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Abstract. We consider a stochastic online problem where n applicants arrive over time,
one per time step. Upon the arrival of each applicant, their cost per time step is revealed,
and we have to fix the duration of employment, starting immediately. This decision is
irrevocable; that is, we can neither extend a contract nor dismiss a candidate once hired. In
every time step, at least one candidate needs to be under contract, and our goal is to
minimize the total hiring cost, which is the sum of the applicants’ costs multiplied with
their respective employment durations. We provide a competitive online algorithm for
the case that the applicants’ costs are drawn independently from a known distribution.
Specifically, the algorithm achieves a competitive ratio of 2.965 for the case of uniform
distributions. For this case, we give an analytical lower bound of 2 and a computational
lower bound of 2.148. We then adapt our algorithm to stay competitive even in settings
with one or more of the following restrictions: (i) at most two applicants can be hired
concurrently; (ii) the distribution of the applicants’ costs is unknown; (iii) the total number
n of time steps is unknown. On the other hand, we show that concurrent employment is a
necessary feature of competitive algorithms by proving that no algorithm has a competi-
tive ratio better than Ω( ��

n
√

/log n) if concurrent employment is forbidden.
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1. Introduction
The theory of optimal stopping is concerned with problems of finding the best points in time to take a certain
action based on a sequence of sequentially observed random variables. Problems of this kind are ubiquitous in
the area of operations research, for example, when hiring, selling, purchasing, or procurement decisions are
made based on the partial observation of a sequence of offers with known statistical properties. In one of the
most basic stopping problems, a gambler sequentially observes realizations x1 ∼ X1, x2 ∼ X2, . . . of a series
of independent random variables. After being presented a realization xi ∼ Xi, the gambler has to decide
immediately whether to keep the realization xi as a prize or to continue gambling, hoping for a better re-
alization. For this setting, the famous prophet inequality due to Krengel, Sucheston, and Garling (see Krengel
and Sucheston [23, 24]) asserts that the best stopping rule of the gambler achieves in expectation at least half
the optimal outcome of a prophet that foresees the realizations of all random variables and, thus, gains the
expected maximal realization of all variables.

After the surprising result of Krengel, Sucheston, and Garling (Krengel and Sucheston [23, 24]), prophet-
type inequalities were provided for several generalizations of their model, including settings where both the
gambler and the prophet may stop multiple times (see Alaei [1], Kennedy [20]) and settings where both choose
a set subject to a matroid constraint (see Kleinberg and Weinberg [22]), polymatroid constraints (see Dütting
and Kleinberg [7]), and general constraints (see Rubinstein [28]).
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In light of this remarkable progress in establishing prophet-type inequalities for various stochastic envi-
ronments, two remarks are in order. First, the known results consider maximization problems only. Although
obviously important as a model for situations where, for example, items are to be sold and offers for the items
arrive over time, they do not capture the “dual” problem, where items need to be procured. In fact, mini-
mization problems in stochastic environments are sparsely studied. The only work on minimization in the
prophet inequality/secretary context is by Esfandiari et al. [8]. They show that there is no stopping rule that
allows for a constant factor approximation compared with the prophet’s outcome, even in the most basic case
of single stopping and independent and identically distributed (i.i.d.) distributions. Second, the models above
are inherently static in the sense that the objective depends only on the set of chosen realizations at the end of
the sequence. This is a reasonable assumption when the underlying selling or purchase decisions have a long-
term impact and the time during which the sequence of random variables is observed can be neglected. On the
other hand, they fail to capture the natural situation where realizations are observed for a long period of time
and selling or procurement decisions are taking effect even while further offers are observed.

To illustrate the key differences between static and dynamic settings, consider a firm that in each time step
needs to be able to perform a certain task to be operational. Traditionally, the firm could advertise a position
and hire an applicant able to perform the task. Assuming that the firm strives to minimize labour cost, this
leads to a (static) prophet-type problem where the costs of the applicants are drawn from a distribution and
the firm strives to minimize the realized costs. Alternatively, online marketplaces like oDesk.com and
Freelance.com provide the opportunity to hire applicants with a limited contract duration and to possibly hire
another contractor when a new offer with lower cost arrives. The constant rise of the revenue generated by
these platforms (reaching USD 1 billion in 2014) suggests that the latter approach has growing economic
importance (Verroios et al. [31]).

Hiring employees for a limited amount of time leads to a new kind of stopping problem where the ongoing
observation period overlaps with the duration of contracts, and active contracts need to be maintained over
time while receiving new offers. To model these situations, we study a natural setting where at least one
contract needs to be active at each point in time and there is no additional benefit of having more than one
active contract.1 This covering constraint renders it beneficial to accept good offers even when other contracts
are still active, and a key challenge is to manage the trade-off between accepting good offers and avoiding
contract overlaps.

Specifically, we assume that in every time step i ∈ [n], we observe the cost of the ith applicant xi, where the
values xi are drawn i.i.d. from a common distribution X. In each time step i, we have to decide on a number of
time steps ti for which to hire the ith applicant. This duration is fixed irrevocably at time i, and extension or
shortening of this duration is impossible later on. Hiring applicant i with realized cost xi results in costs of xiti.
We are interested in minimizing the expected total hiring cost Ex1∼X,...,xn∼X

∑n
i�1 tixi

[ ]
, subject to the constraint

that at least one applicant is under employment at all times.

1.1. Results and Outline
When the total number of time steps and the distribution are known, the dynamic stopping problem con-
sidered in this paper can be solved by a straightforward dynamic program (DP). The DP maintains a table of
n2 optimal threshold values depending on the number of remaining covered and uncovered time steps. Like
other optimal solutions for similar stochastic optimization problems, the DP suffers from the fact that it relies
on the exact knowledge of the distribution and the number of time steps, and does not allow us to quantify the
optimal competitive ratio.

The results we give in this paper address these shortcomings. We give online algorithms with constant
competitive ratios, and in doing so, we prove that the optimal online algorithm also gives a constant
competitive ratio for any cost distribution that is known up front. Our techniques are robust with respect to
incomplete information and can be extended to the case where the cost distribution and/or the total number of
time steps is unknown, while still providing a constant competitive ratio. Furthermore, our approach is
conceptually simple, efficient, and not tailored to specific distributions.

For ease of exposition, we present our algorithm in incremental fashion starting with a simplified version for
uniform distributions in Section 4.1. The algorithm maintains different threshold values over time and hires
applicants when their realized cost is below the threshold. By relating the execution of the algorithm with a
Markov chain and by analyzing its hitting time, we bound the competitive ratio of the algorithm. In Section 4.2,
we refine the algorithm and its analysis to show that it is 2.965-competitive in the uniform case. We provide an
analytical lower bound of 2 for the best possible competitive ratio via a relaxation to the Cayley–Moser
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problem (see Moser [26]), and we give a computational lower bound of 2.14. For the analytical lower bound,
we consider a relaxation of the problem where an applicant can be hired for any subset of future time steps
(not necessarily contiguous and not necessarily starting immediately). We analyze the optimal online al-
gorithm for the relaxation and show that it is 2-competitive for the relaxation, which implies a lower bound of
2 on the competitive ration of any online algorithm for the original problem. We further show that the optimal
online algorithm for the relaxation is 2-competitive for a large class of distributions.

Subsequently, in Section 5, we generalize the algorithm to arbitrary distributions. Here, the main technical
difficulty is to obtain a good estimation of the offline optimum. As we bound the offline optimum by a sum of
conditional expectations given that the value lies in an interval bounded by exponentially decreasing quantiles
of the distribution, we are able to derive a competitive ratio of 6.052.

In Section 6, we further generalize our techniques to give a constant competitive algorithm for the case
where the distribution is unknown a priori. The main idea of the algorithm is to approximate the quantiles of
the distribution by sampling.

Finally, in Section 7, we show that our algorithms remain competitive in the case that at most two applicants
may be employed concurrently. We also extend our results to the case where the total number of applicants is
unknown. In contrast to this, we show that the best possible online algorithm without concurrent employment
has competitive ratio Θ( ��

n
√

/ log n), even for uniform distributions.
To improve readability, we relegate the formal analysis of the underlying Markov chains to Section 8.

1.2. Related Work
The interest in optimal stopping rules for sequentially observed random experiments dates back at least as far
as to Cayley [5], who asked for the optimal stopping rule when n tickets are drawn without replacement from
a known pool of N tickets with different rewards (for more historical notes on this problem, see also Ferguson [9]).
Cayley [5] solved this problem by backward induction, an approach later formalized by Bellman [4]. Moser [26]
studied Cayley’s [5] problem for the case that N is large and the N rewards are equal to the first N natural
numbers. In that case, the problem can be approximated by n draws from the uniform distribution, and Moser [26]
provided an approximation of the corresponding threshold values of the optimal stopping rule. For similar
results for other distributions, see Gilbert and Mosteller [12], Guttman [15], and Karlin [19]. In Section 4.3, we
will use the asymptotic behavior of the threshold due to Gilbert and Mosteller [12] to obtain a lower bound for
our problem.

Krengel, Sucheston, and Garling (see Krengel and Sucheston [23, 24]) studied optimal stopping rules for
arbitrary independent, nonnegative, but not necessarily identical random variables. Their famous prophet
inequality asserts that the expected reward of a gambler who follows the optimal stopping rule (that can still
be found using backward induction) is at least half the expected reward of a prophet who knows all re-
alizations beforehand and will stop the sequence at the highest realization. Samuel-Cahn [30] showed that the
same guarantee can be obtained by a simple stopping rule that uses a single threshold rather than n different
thresholds as the solution of the dynamic program. Hill and Kertz [17] surveyed some variations of the problem.

More recently, Alaei [1] considered the setting where both the prophet and the gambler stop k ∈ N times and
receive the sum of their realizations as rewards, and they gave an algorithm with competitive ratio 1 − (k + 3)−1/2.
For a more general setting in which the selection of both the gambler and the prophet is restricted by a matroid
constraint, Kleinberg and Weinberg [22] showed a tight competitive ratio of 1/2. Dütting and Kleinberg [7]
generalized this result further to polymatroid constraints. Göbel et al. [14] studied a prophet inequality setting
where a solution is feasible if it forms an independent set in an underlying network. They gave an online
algorithm that achieves an 2(ρ2 logn) approximation, where ρ is a structural parameter of the network. Very
recently, Rubinstein [28] studied the problem for general downward-closed constraints. He gave an
2(log n log r) approximation where r is the cardinality of the largest feasible set and showed that no online
algorithm can be better than an 2(log n/ log log n) approximation. For a generalization toward nonlinear
valuation functions, see Rubinstein and Singla [29].

The recent interest in prophet inequalities is due to an interesting connection to mechanism design problems
that was first made by Hajiaghayi et al. [16]. They remarked that threshold rules used to prove prophet
inequalities correspond to truthful online mechanisms with the same approximation guarantee as the prophet
inequality. Chawla et al. [6] noted that posted pricing mechanisms for revenue maximization can be derived
from prophet inequalities by using the framework of virtual values due to Myerson [27]. As our algorithms
operate on the basis of threshold values as well, they can also be turned into truthful mechanisms. However,
the exact properties of these mechanisms deserve further investigation.
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Esfandiari et al. [8] considered the minimization version of the classical prophet inequality setting. They
showed that even for i.i.d. random variables, no stopping rule can achieve a constant approximation to the
cost of a prophet. This is in contrast to our results for the dynamic prophet inequality setting, as we obtain a
constant factor approximation even without knowledge of the distributions or n.

Further related are secretary problems (for a review, see Ferguson [9]), and in particular, secretary problems
where the values are drawn from i.i.d. distributions as considered by Bearden [3]. The main difference from
our model is that in secretary problems, the objective is to maximize the probability of selecting the best
outcome. Yet, our algorithm developed in Section 6 for solving the case of unknown distributions is remi-
niscent of the optimal stopping rules for secretary problems, as it also employs a sampling phase in which the
distribution is learned before hiring an applicant. Very recently, Fiat et al. [10] studied a dynamic secretary
problem where secretaries are hired over time. In contrast to our work, they considered a maximization
problem, and the contract duration was fixed.

