

https://developer.ibm.com/docloud/blog/2016/11/11/whats-in-cos-12-7/
https://developer.ibm.com/docloud/blog/2016/11/11/whats-in-cos-12-7/
https://doi.org/10.1007/s43069-020-00023-2
https://doi.org/10.1007/s43069-020-00023-2

Annals of Operations Research

Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing
Technology, 29, 990–1001.

McCormack, I. M. (2014). The military inventory routing problem with direct delivery. MSc thesis, Air Force
Institute of Technology, OH. https://scholar.afit.edu/etd/684

Meyer, A., & Amberg, B. (2018). Transport concept selection considering supplier milk runs-an integrated
model and a case study from the automotive industry. Transportation Research Part E: Logistics and
Transportation Review, 113, 147–169.

Mönch, L., Fowler, J. W., Dauzere-Peres, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution
techniques, and future challenges in scheduling semiconductor manufacturing operations. Journal of
Scheduling, 14, 583–599.

Pinedo, M. (2015). Scheduling (5th ed.). Springer.
Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal of Operational

Research, 120, 228–249.
Queiser, H. (2007): Anlieferkonzepte in der Automobilindustrie – Ein internationaler Vergleich. Dokumen-

tation – Zukunft AutomobilMontage. Retrieved February 25, 2020 from https://www.4flow.de/single-
ansicht-news/article/anlieferkonzepte-in-der-automobilindustrie-ein-internationaler-vergleich.html

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259, 801–817.

Saharidis, G. K., & Ierapetritou, M. G. (2013). Speed-up Benders decomposition using maximum density cut
(MDC) generation. Annals of Operations Research, 210, 101–123.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35, 254–265.

Thorsteinsson, E. S. (2001). Branch-and-check: A hybrid framework integrating mixed integer programming
and constraint logic programming. In International conference on principles and practice of constraint
programming (pp. 16–30). Springer.

Tang, L., Jiang,W., & Saharidis, G. K. (2013). An improved Benders decomposition algorithm for the logistics
facility location problem with capacity expansions. Annals of Operations Research, 210, 165–190.

Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: Problems, methods, and applications (2nd ed.). Society
for Industrial and Applied Mathematics.

Tzur, M., & Drezner, E. (2011). A lookahead partitioning heuristic for a new assignment and scheduling
problem in a distribution system. European Journal of Operational Research, 215, 325–336.

Verstichel, J., Kinable, J., De Causmaecker, P., & Berghe, G. V. (2015). A combinatorial Benders’ decompo-
sition for the lock scheduling problem. Computers & Operations Research, 54, 117–128.

Xue, N., Bai, R., Qu, R., & Aickelin, U. (2021). A hybrid pricing and cutting approach for the multi-shift full
truckload vehicle routing problem. European Journal of Operational Research, 292, 500–514.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://scholar.afit.edu/etd/684
https://www.4flow.de/single-ansicht-news/article/anlieferkonzepte-in-der-automobilindustrie-ein-internationaler-vergleich.html
https://www.4flow.de/single-ansicht-news/article/anlieferkonzepte-in-der-automobilindustrie-ein-internationaler-vergleich.html

	Point-to-point and milk run delivery scheduling: models, complexity results, and algorithms based on Benders decomposition
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Formal description
	3.2 Mathematical models
	3.3 Time complexity

	4 Benders decomposition
	4.1 Logic-based Benders decomposition
	4.1.1 Reformulation of the master problem
	4.1.2 Valid inequalities
	4.1.3 Combinatorial cuts

	5 Computational study
	5.1 Test data and setup
	5.2 Computational results
	5.2.1 Effect of valid inequalities
	5.2.2 Algorithmic performance
	5.2.3 Comparison of objectives
	5.2.4 Effect of milk runs

	6 Conclusion
	References