2. Preliminaries
For a natural number n ∈ N, let [n] � {1, . . . , n}. We consider a sequence x1 ∼ X, x2 ∼ X, . . . , xn ∼ X of n i.i.d.
random variables drawn from a probability distribution X. Throughout this work, we assume that X is a
continuous distribution with cumulative distribution F and probability density function f . Moreover, we
assume that X assigns positive probability to nonnegative values only, that is, F(0) � 0. In every time step
i ∈ [n], the cost xi of the ith applicant is revealed, and we must decide the number of time steps ti for which the
applicant is hired. If ti � 0, the applicant is not hired at all. The duration of the employment ti is fixed ir-
revocably at time i; no extension or shortening of this duration at any further point in time is possible. Hiring
applicant i with realized cost xi for ti time steps results in costs of xiti. The objective is to minimize the expected
total cost of hired applicants E[∑i∈[n] tixi] :�Ex1∼X,...,xn∼X

∑
i∈[n] tixi

[ ]
subject to the constraint that at least one

applicant is employed at each point in time i ∈ [n], that is, maxj≤i{j + tj} ≥ i + 1 for all i ∈ [n].
This is an online problem because, at time i, we only know about the realizations x1, . . . , xi up to time i and

have to base our decision about the hiring duration ti of the ith applicant only on this information and
previous hiring decisions t1, . . . , ti−1. We are interested in obtaining online algorithms that perform well
compared with an omniscient prophet. Let Optn be the cost of an optimal offline algorithm (i.e., a prophet)
knowing the n realizations in advance, and let Algn be the cost of a solution of an online algorithm. Then the
competitive ratio of the online algorithm Algn is defined as lim supn∈N E Algn[ ]/E Optn[ ]. We call an algorithm
competitive if its competitive ratio is constant, and call it strictly competitive if even supn∈N E Algn[ ]/E Optn[ ] is
constant.

We use well-known facts from higher-order statistics of random variables to obtain the following.

Proposition 1. The expected total cost of an optimal offline algorithm is E Optn[ ] � ∑
i∈[n]

∫ ∞
0 1 − F(x)( )i dx.

Proof. In every step, the optimal offline algorithm employs the applicant with the lowest cost that has arrived so
far. We have

E Optn[ ] � E
∑
i∈[n]

min
j∈[i]

{xj}
[ ]

� ∑
i∈[n]

E min
j∈[i]

{xj}
[ ]

� ∑
i∈[n]

∫ ∞

0
Pr min

j∈[i]
{xj}> x

[ ]
dx

� ∑
i∈[n]

∫ ∞

0
1 − F(x)( )i dx,

as claimed. □

Note that for every nontrivial probability distribution with nonzero probability mass around 0, the expected
optimal offline cost of step k approaches 0 for k → ∞. Consequently, any competitive online algorithm must also
have a vanishing expected cost per step (where the hiring cost is distributed evenly over the hiring period).

3. An Optimal Online Algorithm
We begin by describing an optimal online algorithm that uses dynamic programming. Let C(i, j) denote the
expected overall cost if there are i time steps remaining and if the next j time steps are already covered by an

Disser et al.: Hiring Secretaries over Time: The Benefit of Concurrent Employment
4 Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2019 INFORMS



existing contract. As a boundary condition, we have that C(i, i) � 0 for all i, because in this case, no further
applicants need to be hired.

Suppose that C(i′, j′) has already been computed for all i′ < i and all j′ ≤ i′. First we describe how to compute
C(i, 0). Suppose that we draw an applicant with cost x. Because there are no existing contracts, we must hire
this applicant for at least one time step, and we will obviously hire this applicant for at most i time steps. If we
hire the applicant for r time steps, our overall cost will be rx + C(i − 1, r − 1). Thus, the optimal cost for an
applicant costing x can be written as

min
1≤r≤i rx + C(i − 1, r − 1){ }.

Therefore, we have

C(i, 0) �
∫ ∞

0
min
1≤r≤i rx + C(i − 1, r − 1){ } f (x)dx. (1)

Now we suppose that C(i, j) has been computed for j< i and describe how to compute C(i, j + 1). The analysis is
similar to the above, but in this case we have the additional option to reject an applicant and wait one more
time step. The cost of waiting one step is given by C(i − 1, j), so we get the following expression:

C(i, j + 1) �
∫ ∞

0
min C(i − 1, j), min

j+1<r≤i rx + C(i − 1, r − 1){ }
{ }

f (x)dx. (2)

If C(i, j) has been computed for all i ≤ n and all j ≤ i, then there is a straightforward online algorithm that
achieves expected cost C(n, 0). This algorithm simply waits for the cost x of each applicant to be revealed and
then chooses the action that minimizes the expression in the above equations.

3.1. Analysis
The computational efficiency of this algorithm depends on the difficulty of evaluating the integrals in
Equations (1) and (2). For the simple case where the cost distributions are uniform, the right-hand sides of both
equations boil down to finding the piecewise minimum over at most n linear functions, which can easily be
computed. For other distributions, the algorithm may be slower. It is worth noting that the algorithm cannot
be applied in the case where the distribution is unknown. For the case of a known distribution, we conclude
the following.

Theorem 1. The dynamic program given by Equations (1) and (2) yields an optimal online algorithm.

Before we move on, we describe some shortcomings of this algorithm that we seek to address in the re-
mainder of this paper. The first issue of the algorithm is that, although it does provide an optimal competitive
ratio, it is unclear how to analyze the algorithm, and in particular, we do not know what competitive ratio
the algorithm guarantees. Second, the algorithm is very complicated to describe, as it uses at least n2 different
threshold values to decide the hiring duration of an applicant, and these threshold values are specifically
tailored to the distribution in question. In the subsequent sections, we show that there exist algorithms with
constant competitive ratios, and in doing so we prove that the competitive ratio of the optimal online al-
gorithm is also constant. Third, the optimal online algorithm requires both the cost distribution and the total
number of time periods to be known ahead of time. In contrast, in the following, we develop an online
algorithm with a constant competitive ratio that still works even if neither information is known.

4. Uniformly Distributed Costs
In this section, we give two algorithms with constant competitive ratios in the case where applicants’ costs are
distributed uniformly. By shifting/rescaling, we may assume without loss of generality that X � U[0, 1], that
is, that the costs are distributed uniformly in the unit interval. Using Proposition 1, we obtain the following
expression for the expected cost of the offline optimum.

Lemma 1. E Optn[ ] � *n+1 − 1 for all n ∈ N, where *n is the nth harmonic number.

Proof. By Proposition 1, E Optn[ ] � ∑
i∈[n]

∫ 1

0 (1 − x)i dx � ∑
i∈[n] 1

i+1 � *n+1 − 1. □.
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4.1. A First Competitive Algorithm
We start with our first online algorithm for uniform distributions (see Algorithm 1). The main idea of the
algorithm is that whenever we hire an applicant of cost x, we afterward seek an applicant of cost x/2. The
expected time until such an applicant arrives is 2/x.

If we set our hiring time equal to this expectation, we leave a considerable probability that we will not
encounter any cheaper applicants before the hiring time runs out. Instead, we hire the applicant for 4/x steps
and iteratively relax our hiring threshold after a certain time.

More precisely, assume x � 1/2j for some integer j. We then hire the applicant for time

4
x
>

4
x
− 1 � 2

x
+ 1
x
+ 1
2x

+ 1
4x

+ · · · + 1. (3)

This way, if we do not find an applicant of cost at most x/2 during the next 2/x time steps, we continue seeking
for an applicant with cost x for 1/x time steps, and so on. The geometric sum (3) just leaves enough time until
we eventually seek for an applicant with cost at most 1, who is surely found.

To accommodate the fact that the costs of applicants are not powers of 2, in general, we maintain a threshold
cost τ that is a power of 2 and reduce the threshold, whenever a new applicant is hired. See Algorithm 1 for a
formal description. Finally, once an applicant is employed long enough to cover all remaining time steps, we
stop. Importantly, this allows us to bound the lowest possible value of τ to be 2−�log n�+2.2 If an applicant is
hired below this threshold, the hiring time is 4/τ ≥ n.

If n ≤ 4, the algorithm hires only once for four time units and is, thus, 4-competitive. For the following
arguments, assume that n ≥ 5. During the course of the algorithm, the threshold cost τ can only take values of
the form 2−j for j ∈ {0, . . . , k − 1}, where k � �log(n)� − 1 ≥ 2. This allows us to describe the evolution of τ with a
Markov chain M with k + 1 states as follows. State k is the absorbing state that corresponds to the event that we
succeeded in hiring an applicant at cost at most the threshold value 2−(k−1) � 2−�log n�+2. Each other state j ∈
{0, . . . , k − 1} corresponds to the event that the threshold value reaches τ � τj :� 2−j; see Figure 1(a). Each
transition of the Markov chain from a state j to a state j − 1 corresponds to the failure of finding an applicant
below the threshold τj � 2−j for 1/τj � 2j time steps, resulting in a doubling of the threshold cost. Each
transition of the Markov chain from a state j to a state j + 1 corresponds to the hiring of an applicant resulting
in the reduction of the threshold cost. We can therefore use the expected total number of state transitions of the
Markov chain when starting at state 0 to bound the number of hired applicants overall.

Let pj denote the transition probability from state j to state j + 1; that is, when in state j, the Markov chain
transitions to state j + 1 with probability pj and to state j − 1 with probability 1 − pj. The probability that we fail
to find an applicant with cost at most τ during 1/τ time steps is bounded by

1 − pj � (1 − τ)1/τ ≤ 1
e
,

that is, pj ≥ 1 − 1
e. We set p � 1 − 1

e and consider the Markov chain M̂(p, k) with homogeneous transition prob-
ability p shown in Figure 1(b). As we will show in the following lemma, the total number of state transitions to
reach state k in Markov chain M̂(p, k) provides an upper bound on the total number of state transitions to reach
state k in Markov chain M. The analysis of M̂(p, k) then yields the following result.

Lemma 2. For n ≥ 5, starting in state 0 of Markov chain M with k � �log(n)� − 1, the expected number of state transitions
is at most ek

e−2.
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Proof. Let k � �log n� − 1 and p � 1 − 1
e, and consider the Markov chain M̂(p, k) shown in Figure 1(b). We first claim

that the expected number of state transitions when starting in state 0 in Markov chainM is bounded from above by
that in Markov chain M̂(p, k). To see this, consider an arbitrary state j and consider the stochastic process that
operates as M with the exception that the first time state j is visited, transition probabilities are as in M̂(p, k).
Because M̂(p, k) has a higher probability to transition to a state with low index and the only absorbing state is k, this
does not decrease the expected number of state transitions to state j in M. Iterating this argument, we derive that
also the stochastic process where state j always transitions as in M̂(p, k) has a higher number of state transitions to
state j. Iterating this argument over all states proves that the expected total number of state transitions inM is upper
bounded by the expected total number of state transitions in M̂(p, k).

In Lemma 14 in Section 8.1, we show that the expected number of visits for each state in M̂(p, k) is bounded
from above by 1

2p−1 � e
e−2. Because we start in state 0 and end after the first visit in state k, we conclude that the

total number of state transitions of Markov chain M̂(p, k) is bounded by

e
e − 2

− 1
( )

+ ∑k−1
i�1

e
e − 2

+ 1 � ek
e − 2

.

This gives the claimed result. □

We proceed to use Lemmas 1 and 2 to obtain a first constant competitive algorithm for uniform costs.

Theorem 2. Algorithm 1 is strictly 8.122-competitive for uniform distributions.

Proof. If n ∈ {1, . . . , 4}, the algorithm hires the first applicant for n time units costing at most four times the
expected cost of the optimum for the first times step; thus, the algorithm is 4-competitive. For the following
arguments assume that n ≥ 5. Because τ decreases whenever an applicant is hired, we can bound the number of
hired applicants by the number of state transitions from a state j to state j + 1 of the Markov chain. The algorithm
terminates at the latest when state k � �log(n)� − 1 is reached. If it ever reaches that point, it has hired at least k
applicants, and every further hiring is mirrored by a state transition that decreases the current state. By using
Lemma 2 and counting only the transitions that increase the state index, we can bound the expected number of
hired applicants by

ek
e−2 − k

2
+ k � e

e − 2
+ 1

( ) k
2
≤ e

e − 2
+ 1

( ) log n
2

.

Whenever we hire an applicant below threshold τ, the cost of the applicant is uniform in [0, τ], so the expected
cost is τ/2. Because the hiring period is 4/τ, we get that each hired applicant incurs an expected total cost of 2.

Figure 1. Markov chains M modeling the expected number of hired applicants of Algorithm 1. Nodes correspond to states.
State k � �log n� − 1 is absorbing.
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The threshold τ for the next candidate is independent of the exact cost of the last hire. Therefore, we can
combine the expected cost per candidate with Lemma 1, and we obtain

E Algn[ ]
E Optn[ ] ≤

ln n
*n+1 − 1

· 1
ln 2

e
e − 2

+ 1
( )

.

Using Lemma 3, proven below, where γ ≈ 0.577 is the Euler–Mascheroni constant, this implies

E Algn[ ]
E Optn[ ] ≤ 1 + 20

29
5
6
− γ

( )( )
· 1
ln 2

e
e − 2

+ 1
( )

< 8.122,

as claimed. □

Lemma 3. Let γ denote the Euler–Mascheroni constant. For any n ∈ N, ln n
*n+1−1 ≤ 1 + 20

29
5
6 − γ

( )
.

Proof. First, note that

ln n
*n+1 − 1

≤ *n − γ

*n+1 − 1
� 1 + 1 − γ − 1

n+1
*n+1 − 1

.

It suffices to prove that

sup
n∈N

1 − γ − 1
n+1

*n+1 − 1
� sup

n∈N,n≥2
1 − γ − 1

n

*n − 1
≤ 20
29

5
6
− γ

( )
.

To do so, we show that there is a unique n′ ∈ N≥2 with

1 − γ − 1
n−1

*n−1 − 1
≤ 1 − γ − 1

n

*n − 1
for all n ∈ N≥2,n ≤ n′, and

1 − γ − 1
n

*n − 1
≥ 1 − γ − 1

n+1
*n+1 − 1

for all n ∈ N≥2,n ≥ n′,

concluding that the supremum is attained at n′. Now we observe that

1 − γ − 1
n

*n − 1
− 1 − γ − 1

n+1
*n+1 − 1

≥ 0 ⇔ *n+1 − 1( ) 1 − γ − 1
n

( )
− *n − 1( ) 1 − γ − 1

n + 1

( )
≥ 0

and

*n+1 − 1( ) 1 − γ − 1
n

( )
− *n − 1( ) 1 − γ − 1

n + 1

( )
� 1
n + 1

1 − γ − 1
n

( )
− 1
n

*n − 1( ) + 1
n + 1

*n − 1( )

� 1
n + 1

1 − γ − 1
n

( )
− *n − 1( ) 1

n(n + 1) �
1

n(n + 1) n(1 − γ) −*n
( )

,

which is greater than or equal to 0 if and only if n ≥ 6. We conclude that the supremum is attained at n′ � 6.
We finish the proof by observing

ln n
*n+1 − 1

≤ 1 + 1 − γ − 1
n+1

*n+1 − 1
≤ 1 + sup

ñ∈N≥2

1 − γ − 1
ñ

*ñ − 1
≤ 1 + 1 − γ − 1

6

*6 − 1
� 1 + 20

29
5
6
− γ

( )
,

for all n ∈ N. □

4.2. Improving the Algorithm
We proceed to improve the competitive ratio of our algorithm as follows (see Algorithm 2). First, recall that in
Algorithm 1, we hired an applicant below the current threshold of τj � 2−j for 4/τj time units with the ra-
tionale that ∑j+1

i�0

1
τi

� ∑j+1
i�0

2i � 2j+2 − 1 � 4
τj
− 1<

4
τj
.
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With this inequality, it is ensured that we can afford 1/τj+1 time steps to look for an applicant below the threshold
τj+1 and, in case we do not find a suitable applicant, additional 1/τj time steps to look for an applicant below the
threshold τj, and so on, until the threshold is raised to τ0 � 1 and we find a suitable applicant with prob-
ability 1.

It turns out that it pays off to reduce the hiring time below threshold τj from 4/τj to 3/τj. To compensate for
that, we can only afford to look for an applicant below threshold τj for � 3

4τj
� time units. Note that for

τ ∈ {1/2, 1}, we round all times to the next integer. For j ≥ 3, we then obtain

∑j+1
i�0

3
4τj

⌈ ⌉
� 3

4

⌈ ⌉
+ 3

2

⌈ ⌉
+ ∑j+1

i�2

3
4τj

� 1 + 2 + 3
∑j+1
i�2

2i−2 � 3 · 2j � 3
τj

.

Similarly, we may check for j � 0 that �3/4� + �3/2� � 3 � 3/τ0, and for j � 1 that �3/4� + �3/2� + 3 � 6 � 3/τ1.
Thus, we may conclude that the above choices ensure that an applicant is under contract at all times.

Second, instead of reducing the threshold once by factor 2 when we hire a new applicant, we repeatedly
halve the threshold for as long as it is still greater or equal to the actual cost of the new applicant. This way, we
can ensure that the cost for which a new applicant is hired is uniformly distributed in [τ, 2τ) for all hirings
except the last and is uniformly distributed in [0, 2τ) for the last hiring, where τ denotes the threshold after the
applicant is hired. The applicant is below the threshold of 2τ; thus, it is hired for 3

2τ time units, and the expected
total cost of each applicant is 3τ

2 · 3
2τ � 9

4.

For n ∈ {1, 2}, the algorithm hires the first candidate for n time units and is, thus, 2-competitive. For the
following arguments, assume that n ≥ 3. Once we hire an applicant with a cost below 2−j, the threshold τ after
hiring is at most 2−(j+1), so that the applicant is hired for at least 3 · 2j time steps. This implies that we need to
account only for thresholds of the form τj � 2−j, where j ∈ {0, 1, . . . , �log(n/3)�}. We again capture the behavior
of the algorithm with a Markov chain (see Figure 2). To this end, states A0,A1, . . . ,Ak and B0,B1, . . . ,Bk with
k � �log(n/3)� are introduced. We distinguish between the states Aj that correspond to the algorithm looking
for suitable applicants by comparing their costs with τj � 2−j and the states Bj that correspond to the event that
the cost of our current candidate is below the threshold τj � 2−j. Each state Aj with j> 0 either transitions to
Aj−1 with probability (1 − pj), when no applicant for the current threshold was found, or to Bj with probability
pj. As for the previous Markov chain, we have

(1 − pj) � (1 − τj)�
3
4τj
� ≤ e−3/4.

As in the previous section, we may consider the Markov chain with the homogenous transition probabilities
p � 1 − e−3/4 shown in Figure 2(b) instead, because we are interested only in upper bounding the number of
hired applicants. Each state Bj with j< k transitions to Bj+1 or Aj+1, each with probability 1/2, because the cost x
lies with equal probability in [τ, 2τ) or [0, τ). State Bk is the only absorbing state of the Markov chain. Our
analysis of the Markov chain in Section 8.2 yields the following result.
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Lemma 4. For n ≥ 3, starting in state A0 of Markov chain N, the expected number of transitions from an A state to a B state
is at most

h � kp
3p − 1

− 4p(1 − 2p)
(3p − 1)2 + 1 − p

3p − 1

( )2 2(1 − p)
1 + p

( )k
, (4)

where k � �log(n/3)� and p � 1 − e−3/4.

Proof. Let k � �log(n/3)�, and let p � 1 − e−3/4.We again argue thatwe overestimate the expected visiting times only
when consideringMarkov chain N̂(p, k) instead ofN. To see this, fix a stateAj, j � 0, . . . , k, and consider the stochastic
processN′ that followsMarkov chainN but, the first time stateAj is visited, transitions according to the probabilities
of N̂(p, k). Because, in all stochastic processes we consider, the expected number of visits of each state is decreasing in
the index of the starting state Aj, the expected number of visits of each state is not smaller in N′ than in N. Iterating
this argument, we conclude that the expected number of visits of all states in N does not exceed that in N̂(p, k).

In Lemma 15 in Section 8.2, we prove that the expected number of transitions from anA state to a B state of N̂(p, k)
is bounded from above by (4). □

As every transition from an A state to a B state corresponds to the hiring of a candidate, bounding these
transitions allows us to bound E Algn[ ]. Together with the formula for E Optn[ ] proven in Lemma 1, we obtain an
improved competitive ratio of 2.965.

Theorem 3. Algorithm 2 is strictly 2.965-competitive for uniform distributions.

Proof. For n ∈ {1, 2}, the algorithm hires the first applicant for n time steps and is, thus, 2-competitive. For the
following arguments, assume that n ≥ 3. Whenever an applicant is hired, the Markov chain transitions from Aj to
Bj for some value j ∈ [k]. The algorithm terminates at the latest when state Bk is reached. We can thus bound the
number of hired applicants by the expression h of Lemma 4. The last applicant hired when reaching the absorbing
stateBk is hired for atmost n time units and has costs uniformly distributed in [0, 2−k) so that the expected cost is atmost

n2−k−1 � n2−�log(n/3)�−1 ≤ n2− log(n/3)−1 � 3
2
.

Figure 2. Markov chains modeling the expected number of hired applicants of Algorithm 2.
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Using Lemma 1 and the fact that the expected cost incurred by each hired applicant except the last is 9/4,
we get

E Algn[ ]
E Optn[ ] ≤

9
4 (h − 1) + 3

2

*n+1 − 1
≤ 2.965, (5)

for all n. See Lemma 5 below for a proof of the last inequality. □

Lemma 5. Let p � 1 − e−3/4, k � �log(n/3)�, and h � kp
3p−1 − 4p(1−2p)

(3p−1)2 + 1−p
3p−1

( )2 2(1−p)
1+p

( )k
. Then,

9
4(h−1)+3

2
*n+1−1 ≤ 2.965 for all n.

Proof. Because the expression 9
4 (h − 1) + 3

2 is constant as long as k � �log(n/3)� is constant, the ratio
9
4(h−1)+3

2
*n+1−1 is

maximized for some n of the form n � 3 · 2�−1 + 1 with � ∈ N. See also Figure 3, where the ratio is plotted as a
function of n. The claim of the lemma is easily verified for � � 1, . . . , 6. For � ≥ 7, we obtain

h � �p
3p − 1

− 4p(1 − 2p)
(3p − 1)2 + 1 − p

3p − 1

( )2
· 2(1 − p)

1 + p

( )�
≤ �p
3p − 1

− 4p(1 − 2p)
(3p − 1)2 + 1 − p

3p − 1

( )2
· 2(1 − p)

1 + p

( )7
<

�p
3p − 1

+ 1
e
,

(6)

where for the first inequality we use that for p � 1 − e−3/4, we have 2(1−p)
1+p � 2

2e3/4−1 ≈ 0.618< 1, and for the second
inequality we evaluate (6) for p � 1 − e−3/4. For the Euler–Mascheroni constant γ ≈ 0.577, we obtain

9
4 (h − 1) + 3

2

*3·2�−1+2 − 1
<

9
4

�p
3p−1 + 1

e − 1
( )

+ 3
2

ln(3 · 2�−1 + 2) − (1 − γ)

≤
9
4

�p
3p−1 + 1

e − 1
( )

+ 3
2

� ln(2) + ln(3) − ln(2) − (1 − γ) , (7)

where we use that the denominator is positive. Using that ln(3) − ln(2) − (1 − γ) ≈ −0.017< 0, elementary
calculus shows that the expression in (7) is decreasing in �. Evaluating it for � � 7, we obtain

9
4 (h − 1) + 3

2

*3·2�−1+2 − 1
≤ 2.965,

as claimed. □

Figure 3. Upper bound on the competitive ratio of our algorithm (squares) from (5), the competitive ratio of the optimal online
algorithm (triangle), and the lower bound on the competitive ratio of any online algorithm via the Gilbert and Mosteller [12]
problem (circles) for uniformly distributed cost. For better visualization, marks in the right plot are only for multiples of 1,000.
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4.3. Analytical Lower Bound
To obtain a lower bound on the competitive ratio of any online algorithm, we study in this section a relaxation
of the problem. The relaxation allows us to exploit an interesting connection to the classical stopping problem
with uniformly distributed random variables, which is known as the Cayley–Moser problem (see Gilbert and
Mosteller [12], Moser [26]).

Theorem 4. Asymptotically, for a uniform distribution, no online algorithm has a competitive ratio below 2.

Proof. Consider the relaxation where we are allowed to hire an applicant for any (not necessarily contiguous)
subset of all future time steps, while still having to decide on this set immediately upon arrival of the applicant.
Formally, upon the arrival of applicant iwith revealed cost xi ∼ X, we immediately decide to hire i for a set of time
steps Ti ⊆ {k ∈ N : k ≥ i} that realizes cost of xi |Ti|. The objective is again to minimize the expected total cost

Ex1∼X,...,xn∼X
∑

i∈[n] xi |Ti|
[ ]

(8)

under the condition that j ∈ ⋃
i∈[ j] Ti for all j ∈ [n]. In this setting, there is obviously no advantage to concurrent

employment—once we hire an applicant for some time slot, there is no benefit of hiring additional applicants
for the same time slot. Let yij � 1 if j ∈ Ti and yij � 0 otherwise. Then we can rewrite (8) as

Ex1∼X,...,xn∼X
∑

j∈[n]
∑

i∈[j] xi yij
[ ]

� ∑
j∈[n] Ex1∼X,...,xj∼X

∑
i∈[j] xi yij

[ ]
, (9)

where we use linearity of expectation. The objective of the relaxation, then, is to minimize (9) under the
condition that

∑
i∈[j] yij � 1 for all j ∈ [n]. Put differently, the decision of whether to hire an applicant for some

time slot j is independent of the decision for other time slots. Thus, solving the relaxation reduces to si-
multaneously solving a stopping problem for each time slot j; that is, we need to hire exactly one of the first j
applicants for this time slot, while applicants appear one by one and we need to irrevocably hire or discard
each applicant upon their arrival.

Gilbert and Mosteller [12] showed that in the maximization version of the single stopping problem with
uniformly distributed values, the optimal stopping rule is a threshold rule parametrized by t thresholds
τ0, . . . , τt−1. The rule stops at a time step when there are i remaining (unobserved) random variables and the
realization is above τi. The threshold values follow the recursion τ0 � 0 and τi+1 � (1 + τ2i )/2 for all i ≥ 1.
Gilbert and Mosteller [12] showed that the value τt is also the expected revenue for the stopping problem with
t slots when following the optimal strategy. They bounded the expected revenue for all t by

τt ≥ 1 − 2
t + ln(t + 1) + 1.767

.

By symmetry of the uniform distribution, for the corresponding single stopping problem with uniformly
distributed costs and minimization objective, this immediately yields that the optimum expected cost 1 − τt is
lower bounded by h(t) :� 2

t+ln(t+1)+1.767.
Because we need to solve a stopping problem for each time slot 1, 2, . . . ,n, and by linearity of expectation, we

get a lower bound on the expected cost of
∑n

t�1 h(t) for the relaxed problem. On the other hand, by Lemma 1,
for the offline optimum of our original problem, we have Ex1∼U[0,1],...,xn∼U[0,1] Optn[ ] � ∑n

t�1 g(t) :�∑n
t�1 1

1+t. Because
h(t) and g(t) are both monotonically decreasing, we can estimate

∑n
t�1 h(t) ≥

∫ n+1
1 h(t)dt and ∑n

t�1 g(t) ≤
∫ n

0 g(t)dt.
Also, because both integrals tend to infinity for growing n, we can apply l’Hôpital’s rule and obtain

lim
n→∞

∑n
t�1 h(t)∑n
t�1 g(t)

≥ lim
n→∞

∫ n+1
1 h(t)dt∫ n
0 g(t)dt

� lim
n→∞

h(n + 1)
g(n) � lim

n→∞
2(n + 1)

n + 1 + log(n + 2) + 1.767
� 2.

As
∑n

t�1 h(t) is the expected cost of an optimum online solution to the relaxed problem, it is a lower bound on
the expected cost of an optimum online solution to the original problem, and we get the desired bound. □

A plot of the lower bound
∑n

t�1 h(t)
Hn+1−1 as a function of n, shown in Figure 3, reveals that the lower bound

converges very slowly. Even for n � 10,000, the lower bound is still below 9/5.
One may wonder whether this relaxation gives rise to a lower bound strictly larger than 2 for distributions

other than the uniform distribution. We proceed to show that this is not the case for a large class of dis-
tributions. Formally, we show that the optimal online algorithm for the relaxation where applicants can be
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hired for any subset of future time steps is asymptotically 2-competitive for any continuous distribution that is
in the domain of attraction of an extreme value distribution and for which the optimum is unbounded as n
grows. Note that these conditions are satisfied by the uniform distribution and many other distributions such
as, for example, the exponential distribution.

Theorem 5. Let X be a distribution that is in the domain of attraction of some extreme value distribution and such that
limn→∞ E[Optn] � ∞. Then, for n large enough, there is a 2-competitive algorithm for the relaxation where applicants can be
hired for any subset of future time steps.

Proof. As argued in the proof of Theorem 4, the relaxation can be solved optimally by solving a separate stopping
problem for each time step. Asymptotically, the worst-case competitive ratio of this optimal online algorithm is
given by

sup
X∈-

lim
n→∞

∑n
i�1 τi∑n

i�1 Ex1,...,xi∼X[min{x1, . . . , xi}]
{ }

, (10)

where - is the class of all continuous probability distributions on R≥0, and τi is the expected cost of the single
stopping problem where i values are drawn from X when following the optimal stopping strategy. By the
backward induction principle, the values τi follow the recursion τ0 � ∞ and τi+1 � Ex∼X[min{x, τi}], and the
optimal strategy is to stop at realization x when i draws are remaining and x ≤ τi.

To prove an upper bound on (10), we need bounds on the relative behavior of the threshold values τi and
the expected minima of i independent draws. To utilize known results from the stopping literature, we first
transform (10) into an equivalent maximization problem. To this end, let -̌ be the class of all continuous
probability distributions on R≤0. We then reformulate (10) as

sup
X̌∈-̌

lim
n→∞

∑n
i�1 τ̌i∑n

i�1 Ex1,...,xi∼X̌[max{x1, . . . , xi}]

{ }
, (11)

where τ̌i are the optimal thresholds of the maximization version of the stopping problem with values drawn
from X̌, that is, τ̌0 � −∞ and τ̌i+1 � Ex̌∼X̌[max{x̌, τ̌i}]. The equivalence between (10) and (11) follows from the
fact that a sequence (X1,n1), (X2, n2), . . . converges to the supremum in (10) if and only if the sequence
(−X1, n1), (−X2,n2), . . . converges to the supremum in (11). Here, we denote by −X the distribution of −x
where x ∼ X.

In the following, we fix an arbitrary distribution X̌ ∈ -̌ satisfying the assumptions of the theorem and use
the shorthand notation m̌i � Ex1,...,xi∼X̌[max{x1, . . . , xi}]. With this notation, the theorem can be proven by
showing that limn→∞

∑n
i�1 τ̌i/

∑n
i�1 m̌i ≤ 2. To this end, we recall a result from Kennedy and Kertz [21], who

showed that the asymptotic behavior of the sequence (τ̌n)n∈N depends on the domain of attraction of X̌ to the
classical three classes of extreme value distributions. Specifically, Kennedy and Kertz [21] assumed that the
underlying distribution X̌ lies in the domain of attraction of some limit distribution G, that is, there exist
sequences of constants (an)n∈N and (bn)n∈N with an > 0 such that an(max{x̌1, . . . , x̌n} − bn) converges in distri-
bution to some nondegenerate function G as n → ∞. In this case, we say that X̌ is in the domain of attraction of
G and write X̌ ∈ $(G). The Fisher–Tippett–Gnedenko theorem (Fisher and Tippett [11], Gnedenko [13]) states
that under these conditions, G must be one of the following types of extreme-value distributions:

GI(x) � exp(−e−x) for x ∈ R;

Gα
II(x) �

0 if x< 0,
exp(−x−α) otherwise;

{
Gα

III(x) �
exp(−(−x)α) if x< 0,
1 otherwise.

{
Necessary and sufficient conditions for X ∈ $(G) and G ∈ {GI} ∪ {Gα

II : α> 1} ∪ {Gα
III : α> 0} were given by

Leadbetter et al. [25]. To state these conditions formally, we first introduce the notion of regular variation due
to Karamata [18]. Formally, a function f : R → R>0 is called regularly varying at infinity with index α ∈ R≥0
if limt→∞ f (tx)

f (t) � xα for all x> 0. It is further called regularly varying at x0 ∈ R if the function x �→ f (x0 − 1
x) is

regularly varying at infinity.
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Let F̌ be the cumulative distribution of X̌, and let ω � sup{x : F̌(x)< 1}. The conditions given by Leadbetter
et al. [25] imply that X̌ ∈ $(Gα

II) if and only if ω � ∞ and 1 − F̌(x) is regularly varying at infinity with index −α.
Furthermore, X̌ ∈ $(Gα

III) if and only if ω<∞ and 1 − F̌(x) is regularly varying at ω with index −α. The
conditions for X̌ ∈ $(GI) are more involved to state and immaterial for our further analysis. Leadbetter et al.
[25] further show that when the distributions lie in the domains of attraction of the respective extreme value
distributions, the sequences of constants can be chosen as follows:

an � 1
g(γn) and bn � γn if X̌ ∈ $(GI),

an � 1
γn

and bn � 0 if X̌ ∈ $(Gα
II),

an � 1
ω−γn

and bn � ω if X̌ ∈ $(Gα
III),

where γn � inf{x : F̌(x) ≥ 1 − 1
n} and g(t) �

∫ ω

t
1−F̌(s)ds
1−F̌(t) .

We note that because we are interested only in distributions X̌ on R≤0, we need not consider the case
X̌ ∈ $(Gα

II) for the following arguments. Moreover, it is easy to see that among the distributions X̌ ∈ $(Gα
III), the

supremum in (11) is attained by a sequence with ω � 0.
Kennedy and Kertz [21, theorem 1.2] established that

lim
n→∞ an(τ̌n − bn) � lim

n→∞
τ̌n − γn

g(γn) � 0 if X̌ ∈ $(GI), (12a)

lim
n→∞ an(τ̌n − bn) � lim

n→∞
τ̌n − ω

ω − γn
� − 1 + 1

α

( )1/α
if X̌ ∈ $(Gα

III), α> 0. (12b)

Kennedy and Kertz [21] further stated that

lim
n→∞ an(m̌n − bn) � lim

n→∞
m̌n − γn

g(γn) � γ if X̌ ∈ $(GI), (13a)

lim
n→∞ an(m̌n − bn) � lim

n→∞
m̌n − ω

ω − γn
� −Γ 1 + 1

α

( )
if X̌ ∈ $(Gα

III), α> 0, (13b)

where γ ≈ 0.5772 is the Euler–Mascheroni constant and Γ denotes the gamma function. Combining (12a) with
(13a) and (12b) with (13b), we obtain

lim
n→∞

τ̌n
m̌n

� lim
n→∞

τ̌n−γn
g(γn) +

γn
g(γn)

m̌n−γn
g(γn) +

γn
g(γn)

� 1 if X̌ ∈ $(GI), (14a)

lim
n→∞

τ̌n
m̌n

� (1 + 1
α)1/α

Γ(1 + 1
α)

if X̌ ∈ $(Gα
III), α> 0, ω � 0, (14b)

where for (14a), we use that g(γn) → 0 as n → ∞. Results very similar to (14) are also reported by Kennedy and
Kertz [21, theorem 1.3]. Their theorem statement, however, has a small inaccuracy regarding the case ω � 0,
which is the most interesting for us, so we chose to give the results again.

To finish the proof, suppose we have a distribution X̌ ∈ ⋃
α>0 $(Gα

III) ∪$(GI) such that limn→∞ Optn �∑∞
n�1 −m̌n � ∞. Then, (14a) and (14b) imply that

∑∞
n�1 τ̌n � −∞ as well. By the Stolz–Cesàro theorem (Ash et al. [2]),

we then obtain

lim
n→∞

∑n
i�1 τ̌i∑n
i�1 m̌i

� lim
n→∞

τ̌n
m̌n

�
1 if X̌ ∈ $(GI),
(1+1

α)1/α
Γ(1+1

α) if X̌ ∈ $(Gα
III).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
So to obtain a lower bound, we are interested in solving

sup
X̌∈$(Gα

III
)

ω�0

(1 + 1
α)1/α

Γ(1 + 1
α)

:
∑∞
i�n

m̌n � −∞
{ }

. (15)
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To solve (15), recall that for a distribution on R≤0 with ω � 0, it holds that X̌ ∈ $(Gα
III) if and only if ω<∞ and

1 − F̌(x) is regularly varying at 0, that is,

lim
t→∞

1 − F̌(0 − 1
tx)

1 − F̌(0 − 1
t)

� x−α (16)

for all x> 0. Because limn→∞ γn � 0 and γn < 0, we can replace t � −1/γn and x � −γn. Because for a regular
varying function the convergence in (16) is uniform in x, we know that for every ε> 0 there is N0 ∈ N such that
for all n ≥ N0 and some εn ∈ (−ε, ε), we have

εn � 1 − F̌(−1)
1 − F̌(γn)

− (−γn)−α � n 1 − F̌(−1)
( )

− (−γn)−α,

where we use that F̌ is continuous, and thus F(γn) � 1 − 1/n. We obtain

γn � − n 1 − F̌(−1)
( )

− εn
( )−1/α

.

As a consequence,
∑∞

n�1 γn � −∞ if and only if α ≥ 1. Next recall that

lim
n→∞

m̌n

γn
� Γ 1 + 1

α

( )
,

implying that
∑∞

n�1 m̌n � −∞ if and only if
∑∞

n�1 γ̌n � −∞. We obtain

sup
X̌∈$(Gα

III
)

ω�0

(1 + 1
α)1/α

Γ(1 + 1
α)

:
∑∞
i�n

m̌n � −∞
{ }

� sup
α>0

(1 + 1
α)1/α

Γ(1 + 1
α)

: α ≥ 1

{ }
� 2
Γ(2) � 2,

which yields the claimed result. □

Note that the bound of 2 on the competitiveness of the optimal online algorithm obtained in Theorem 5 is
tight, as we showed in Theorem 4 that, for the uniform distribution, the optimal online algorithm is not better
than 2-competitive.

4.4. Computational Lower Bound
In this section, we give a computational lower bound based on an optimal online algorithm for uniformly distributed
costs. This gives a slightly higher lower bound than the analytical bound from Section 4.3. We implemented the
optimal online algorithm presented in Section 3 in exact arithmetic, using rounding to prevent numbers from
getting too large. The algorithm achieves a competitive ratio of 2.148 for an instance with 10,000 time steps
(see Figure 3). We describe the details on the computational lower bound in the following paragraphs.

For the uniform distribution, we know from Lemma 1 that the optimal offline algorithm has expected cost
*n+1 − 1. On the other hand, the entry C(n, 0) in the dynamic programming table of the optimal online al-
gorithm gives the optimal cost for an instance with n days. Therefore, for every n> 0, the ratio C(n,0)

*n+1−1 provides a
lower bound on the best strict competitive ratio achievable by any online algorithm.

We implemented the optimal online algorithm for the uniform case and computed the expression above for
increasing values of n. To obtain a conclusive proof, one needs to implement the algorithm in exact rational
arithmetic. However, in doing so, we found that the sizes of the numerators and denominators grow very
quickly in n, and already for n � 22 both the numerator and the denominator have over a million digits. This
makes it computationally intractable to compute C(n,0)

*n+1−1 for large n.
To address this, we adopted a rounding scheme: after computing C(i, j) for some i and j, we rounded the

number down to another rational with a smaller numerator and denominator, and then stored the rounded
number in the dynamic programming table. Because we only ever round down, the resulting costs computed
by the algorithm must always be cheaper than the expected cost of the optimal online algorithm. Therefore,
the computed value of C(n,0)

*n+1−1 is still a lower bound on the strict competitive ratio that can be achieved.
Ultimately, we found that for n � 10,000, the competitive ratio can be no better than 2.148. The following

remark summarizes the results.

Remark 1. For a uniform distribution, no online algorithm has a strict competitive ratio below 2.148.
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5. Arbitrary Distributions

In this section, we propose an algorithm similar to Algorithm 2 for an arbitrary distribution X (see Al-
gorithm 3). Whenever we halve our threshold in the course of Algorithm 2, we essentially halve the
probability mass of X below the threshold (i.e., the probability that a drawn value lies below τ). To achieve the
same effect with respect to an arbitrary distribution X, we consider quantiles δq of X, defined by the property
that Pr x ≤ δq

[ ] � q for continuous distributions.3 Algorithm 3 changes the threshold by halving and doubling q
and using τ � δq, which results in the same behavior as Algorithm 2 when X is uniform. Therefore, we can, in
principle, analyze the algorithm for general distributions using a Markov chain similar to that in Section 4.2.
Specifically, the Markov chain again governs the evolution of the value q � 2−j, j � 0, 1, 2, . . ., and the cor-
responding threshold value τ � δq in the course of Algorithm 3. After finding an applicant with a cost xi below
the threshold value τ, the value of q is halved until δq < xi ≤ δq−1. Because the applicant is then hired for 2/q
time steps, where q is the value after the halving, we conclude that when hiring an applicant below the
threshold of δq, it is hired for 4/q time units. As the process stops at the latest when 4/q ≥ n, the Markov chain
N′ has states A0,A1, . . . ,Ak and B0,B1, . . . ,Bk with k � �log n� − 2 (see Figure 4).

Again, we start in state A0, Bk is the absorbing state, and states Aj,Bj correspond to states of the algorithm
where τ � δ2−j . The transition probability from any state Aj to state Bj is bounded from below by p � 1 − 1/e,
because the probability of not finding any applicant of cost at most δq within 1/q steps is

1 − Pr[x> δq]1/q � 1 − (1 − Pr[x ≤ δq])1/q ≥ 1 − (1 − q)1/q ≥ 1 − 1
e
.

The analysis of the algorithm for arbitrary distributions, however, turns out to be more intricate than for the
uniform case, for two main reasons. First, for uniform distributions, it was sufficient to count the total number
of transitions from an A state to a B state, as any such transition corresponds to the hiring of a candidate with a
total cost of 9/4. On the other hand, for general distributions, we need to bound the number of transitions from

Figure 4. Markov chain N′ modeling the expected number of hired applicants of Algorithm 3.
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state Bj to state Aj+1 for each j individually, as the resulting costs may differ among the different values of j.
The following lemma provides a bound independent of j.

Lemma 6. Starting in state A0 of Markov chain N′, for each j ∈ {0, . . . , k − 1}, the expected number of transitions from Bj

to Aj+1 is at most p
3p−1, where p � 1 − 1

e.

Proof. With the same arguments as in the proof of Lemma 4, we obtain an upper bound on the expected number of
transitions from Bj to Aj+1 by considering the Markov chain N̂(p, k) with homogenous transition probability p �
1 − 1

e and k � �log n� − 2. For the latter Markov chain, Lemma 16 proven in Section 8.2 establishes the result. □

The second main issue when analyzing the competitive ratio of the algorithm is the lack of a concrete value
for Optn for general distributions. Thus, we need the following lemma that expresses E Optn[ ] as a sum over
conditional expectations of the form E x | δ2−(r+1) < x ≤ δ2−r[ ] with r ∈ N.

Lemma 7. Let n ≥ 5, k � �log n� − 2, and η :� 5
2 − 55

6e2 ≈ 1.259. Then, we have

E Optn[ ] ≥ ∑k−1
r�0

2r−1E x | δ2−(r+1) < x ≤ δ2−r[ ] + η2k−1E x | x ≤ δ2−k[ ].

Proof. By linearity of expectation, E Optn[ ] � ∑
i∈[n] E min{x1, . . . , xi}[ ], where, for i ∈ [n], the random variables

x1, . . . , xi are drawn independently from X. To prove the claim, we proceed to express, for fixed i ∈ [n], the ex-
pectation E[min{x1, . . . , xi}] in terms of E x | x ≤ δ2−k[ ] and E[x | δ2−(r+1) < x ≤ δ2−r] with r ∈ {0, . . . , k − 1}. To this end,
for i ∈ [n] and r ∈ {0, . . . , k − 1}, let

%i,r,�1 � [∣∣{x1, . . . , xi} ∩ (δ2−(r+1) , δ2−r]
∣∣ � 1 and {x1, . . . , xi} ∩ (δ2−(r+1) , δ1]

∣∣ � i
]∣∣

be the stochastic event that the minimum of the i draws x1 ∼ X, . . . , xi ∼ X is in the interval (δ2−(r+1) , δ2−r] and
none of the other i − 1 draws is in that interval. Additionally, let

%i,k,�1 � {x1, . . . , xi} ∩ [0, δ2−k ]| | � 1[ ].
Furthermore, for r ∈ {0, . . . , k − 1}, let

%i,r,>1 � {x1, . . . , xi} ∩ (δ2−(r+1) , δ2−r]| |> 1 and {x1, . . . , xi} ∩ (δ2−(r+1) , δ1]| | � i[ ]
be the stochastic event that the minimum of the i draws is in the interval (δ2−(r+1) , δ2−r] and at least one of the
other i − 1 draws is in that interval. Similarly, let

%i,k,>1 � {x1, . . . , xi} ∩ [0, δ2−k ]| |> 1[ ].
For fixed i, the events %i,r,�1 and %i,r,>1 for r∈{0, . . . ,k} are clearly disjoint. Because

∑k
r�0(Pr[%i,r,�1]+Pr[%i,r,>1]) �1,

by the law of total expectation, we have

E min{x1, . . . , xi}[ ] � ∑k

r�0
E min{x1, . . . , xi}

∣∣%i,r,�1
[ ]

Pr %i,r,�1
[ ](

+E min{x1, . . . , xi}
∣∣%i,r,>1

[ ]
Pr %i,r,>1

[ ])
.

We observe that E min{x1, . . . ,xi} |%i,r,�1
[ ]�E x |δ2−(r+1) <x≤ δ2−r[ ] for all r∈ {0, . . . ,k−1}, and, similarly, E min{x1 . . . ,[

xi} |%i,k,�1] �E x |x≤ δ2−k[ ]. In addition, we have E min{x1, . . . ,xi} |%i,r,>1
[ ]≥ δ2−(r+1) ≥E x |δ2−(r+2) <x≤ δ2−(r+1)[ ] for all

r∈ {0, . . . ,k−1}. We then obtain

E min{x1, . . . , xi}[ ] ≥ E x | δ2−1 < x ≤ δ1[ ]Pr %i,0,�1
[ ]

+ ∑k−1
r�1

E x | δ2−(r+1) < x ≤ δ2−r[ ] Pr %i,r,�1
[ ] + Pr %i,r−1,>1

[ ]( )
+ E x | x ≤ δ2−k[ ] Pr %i,k,�1

[ ] + Pr %i,k−1,>1
[ ]( )

,
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and hence

E Optn[ ] ≥ E x | δ2−1 < x ≤ δ1[ ]∑n
i�1

Pr %i,0,�1
[ ]

+ ∑k−1
r�1

E x | δ2−(r+1) < x ≤ δ2−r[ ]∑n
i�1

Pr %i,r,�1
[ ] + Pr %i,r−1,>1

[ ]( )( )

+ E x | x ≤ δ2−k[ ]∑n
i�1

Pr %i,k,�1
[ ] + Pr %i,k−1,>1

[ ]( )
.

The probability that a single draw falls in the range (δ2−(r+1) , δ2−r] and i − 1 draws are larger than δ2−r is
2−(r+1)(1 − 2−r)i−1. Because there are i possibilities for which of the draws falls in this range, we have

Pr %i,r,�1
[ ] �

0 if r � 0 and i> 1,
1/2 if r � 0 and i � 1,
i2−(r+1)(1 − 2−r)i−1 if r ∈ {1, . . . , k − 1},
i2−r(1 − 2−r)i−1 if r � k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Similarly, for r ∈ {1, . . . , k}, we have

Pr %i,r−1,>1
[ ] � (1 − 2−r)i − (1 − 2−(r−1))i − Pr %i,r−1,�1

[ ]
� (1 − 2−r)i − (1 − 2−(r−1))i − i2−r(1 − 2−(r−1))i−1.

We then obtain

E Optn[ ] ≥ E x | δ2−1 < x ≤ δ1[ ] · 2−1

+ ∑k−1
r�1

E x | δ2−(r+1) < x ≤ δ2−r[ ] · α(r,n)
+ E x | x ≤ δ2−k[ ] · α(k, n)

with

α(r, n) � ∑n
i�1

Pr %i,r,�1
[ ] + Pr %i,r−1,>1

[ ]( )
. (17)

It remains to show that α(r,n) ≥ 2r−1 for 1 ≤ r< k and α(k,n) ≥ η2k−1. We have

α(r,n) � ∑n
i�1

Pr %i,r,�1
[ ] + Pr %i,r−1,>1

[ ]( )

�
∑n
i�1

i2−r(1 − 2−r)i−1 + (1 − 2−r)i − (1 − 2−(r−1))i − i2−r(1 − 2−(r−1))i−1( )
if r � k,

∑n
i�1

i2−(r+1)(1 − 2−r)i−1 + (1 − 2−r)i − (1 − 2−(r−1))i − i2−r(1 − 2−(r−1))i−1( )
otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (18)

To prove the lemma, we proceed to show that infn∈N infr∈{0,...,�log n�−3} α(r,n)2r−1 ≥ 1 and infn∈N α(�logn� − 2,n)
2�logn� − 3 ≥ η. Differ-

entiating the well-known formula for the geometric sum
∑n

i�1 ai � a−an+1
1−a , we obtain

∑n
i�1 iai−1 � nan+1−(n+1)an+1

(1−a)2 . We
use both formulas to simplify all partial sums. For a binary event %, we denote by χ% the indicator variable for
event %; that is, χ% � 1 if % is true, and χ% � 0 otherwise. For r ∈ {1, . . . , k}, we then obtain

α(r,n) � (1 + χr�k)2r−1 n(1 − 2−r)n+1 − (n + 1)(1 − 2−r)n + 1
[ ] + 2r 1 − 2−r − (1 − 2−r)n+1[ ]

− 2r−1 1 − 2−(r−1)− (1 − 2−(r−1))n+1
[ ]

− 2r−2 n(1 − 2−(r−1))n+1 − (n + 1)(1 − 2−(r−1))n + 1
[ ]

� 2r−1 (1 + χr�k) n(1 − 2−r)n+1 − (n + 1)(1 − 2−r)n + 1
( ) + 2 − 2−(r−1) − 2(1 − 2−r)n+1

[
−1 + 2−(r−1) + (1 − 2−(r−1))n+1 − n

2
(1 − 2−(r−1))n+1 + n + 1

2
(1 − 2−(r−1))n − 1

2

]
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� 2r−1
3
2
+ χr�k + (1 − 2−r)n n(1 + χr�k)(1 − 2−r) − (n + 1)(1 + χr�k) − 2(1 − 2−r)( )

[
+ (

1 − 2−(r−1))n (1 − 2−(r−1)) − n
2
(1 − 2−(r−1)) + n + 1

2

( )]
� 2r−1

3
2
+ χr�k + (1 − 2−r)n(2−(r−1) − n2−r(1 + χr�k) − 3 − χr�k)

[
+ (

1 − 2−(r−1))n 3
2
+ n2−r − 2−(r−1)

( )]
� 2r−1

3
2
+ χr�k + (1 − 2−r)n − (1 − 2−(r−1))n

( )
2−(r−1) − n2−r − 3

2

( )[
− 3

2
+ χr�k(1 + n2−r)

( )
(1 − 2−r)n

]
.

As the probabilities are nonnegative, α(r,n)�∑n
i�1(Pr[%i,r,�1] + Pr[%i,r−1,>1]) is nondecreasing in n for all

r ∈ {1,.. .,k}. We proceed to show that α(r,n) ≥ 2r−1 for all r ∈ {0,. . ., k − 1} � {0,. . .,�log n�−3}. Because r and n are
integral, r≤ �logn�− 3 implies n ≥ 2r+2 + 1. Using the monotonicity of α(r,n) and substituting t :� 2r, we have

inf
n∈N inf

r∈{1,...,�log n�−3}
α(r, n)
2r−1

� inf
r∈N inf

n∈{2r+2+1,...}
α(r,n)
2r−1

� inf
r∈N

α(r, 2r+2 + 1)
2r−1

� inf
r∈N

{
3
2
+ (1 − 2−r)2r+2+1 − (1 − 2−(r−1))2r+2+1

( )
2−(r−1) − (2r+2 + 1)2−r − 3

2

( )

− 3
2
(1 − 2−r)2r+2+1

}

≥ inf
t∈N

3
2
+ 1 − 1

t

( )4t+1
− 1 − 2

t

( )4t+1( )
2
t
− 4 − 1

t
− 3
2

( )
− 3
2

1 − 1
t

( )4t+1{ }

� inf
t∈N

3
2
+ 1 − 1

t

( )4t+1
− 1 − 2

t

( )4t+1( )
1
t
− 11

2

( )
− 3
2

1 − 1
t

( )4t+1{ }
.

The first-order Taylor approximation of the function f (x) � x4t+1 at x � 1 − 1
/
t gives f (1 − 2

/
t) � (1 − 2

/
t)4t+1 �

(1 − 1
/
t)4t+1 − 4t+1

t (1 − 1
/
t)4t + R2, with R2 ≥ 0 as f is convex. This implies

inf
n∈N inf

r∈{1,...,�logn�−2}
α(r,n)
2r−1

≥ inf
t∈N

3
2
− 4t + 1

t
11
2
− 1
t

( )
1 − 1

t

( )4t
− 3
2

1 − 1
t

( )
1 − 1

t

( )4t{ }

� inf
t∈N

3
2
− 47

2
− 1
t2

( )
1 − 1

t

( )4t{ }

≥ inf
t∈N

{
3
2
− 47

2
1 − 1

t

( )4t}
.

As the latter expression is decreasing in t, we have

inf
n∈N inf

r∈{1,...,�log n�−3}
α(r,n)
2r−1

≥ lim
t→∞

3
2
− 47

2
(1 − 1

t
)4t

{ }
� 3
2
− 47
2e4

≈ 1.069> 1.
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It remains to show that α(k,n)
2k−1 ≥ η. For r � k � �log n� − 2, we have

α(k,n) � 2k−1
5
2
+ (1 − 2−k)n − (1 − 2−(k−1))n

( )
2−(k−1) − n2−k − 3

2

( )
− 5

2
+ n2−k

( )
(1 − 2−k)n

[ ]
.

Again, as α(r, n) is nondecreasing in n, this value is minimal for n � 2k+1 + 1. Substituting t � 2k, we obtain

inf
n∈N

α(�log n� − 2, n)
2�log n�−3

� inf
k∈N

α(k, 2k+1 + 1)
2k−1

� inf
k∈N

{
5
2
+ (1 − 2−k)2k+1+1 − (1 − 2−(k−1))2k+1+1

( )
2−(k−1) − (2k+1 + 1)2−k − 3

2

( )
− 5

2
+ (2k+1 + 1)2−k

( )
(1 − 2−k)2k+1+1

}

≥ inf
t∈N
t≥2

5
2
+ 1 − 1

t

( )2t+1
− 1 − 2

t

( )2t+1( )
2
t
− 2 − 1

t
− 3
2

( )
− 5

2
+ 2 + 1

t

( )
1 − 1

t

( )2t+1{ }

� inf
t∈N
t≥2

5
2
+ 1 − 1

t

( )2t+1
− 1 − 2

t

( )2t+1( )
1
t
− 7
2

( )
− 9

2
+ 1
t

( )
1 − 1

t

( )2t+1{ }
.

By second-order Taylor approximation of the function f (x) � x2t+1 at x � (1 − 1
/
t), we obtain

f (1 − 2
t
) � 1 − 2

t

( )2t+1
� 1 − 1

t

( )2t+1
− 2t + 1

t
1 − 1

t

( )2t
+ 2t(2t + 1)

2t2
1 − 1

t

( )2t−1
− 2t(2t + 1)(2t − 1)

6t3
1 − 1

t

( )2t−2
+ R4,

where the remainder is R4 ≥ 0, as the fourth derivative is nonnegative. (This can easily be seen when
expressing the remainder in Lagrange form.) We then obtain

inf
n∈N

α(�logn� − 2,n)
2�log n�−3

≥ inf
t∈N
t≥2

5
2
+ 2t + 1

t
1 − 1

t

( )2t
− 2t + 1

t
1 − 1

t

( )2t−1
+ (2t + 1)(2t − 1)

3t2
1 − 1

t

( )2t−2( )
1
t
− 7
2

( )
− 9

2
+ 1
t

( )
1 − 1

t

( )2t+1{ }

� inf
t∈N
t≥2

5
2
+ 1 − 1

t

( )2t 2t + 1
t

− 2t + 1
t − 1

+ (2t + 1)(2t − 1)
3(t − 1)2

( )
1
t
− 7
2

( )
− 9

2
+ 1
t

( )
1 − 1

t

( )( ){ }

� inf
t∈N
t≥2

5
2
− 55t4 − 125t3 + 89t2 + 8t − 12

6t2(t − 1)2 1 − 1
t

( )2t{ }
.

It is straightforward to check that (1 − 1
/
t)2t and 55t4−125t3+89t2+8t−12

6t2(t−1)2 are increasing in t. This implies

inf
k∈N

α(k, 2k+1 + 1)
2k−1

� lim
t→∞

5
2
− 55t4 − 125t3 + 89t2 + 8t − 12

6t2(t − 1)2 1 − 1
t

( )2t{ }
� 5
2
− 55
6e2

≈ 1.259,

which finishes the proof. □

Combining Lemmas 6 and 7, we obtain the main result of this section.

Theorem 6. Algorithm 3 is 6.052-competitive for arbitrary distributions.

Proof. For n ∈ {1, . . . , 4}, Algorithm 3 hires the first applicant for n time units and is, thus, 4-competitive. For the
following arguments, assume that n ≥ 5, and let k � �log n� − 2 ≥ 1.
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Algorithm 3 hires an applicant whenever the Markov chain transitions from a state Bj to Aj+1, and hires the final
applicant when it reaches state Bk. By Lemma 6 for each j, the expected number of transitions from state Bj toAj+1 is
at most p

3p−1, where p � 1 − 1
e. Each applicant who is hired while transitioning from Bj to Aj+1 is hired for 2j+2 time

units, and its expected cost value is E x | δ2−(j+1) ≤ x ≤ δ2−j[ ]. The final applicant hired when state Bk is reached is hired
for at most n time units and has expected cost E[x | x ≤ δ2−k ].

Because the number of visits to a state and the cost for hiring an applicant in the state are stochastically in-
dependent, we obtain

E Algn[ ] ≤ p
3p − 1

∑k−1
j�0

2j+2E x | δ2−(j+1) < x ≤ δ2−j[ ]( ) + nE[x | x ≤ δ2−k]

� 1 − 1
/
e

2 − 3
/
e

∑k−1
j�0

2j+2E x | δ2−(j+1) < x ≤ δ2−j[ ]( ) + nE[x | x ≤ δ2−k]

≤ 8e − 8
2e − 3

E[Optn] + n 1 − e − 1
2e − 3

η

( )
E x | x ≤ δ2−k[ ], (19)

where we use Lemma 7 and where η � 5
2 − 55

6e2. Furthermore, recall that E[Optn] � ∑n
i�1 E[min{x1, . . . , xi}]. For

i ∈ [n], we have

E min{x1, . . . , xi}[ ] ≥ E x | x ≤ δ2−k[ ]Pr {x1, . . . , xi} ∩ [0, δ2−k ]| | ≤ 1[ ]
≥ E x | x ≤ δ2−k[ ]Pr {x1, . . . , xi} ∩ [0, δ4/n]

∣∣ ∣∣ ≤ 1
[ ]

� E x | x ≤ δ2−k[ ] Pr {x1, . . . , xi} ∩ [0, δ4/n]
∣∣ ∣∣ � 0

[ ](
+ Pr {x1, . . . , xi} ∩ [0, δ4/n]

∣∣ ∣∣ � 1
[ ])

� E x | x ≤ δ2−k[ ] 1 − 4
n

( )i
+ 4i

n
1 − 4

n

( )i−1( )
,

which implies (for n ≥ 5)

E Optn[ ] ≥ E x | x ≤ δ2−k[ ]∑n
i�1

1 − 4
n

( )i
+ 4i

n
1 − 4

n

( )i−1( )
� E x | x ≤ δ2−k[ ] n

2
1 − 3 1 − 4

n

( )n( )
+ 1 − 4

n

( )n
− 1

( )
≥ E x | x ≤ δ2−k[ ] n

2
1 − 3

e4

( )
+ 1 − 4

n

( )n
− 1

( )
. (20)

Combining (20) with (19) and using n ≥ 5, we obtain

E[Algn] ≤ 8e − 8
2e − 3

E[Optn] +
1 − e−1

2e−3
(
5
2 − 55

6e2

)
1
2 1 − 3

e4

( )
+ 1 − 4

n

( )n− 1
n

E[Optn]

≤ 8e − 8
2e − 3

+
1 − e−1

2e−3
(
5
2 − 55

6e2

)
1
2 1 − 3

e4

( )
+ 1 − 4

5

( )5 − 1
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠E[Optn] ≤ 6.052 · E[Optn]

as claimed. □

6. Unknown Distributions
In this section, we again consider an arbitrary distribution X with distribution function F. In contrast to before, we
assume that X is unknown to us. In particular, we do not have access to the quantiles of X. We first give a bound
for the cost of the offline optimum that does not rely on quantiles. In the following, we let E x[ ] :�Ex∼X x[ ].
Lemma 8. For arbitrary distributions X, E Optn[ ] ≥ E x[ ] + ∑�log n�

i�1 2i−1
∫ ∞
0 (1 − F(x))2i dx.

Proof. Because the left-hand side of the inequality to prove is increasing in n, whereas the right-hand side increases
only when n is a power of 2, we may assume without loss of generality that n is a power of 2. By Proposition 1,
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we have E Optn[ ] � ∑
i∈[n]

∫ ∞
0 (1 − F(x))i dx. Using that (1 − F(x))i is decreasingwith i, we split the sum into the ranges

(n/2, n], (n/4, n
/
2], (n/8, n

/
4], . . . and bound each part by the last term in the corresponding range, that is,

E Optn[ ] � E x[ ] + ∑n
i�2

∫ ∞

0
(1 − F(x))i dx

≥ E x[ ] + n
2

∫ ∞

0
(1 − F(x))n dx + n

4

∫ ∞

0
(1 − F(x))n/2 dx + · · · +

∫ ∞

0
(1 − F(x))2 dx

� E x[ ] + ∑log n
i�1

n
2i

∫ ∞

0
(1 − F(x))n/2i−1 dx

� E x[ ] + ∑log n
i�1

2log n−i
∫ ∞

0
(1 − F(x))2logn−i+1 dx

� E x[ ] + ∑log n−1
i�0

2i
∫ ∞

0
(1 − F(x))2i+1 dx

� E x[ ] + ∑log n
i�1

2i−1
∫ ∞

0
(1 − F(x))2i dx,

as claimed. □

We now describe our algorithm for unknown distributions (see Algorithm 4). Without knowledge of the
quantiles of X, we have no good way to directly adjust the cost threshold τ. Instead, for some integral value
λ> 1 to be fixed later, we devote a 1

λ+1 fraction of the time spent in each state j to sample X to estimate a
suitable value for τ and then wait for an appropriate candidate to appear. Specifically, in state j, we sample for
2j − 1 time units and then observe the applicants for another λ(2j − 1) time units. Thus, the maximum number
of time units spent in state j is t̄j � (1 + λ)(2j − 1). When observing the applicants, we hire any candidate whose
cost does not exceed the minimum cost while sampling. The hiring time is tj � (1 + λ)2j+2 time units. Because∑j+1

i�0
t̄i � (1 + λ)∑j+1

i�0
(2i − 1) � (1 + λ)(2j+2 − j − 3) ≤ tj,

we are guaranteed to hire a new applicant (or terminate the algorithm) during the hiring time.

The maximum value of j that can be reached during the execution of the algorithm is bounded by the fact
that (1 + λ)2j+2 ≤ n, that is, j ≤ �log n

1+λ� − 2.
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Again, we introduce a Markov chain that has one state for each possible value of j and an absorbing state k;
see Figure 5. The probability that we do not hire an applicant in state j with 0< j< k equals the probability that
the smallest cost observed while sampling is lower than the smallest cost observed while waiting. Because
twait � λtsample, we have a hiring probability of p � λ

λ+1. With this probability, the Markov chain transitions to
state j + 1, and otherwise to state j − 1.

As the Markov chain already has homogenous transition probabilities equal to p � λ
λ+1, Lemma 14 directly

implies the following result.

Lemma 9. The expected number of visits to each state j of the Markov chain is at most 1
2p−1.

Combining Lemma 8 and Lemma 9 yields the main result of this section.

Theorem 7. For λ � 3, Algorithm 4 is strictly 48-competitive for unknown distributions.

Proof. For n ∈ {1, . . . , 4}, the first applicant is hired for n time units, and the algorithm is, thus, 4-competitive. For
the following arguments, assume that n ≥ 5. Using Lemma 9 with p � λ

λ+1, we conclude that the algorithm visits
each state at most 1

2p−1 � λ+1
λ−1 times in expectation. In state j with 0< j< k, with probability p � λ

λ+1, an applicant is
hired for (1 + λ)2j+2 units of time. The cost of the applicant is determined by drawing 2j − 1 numbers to determine
a minimum τ, and then continuing to draw until we find the first cost smaller than τ. We can bound the expected
cost of the applicant by the expected cost when drawing 2j numbers and taking the minimum, that is,

E x | x ≤ τ[ ] ≤ Exi∼X min
i∈{1,...,2j}

{xi}
[ ]

�
∫ ∞

0
(1 − F(x))2jdx.

The algorithm stops at the latest when an applicant is hired in state k − 1 � �log n
λ+1� − 2, as the applicant is

hired for at least n time steps. Because the number of visits to a state, the probability of hiring in a state, and
the expected cost when hiring are independent, we obtain

E Algn[ ] ≤ λ(λ + 1)
λ − 1

∑k

j�0
2j+2

∫ ∞

0
(1 − F(x))2j dx

( )
.

Together with Lemma 8 and k − 1 ≤ �logn� − 2, this yields

E Algn[ ]
E Optn[ ] ≤

4E x[ ] (λ+1)2λ−1 + ∑k−1
j�1

λ(λ+1)
λ−1 2j+2

∫ ∞
0 (1 − F(x))2j dx

( )
E x[ ] + ∑�log n�

j�1 2j−1
∫ ∞
0 (1 − F(x))2j dx

≤ max
4E x[ ] (λ+1)2λ−1

E x[ ] ,

∑k−1
j�1

λ(λ+1)
λ−1 2j+2

∫ ∞
0 (1 − F(x))2j dx

( )
∑�log n�

j�1 2j−1
∫ ∞
0 (1 − F(x))2j dx

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≤ max 4
(λ + 1)2
λ − 1

, 8
λ(λ + 1)
λ − 1

{ }
≤ 48,

as claimed. □

7. Sequential Employment
We now turn our attention to the number of applicants that are concurrently under employment. We show
that there is no constant competitive algorithm for the problem that the covering constraint for the required
number of employed candidates is fulfilled with equality in every step.

We can easily adapt the algorithms in the previous sections to be competitive in a setting where not more
than two applicants may be employed during any period of time.

Lemma 10. Algorithms 1–4 can be adapted to employ not more than two applicants concurrently while loosing at most a
factor of 2 in their competitive ratio.

Figure 5. Markov chain M(p, k) with p � λ/(λ + 1).
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Proof. We double the hiring times of the algorithms and stay idle during the first half of the hiring period; that is,
we discard all applicants encountered during that period. This doubling causes a loss of a factor not larger than 2.
Furthermore, it has the effect that after waiting for half of the hiring time, effectively, the remaining hiring time is as
before. This, in turn, implies that the employment period of any previously hired applicant runs out while staying
idle for a new applicant. This is because the hiring time of a new applicant was defined to be larger than the
remaining hiring time of the previous one, and thus only ever two applicants are employed concurrently. □

Lemma 10 allows us to generalize our algorithms for input sequences of unknown length. Without
knowledge of n, we cannot stop our algorithm once an applicant is hired for more than the remaining time,
and, in addition, the last applicant may be hired for time steps after time step n. However, if no more than two
applicants are employed concurrently, it is guaranteed that we never employ more than a single additional
applicant. It can be shown that the expected cost of hiring the last two applicants hired by our algorithms is
never larger than a constant times the cost of an optimal solution. (This is trivial for the uniform distribution
where the cost for hiring an applicant is bounded by 9/4; for arbitrary and unknown distributions, it follows
from Lemmas 7 and 8, respectively.) Because, up to the hiring of the last two hired applicants, the algorithms
do not need knowledge on n, we obtain the following corollary.

Corollary 1. Algorithms 1–4 can be adapted to be competitive even when n is not known.

The question remains whether we can stay competitive when only a single applicant may be employed at a
time. We refer to this setting as the setting of sequential employment. In the remaining part of this section, we
show that the competitive ratio is Ω

��
n

√
/ logn

( )
for any online algorithm. To do so, we give an optimal online

algorithm for the sequential employment for any distribution and show that the competitive ratio is in the
order of Θ( ��

n
√

/ logn) for the special case of X � U[0, 1]. This implies that, in contrast to Algorithms 1–4, there is
no constant competitive algorithm for arbitrary distributions. Note that the offline optimum uses only se-
quential employment.

Let En denote the expected cost of the best online algorithm for n applicants under sequential employment.
We give an optimal online algorithm (see Algorithm 5) based on the values E1,E2, . . . ,En−1. Because a single
applicant needs to be employed at any time, the only decision of the algorithm regards the respective hiring
times. Interestingly, our algorithm hires all but the last applicant only for a single unit of time.

Before we prove this result, we need the following technical lemma.

Lemma 11. The function G(τ) :�Pr x ≥ τ[ ](τ − E x | x ≥ τ[ ]) is nondecreasing.
Proof. We rewrite G(τ) � τPr x ≥ τ[ ] − ∫ ∞

τ
xf (x)dx, where f is the density of X. Then, for τ′ > τ, we have

G(τ′) − G(τ) � τ′Pr x ≥ τ′[ ] − τPr x ≥ τ[ ] +
∫ τ′

τ
xf (x)dx

≥ τ′
∫ ∞

τ′
f (x)dx − τ

∫ ∞

τ
f (x)dx + τ

∫ τ′

τ
f (x)dx

≥ 0,

which concludes the proof. □

We are now in position to prove that Algorithm 5 is optimal.

Theorem 8. Algorithm 5 is an optimal online algorithm for sequential employment.

Proof. Let τi :�Ei/i be the threshold employed by Algorithm 5 when i applicants remain. For technical reasons, let
τ0 be any constant greater than τ1. We prove the theorem by induction on n, additionally showing that τn ≤ τn−1.
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For n � 1, the algorithm is obviously optimal, and τ1 ≤ τ0 by definition. Consider the first applicant of cost x1. With
E0 :� 0, the expected cost of the optimal online algorithm follows the recursion

min
t∈{1,...,n}

{x1t + En−t}. (21)

Consider the case x1 < τn−1 � En−1/(n − 1). We proceed to show that the minimum (21) is attained for t � n. By
induction, for all t ∈ {1, . . . , n − 1}, we have x1 < τn−1 ≤ τt, and thus

nx1 � tx1 + (n − t)x1 < tx1 + En−t.

Now consider the case x1 ≥ τn−1. We need to show that the minimum (21) is attained for t � 1. By induction, for
all t ∈ {2, . . . ,n}, we have τn−1 ≤ τn−t, and thus

tx1 + En−t � x1 + (t − 1)x1 + (n − t)τn−t
≥ x1 + (t − 1)τn−1 + (n − t)τn−1
� x1 + En−1.

It remains to show τn ≤ τn−1. From the above, we have

En � nPr x< τn−1[ ]E x | x< τn−1[ ] + Pr x ≥ τn−1[ ](E x | x ≥ τn−1[ ] + En−1).
Using

E x[ ] � Pr x< τn−1[ ]E x | x< τn−1[ ] + Pr x ≥ τn−1[ ]E x | x ≥ τn−1[ ],
this yields

τn � E x[ ] + 1
n
Pr x ≥ τn−1[ ] En−1 − (n − 1)E x | x ≥ τn−1[ ]( )

� E x[ ] + n − 1
n

Pr x ≥ τn−1[ ](τn−1 − E x | x ≥ τn−1[ ]).

Using Lemma 11 (with τn−1 ≤ τn−2 by induction) and the fact that the second term is negative, we obtain

τn ≤ E x[ ] + n − 2
n − 1

Pr x ≥ τn−1[ ](τn−1 − E x | x ≥ τn−1[ ])

≤ E x[ ] + n − 2
n − 1

Pr x ≥ τn−2[ ](τn−2 − E x | x ≥ τn−2[ ])
� τn−1,

which concludes the proof. □

We derive the optimal competitive ratio for the case where X � U[0, 1].
Lemma 12. For X � U[0, 1], we have

En �
1
2
, for n � 1,

En−1 + 1
2
− E

2
n−1

2(n − 1) , for n> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Proof. The case n � 1 follows from E x[ ] � 1/2. For n> 1, we use the fact that Algorithm 5 is optimal. We obtain

En � nPr x< τn−1[ ]E x | x< τn−1[ ] + Pr x ≥ τn−1[ ](E x | x ≥ τn−1[ ] + En−1)
� nτn−1 · 12 τn−1 + (1 − τn−1) 1 + τn−1

2
+ En−1

( )
� nτ2n−1

2
+ 1
2
+ En−1 − 1

2
τ2n−1 − En−1τn−1

� En−1 + 1
2
− E2

n−1
2(n − 1) ,

which concludes the proof. □

With this, we can bound the expected cost of any online algorithm.
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Lemma 13. For X � 8[0, 1], we have �������
n + 1

√ − 1 ≤ En ≤ ��
n

√
.

Proof. For the sake of contradiction, assume that En >
��
n

√
for some value of n. With Lemma 12, we obtain

En+1 � En + 1
2
− E2

n

2n
<En + 1

2
− n
2n

� En,

which is a contradiction with En being nondecreasing.
Let h(n) :� �������

n + 1
√ − 1. It is easy to check that En ≥ h(n) for n< 7. For n ≥ 7, we use induction on n. To that end,

assume En ≥ h(n) holds, and consider En+1. Clearly, En+1 ≥ En. If En ≥ �������
n + 1

√ − 0.8, it thus suffices to show that
h(n + 1) − h(n) ≤ 0.2. Because h is concave and n ≥ 7, we indeed have

h(n + 1) − h(n) ≤ h′(n) � 1

2
�������
n + 1

√ ≤ 0.2.

Finally, let En <
�������
n + 1

√ − 0.8. Using n ≥ 7, we show that En grows faster than h(n):

En+1 − En � 1
2
− E2

n

2n
≥ 1
2
− ( �������

n + 1
√ − 0.8)2

2n
� 160

�������
n + 1

√ − 164
200n

≥
�������
n + 1

√
2(n + 1) � h′(n) ≥ h(n + 1) − h(n),

which concludes the proof. □

Together with Lemma 1, we immediately get the following bound on the competitive ratio of any online
algorithm.

Theorem 9. The competitive ratio of the best online algorithm for sequential employment and a uniform distribution X �
U[0, 1] is Θ ��

n
√

/ log n
( )

.

Observe that Theorem 9 implies that every sequential algorithm has a competitive ratio of Ω
��
n

√
/ logn

( )
. This

immediately disqualifies simple algorithms that never hire more than one applicant at every point in time
from being constant competitive for the problems considered in Sections 4–6.

8. Analysis of the Markov Chains
In this section, we study the Markov chains that govern the evolution of the threshold values of our algorithms.

8.1. Markov Chain M̂(p, k)
We start with the simple Markov chain M̂(p, k) used in Sections 4.1 and 6. The Markov chain has states 0, . . . , k
and transition probabilities as shown in Figure 6.

In the following, we compute the expected number of visits to each state.

Lemma 14. Let p> 1/2 and k ∈ N. Starting in state 0, the expected number of visits to each state j of the Markov chain
M̂(p, k) is at most 1

2p−1.

Proof. Let vj denote the expected number of visits to state j, when starting from state 0. We derive that the values
vj, j ∈ {0, . . . , k}, satisfy the following equations:

vk � 1, (22a)
vk � pvk−1, (22b)

vk−1 � pvk−2, (22c)
vj � (1 − p)vj+1 + pvj−1 for all j ∈ {2, . . . , k − 2}, (22d)
v1 � v0 + (1 − p)v2, (22e)
v0 � 1 + (1 − p)v1, (22f)

Figure 6. Markov chain used in Section 4.1 and Section 6. Nodes correspond to states.
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where (22a) follows from the fact that k is the absorbing state, and (22b) uses that state k is reached only from
state k − 1. Equation (22c) follows because state k − 1 can be reached from state k − 2 only. Equation (22d)
follows from the fact that we reach state j from j − 1 and j + 1 and leave states j − 1 and j + 1 to j with a
probabilities of p and 1 − p, respectively. As state 0 is left with probability 1 toward its successor, Equation
(22e) holds as a special case. Furthermore, for state 0, we obtain Equation (22f) because 0 is the starting state
and can be reached only from state 1.

Note that (22a) and (22b) imply vk−1 � 1/p, which, by (22c), implies vk−2 � 1/p2. With these start values, (22d)
uniquely defines a homogenous recurrence relation on v1, . . . , vk−1 with

vj � 1
p
vj+1 − 1 − p

p
vj+2 for all j ∈ {2, . . . , k − 2}.

Solving this recurrence by the method of characteristic equations yields that the characteristic polynomial
x2 − 1

p x + 1−p
p has roots 1

p − 1 and 1 so that the explicit solution is

vj � λ1
1
p
− 1

( )k−j−1
+ λ2

for some parameters λ1, λ2 ∈ R. Choosing λ1 and λ2 such that the equations vk−1 � 1/p and vk−2 � 1/p2 are
satisfied gives

λ1 � 1
2p − 1

1 − 1
p

( )
, λ2 � 1

p
− 1
2p − 1

1 − 1
p

( )
.

As a result, for j ∈ {1, . . . , k}, we obtain

vj � 1
2p − 1

1 − 1
p

( )
1
p
− 1

( )k−j−1
+ 1
p
− 1
2p − 1

1 − 1
p

( )
� 1
2p − 1

1
p
− 1

( )
− 1

p
− 1

( )k−j[ ]
+ 1
p
. (23)

Finally, v0 is defined via (22f). Observe that, together with (23), this satisfies (22e) as required.
It remains to show that vj ≤ 1

2p−1 for all j ∈ {0, . . . , k}. For j ∈ {1, . . . , k − 1}, we use Equation (23) and the fact
that p> 1/2 to obtain

vj � 1
2p − 1

1
p
− 1

( )
− 1

p
− 1

( )k−j[ ]
+ 1
p

≤ 1
2p − 1

1
p
− 1

( )
+ 1
p

� p
p 2p − 1

( ) � 1
2p − 1

.

For j � 0 we have, by Equation (22f),

v0 � 1 + (1 − p)v1 ≤ 1 + 1 − p
2p − 1

� p
2p − 1

≤ 1
2p − 1

,

which completes the proof. □

8.2. Markov Chain N̂(p, k)
In this section, we study the Markov chain N̂(p, k) used in Sections 4.2 and 5. The Markov chain has states Aj

and Bj, for j ∈ {0, . . . , k}, and transition probabilities as shown in Figure 7.
We start to bound the expected number of transitions from an A state to a B state.

Lemma 15. Starting in state A0 of Markov chain N̂(p, k), the expected number of transitions from an A state to a B state
is at most

h � kp
3p − 1

− 4p(1 − 2p)
(3p − 1)2 + 1 − p

3p − 1

( )2 2(1 − p)
1 + p

( )k
.
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Proof. Let aj (respectively bj) denote the expected number of transitions from an A state to a B state, when starting
from state Aj (respectively Bj). We get

bk � 0, (24a)

bj � 1
2
bj+1 + 1

2
aj+1 for all j ∈ {0, . . . , k − 1}, (24b)

aj � p(bj + 1) + (1 − p)aj−1 for all j ∈ {1, . . . , k}, (24c)
a0 � 1 + b0. (24d)

Defining β � 2(1−p)
1+p , for j ∈ {0, . . . , k}, it is straightforward to check that (24a), (24b), and (24c) are fulfilled by

aj � (k − j + 2)p
3p − 1

− βj
2p(1 − p)
(3p − 1)2 + βk

(1 − p)2
(3p − 1)2 and

bj � (k − j)p
3p − 1

− βj
(1 − p)2
(3p − 1)2 + βk

(1 − p)2
(3p − 1)2 .

It follows that the expected number of transitions from an A state to a B state when starting at A0 is

a0 � (k + 2)p
3p − 1

− 2p(1 − p)
(3p − 1)2 + βk

(1 − p)2
(3p − 1)2 �

kp
3p − 1

− 4p(1 − 2p)
(3p − 1)2 + 2k(1 − p)k+2

(3p − 1)2(1 + p)k ,

which completes the proof. □

Lemma 16. Starting in state A0 of Markov chain N̂(p, k) for each j ∈ {0, . . . , k − 1}, the expected number of transitions
from Bj to Aj+1 is at most p

3p−1.

Proof. As the expected number of such transitions is half the expected number of visits to state Bj , it suffices to
bound the latter quantity.

Suppose we are in state Bj. The probability of coming back to Bj equals the probability of hitting Aj from Bj.
Denote by ai(j) and bi(j) the hitting probability of state Ai from Aj and Bj, respectively. We have

bi(k) � 0, (25a)

bi(j) � 1
2
bi(j + 1) + 1

2
ai(j + 1) for all j ∈ {i, . . . , k − 1}, (25b)

ai(j) � pbi(j) + (1 − p)ai(j − 1) for all j ∈ {i + 1, . . . , k}, (25c)
ai(i) � 1. (25d)

Let β � 2(1−p)
p+1 < 1 (as p> 1

3
/
). It is easy to check that for j ∈ {i, . . . , k},

ai(j) ≤ βj−i,

bi(j) ≤ 1 − p
2p

βj−i

gives an upper bound on the solution of (25), as these values satisfy equalities (25b), (25c), (25d), and only
overestimate (25a). We can interpret the visits to state Bj after the first visit as a geometric random variable
with success probability 1 − bj(j). Thus, the expected number of visits to Bj is given by

1 + 1 − (1 − bj(j))
1 − bj(j) � 1

1 − bj(j) ≤
1

1 − 1−p
2p

� 2p
3p − 1

.

We conclude that the expected number of transitions from Bj to Aj+1 is at most p
3p−1, proving the claim. □

Figure 7. Markov chain N̂(p, k) with homogenous transition probability p and k + 1 states used in Sections 4.2 and 5. Nodes
correspond to states.
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9. Conclusion
We considered prophet inequalities with a covering constraint and a minimization objective. We gave constant
competitive algorithms for this type of problem and established concurrent employment as a necessary feature
of such algorithms.

We note that our results extend to slightly more general settings, where (a) we relax the covering constraint
by associating a penalty B<∞ with time steps where no contract is active, (b) multiple applicants arrive in
each time step, and (c) applicants may be hired fractionally.

A crucial limitation of our model is the assumption that costs are distributed independently, and it remains
an interesting question how to address correlated costs.
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Endnotes
1We discuss a relaxation of the strict covering constraint in Section 9.
2Here and throughout, we denote the logarithm of n to base 2 by log(n) and the natural logarithm of n with ln(n).
3 In general, we need to define δq more carefully via Pr x ≤ δq

[ ] ≥ q and Pr x ≥ δq
[ ] ≥ 1 − q.
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